Effect of W/O Emulsion Fuel Properties on Spray Combustion
NASA Astrophysics Data System (ADS)
Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco
This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.
Technology Insertion for Recapitalization of Legacy Systems
2015-09-30
peened, and 4) an Abcite coating will be flame sprayed on the component. The ALCM program (B) has 1) evaluated data provided, 2) gathered questions...Report Technology Insertion for the Recapitalization of Legacy Systems Laser sintering, thermal spray and cold spray are additive manufacturing methods... coatings Need an experienced operator Requires a special spray booth to limit overspray and protect operator Requires primer or surface treatment
Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan
2007-12-01
Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.
Polydisperse effects in jet spray flames
NASA Astrophysics Data System (ADS)
Weinberg, Noam; Greenberg, J. Barry
2018-01-01
A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.
NASA Astrophysics Data System (ADS)
Hu, Yong; Olguin, Hernan; Gutheil, Eva
2017-05-01
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.
The role of nano-particles in the field of thermal spray coating technology
NASA Astrophysics Data System (ADS)
Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas
2005-06-01
Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.
Manufacturing Methods and Technology Project Summary Reports.
1980-12-01
deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I
Ethanol turbulent spray flame response to gas velocity modulation
NASA Astrophysics Data System (ADS)
Fratalocchi, Virginia; Kok, Jim B. W.
2018-01-01
A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.
NASA Astrophysics Data System (ADS)
Ashrafizadeh, H.; McDonald, A.; Mertiny, P.
2016-02-01
Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.
An experimental study of air-assist atomizer spray flames
NASA Technical Reports Server (NTRS)
Mao, Chien-Pei; Wang, Geng; Chigier, Norman
1988-01-01
It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.
NASA Technical Reports Server (NTRS)
Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan
2002-01-01
An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.
NASA Astrophysics Data System (ADS)
Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert
2018-01-01
Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.
A Validation Summary of the NCC Turbulent Reacting/non-reacting Spray Computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Liu, N.-S. (Technical Monitor)
2000-01-01
This pper provides a validation summary of the spray computations performed as a part of the NCC (National Combustion Code) development activity. NCC is being developed with the aim of advancing the current prediction tools used in the design of advanced technology combustors based on the multidimensional computational methods. The solution procedure combines the novelty of the application of the scalar Monte Carlo PDF (Probability Density Function) method to the modeling of turbulent spray flames with the ability to perform the computations on unstructured grids with parallel computing. The calculation procedure was applied to predict the flow properties of three different spray cases. One is a nonswirling unconfined reacting spray, the second is a nonswirling unconfined nonreacting spray, and the third is a confined swirl-stabilized spray flame. The comparisons involving both gas-phase and droplet velocities, droplet size distributions, and gas-phase temperatures show reasonable agreement with the available experimental data. The comparisons involve both the results obtained from the use of the Monte Carlo PDF method as well as those obtained from the conventional computational fluid dynamics (CFD) solution. Detailed comparisons in the case of a reacting nonswirling spray clearly highlight the importance of chemistry/turbulence interactions in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that most of the combustion occurs in a predominantly diffusion-flame environment. However, the non-PDF solution predicts incorrectly that the combustion occurs in a predominantly vaporization-controlled regime. The Monte Carlo temperature distribution shows that the functional form of the PDF for the temperature fluctuations varies substantially from point to point. The results also bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations.
Custom-designed nanomaterial libraries for testing metal oxide toxicity
Pokhrel, Suman; Nel, André E.; Mädler, Lutz
2014-01-01
Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152
NASA Technical Reports Server (NTRS)
Cooper, Clayton S.; Laurendeau, Normand M.; Hicks, Yolanda R. (Technical Monitor)
2000-01-01
Lean direct-injection (LDI) spray flames offer the possibility of reducing NO(sub x) emissions from gas turbines by rapid mixing of the liquid fuel and air so as to drive the flame structure toward partially-premixed conditions. We consider the technical approaches required to utilize laser-induced fluorescence methods for quantitatively measuring NO concentrations in high-pressure LDI spray flames. In the progression from atmospheric to high-pressure measurements, the LIF method requires a shift from the saturated to the linear regime of fluorescence measurements. As such, we discuss quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of NO concentration in LDI spray flames. Spatially-resolved LIF measurements of NO concentration (ppm) are reported for preheated, LDI spray flames at pressures of two to five atmospheres. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q(sub 2)(26.5) transition of the gamma(0,0) band. Detection is performed in a two nanometer region centered on the gamma(0,1) band. A complete scheme is developed by which quantitative NO concentrations in high-pressure LDI spray flames can be measured by applying linear LIF. NO is doped into the reactants and convected through the flame with no apparent destruction, thus allowing a NO fluorescence calibration to be taken inside the flame environment. The in-situ calibration scheme is validated by comparisons to a reference flame. Quantitative NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors. Moreover, parametric studies are provided for variations in pressure, air-preheat temperature, and equivalence ratio. Similar parametric studies are performed for lean, premixed-prevaporized flames to permit comparisons to those for LDI flames. Finally, PLIF is expanded to high pressure in an effort to quantify the detected fluorescence image for LDI flames. Success is achieved by correcting the PLIF calibration via a single-point LIF measurement. This procedure removes the influence of any preferential background that occurs in the PLIF detection window. In general, both the LIF and PLIF measurements verify that the LDI strategy could be used to reduce NO(sub x) emissions in future gas turbine combustors.
Flame spray pyrolysis for sensing at the nanoscale.
Kemmler, J A; Pokhrel, S; Mädler, L; Weimar, U; Barsan, N
2013-11-08
Progress in developing novel gas sensors based on semiconducting metal oxides (SMOX) has been hindered by the cumbersome fabrication technologies currently employed. They involve time intensive synthesis procedures for gaining sensitive materials and preparation of the inks employed for realizing sensing layers. In this paper we review the opportunities offered by the relatively young method of flame spray pyrolysis, with which it is possible not only to synthesize a broad selection of SMOX in pure or doped form, but also to simultaneously deposit thick and highly porous gas sensitive films on a variety of substrates. In less than ten years the properties of nine base materials have been evaluated for all most relevant target gases and the obtained results are promising for future development.
Flame spray pyrolysis for sensing at the nanoscale
NASA Astrophysics Data System (ADS)
Kemmler, J. A.; Pokhrel, S.; Mädler, L.; Weimar, U.; Barsan, N.
2013-11-01
Progress in developing novel gas sensors based on semiconducting metal oxides (SMOX) has been hindered by the cumbersome fabrication technologies currently employed. They involve time intensive synthesis procedures for gaining sensitive materials and preparation of the inks employed for realizing sensing layers. In this paper we review the opportunities offered by the relatively young method of flame spray pyrolysis, with which it is possible not only to synthesize a broad selection of SMOX in pure or doped form, but also to simultaneously deposit thick and highly porous gas sensitive films on a variety of substrates. In less than ten years the properties of nine base materials have been evaluated for all most relevant target gases and the obtained results are promising for future development.
Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jian; Moon, Seoksu; Nishida, Keiya
This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The imagesmore » show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)« less
High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process
NASA Astrophysics Data System (ADS)
Tailor, Satish; Modi, Ankur; Modi, S. C.
2018-04-01
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).
NASA Astrophysics Data System (ADS)
Archibald, Reid S.
A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.
Computational flow field in energy efficient engine (EEE)
NASA Astrophysics Data System (ADS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2016-11-01
In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.
Heat and mass transfer in flames
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1986-01-01
Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.
Evaluation of a locally homogeneous flow model of spray combustion
NASA Technical Reports Server (NTRS)
Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.
1980-01-01
A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric
2015-12-01
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a detailed combustion model along with a dynamic structure LES model to evaluate its performance at engine-relevant conditions and understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a detailed combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of RANS predictions. The LES data suggests that the first ignition initiatesmore » in lean mixture and propagates to rich mixture, and the main ignition happens in rich mixture, preferable less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled and modulated by flame propagation. Soot predictions by LES present much better agreement with experiments compared to RANS both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 2 and 5 realizations can reach 99\\% of similarity to the target average of 16 realizations on the temperature and mixture fraction fields, respectively. However, more realizations are necessary for OH and soot mass fraction due to their high fluctuations.« less
Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors
Rudin, Thomas; Wegner, Karsten
2013-01-01
A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113
Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil
2016-04-01
Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.
NASA Astrophysics Data System (ADS)
Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.
2009-01-01
Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.
Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating
NASA Astrophysics Data System (ADS)
Zafar, Sunny; Sharma, Apurbba Kumar
2017-03-01
Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.
An Overview of the NCC Spray/Monte-Carlo-PDF Computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Liu, Nan-Suey (Technical Monitor)
2000-01-01
This paper advances the state-of-the-art in spray computations with some of our recent contributions involving scalar Monte Carlo PDF (Probability Density Function), unstructured grids and parallel computing. It provides a complete overview of the scalar Monte Carlo PDF and Lagrangian spray computer codes developed for application with unstructured grids and parallel computing. Detailed comparisons for the case of a reacting non-swirling spray clearly highlight the important role that chemistry/turbulence interactions play in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that some of the combustion occurs in a predominantly premixed-flame environment and the rest in a predominantly diffusion-flame environment. However, the non-PDF solution predicts wrongly for the combustion to occur in a vaporization-controlled regime. Near the premixed flame, the Monte Carlo particle temperature distribution shows two distinct peaks: one centered around the flame temperature and the other around the surrounding-gas temperature. Near the diffusion flame, the Monte Carlo particle temperature distribution shows a single peak. In both cases, the computed PDF's shape and strength are found to vary substantially depending upon the proximity to the flame surface. The results bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations. Finally, we end the paper by demonstrating the computational viability of the present solution procedure for its use in 3D combustor calculations by summarizing the results of a 3D test case with periodic boundary conditions. For the 3D case, the parallel performance of all the three solvers (CFD, PDF, and spray) has been found to be good when the computations were performed on a 24-processor SGI Origin work-station.
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...
2015-10-14
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less
Metal flame spray coating protects electrical cables in extreme environment
NASA Technical Reports Server (NTRS)
Brady, R. D.; Fox, H. A.
1967-01-01
Metal flame spray coating prevents EMF measurement error in sheathed instrumentation cables which are externally attached to cylinders which were cooled on the inside, but exposed to gamma radiation on the outside. The coating provides a thermoconductive path for radiation induced high temperatures within the cables.
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1984-01-01
An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.
Welding Wires To Thin Thermocouple Films
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary
1993-01-01
Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.
NASA Technical Reports Server (NTRS)
1977-01-01
Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.
A Dramatic Flame Test Demonstration.
ERIC Educational Resources Information Center
Johnson, Kristin A.; Schreiner, Rodney
2001-01-01
Flame tests are used for demonstration of atomic structure. Describes a demonstration that uses spray bottles filled with methanol and a variety of salts to produce a brilliantly colored flame. (Contains 11 references.) (ASK)
Thermal Spraying of Bioactive Polymer Coatings for Orthopaedic Applications
NASA Astrophysics Data System (ADS)
Chebbi, A.; Stokes, J.
2012-06-01
Flame sprayed biocompatible polymer coatings, made of biodegradable and non-biodegradable polymers, were investigated as single coatings on titanium and as top coatings on plasma sprayed Hydroxyapatite. Biocompatible polymers can act as drug carriers for localized drug release following implantation. The polymer matrix consisted of a biodegradable polymer, polyhydroxybutyrate 98%/ polyhydroxyvalerate 2% (PHBV) and a non-biodegradable polymer, polymethylmethacrylate (PMMA). Screening tests were performed to determine the suitable range of spraying parameters, followed by a Design of Experiments study to determine the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), and to optimize the coating properties accordingly. Coatings characterization showed that optimized flame sprayed biocompatible polymers underwent little chemical degradation, did not produce acidic by-products in vitro, and that cells proliferated well on their surface.
Darrieus-Landau instability of premixed flames enhanced by fuel droplets
NASA Astrophysics Data System (ADS)
Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno
2017-07-01
Recent experiments on spray flames propagating in a Wilson cloud chamber have established that spray flames are much more sensitive to wrinkles or corrugations than single-phase flames. To propose certain elements of explanation, we numerically study the Darrieus-Landau (or hydrodynamic) instability (DL-instability) developing in premixtures that contain an array of fuel droplets. Two approaches are compared: numerical simulation starting from the general conservation laws in reactive media, and the numerical computation of Sivashinsky-type model equations for DL-instability. Both approaches provide us with results in deep agreement. It is first shown that the presence of droplets in fuel-air premixtures induces initial perturbations which are large enough to trigger the DL-instability. Second, the droplets are responsible for additional wrinkles when the DL-instability is developed. The latter wrinkles are of length scales shorter than those of the DL-instability, in such a way that the DL-unstable spray flames have a larger front surface and therefore propagate faster than the single-phase ones when subjected to the same instability.
Invited Review. Combustion instability in spray-guided stratified-charge engines. A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fansler, Todd D.; Reuss, D. L.; Sick, V.
2015-02-02
Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NO x and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less
The effect of luting media on the fracture resistance of a flame sprayed all-ceramic crown.
Casson, A M; Glyn Jones, J C; Youngson, C C; Wood, D J
2001-11-01
This in vitro study investigated the effect of selected luting media on the fracture resistance of a flame-sprayed all-ceramic crown. Three groups of 10 human upper premolar teeth were prepared for crowning using a standardised technique. Flame sprayed crowns were fabricated and cemented onto the preparations using zinc phosphate (ZPC), glass polyalkenoate (GPC) or composite luting cement (CLC). During crown seating, a pressure perfusion system simulated pulpal fluid outflow equivalent to 300mm of H2O. Compressive fracture resistance was determined for each group using a Universal Testing Machine with a crosshead speed of 1mm min(-1). A group of unrestored teeth acted as a control. The fracture resistance of the groups ranked as follows: ZPC>CLC>GPC=unrestored teeth. The difference between the fracture resistance of ZPC and CLC groups and the control group was statistically significant. The mode of fracture between the luted crowns and natural crowns was markedly different. When tested in compression, a new, flame-sprayed all-ceramic crown, when luted in place using ZPC, GPC or CLC, could produce strengths comparable to or greater than natural unrestored teeth. The luting agent used significantly affected the recorded fracture loads.
NASA Astrophysics Data System (ADS)
Ferrer, M.; Vargas, F.; Peña, G.
2017-12-01
The K-Sommerfeld values (K) and the melting percentage (% F) obtained by numerical simulation using the Jets et Poudres software were used to find the projection parameters of zirconia-alumina coatings by thermal spraying flame, in order to obtain coatings with good morphological and structural properties to be used as thermal insulation. The experimental results show the relationship between the Sommerfeld parameter and the porosity of the zirconia-alumina coatings. It is found that the lowest porosity is obtained when the K-Sommerfeld value is close to 45 with an oxidant flame, on the contrary, when superoxidant flames are used K values are close 52, which improve wear resistance.
Flame Stability in a Trapped-Vortex Spray-Combustor
NASA Astrophysics Data System (ADS)
Chakka, P.; Mancilla, P. C.; Acharya, S.
1999-11-01
Flame stabilization mechanisms in a Trapped-Vortex (TV) cavity is investigated experimentally and computationally in the current research. The TV-cavity is placed coaxially in the combustor and the flame is maintained through injection of liquid fuel spray and air from the inside face of the afterbody. This concept was introduced by Roquemore and company of Wright-Patterson AFB for gaseous fuel injection into the cavity and is extended for liquid fuel sprays in the current research. The flame holding capability of the TV-cavity is studied for different equivalence ratios of the secondary injection and overall Lean Blow-Out (LBO) limits are presented for different primary and secondary flow rates. The interaction and mixing of the main flow with the secondary vortex flow is investigated through the Laser Doppler Velocimetry measurements taken through a quartz window near the cavity. Also, temperature distribution through IR measurements and pressure fluctuations inside the chamber are presented for complete performance analysis of the TV cavity combustor.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto
2016-02-01
Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.
Computational Analysis of Spray Jet Flames
NASA Astrophysics Data System (ADS)
Jain, Utsav
There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the droplet parameters needed, a rigorous parametric study is conducted for five different parameters in both physical as well as mixing variable space. The parametric study is conducted for a counterflow setup with n-heptane and inert nitrogen on the fuel side and oxygen with inert nitrogen on the oxidizer side. The computational setup (the temperature and velocity field) is validated against the experimental data from the Yale heptane counterflow flame. The five parameters that are investigated are: aerodynamic strain rate, initial droplet diameter, number of fuel droplets, droplet velocity slip ratio and pre-vaporization ratio. It is not the first time such a study has been accomplished but not a lot of research has been done for heavier fuels such as n-heptane (a very crucial reference fuel for the octane ratings in various applications). Also parameters such as droplet slip ratio and pre-vaporization ratio have not been prudently studied in the past. It is observed that though the slip ratio is not very significant in spray flamelet characterization, the pre-vaporization ratio is important to study and has an interesting influence on spray flamelet structure. In future, based on the current parametric study, the laminar spray flamelet library can be generated which will eventually be integrated to predict turbulent spray flames.
An equivalent dissipation rate model for capturing history effects in non-premixed flames
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang; ...
2016-11-11
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
An equivalent dissipation rate model for capturing history effects in non-premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
Combustion of liquid sprays at high pressures
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.
1977-01-01
The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.
Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yuanjiang; Hu, Bing; Som, Sibendu
2016-03-16
An n-dodecane spray flame was simulated using a dynamic structure large eddy simulation (LES) model coupled with a detailed chemistry combustion model to understand the ignition processes and the quasi-steady state flame structures. This study focuses on the effect of different ambient oxygen concentrations, 13%, 15% and 21% at an ambient temperature of 900 K and an ambient density of 22.8 kg/m3, which are typical diesel-engine relevant conditions with different levels of exhaust gas recirculation (EGR). The liquid spray was treated with a traditional Lagrangian method. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. It ismore » observed that the main ignitions occur in rich mixture and the flames are thickened around 35 to 40 mm off the spray axis due to the enhanced turbulence induced by the strong recirculation upstream, just behind the head of the flames at different oxygen concentrations. At 1 ms after the start of injection, the soot production is dominated by the broader region of high temperature in rich mixture instead of the stronger oxidation of the high peak temperature. Multiple realizations were performed for the 15% O2 condition to understand the realization to realization variation and to establish best practices for ensembleaveraging diesel spray flames. Two indexes are defined. The structure-similarity index analysis suggests at least 5 realizations are needed to obtain 99% similarity for mixture fraction if the average of 16 realizations are used as the target at 0.8 ms. However, this scenario may be different for different scalars of interest. It is found that 6 realizations would be enough to reach 99% of similarity for temperature, while 8 and 14 realizations are required to achieve 99% similarity for soot and OH mass fraction, respectively. Similar findings are noticed at 1 ms. More realizations are needed for the magnitude-similarity index for the similar level of similarity as the structure-similarity index« less
Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands
NASA Technical Reports Server (NTRS)
Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.
2010-01-01
The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.
Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A
2017-08-08
A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle < 10 °) surfaces. The spray coated surfaces were found to exhibit much improved water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.
Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oran, E.S.; Boris, J.P.
1991-01-01
Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less
Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications
NASA Astrophysics Data System (ADS)
Liu, Yi; Xu, Xiaomin; Suo, Xinkun; Gong, Yongfeng; Li, Hua
2018-01-01
Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.
Spheroidization of glass powders for glass ionomer cements.
Gu, Y W; Yap, A U J; Cheang, P; Kumar, R
2004-08-01
Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.
Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A
2013-12-01
The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE
Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.
1962-06-26
A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)
Porosity and wear resistance of flame sprayed tungsten carbide coatings
NASA Astrophysics Data System (ADS)
Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi
2017-06-01
Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.
Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes
NASA Technical Reports Server (NTRS)
Agapakis, John E.; Bolstad, Jon
1993-01-01
Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.
NASA Astrophysics Data System (ADS)
Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn
2018-03-01
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.
Modeling Burns for Pre-Cooled Skin Flame Exposure
2017-01-01
On a television show, a pre-cooled bare-skinned person (TV host) passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated. PMID:28880253
A study of processing parameters in thermal-sprayed alumina and zircon mixtures
NASA Astrophysics Data System (ADS)
Li, Y.; Khor, K. A.
2002-06-01
A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.
Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide in a Heptane Spray Flame
NASA Technical Reports Server (NTRS)
Cooper, Clayton S.; Laurendeau, Normand M.; Lee, Chi (Technical Monitor)
1997-01-01
We report spatially resolved laser-saturated fluorescence measurements of NO concentration in a pre-heated, lean-direct injection (LDI) spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q2(26.5) transition of the gamma(0,0) band. Detection is performed in a 2-nm region centered on the gamma(0,1) band. Because of the relatively close spectral spacing between the excitation (226 nm) and detection wavelengths (236 nm), the gamma(0,1) band of NO cannot be isolated from the spectral wings of the Mie scattering signal produced by the spray. To account for the resulting superposition of the fluorescence and scattering signals, a background subtraction method has been developed that utilizes a nearby non-resonant wavelength. Excitation scans have been performed to locate the optimum off-line wavelength. Detection scans have been performed at problematic locations in the flame to determine possible fluorescence interferences from UHCs and PAHs at both the on-line and off-line excitation wavelengths. Quantitative radial NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors.
Manual fire suppression methods on typical machinery space spray fires
NASA Astrophysics Data System (ADS)
Carhart, H. W.; Leonard, J. T.; Budnick, E. K.; Ouellette, R. J.; Shanley, J. H., Jr.
1990-07-01
A series of tests was conducted to evaluate the effectiveness of Aqueous Film Forming Foam (AFFF), potassium bicarbonate powder (PKP) and Halon 1211, alone and in various combinations, in extinguishing spray fires. The sprays were generated by JP-5 jet fuel issuing from an open sounding tube, and open petcock, a leaking flange or a slit pipe, and contacting an ignition source. The results indicate that typical fuel spray fires, such as those simulated in this series, are very severe. Flame heights ranged from 6.1 m (20 ft) for the split pipe to 15.2 m (50 ft) for the sounding tube scenario. These large flame geometries were accompanied by heat release rates of 6 MW to greater than 50 MW, and hazardous thermal radiation levels in the near field environment, up to 9.1 m (30 ft) away. Successful suppression of these fires requires both a significant reduction in flame radiation and delivery of a suppression agent to shielded areas. Of the nine suppression methods tested, the 95 gpm AFFF hand line and the hand line in conjunction with PKP were particularly effective in reducing the radiant flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, S; Longman, D. E.; Luo, Z
2012-01-01
Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less
Immobilized TiO2 nanoparticles produced by flame spray for photocatalytic water remediation
NASA Astrophysics Data System (ADS)
Bettini, Luca Giacomo; Diamanti, Maria Vittoria; Sansotera, Maurizio; Pedeferri, Maria Pia; Navarrini, Walter; Milani, Paolo
2016-08-01
Anatase/rutile mixed-phase titanium dioxide (TiO2) photocatalysts in the form of nanostructured powders with different primary particle size, specific surface area, and rutile content were produced from the gas-phase by flame spray pyrolysis (FSP) starting from an organic solution containing titanium (IV) isopropoxide as Ti precursor. Flame spray-produced TiO2 powders were characterized by means of X-ray diffraction, Raman spectroscopy, and BET measurements. As-prepared powders were mainly composed of anatase crystallites with size ranging from 7 to 15 nm according to the synthesis conditions. TiO2 powders were embedded in a multilayered fluoropolymeric matrix to immobilize the nanoparticles into freestanding photocatalytic membranes. The photocatalytic activity of the TiO2-embedded membranes toward the abatement of hydrosoluble organic pollutants was evaluated employing the photodegradation of rhodamine B in aqueous solution as test reaction. The photoabatement rate of best performing membranes significantly overcomes that of membranes produced by the same method and incorporating commercial P25-TiO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, S.; Longman, D. E; Ramirez, A. I.
2011-03-01
Diesel engine performance and emissions are strongly coupled with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. Modern engines employ micro-orifices with different orifice designs. It is critical to characterize the effects of various designs on engine performance and emissions. In this study, a recently developed primary breakup model (KH-ACT), which accounts for the effects of cavitation and turbulence generated inside the injector nozzle is incorporated into a CFD software CONVERGE for comprehensive engine simulations. The effects of orifice geometry on inner nozzle flow, spray, and combustion processes are examined by coupling themore » injector flow and spray simulations. Results indicate that conicity and hydrogrinding reduce cavitation and turbulence inside the nozzle orifice, which slows down primary breakup, increasing spray penetration, and reducing dispersion. Consequently, with conical and hydroground nozzles, the vaporization rate and fuel air mixing are reduced, and ignition occurs further downstream. The flame lift-off lengths are the highest and lowest for the hydroground and conical nozzles, respectively. This can be related to the rate of fuel injection, which is higher for the hydroground nozzle, leading to richer mixtures and lower flame base speeds. A modified flame index is employed to resolve the flame structure, which indicates a dual combustion mode. For the conical nozzle, the relative role of rich premixed combustion is enhanced and that of diffusion combustion reduced compared to the other two nozzles. In contrast, for the hydroground nozzle, the role of rich premixed combustion is reduced and that of non-premixed combustion is enhanced. Consequently, the amount of soot produced is the highest for the conical nozzle, while the amount of NOx produced is the highest for the hydroground nozzle, indicating the classical tradeoff between them.« less
Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations
ERIC Educational Resources Information Center
Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric
2014-01-01
A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…
NASA Astrophysics Data System (ADS)
Radchenko, Pavel; Radchenko, Andrey; Batuev, Stanislav
2013-06-01
The high velocity (supersonic) oxy-fuel (HVOF) thermal spray technology is a rather recent addition to family of thermal spray processes. This technique is considered most modern of technologies of spraying. The increase in velocity of the particles at lower temperatures allowed reducing level of oxidation of the particles and to increase the density of a powder coating. In HVOF dry dusting applicators of the first and second generations was used the cylindrical nozzle, whereas in the third generation expanding Laval nozzles are used. This method allows the velocity of a gas flow to exceed to 2000 m/sec, and the velocities of the powder particles 800 m/sec. Recently many results on elastic and strength properties of the multilayer coatings obtained by supersonic flame spraying method are received. But the main part of works on research of the coating obtained by the HVOF method is devoted to research of their stress-strain state at static loadings. In this work the behavior of the steel barrier with the multilayer coating applied by HVOF is researched, at dynamic loading of projectile structure at different velocities of interaction. The problem was solved numerically within Lagrangian approach, a finite element method with the use of the explicit finite difference scheme of G. Johnson.
OBSERVATIONS ON WASTE DESTRUCTION IN LIQUID INJECTION INCINERATORS
Various factors affecting the performance of a subscale liquid injection incinerator simulator are discussed. The mechanisms by which waste escapes incineration within the spray flame are investigated for variations in atomization quality, flame stoichiometry. and the initial was...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Wei; Sjöberg, Magnus; Reuss, David L.
Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less
Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...
2016-06-01
Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less
NASA Astrophysics Data System (ADS)
Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki
2018-05-01
Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.
1998-07-29
of an operating Cummins NH diesel engine . TECHNICAL DISCUSSION: The chemistry of soot formation has been the subject of extensive research for many...Army Research Office. 14. SUBJECT TERMS Flames, Propulsion, Gas Turbines, Diesel Engines , Scramjets, Soot, Sprays, Turbulence, Diagnostics 17...Menon, Y. Neumeier, J. V. R. Prasad, L. Sankar, J. Seitzman; Georgia Institute of Technology Analysis of Advanced Direct-Injection Diesel Engine
2012-03-01
simple 1-step mechanism taking into account 4 species: CH4, O2, CO2 and H2O. Figure 2. Multiblock grid for the CVRC experiment. Left: Overall view, Right... Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and...hydrogen shear-coaxial jet flames at supercritical pressure. Com- bustion science and technology, 178(1-3):229–252, 2006. 12 B. E. Poling, J. M. Prausnitz
Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink
ERIC Educational Resources Information Center
LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina
2013-01-01
The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…
Automatic targeting of plasma spray gun
Abbatiello, Leonard A.; Neal, Richard E.
1978-01-01
A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.
A multi-scalar PDF approach for LES of turbulent spray combustion
NASA Astrophysics Data System (ADS)
Raman, Venkat; Heye, Colin
2011-11-01
A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.
NASA Technical Reports Server (NTRS)
Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.
2000-01-01
An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a methanol spray in a vitiated coflow. As a proof of concept, an ensemble light diffraction (ELD) optical instrument was used to conduct preliminary measurements of droplet size distribution and liquid volume fraction.
Laminar flow burner system with infrared heated spray chamber and condenser.
Hell, A; Ulrich, W F; Shifrin, N; Ramírez-Muñoz, J
1968-07-01
A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
The success of any solution methodology used in the study of gas-turbine combustor flows depends a great deal on how well it can model the various complex and rate controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as convective and radiative heat transfer and other phenomena. The phenomena to be modeled, which are controlled by these processes, often strongly interact with each other at different times and locations. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. The influence of turbulence in a diffusion flame manifests itself in several forms, ranging from the so-called wrinkled, or stretched, flamelets regime to the distributed combustion regime, depending upon how turbulence interacts with various flame scales. Conventional turbulence models have difficulty treating highly nonlinear reaction rates. A solution procedure based on the composition joint probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices (such as extinction, blowoff limits, and emissions predictions) because it can account for nonlinear chemical reaction rates without making approximations. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on the PDF method to unstructured grids, parallel computing, and sprays. EUPDF, which was developed by M.S. Raju of Nyma, Inc., was designed to be massively parallel and could easily be coupled with any existing gas-phase and/or spray solvers. EUPDF can use an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements. The application of the PDF method showed favorable results when applied to several supersonic-diffusion flames and spray flames. The EUPDF source code will be available with the National Combustion Code (NCC) as a complete package.
The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...
Anti-icing Behavior of Thermally Sprayed Polymer Coatings
NASA Astrophysics Data System (ADS)
Koivuluoto, Heli; Stenroos, Christian; Kylmälahti, Mikko; Apostol, Marian; Kiilakoski, Jarkko; Vuoristo, Petri
2017-01-01
Surface engineering shows an increasing potential to provide a sustainable approach to icing problems. Currently, several passive anti-ice properties adoptable to coatings are known, but further research is required to proceed for practical applications. This is due to the fact that icing reduces safety, operational tempo, productivity and reliability of logistics, industry and infrastructure. An icing wind tunnel and a centrifugal ice adhesion test equipment can be used to evaluate and develop anti-icing and icephobic coatings for a potential use in various arctic environments, e.g., in wind power generation, oil drilling, mining and logistic industries. The present study deals with evaluation of icing properties of flame-sprayed polyethylene (PE)-based polymer coatings. In the laboratory-scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared with metals such as aluminum and stainless steel. The ice adhesion strength of the flame-sprayed PE coating was found to have approximately seven times lower ice adhesion values compared with metallic aluminum, indicating a very promising anti-icing behavior.
NASA Technical Reports Server (NTRS)
1995-01-01
The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF approach was extended in our previous work to the study of compressible reacting flows. The application of this method to several supersonic diffusion flames associated with scramjet combustor flow fields provided favorable comparisons with the available experimental data. A further extension of this approach to spray flames, three-dimensional computations, and parallel computing was reported in a recent paper. The recently developed PDF/SPRAY/computational fluid dynamics (CFD) module combines the novelty of the joint composition PDF approach with the ability to run on parallel architectures. This algorithm was implemented on the NASA Lewis Research Center's Cray T3D, a massively parallel computer with an aggregate of 64 processor elements. The calculation procedure was applied to predict the flow properties of both open and confined swirl-stabilized spray flames.
An investigation of air solubility in Jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1981-01-01
Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.
Biemelt, T; Wegner, K; Teichert, J; Kaskel, S
2015-04-07
A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.
Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2001-01-01
The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.
Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames
NASA Astrophysics Data System (ADS)
Heye, Colin; Raman, Venkat
2012-11-01
A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.
Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base
NASA Astrophysics Data System (ADS)
Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.
2016-08-01
Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.
Investigations on the self-excited oscillations in a kerosene spray flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.
2009-02-15
A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less
NASA Technical Reports Server (NTRS)
Holanda, R.; Frause, L. M.
1977-01-01
The reliability of 45 state-of-the-art strain gage systems under full scale engine testing was investigated. The flame spray process was used to install 23 systems on the first fan rotor of a YF-100 engine; the others were epoxy cemented. A total of 56 percent of the systems failed in 11 hours of engine operation. Flame spray system failures were primarily due to high gage resistance, probably caused by high stress levels. Epoxy system failures were principally erosion failures, but only on the concave side of the blade. Lead-wire failures between the blade-to-disk jump and the control room could not be analyzed.
Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.
ZIRCONIA RODS FOR COATING ARTICLES BY FLAME SPRAYING
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-21
An improved ZrO/sub 2/ rod for flame spraying guns is described which consists of a sintered ZrO/sub 2/ rod of mostly cubic and tetragonal crystals and has a porosity of 8% to 40% by volume. These rods are prepared by mixing 100 parts of ZrO/sub 2/ 75 parts fused, stabilized, 216 mu size, containing 5% CaO, 15 parts fused, stabilized, 25 to 50 mu size, with 5% CaO, 10 parts fused, unstabilized lime-free with 17 parts water, 1 part dextrine, 2 parts corn starch, and extruding. They are then dried and fired in a kiln heated to cone 35 Orton.more » (T.R.H.)« less
Compression ignition engine having fuel system for non-sooting combustion and method
Bazyn, Timothy; Gehrke, Christopher
2014-10-28
A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.
Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.
NASA Astrophysics Data System (ADS)
Askari, Omid
This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma composition and thermodynamic properties. The method was applied to compute the thermodynamic properties of hydrogen/air and methane/air plasma mixtures for a wide range of temperatures (1,000-100,000 K), pressures (10-6-100 atm) and different equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function. A new differential-based multi-shell model was developed in conjunction with Schlieren photography to measure laminar burning speed and to study the flame instabilities for different alternative fuels such as syngas and GTL. Flame instabilities such as cracking and wrinkling were observed during flame propagation and discussed in terms of the hydrodynamic and thermo-diffusive effects. Laminar burning speeds were measured using pressure rise data during flame propagation and power law correlations were developed over a wide range of temperatures, pressures and equivalence ratios. As a part of this work, the effect of EGR addition and substitution of nitrogen with helium in air on flame morphology and laminar burning speed were extensively investigated. The effect of cell formation on flame surface area of syngas fuel in terms of a newly defined parameter called cellularity factor was also evaluated. In addition to that the experimental onset of auto-ignition and theoretical ignition delay times of premixed GTL/air mixture were determined at high pressures and low temperatures over a wide range of equivalence ratios.
Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance
NASA Astrophysics Data System (ADS)
Sung, Meagan
Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.
Fabrication of functional nanomaterials using flame assisted spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, Agus, E-mail: aguspur@uns.ac.id
2014-02-24
Flame assisted spray pyrolysis (FASP) is a class of synthesis method for nanomaterials fabrication. The ability to control nanomaterials characteristics and easy to be-scaled up are the main features of FASP. The crystallinity and particles size of the prepared nanomaterials can be easily controlled by variation of fuel flow rate. The precursor concentration, carrier gas flow rate, and carrier gas can be also used to control the prepared nanomaterials. Energy related nanomaterials preparation uses as the example case in FASP application. These material are yttrium aluminum garnet (YAG:Ce) and tungsten oxide (WO{sub 3}). It needs strategies to produce these materialsmore » into nano-sized order. YAG:Ce nanoparticles only can be synthesized by FASP using the urea addition. The decomposition of urea under high temperature of flame promotes the breakage of YAG:Ce particles into nanoparticles. In the preparation of WO{sub 3}, the high temperature flame can be used to gasify WO{sub 3} solid material. As a result, WO{sub 3} nanoparticles can be prepared easily. Generally, to produce nanoparticles via FASP method, the boiling point of the material is important to determine the strategy which will be used.« less
Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreryo-Fernandez, Sebastian; Paul, Chandan; Sircar, Arpan
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR andmore » PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.« less
Computational Flow Field in Energy Efficient Engine (EEE)
NASA Technical Reports Server (NTRS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2016-01-01
In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.
The structure of dilute combusting sprays
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.
1985-01-01
An experimental and theoretical study of drop processes in a turbulent flame is described. The experiments involved a monodisperse (105 and 180 micro m initial diameter) stream of methanol drops injected at the base of a turbulent methane-fueled diffusion flame burning in still air. The following measurements were made: mean and fluctuating phase velocities, mean drop number flux, drop-size distributions and mean gas-phase temperatures. Measurements were compared with predictions of two separated flow models: (1) deterministic separated flow, where drop-turbulence interactions are ignored; and (2) stochastic separated flow, where drop-turbulence interactions are considered using random-walk computations. The stochastic separated flow analysis yielded best agreement with measurements, since it provides for turbulent dispersion of drops which was important for present test conditions (and probably for most combusting sprays as well). Distinguishing the presence or absence of envelope flames around the drops, however, was relatively unimportant for present test conditions, since the drops spent most of their lifetime in fuel-rich regions of the flow where this distinction is irrelevant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of the following processes: Welding, flame spraying, surface machining, knurling, plating, sleeving...” means a person who grows, raises, mines, harvests, fishes, traps, hunts, manufactures, processes...
NASA Technical Reports Server (NTRS)
1981-01-01
Problems related to combustion generated pollution are explored, taking into account the mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence, the structure and similarity of nitric oxide production in turbulent diffusion flames, the effect of steam addition on NO formation, and the formation of NO2 by laminar flames. Other topics considered are concerned with propellant combustion, fluidized bed combustion, the combustion of droplets and sprays, premixed flame studies, fire studies, and flame stabilization. Attention is also given to coal flammability, chemical kinetics, turbulent combustion, soot, coal combustion, the modeling of combustion processes, combustion diagnostics, detonations and explosions, ignition, internal combustion engines, combustion studies, and furnaces.
A composition joint PDF method for the modeling of spray flames
NASA Technical Reports Server (NTRS)
Raju, M. S.
1995-01-01
This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.
NASA Astrophysics Data System (ADS)
Jönkkäri, I.; Sorvali, M.; Huhtinen, H.; Sarlin, E.; Salminen, T.; Haapanen, J.; Mäkelä, J. M.; Vuorinen, J.
2017-09-01
In this study we have used liquid flame spray (LFS) process to synthetize γ-Fe2O3 nanoparticles of two different average sizes. Different sized nanoparticles were generated with two different liquid precursor feed rates in the spray process, higher feed rate resulting in larger nanoparticles with higher saturation magnetization. The nanoparticles were used in bidisperse magnetorheological fluids to substitute 5% of the micron sized carbonyl iron particles. To our knowledge this is the first time particles synthetized by the LFS method have been used in magnetorheological fluids. The bidisperse fluids showed significantly improved sedimentation stability compared to a monodisperse suspension with the same solid concentration. The tradeoff was an increased viscosity without magnetic field. The effect of the nanoparticles on the rheological properties under external magnetic field was modest. Finally, the dynamic oscillatory testing was used to evaluate the structural changes in the fluids under magnetic field. The addition of nanoparticles decreased the elastic portion of the deformation and increased the viscous portion.
Development & characterization of alumina coating by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Sebastian, Jobin; Scaria, Abyson; Kurian, Don George
2018-03-01
Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.
NASA Astrophysics Data System (ADS)
Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri
2013-06-01
A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.
Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography
NASA Astrophysics Data System (ADS)
Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.
2016-11-01
Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.
Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie
2015-01-01
The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519
Understanding the ignition mechanism of high-pressure spray flames
Dahms, Rainer N.; Paczko, Günter A.; Skeen, Scott A.; ...
2016-10-25
A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The Lagrangian flamelet equations are combined with full LLNL kinetics (2755 species; 11,173 reactions) to resolve all time and length scales and chemical pathways of the ignition process at engine-relevant pressures and turbulence intensities unattainable using classic DNS. The first-principles value of the flamelet equations is established by a novel chemical explosive mode-diffusion time scale analysis of the fully-coupled chemical and turbulent time scales. Contrary to conventional wisdom, this analysis reveals thatmore » the high Damköhler number limit, a key requirement for the validity of the flamelet derivation from the reactive Navier–Stokes equations, applies during the entire ignition process. Corroborating Rayleigh-scattering and formaldehyde PLIF with simultaneous schlieren imaging of mixing and combustion are presented. Our combined analysis establishes a characteristic temporal evolution of the ignition process. First, a localized first-stage ignition event consistently occurs in highest temperature mixture regions. This initiates, owed to the intense scalar dissipation, a turbulent cool flame wave propagating from this ignition spot through the entire flow field. This wave significantly decreases the ignition delay of lower temperature mixture regions in comparison to their homogeneous reference. This explains the experimentally observed formaldehyde formation across the entire spray head prior to high-temperature ignition which consistently occurs first in a broad range of rich mixture regions. There, the combination of first-stage ignition delay, shortened by the cool flame wave, and the subsequent delay until second-stage ignition becomes minimal. A turbulent flame subsequently propagates rapidly through the entire mixture over time scales consistent with experimental observations. As a result, we demonstrate that the neglect of turbulence-chemistry-interactions fundamentally fails to capture the key features of this ignition process.« less
Flame propagation in heterogeneous mixtures of fuel drops and air
NASA Technical Reports Server (NTRS)
Myers, G. D.; Lefebvre, A. H.
1984-01-01
Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.
The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad
2008-01-01
The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).
Household Chemical Emergencies
... ammonia, may react, ignite or explode. Never use hair spray, cleaning solutions, paint products, or pesticides near an open flame Clean up any chemical spill immediately. Allow the fumes in the rags ...
Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions
NASA Astrophysics Data System (ADS)
Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.
2007-05-01
A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.
Japan's research on particle clouds and sprays
NASA Technical Reports Server (NTRS)
Sato, Jun'ichi
1995-01-01
Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.
2011-03-01
deposition temperature is above 260°C (500°F), CVD Al cannot be applied to many structural alloys used in aerospace [12]. 23.3.4 Spray Deposited Cadmium...Alternatives There are several different aluminum-based coatings that can be deposited by spraying : aluminum and Al alloys , metallic-ceramic coatings...and Al - and Zn-filled polymers [12]. Thermal spray (flame or arc) is a very flexible and cost-effective process for deposition of pure
2011-03-01
deposition temperature is above 260°C (500°F), CVD Al cannot be applied to many structural alloys used in aerospace [12]. 23.3.4 Spray Deposited Cadmium...Alternatives There are several different aluminum-based coatings that can be deposited by spraying : aluminum and Al alloys , metallic-ceramic coatings...and Al - and Zn-filled polymers [12]. Thermal spray (flame or arc) is a very flexible and cost-effective process for deposition of pure
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-09-06
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-01-01
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028
Wear and corrosion behaviour of Al2O3-TiO2 coatings produced by flame thermal projection
NASA Astrophysics Data System (ADS)
Forero-Duran, M.; Dulce-Moreno, H. J.; Ferrer-Pacheco, M.; Vargas-Galvis, F.
2017-12-01
Evaluated the wear resistance and the coatings corrosion behaviour of Al2O3-TiO2 prepared by thermal spraying by flame on AISI 1020 carbon steel substrates, previously coated with an alloy base Ni. For this purpose, were controlled parameters of thermal spraying and the use of powders of similar but different chemical composition is taken as a variable commercial reference for ceramic coating. SEM images allowed to know the morphology of the powders and coatings. Electrochemical techniques (Tafel) were applied to evaluate the protection against corrosion. Coatings were tested for wear with a tribometer configuration bola-disco. It was determined that the phases present in coatings are directly relate to the behaviour against corrosion and wear them. Keywords: wear, corrosion, thermal imaging.
Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons
2013-01-01
Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738
Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents
NASA Astrophysics Data System (ADS)
Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi
2017-01-01
In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.
Thermal spraying of polyethylene-based polymers: Processing and characterization
NASA Astrophysics Data System (ADS)
Otterson, David Mark
This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational processing map with the collected splats and microstructures. Finally, a strong interaction was observed between standoff distance and flame length, which is determined by the air:fuel ratio. When flame length exceeds the standoff distance, polymer degradation results from excessive heating of the substrate. A descriptive model of the process is then provided to highlight the importance of these interactions. (Abstract shortened by UMI.)
The Effects of Sooting and Radiation on Droplet Combustion
NASA Technical Reports Server (NTRS)
Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young
1997-01-01
The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.
Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner
NASA Astrophysics Data System (ADS)
Chong, Cheng Tung; Hochgreb, Simone
2015-03-01
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.
A study of the current group evaporation/combustion theories
NASA Technical Reports Server (NTRS)
Shen, Hayley H.
1990-01-01
Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.
NASA Astrophysics Data System (ADS)
Wang, Haitao; Zhang, Shouquan; Zhu, Jinglei; Huang, Jihua; Liu, Huiyuan; Zhang, Hua
2009-03-01
A Ni-Ti-C composite powder for Reactive Thermal Spraying is made by heating a mixture of titanium, nickel, and sucrose to carbonize the sucrose, which is used as the source of carbon. The carbon obtained by pyrolysis of sucrose is a reactive constituent as well as the binder in the composite powder. The titanium and nickel particles are bound by the carbon to form granules of the composite powder. This powder feedstock was used to prepare in situ TiC-reinforced Ni-based composite coating by oxyacetylene flame spraying. The TiC-Ni composite coating is made of TiC, Ni, and some Ni3Ti. In the coating, a mass of fine TiC particles is uniformly distributed within the metallic matrix. The microhardness and surface hardness of the coating are, respectively, 1433 HV0.2kg and 62 ± 6 (HR30N). The wear resistance is much better for the TiC-Ni composite coating than for the substrate and Ni60 coating.
Code of Federal Regulations, 2014 CFR
2014-04-01
... improvement to sound working condition by one or more of the following processes: welding, flame spraying... (3) Enjoy the same factory warranty as such new goods; and (r) Self-produced material. “Self-produced...
Further industrial tests of ceramic thermal barrier coatings
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Levine, S. R.
1982-01-01
The NASA Lewis Research Center made technical assistance arrangements (contracts) with several commercial organizations under which Lewis designed plasma-sprayed thermal-barrier coatings (TBC) for their products. Lewis was then furnished with the test conditions and evaluations of coating usefulness. The coating systems were developed and sprayed at Lewis. All of the systems incorporated a two-layer, ceramic-bond coating concept. Coating thickness and chemical composition were varied to fit three applications: the leading edges of first-stage turbine vanes for an advanced gas turbine engine; the flame impingement surfaces of a combustor transition section; and diesel engine valves and head surfaces. The TBC incorporated yytria-stabilized zirconia, which lowered metal temperatures, protected metal parts, and increased metal part life. In some cases metal burning, melting, and warping were eliminated. Additional benefits were realized from these endeavors: hands-on experience with thermal-barrier coatings was provided to industry; the success of these endeavors encourages these and other organizations to accelerate the implementation of TBC technology.
Particle Effects On The Extinction And Ignition Of Flames In Normal- And Micro-Gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2003-01-01
Reacting dusty flows have been studied to lesser extent than pure gas phase flows and sprays. Particles can significantly alter the ignition, burning and extinction characteristics of the gas phase due to the dynamic, thermal, and chemical couplings between the phases. The understanding of two-phase flows can be attained in stagnation flow configurations, which have been used to study spray combustion [e.g. 1] as well as reacting dusty flows [e.g. 2]. The thermal coupling between inert particles and a gas, as well as the effect of gravity, were studied in Ref. 3. It was also shown that the gravity can substantially affect parameters such as the particle velocity, number density, mass flux, and temperature. In Refs. 4 and 5, the effects of inert particles on the extinction of strained premixed and nonpremixed flames were studied both experimentally and numerically at 1-g and m-g. It was shown that large particles can cool flames more effectively than smaller particles. The effects of flame configuration and particle injection orientation were also addressed. It was shown that it was not possible to obtain a simple and still meaningful scaling that captured all the pertinent physics due to the complexity of the couplings between parameters. Also, the cooling by particles is more profound in the absence of gravity as gravity works to reduce the particle number density in the neighborhood of the flame. The efforts were recently shifted towards the understanding of the effects of combustible particles on extinction [6], the gas-phase ignition by hot particle injection [7], and the hot gas ignition of flames in the presence of particles that are not hot enough to ignite the gas phase by themselves.
... directed by your doctor.Desoximetasone spray may catch fire. Stay away from open fire, flames, and do not smoke while you are ... This medication may be prescribed for other uses; ask your doctor or pharmacist for more information.
Partially premixed prevalorized kerosene spray combustion in turbulent flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrigui, M.; Ahmadi, W.; Sadiki, A.
2010-04-15
A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carriedmore » out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)« less
NASA Technical Reports Server (NTRS)
Sarv, Hamid; Cernansky, Nicholas P.
1989-01-01
A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.
Investigations of two-phase flame propagation under microgravity conditions
NASA Astrophysics Data System (ADS)
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets uniformly distributed. Ethanol-air mixtures are used and the experiments are performed under reduced gravity conditions in the Airbus A310 ZERO-G of the CNES, during which a 10-2g gravity level is achieved. The experiments are conducted in a pressure-release type dual chamber which consists of a spherical combustion chamber of 1 L which is centered in a high pressure chamber of 11 L. Propagating flames under various mixture, droplet size and pressure conditions are investigated with various optical techniques. The collected flame images and the deduced flame propagation velocities enabled to establish various flame propagation and cellular instability regimes, mainly depending on the droplet size and droplet density. The experiments also permitted comparisons with gaseous flames having the same global equivalence ratio as the two-phase flames, therefore allowing analyzing clearly the role of the presence of the droplets in the flame propagation process.
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya
2016-05-01
Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.
Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays
Rudin, Thomas; Pratsinis, Sotiris E.
2013-01-01
Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe2O3 while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles. PMID:23407874
Study of thermite mixture consolidated by the cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.
2014-05-01
The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
Method of burning lightly loaded coal-water slurries
Krishna, C.R.
1984-07-27
In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.
Effect of flame-tube head structure on combustion chamber performance
NASA Technical Reports Server (NTRS)
Gu, Minqqi
1986-01-01
The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.
Review of alternative fuels data bases
NASA Technical Reports Server (NTRS)
Harsha, P. T.; Edelman, R. B.
1983-01-01
Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.
NASA Astrophysics Data System (ADS)
Dorado, Vanessa
The Center for Space Exploration Technology Research (cSETR) has developed a set of shear coaxial injectors as part of a system-level approach to study LOX/CH4 combustion. This thesis describes the experimental studies involved in the characterization of the effects produced by two design injection face plate variables: post thickness and recession length. A testing program was developed to study the injectors' atomization process using LN2 as a substitute for LOX in cold flow and the flame anchoring mechanisms in hot firings. The cold flow testing stage was conducted to obtain liquid core measurements and compare its behavior between the different geometric configurations. Shadowgraph technique was used during this testing stage to obtain these measurements and compare them to previously published data and core length mathematical models. The inlet conditions were selected to obtain mixture ratios in the 2-4 range and a wide range of high momentum flux ratios (30-150). Particle Image Velocimetry (PIV) was also used in the testing of the three injectors to assess their atomization performance and their fragmentation behaviors. Results show that changes in central post thickness and co-annular orifice recession length with respect to the injection plate have quantifiable effects in the generated spray flow field, despite not being accounted for in traditional break up calculations. The observations and results of this investigation lead to a proof of concept demonstration in a combustion setting to support the study of flame anchoring mechanisms, also discussed in this work.
Ignition and Flame Development in the Case of Diesel Fuel Injection
NASA Technical Reports Server (NTRS)
Holfelder, Otto
1936-01-01
To investigate the process of ignition and combustion in the case of spray injection into heated air, a new form of apparatus is developed and the tests carried out with it described. Photographs of the spray before and after ignition are obtained at frequencies of 500 pictures per second. Pressures and temperatures are simultaneously recorded on oscillograms. Information on the initial conditions, ignition time lag, period of complete combustion, place where ignition starts, and general course of the combustion is obtained.
Charge-induced secondary atomization in diffusion flames of electrostatic sprays
NASA Technical Reports Server (NTRS)
Gomez, Alessandro; Chen, Gung
1994-01-01
The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Tong; Pei, Yuanjiang; Zhong, Bei-Jing
A skeletal mechanism with 54 species and 269 reactions was developed to predict pyrolysis and oxidation of n-dodecane as a diesel fuel surrogate involving both high-temperature (high-T) and low-temperature (low-T) conditions. The skeletal mechanism was developed from a semi-detailed mechanism developed at the University of Southern California (USC). Species and reactions for high-T pyrolysis and oxidation of C5-C12 were reduced by using reaction flow analysis (RFA), isomer lumping, and then merged into a skeletal C0-C4 core to form a high-T sub-mechanism. Species and lumped semi-global reactions for low-T chemistry were then added to the high-T sub-mechanism and a 54-species skeletalmore » mechanism is obtained. The rate parameters of the low-T reactions were tuned against a detailed mechanism by the Lawrence Livermore National Laboratory (LLNL), as well as the Spray A flame experimental data, to improve the prediction of ignition delay at low-T conditions, while the high-T chemistry remained unchanged. The skeletal mechanism was validated for auto-ignition, perfectly stirred reactors (PSR), flow reactors and laminar premixed flames over a wide range of flame conditions. The skeletal mechanism was then employed to simulate three-dimensional turbulent spray flames at compression ignition engine conditions and validated against experimental data from the Engine Combustion Network (ECN).« less
Measuring and Modeling Surface Sorption Dynamics of OPFRs in Stainless Steel Empty Chambers
Organophosphorus flame retardants (OPFRs) are produced and used widely as alternative additives in building materials and consumer products such as spray polyurethane foam (SPF), polyvinyl chloride flooring, electrical and electronic products, furniture, textile coatings, and pla...
A Study of Flame Propagation on Water-Mist Laden Gas Mixtures in Microgravity
NASA Technical Reports Server (NTRS)
Abbud-Madrid, A.; Riedel, E. P.; McKinnon, J. T.
1999-01-01
The use of water mists (very fine water sprays) for fire suppression is currently receiving increased attention as a replacement technology for halogen-based chemical agents-such as Halon 1301 (CF3Br)--the manufacturing of which has been banned by the Montreal Protocol due to their high ozone depletion potential. Water mist technology has been found effective for a wide range of applications such as Class B pool fires, shipboard machinery, aircraft cabins, computers, and electronic equipment. There are five distinct mechanisms by which water droplets may interact with a flame. First, the high enthalpy of vaporization of water (2450 kJ/kg) leads to heat removal from the flame front as the liquid droplets turn to steam. Second, as water vaporizes its volume increases approximately three orders of magnitude, which leads to the dilution of the oxygen and vaporized fuel required to maintain the flame. The third effect is the recombination of H-atoms and other radicals on the droplet surface. A fourth effect of water mists in fires is the retardation of surface propagation rates due to the wetting of walls and surfaces. The last potential impact of fine water mists affects the radiative propagation of the fire by forming an optically thick barrier to infrared radiation which prevents ignition of the unburned regions. Unfortunately, little fundamental information exists on the interaction of a flame with a water mist. To date, there is no widely accepted interpretation of the critical concentration of droplets required to suppress a flame or of the fundamental mechanisms involved in flame extinguishment by water mists. One of the main obstacles to obtaining such understanding is the difficulty of providing a simple, well-defined experimental setup for the flame front/water mist interaction. Some of the difficulty stems from the problem of generating, distributing and maintaining a homogeneous concentration of droplets throughout a chamber while gravity depletes the concentration and alters the droplet size by coalescence and agglomeration mechanisms. Experiments conducted in the absence of gravity provide an ideal environment to study the interaction of water mists and flames by eliminating these distorting effects. In addition, microgravity eliminates the complex flow patterns induced between the flame front and the water droplets. The long duration and quality of microgravity in space flights provide the required conditions to perform the setup and monitoring of flame suppression experiments. Consequently, a series of experiments have been identified to be performed on the Combustion Module (CM-2) in the Space Shuttle. These consist of measuring the extinguishing capability of a water mist on a premixed flame propagating along a tube. These experiments should provide the necessary data to obtain further understanding of the water mist suppression phenomena that can be later used to design and manufacture appropriate fire suppression systems. In preparation for the orbital flights, experiments have been conducted on low-gravity ground facilities to obtain the preliminary data necessary to define the scientific objectives and technical issues of the spacecraft experiments.
Reinforcement for Stretch Formed Sheet Metal
NASA Technical Reports Server (NTRS)
Lea, J. B.; Baxter, C. R.
1983-01-01
Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.
Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.
ERIC Educational Resources Information Center
Zoltewicz, Susan
1993-01-01
Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)
Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets
2017-08-23
conditions in a sacrificial pressure vessel. - Investigate combustion dynamics of nanofuel sprays under acoustic forcing at supercritical conditions...change in flame color and foaming of the fuel at the end. 24DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited PA 17513
EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION
The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...
The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanate compounds, amine catalysts, flame retardants, and blowing agents, as well as aldehydes and other volatile or semivolatile organic compounds that may be...
NASA Astrophysics Data System (ADS)
Rodríguez, L.; Ferrer, M.; Vargas, F.; Peña, G.
2017-12-01
A numerical simulation was performed with the software Jets et Poudres, the results let choose the parameters to deposit zirconia-alumina-ceria coatings of different composition on substrates of red clay, by thermal spraying with the oxyacetylene flame to obtain homogeneous coatings with good adhesion to the substrate. The effect of the projection distance (7, 10 and 12cm) between the substrate and the torch, the fusion percentage of particles and the K-Sommerfeld number was determined. This number is dimensionless and is affected by the projection distance and by the chemical composition of the particles. For a projection distance of 9cm, the fusion percentage of the particles varies between 83.8% and 100%, and the K-Sommerfeld number between 47.3 and 50 for the different compounds. This makes possible to obtain uniform coatings with good wettability, therefore, good adhesion to the substrate, while for the distance of 7cm the fusion percentage varies between 22% and 38%, due to the short time of the particles in the flame which causes low adhesion, when the projection distance is 12cm the particles do not have sufficient kinetic energy to reach the substrate and therefore the coating is not deposited.
Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.
Nelson, G M; Nychka, J A; McDonald, A G
2014-03-01
Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to support tissue ingrowth and vascular tissue, and the comparable strength to similar coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Flame Spray Strain Gages with Improved Durability and Lifetimes
NASA Technical Reports Server (NTRS)
Fralick, Gustave (Technical Monitor); Gregory, Otto
2003-01-01
The focus of this APP research program was to improve the bond coats used in the fabrication of flame sprayed instrumentation. Typically. a bond coat is applied to a superalloy surface prior to the application of a thin dielectric coating onto which instrumentation is placed. After affixing the instrumentation, a much thicker ceramic topcoat is typically applied to protect the instrumentation from harsh environments. The fatigue life of NiCoCrAlY coated superalloys was extended beyond current state-of-the-art by relatively simple and cost effective means. Heat treatment in reduced oxygen partial pressures at 1750 to 1800 F effectively doubled the fatigue life of NiCoCrAlY coated substrates relative to as-sprayed substrates and when used in conjunction with platinum diffusion barriers yielded a four fold increase in the fatigue life of NiCoCrAlY coated substrates. Further improvements in the fatigue life of thermally sprayed coatings were made by employing intermediate coatings, which minimized thermal expansion differences between the bond coat and top coat. Combinatorial chemistry experiments yielded an optimum composition for an intermediate TCE matching coating that showed considerable promise in extending the fatigue life of thermal spray instrumentation. The intermediate coating had two functions: to reduce the surface roughness of the peaks and valleys associated with the as-sprayed NiCoCrAlY bond coat, and to produce a thin layer of a mixture of Al2O3 and NiCoCrAlY that exhibited an intermediate TCE. The optimal composition of the intermediate coating consisted of 60 wt% Al2O3 and 40 wt% NiCoCrAlY, as determined by energy dispersive analysis of x-rays (EDS). Intermediate coatings having this composition were prepared by physical vapor deposition and the resulting coating systems are being evaluated in our test facility.
NASA Astrophysics Data System (ADS)
Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi
2017-06-01
Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.
Importance of turbulence-chemistry interactions at low temperature engine conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu
The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less
Importance of turbulence-chemistry interactions at low temperature engine conditions
Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu
2017-06-08
The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less
NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Attachment techniques for high temperature strain
NASA Astrophysics Data System (ADS)
Wnuk, Steve P., Jr.
1993-01-01
Attachment methods for making resistive strain measurements to 2500 F were studied. A survey of available strain gages and attachment techniques was made, and the results are compiled for metal and carbon composite test materials. A theoretical analysis of strain transfer into a bonded strain gage was made, and the important physical parameters of the strain transfer medium, the ceramic matrix, were identified. A pull tester to measure pull-out tests on commonly used strain gage cements indicated that all cements tested displayed adequate strength for good strain transfer. Rokide flame sprayed coatings produced significantly stronger bonds than ceramic cements. An in-depth study of the flame spray process produced simplified installation procedures which also resulted in greater reliability and durability. Application procedures incorporating improvements made during this program are appended to the report. Strain gages installed on carbon composites, Rene' 41, 316 stainless steel, and TZM using attachment techniques developed during this program were successfully tested to 2500 F. Photographs of installation techniques, test procedures, and graphs of the test data are included in this report.
NASA Astrophysics Data System (ADS)
Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi
2018-03-01
Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.
PTV analysis of the entrained air into the diesel spray at high-pressure injection
NASA Astrophysics Data System (ADS)
Toda, Naoki; Yamashita, Hayato; Mashida, Makoto
2014-08-01
In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.
Study of thermite mixtures consolidated by cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, Antoine; Maines, Geoffrey; Poupart, Christian; Radulescu, Matei; Jodoin, Bertrand; Lee, Julian
2013-06-01
The present study focused on the cold gas dynamic spray process for manufacturing finely structured energetic materials with high reactivity, vanishing porosity, as well as structural integrity and arbitrary shape. The experiments have focused the reaction between the aluminum and metal oxides, such as Al-CuO and Al-MoO3 systems. To increase the reactivity, an initial mechanical activation was achieved through interrupted ball milling. The consolidation of the materials used the supersonic cold gas spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact, forming activated nano-composites in arbitrary shapes with close to zero porosity. This technique permits to retain the feedstock powder micro-structure and prevents any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
Liquid-Solid Self-Lubricated Coatings
NASA Astrophysics Data System (ADS)
Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.
2013-02-01
Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.
Zinc thermal spray coatings for reinforced concrete: An AWS process standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulit, R.A.
Zinc and aluminum thermal spray coatings (TSC) have been used for lining concrete weir in Great Britain since the 1950`s to maintain the dimensions of the weir for flow control concomitant with reduced wear and erosion of the concrete surfaces. This paper reports the development and the content of the ANSI/AWS C2.20-XX standard for the application of An TSC on concrete using flame and arc spray processes. This standard is formatted as an industrial process instruction: job description; safety; feedstock materials; equipment; a step-by-step method for surface preparation, thermal spraying; quality control; repair and maintenance of surface preparation, thermal spraying;more » quality control; repair and maintenance of Zn TSC on concrete; and a Job Control Record. Job planning and training and certification requirements are presented for An TSC inspectors and thermal spray operators. Four annexes are included in the standard: (a) historical summary of Zn TSC on concrete (b) sample job control record; (c) thermal spray operator qualification; and (d) portable adhesion testing for An TSC on concrete. This standard is based on the current literature and industrial equipment, process, and practices.« less
Glass composition development for stabilization of lead based paints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.C.
1996-10-01
Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures were built before the 1978 ban on lead based paints. The U.S. Army Corps of Engineers CERL is developing technologies to remove and stabilize lead containing organic coatings. Promising results have been achieved using a patented flame spray process thatmore » utilizes a glass frit to stabilize the hazardous constituents. When the glass frit is sprayed onto the paint containing substrate, differences in thermal expansion coefficients between the frit and the paint results in spalling of the paint from the substrate surface. The removed fragments are then collected and remelted to stabilize the hazardous constituents and allow for disposal as non-hazardous waste. Similar successful results using a patented process involving microwave technology for paint removal have also been achieved. In this process, the painted surface is coated with a microwave coupling compound that when exposed to microwave energy results in the spalling of the hazardous paint from the surface. The fragments can again be accumulated and remelted for stabilization and disposal.« less
NASA Astrophysics Data System (ADS)
Wang, Yang; Roller, Justin; Maric, Radenka
2018-02-01
Nanostructured electrodes have significant potential for enhancing the kinetics of lithium storage in secondary batteries. A simple and economical manufacturing approach of these electrodes is crucial to the development and application of the next generation lithium ion (Li-ion) batteries. In this study, nanostructured α-Fe2O3 electrode is fabricated by a novel one-step flame combustion synthesis method, namely Reactive Spray Deposition Technology (RSDT). This process possesses the merits of simplicity and low cost. The structure and morphology of the electrode are investigated with X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performance of the nanostructured α-Fe2O3 electrodes as the anodes for Li-ion batteries is evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in coin-type half-cells. The as-prepared electrodes demonstrate superior cyclic performance at high current rate, which delivers a high reversible capacity of 1239.2 mAh g-1 at 1 C after 500 cycles. In addition, a discharge capacity of 513.3 mAh g-1 can be achieved at 10 C.
NanoSonic's HybridSil® insulative coatings provide a paradigm-breaking alternative to spray-deposited polyurethane foams by affording comparable insulation, yet without any of the health and safety concerns associated ...
Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor
Tamaekong, Nittaya; Liewhiran, Chaikarn; Wisitsoraat, Anurat; Phanichphant, Sukon
2009-01-01
Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ∼164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature. PMID:22399971
Mechanical and tribological properties of thermally sprayed tungsten carbide-cobalt coatings
NASA Astrophysics Data System (ADS)
Qiao, Yunfei
Since previous work in our laboratory has shown that very fine microstructures increase the hardness and the resistance to sliding and abrasive wear of bulk, sintered, WC/Co composites, it was decided to explore whether similar benefits can be obtained in coatings of this material deposited by the Thermal Spray Method. The research was a collaborative effort in which a number of companies and universities prepared feedstock powders by a number of methods and deposited coatings by Plasma Spray and High Velocity Oxy Fuel spray techniques. Our role was to study the resistance of these coatings to abrasion and to wear in unlubricated sliding, to relate our findings to the microstructure of the coatings and to the properties of the powder and the parameters of deposition. The results were then used by our partners in the program to modify their processes in order to obtain the best possible performance. The thesis consists of four parts. In the first, we review the literature on WC/Co coatings and present the results of our survey of 45 coatings. This shows that the details of the thermal spray technique determine the tribological performance of the coatings much more than the size of the WC grains in the starting powder. It also shows that abrasive and sliding wear respond differently to the material properties. The remainder of the thesis describes a systematic variation of powders and deposition techniques, based on our earlier findings. In the second part, we describe the microstructures, hardness and toughness of nine coatings deposited by A. Dent at SUNY Stony Brook, with three different powders and three different flame chemistries. We find that the hardness is determined mainly by the flame temperature; hardness is decreased by porosity on the 50-nm size range, and this porosity is produced by insufficient melting of the Co binder. High temperatures and certain powder morphologies cause extensive decarburization, and the latter reduces the adhesion between the deposited material splats. In the third and fourth sections, we examine the abrasive wear resistance of these nine samples. Abrasive wear occurs on a small scale and depends mainly on the adhesion between the WC grains and the Co binder phase. Sliding wear, which occurs chiefly by the removal of entire splats by fatigue, is more sensitive to decarburization. The technological result is that WC/Co coatings made of "multimodal" powders that consist of a mixture of micrometer and nanometer-sized WC are to be preferred for abrasion resistance, and coatings made of a very fine powder with an additive that retards grain growth and decarburization is preferred for sliding wear resistance.
Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders
NASA Technical Reports Server (NTRS)
Deur, J. M.; Cline, M. C.
2004-01-01
Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.
Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicoli, C.; Haldenwang, P.; Suard, S.
2005-11-01
Pulsating (or oscillatory) spray flames have recently been observed in experiments on two-phase combustion. Numerical studies have pointed out that such front oscillations can be obtained even with very simple models of homogeneous two-phase mixtures, including elementary vaporization schemes. The paper presents an analytical approach within the simple framework of the thermal-diffusive model, which is complemented by a vaporization rate independent of gas temperature, as soon as the latter reaches a certain thermal threshold ({theta}{sub v} in reduced form). The study involves the Damkoehler number (Da), the ratio of chemical reaction rate to vaporization rate, and the Zeldovich number (Ze)more » as essential parameters. We use the standard asymptotic method based on matched expansions in terms of 1/Ze. Linear analysis of two-phase flame stability is performed by studying, in the absence of differential diffusive effects (unity Lewis number), the linear growth rate of 2-D perturbations added to steady plane solutions and characterized by wavenumber k in the direction transverse to spreading. A domain of existence is found for the pulsating regime. It corresponds to mixture characteristics often met in air-fuel two-phase systems: low boiling temperature ({theta}{sub v} << 1), reaction rate not higher than vaporization rate (Da < 1, i.e., small droplets), and activation temperature assumed to be high compared with flame temperature (Ze {>=} 10). Satisfactory comparison with numerical simulations confirms the validity of the analytical approach; in particular, positive growth rates have been found for planar perturbations (k = 0) and for wrinkled fronts (k {ne} 0). Finally, comparison between predicted frequencies and experimental measurements is discussed.« less
SORBENT CAPTURE OF NICKEL, LEAD, AND CADMIUM IN A LABORATORY SWIRL FLAME INCINERATOR
The paper gives results of an investigation of the in-situ capture of toxic metals by sorbents in a small semi-industrial scale 82 kW research combustor. The metals considered, nickel, lead, and cadmium, were introduced into the system as aqueous nitrate solutions sprayed down th...
Measuring Metal Thickness With an Electric Probe
NASA Technical Reports Server (NTRS)
Shumka, A.
1986-01-01
Thickness of metal parts measured from one side with aid of Kelvin probe. Method developed for measuring thickness of end plate on sealed metal bellows from outside. Suitable for thicknesses of few thousandth's of inch (few hundred micrometers). Method also used to determine thickness of metal coatings applied by sputtering, electroplating, and flame spraying.
More About High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.
1994-01-01
Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.
Ambient curing fire resistant foams
NASA Technical Reports Server (NTRS)
Hamermesh, C. L.; Hogenson, P. A.; Tung, C. Y.; Sawko, P. M.; Riccitiello, S. R.
1979-01-01
The feasibility of development of an ambient curing foam is described. The thermal stability and flame spread index of the foams were found to be comparable to those of the high-temperature cured polyimide foams by Monsanto two-foot tunnel test and NASA T-3 Fire test. Adaptation of the material to spray in place applications is described
NASA Astrophysics Data System (ADS)
Graziano, Tyler J.
An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.
An overview of spray drift reduction testing of spray nozzles
USDA-ARS?s Scientific Manuscript database
The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...
Experimental investigation of aerodynamics and combustion properties of a multiple-swirler array
NASA Astrophysics Data System (ADS)
Kao, Yi-Huan
An annular combustor is one of the popular configurations of a modern gas turbine combustor. Since the swirlers are arranged as side-by-side in an annular combustor, the swirling flow interaction should be considered for the design of an annular gas turbine combustor. The focus of this dissertation is to investigate the aerodynamics and the combustion of a multiple-swirler array which features the swirling flow interaction. A coaxial counter-rotating radial-radial swirler was used in this work. The effects of confinement and dome recession on the flow field of a single swirler were conducted for understanding the aerodynamic characteristic of this swirler. The flow pattern generated by single swirler, 3-swirler array, and 5-swirler array were evaluated. As a result, the 5-swirler array was utilized in the remaining of this work. The effects of inter-swirler spacing, alignment of swirler, end wall distance, and the presence of confinement on the flow field generated by a 5-swirler array were investigated. A benchmark of aerodynamics performance was established. A phenomenological description was proposed to explain the periodically non-uniform flow pattern of a 5-swirler array. The non-reacting spray distribution measurements were following for understanding the effect of swirling flow interaction on the spray distribution issued out by a 5-swirler array. The spray distribution from a single swirler/ fuel nozzle was measured and treated as a reference. The spray distribution from a 5-swriler array was periodically non-uniform and somehow similar to what observed in the aerodynamic result. The inter-swirler spacing altered not only the topology of aerodynamics but also the flame shape of a 5-swirler array. As a result, the distribution of flame shape strongly depends on the inter-swirler spacing.
Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2
NASA Technical Reports Server (NTRS)
Deur, J. M.; Kundu, K. P.; Darling, D. D.; Cline, M. C.; Micklow, G. J.; Harper, M. R.; Simons, T. A.
1994-01-01
Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff.
Dry friction aspects of Ni-based self-fluxing flame sprayed coatings
NASA Astrophysics Data System (ADS)
Paulin, C.; Chicet, D.; Paleu, V.; Benchea, M.; Lupescu, Ş.; Munteanu, C.
2017-08-01
In this paper we present the results tribological obtained in the course of dry wear tests on samples coated with three types of coatings produced from self-fluxing Ni-based powders. In this purpose were used three commercial NiCrBSi powders produced by various manufacturers, which have been sprayed against a low alloyed steel substrate using the flame spray thermal deposition method followed by flame remelting, resulting three different samples, denoted as: A, M and P. The first test was conducted on an Amsler type machine, with rolling motion between tribological contacts of third class. The analysed coating was deposited on the generator of the low alloy steel disc and the shoe was realized from a grindstone. The test was conducted for two situations: (a) constant load of 10 kg and 6 kg applied for 5 hours; (b) progressive load starting from 2 to 10 kg for two different speeds of rotation of the disc. The second test was the one of sliding wear and it was conducted on the UMTR 2M-CTR tribometer. The analysed layers were deposited on the flat surface of a low alloy steel lamella, and the friction was achieved with a conical grinding stone. The working parameters were as follows: 20N constant load, constant speed of 10 mm / s, sliding linear length of 30mm, the test duration being 45 minutes. After conducting the tests and after analysing the results, the following conclusions are drawn: a) during the first test has been obtained a global friction coefficient between 0.3 and 0.4 - typical for dry friction, highlighting some lower values in the case of sample A, in which case there were recorded smaller mass losses; b) at the second test was recorded an approximately linear behaviour of the three samples, with a gradual increase of the friction coefficient and a superficial wear mark revealed both by SEM microscopy and by profilometry.
Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system
NASA Technical Reports Server (NTRS)
Sarv, H.; Nizami, A. A.; Cernansky, N. P.
1982-01-01
A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.
Process-based quality for thermal spray via feedback control
NASA Astrophysics Data System (ADS)
Dykhuizen, R. C.; Neiser, R. A.
2006-09-01
Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.
Simulations of spray autoignition and flame establishment with two-dimensional CMC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Y.M.; Boulouchos, K.; De Paola, G.
2005-12-01
The unsteady two-dimensional conditional moment closure (CMC) model with first-order closure of the chemistry and supplied with standard models for the conditional convection and turbulent diffusion terms has been interfaced with a commercial engine CFD code and analyzed with two numerical methods, an 'exact' calculation with the method of lines and a faster fractional-step method. The aim was to examine the sensitivity of the predictions to the operator splitting errors and to identify the extent to which spatial transport terms are important for spray autoignition problems. Despite the underlying simplifications, solution of the full CMC equations allows a single modelmore » to be used for the autoignition, flame propagation ('premixed mode'), and diffusion flame mode of diesel combustion, which makes CMC a good candidate model for practical engine calculations. It was found that (i) the conditional averages have significant spatial gradients before ignition and during the premixed mode and (ii) that the inclusion of physical-space transport affects the calculation of the autoignition delay time, both of which suggest that volume-averaged CMC approaches may be inappropriate for diesel-like problems. A balance of terms in the CMC equation before and after autoignition shows the relative magnitude of spatial transport and allows conjectures on the structure of the premixed phase of diesel combustion. Very good agreement with available experimental data is found concerning ignition delays and the effect of background air turbulence on them.« less
NASA Technical Reports Server (NTRS)
Ross, Howard (Compiler)
2000-01-01
This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng
2017-05-01
Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.
Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Chen, Kuo-Huey
1997-01-01
A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.
Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries
Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.
2013-01-01
Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817
Development and validation of spray models for investigating diesel engine combustion and emissions
NASA Astrophysics Data System (ADS)
Som, Sibendu
Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.
Gravity Effects Observed In Partially Premixed Flames
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday
2003-01-01
Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.
Spray drift reduction evaluations of spray nozzles using a standardized testing protocol
USDA-ARS?s Scientific Manuscript database
The development and testing of drift reduction technologies has come to the forefront of application research in the past few years in the United States. Drift reduction technologies (DRTs) can be spray nozzles, sprayer modifications, spray delivery assistance, spray property modifiers (adjuvants),...
Combustion in microgravity: The French contribution
NASA Astrophysics Data System (ADS)
Prud'homme, Roger; Legros, Guillaume; Torero, José L.
2017-01-01
Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.
NASA Astrophysics Data System (ADS)
Bojko, Brian T.
Accounting for the effects of finite rate chemistry in reacting flows is intractable when considering the number of species and reactions to be solved for during a large scale flow simulation. This is especially complicated when solid/liquid fuels are also considered. While modeling the reacting boundary layer with the use of finite-rate chemistry may allow for a highly accurate description of the coupling between the flame and fuel surface, it is not tractable in large scale simulations when considering detailed chemical kinetics. It is the goal of this research to investigate a Flamelet-Generated Manifold (FGM) method in order to reduce the finite rate chemistry to a lookup table cataloged by progress variables and queried during runtime. In this study, simplified unsteady 1D flames with mass blowing are considered for a solid biomass fuel where the FGM method is employed as a model reduction strategy for potential application to multidimensional calculations. Two types of FGM are considered. The first are a set of steady-state flames differentiated by their scalar dissipation rate. Results show the use of steady flames produce unacceptable errors compared to the finite-rate chemistry solution, with temperature errors in excess of 45%. To avoid these errors, a new methodology for developing an unsteady FGM (UFGM) is presented that accounts for unsteady diffusion effects and greatly reduces errors in temperature with differences that are under 10%. The FGM modeling is then extended to individual droplet combustion with the development of a Droplet Flamelet-Generated Manifold (DFGM) to account for the effects of finite-rate chemistry of individual droplets. A spherically symmetric droplet model is developed for methanol and aluminum. The inclusion of finite-rate chemistry allows the capturing of the transition from diffusion to kinetically controlled combustion as the droplet diameter decreases. The droplet model is then used to create a DFGM by successively solving the 1D flame equations at varying drop sizes, where the source terms for energy, mixture fraction, and progress variable are cataloged as a function of normalized diameter. A unique coupling of the DFGM and planar UFGM is developed and is used to account for individual and gas phase combustion processes in turbulent combustion situations, such as spray flames, particle laden blasts, etc. The DFGM for the methanol and aluminum droplets are used in mixed Eulerian and Eulerian-Lagrangian formulations of compressible multiphase flows. System level simulations are conducted and compared experimental data for a methanol spray flame and an aluminized blast studied at the Explosives Components Facility (ECF) at Sandia National Laboratories.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, Prabhakar; Ruka, Roswell J.
1995-01-01
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, P.; Ruka, R.J.
1995-02-14
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.
Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors
NASA Technical Reports Server (NTRS)
VanOverbeke, Thomas J.
1998-01-01
The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except for peak temperature and tangential velocity. The hybrid pdf method did take longer and required more memory, but has a theoretical basis to extend to many reaction steps which cannot be said of current turbulent combustion models.
2008-08-12
CAPE CANAVERAL, Fla. – A view from above of repairs made to the walls of the Launch Pad 39A flame trench at NASA's Kennedy Space Center. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
2008-08-12
CAPE CANAVERAL, Fla. – An inspector stands in the Launch Pad 39A flame trench at NASA's Kennedy Space Center after tests of the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
2008-08-12
CAPE CANAVERAL, Fla. – A closeup of the wall in the Launch Pad 39A flame trench at NASA's Kennedy Space Center after repairs were made. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
2008-08-12
CAPE CANAVERAL, Fla. – In the Launch Pad 39A flame trench at NASA's Kennedy Space Center, inspectors test the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
2008-08-12
CAPE CANAVERAL, Fla. – This view of the Launch Pad 39A flame trench at NASA's Kennedy Space Center shows the areas on the walls recently repaired. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
Understanding and predicting soot generation in turbulent non-premixed jet flames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hai; Kook, Sanghoon; Doom, Jeffrey
2010-10-01
This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogatemore » fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.« less
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
Investigation of spray dispersion and particulate formation in diesel fuel flames
NASA Technical Reports Server (NTRS)
Back, L. H.; Bankston, C. P.; Kwack, E. Y.; Bellan, J.; Harstad, K.
1988-01-01
An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets.
Imaging live humans through smoke and flames using far-infrared digital holography.
Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P
2013-03-11
The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.
Eggersdorfer, M.L.; Gröhn, A.J.; Sorensen, C.M.; McMurry, P.H.; Pratsinis, S.E.
2013-01-01
Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area and density. Here, zirconia (ZrO2) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in-situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO2 and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number and surface area mean diameter of primary particles, dva). The dva determined by DMA-APM measurements and this power law is in good agreement with the dva obtained by ex-situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g. precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
NASA Astrophysics Data System (ADS)
Jia, Zhengmei; Huang, Jing; Gong, Yongfeng; Jin, Peipeng; Suo, Xinkun; Li, Hua
2017-02-01
High-density polyethylene (HDPE)-copper (Cu) composite coatings were prepared through depositing HDPE-Cu core-shell particles by flame spraying. The HDPE-Cu composite coatings and the HDPE coatings were aged in xenon lamp ageing testing chamber. The variations of chemical compositions and surface morphology of the coatings before and after the ageing testing were analyzed using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and ultraviolet-visible spectrophotometer. Results show that there is no chemical composition variation in the HDPE-Cu coatings. Cracks were found on the surfaces of the HDPE coatings, while the HDPE-Cu coating shows almost intact surface morphology. These results suggest that the HDPE-Cu coatings present better anti-ageing performances than the HDPE coatings. Further assessment of the function of Cu shells on the anti-ageing property reveals that Cu shells not only enhanced the absorption of the coatings to ultraviolet, but also increased their reflectivity to visible light. Additionally, the Cu shells enhanced the decomposition temperature and thermal stability of HDPE in the composite coatings. These results give bright insight into potential anti-ageing applications of the polymer-based structures.
NASA Astrophysics Data System (ADS)
Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei
2016-10-01
This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.
Combustion of Interacting Droplet Arrays in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Struk, Peter M.; Kitano, Kunihiro; Ikeda, Koji; Honma, Senji
1997-01-01
This research program involves the study of single droplets and linear arrays of droplets in weakly-buoyant and non-bouyant environments. The primary purpose of the single droplet work was to (1) provide a data base from which to compare droplet array results and (2) to correlate the effects of buoyancy on flame shape. Traditionally convective effects in droplet combustion are represented in terms of the Reynolds number, Re, for forced convection and the Grashof number, Gr, for natural convection. Typically, corrections to the burning rate constant for convective effects are written in terms of Re or Gr(exp 1). The Stefan velocity is not included in these correlations, even though from purely physical reasons, one would expect it to be important, especially at higher burning rates. The flame distortion due to convective effects is less documented quantitatively. Kumagai and Isoda do predict flame shape in natural and forced convective flow fields. Their focus, however, was to predict the actual flame dimensions. Law and co-workers used reduced pressure, high oxidizer ambients to obtain spherical flames. This implies that buoyant flows were reduced at the low pressures, as indicated by a very small Grashof number. Ross et al, however, using scaling arguments showed that reducing the pressure does not have a large effect on the magnitude of the buoyant velocity. Struk et al showed elongated flame shapes during simulated (porous sphere) droplet combustion. The elongation of the flames was due to residual gravity levels aboard the reduced gravity aircraft on which the experiments were conducted. These flame shapes, as well as some data from the literature were interpreted based on a dimensionless grouping called the sphericity parameter, Sp. Sp is the ratio of a characteristic computed buoyant velocity to the Stefan velocity at the flame front. One purpose of the droplet arrays work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Recently, Annamali and Ryan have summarized he current status of droplet array, cloud and spray combustion. A number of simplified theories led numerical studies of droplet vaporization/combustion where multiple droplet effects are present are now available. These theories all neglect the effect of buoyancy. Experimentally, most studies to date suffer the effects of buoyancy. It is the dominant transport mechanism in the problem. Only the works of Law and co-worker and more recently by Mikami et al were performed in an environment where buoyancy effects were small. Law and co-workers were limited to high oxygen index, low pressure ambient environments since there studies were conducted in normal gravity.
Plasma sprayed coatings on crankshaft used steels
NASA Astrophysics Data System (ADS)
Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.
2017-08-01
Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.
1982-01-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; McDonald, G.
1982-02-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M
2009-06-01
Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.
Sakai, Kentaro; Maruyama-Maebashi, Kyoko; Takatsu, Akihiro; Fukui, Kenji; Nagai, Tomonori; Aoyagi, Miwako; Ochiai, Eriko; Iwadate, Kimiharu
2011-03-20
Spray cleaner is a cleaning product containing compressed 1,1-difluoroethane (HFC-152a) to blow dust off electric devices and other sensitive equipment; however, it is also inhaled to induce euphoria. This report describes three cases of death involving HFC-152a inhalation with spray cleaner under different circumstances. In case 1, death was during inhalation for euphoria with which led to having frostbite. In case 2, death may have been associated with suicidal intention. Case 3 was also considered an accidental autoerotic death. In all three cases, HFC-152a was detected at 99.2-136.2mg/l in blood samples, 94.5-191.9 mg/l in urine samples and 3.6-18.4 mg in the gastric contents according to gas chromatography with flame ionization detection. To prevent death associated with HFC-152a inhalation from spray cleaner, the danger of the sudden death should be announced to people, given the ready availability of commercial products containing HFC-152a. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Recent advances in large-eddy simulation of spray and coal combustion
NASA Astrophysics Data System (ADS)
Zhou, L. X.
2013-07-01
Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.
Radiation-Spray Coupling for Realistic Flow Configurations
NASA Technical Reports Server (NTRS)
El-Asrag, Hossam; Iannetti, Anthony C.
2011-01-01
Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.
VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES
Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...
Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...
2014-05-28
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senecal, P. K.; Pomraning, E.; Anders, J. W.
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
NASA Astrophysics Data System (ADS)
Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik
2015-06-01
Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.
[Investigation on Spray Drying Technology of Auricularia auricular Extract].
Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin
2015-07-01
To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.
NASA Astrophysics Data System (ADS)
Abedi, H. R.; Salehi, M.; Shafyei, A.
2017-10-01
In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.
Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates.
Strobel, Reto; Pratsinis, Sotiris E
2011-05-28
The effect of solvent composition on particle formation during flame spray pyrolysis of inexpensive metal-nitrates has been investigated for alumina, iron oxide, cobalt oxide, zinc oxide and magnesium oxide. The as-prepared materials were characterized by electron microscopy, nitrogen adsorption, X-ray diffraction (XRD) and disc centrifugation (XDC). The influence of solvent parameters such as boiling point, combustion enthalpy and chemical reactivity on formation of either homogeneous nanoparticles by evaporation/nucleation/coagulation (gas-to-particle conversion) or large particles through precipitation and conversion within the sprayed droplets (droplet-to-particle conversion) is discussed. For Al(2)O(3), Fe(2)O(3), Co(3)O(4) and partly also MgO, the presence of a carboxylic acid in the FSP solution resulted in homogeneous nanoparticles. This is attributed to formation of volatile metal carboxylates in solution as evidenced by attenuated total reflectance spectroscopy (ATR). For ZnO and MgO rather homogeneous nanoparticles were formed regardless of solvent composition. For ZnO this is attributed to its relatively low dissociation temperature compared to other oxides. While for MgO this is traced to the high decomposition temperature of Mg(NO(3))(2) together with Mg(OH)(2)↔MgO transformations. Cobalt oxide (Co(3)O(4)) nanoparticles made by FSP were not aggregated but rather loosely agglomerated as determined by the excellent agreement between XRD- and XDC-derived crystallite and particle sizes, respectively, pointing out the potential of FSP to make non-aggregated particles. This journal is © the Owner Societies 2011
Group Combustion Module (GCM) Installation
2016-09-27
ISS049e011638 (09/27/2016) --- Expedition 49 crewmember Takuya Onishi of JAXA works on the setup of the Group Combustion Module (GCM) inside the Japanese Experiment Module. The GCM will be used to house the Group Combustion experiment from the Japan Aerospace Exploration Agency (JAXA) to test a theory that fuel sprays change from partial to group combustion as flames spread across a cloud of droplets.
Emissions Control in Swirl Stabilized Spray Combusters, an Experimental and Computational Study
2007-02-01
dynamics and thus provide an attractive alternative for application in aircraft gas turbine engines. Triple Annular Research Swirler, which has been...octagonal combustor because it provided optical access for flame imaging while avoiding difficulty of drilling thermocouple access holes on the...indicated by the temperature distribution. c. OH* chemiluminescence image It is commonly accepted that CH* and OH* chemiluminescence represents reaction or
Environmentally Compliant Thermoplastic Powder Coating, Phase 1
1992-10-07
TPC flame sprayed application equipment and ethylene acrylic acid (EAA) and ethylene methacrylic acid (EMAA) copolymers thermoplastic powder...have worked closely with Dow Chemical to develop and optimize their systems using Dow "Envelon" ethylene acrylic acid (EAA) thermoplastic copolymers...provide on/off control. CFS recommends the use of Dow "Envelon" ethylene acrylic acid (EAA) copolymer thermoplastic powder with this unit. The CFS system
2008-08-12
CAPE CANAVERAL, Fla. – A van travels the width of the Launch Pad 39A flame trench at NASA's Kennedy Space Center after tests of the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
Secondary atomization in the combustion of electrostatic sprays
NASA Technical Reports Server (NTRS)
Gomez, Alessandro; Chen, Gung
1993-01-01
The combustion of electrosprays in a laminar counterflow diffusion flame has been experimentally studied by measuring droplet size and velocity distributions and gas-phase temperature. Detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets 'interact' with the flame, the size distribution becomes bimodal. A secondary, sharp peak, in fact, develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than the parent ones. This fission is of electric nature and it occurs when the repulsion of electric charges overcomes the surface tension cohesive force ultimately leading to a disintegration into finer fragments at or about the so-called Rayleigh limit. We here report on the first observation in combustion environments of such 'explosions'. If, on the other hand, droplets enter the very high temperature region before exploding, there appears to be no evidence of bimodality in their size distribution. In this case, in fact, flame chemi-ions may neutralize the charge on the droplets and thus prevent disruption.
Combustion of Interacting Droplet Arrays in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Nagaishi, H.; Honma, S.; Ikeda, K.
2001-01-01
Investigations into droplet interactions date back to Rex et al. Annamalai and Ryan and Annamalai published extensive reviews of droplet array and cloud combustion studies. In the majority of the reviewed studies, the authors examined the change in the burning rate constant, k, (relative to that of the single droplet) that results from interactions. More recently, Niioka and co-workers have examined ignition and flame propagation along arrays of interacting droplets with the goal of relating these phenomena in this simplified geometry to the more practical spray configuration. Our work has focussed on droplet interactions under conditions where flame extinction occurs at a finite droplet diameter. In our previous work, we reported that in normal gravity, reduced pressure conditions, droplet interactions improved flame stability and extended flammability limits (by inference). In our recent work, we examine droplet interactions under conditions where the flame extinguishes at a finite droplet diameter in microgravity. The microgravity experiments were in the NASA GRC 2.2 and 5.2 second drop towers, and the JAMIC (Japan Microgravity Center) 10 second drop tower. We also present progress on a numerical model of single droplet combustion that is in the process of being extended to model a binary droplet array.
Space Experiment Concepts: Cup-Burner Flame Extinguishment
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki
2004-01-01
Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
1998-01-01
Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.
Fixed automated spray technology.
DOT National Transportation Integrated Search
2011-04-19
This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...
Thermal spray for commercial shipbuilding
NASA Astrophysics Data System (ADS)
Rogers, F. S.
1997-09-01
Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.
NASA Technical Reports Server (NTRS)
Patel, Anil K.; Meeks, C.
1998-01-01
This paper discusses the application of Convergent Spray Technologies (TM) Spray Process to the development and successful implementation of Marshall Convergent Coating (MCC-1) as a primary Thermal Protection System (TPS) for the Space Shuttle Solid Rocket Boosters (SRBs). This paper discusses the environmental and process benefits of the MCC-1 technology, shows the systematic steps taken in developing the technology, including statistical sensitivity studies of about 35 variables. Based on the process and post-flight successes on the SRB, it will be seen that the technology is "field-proven". Application of this technology to other aerospace and commercial programs is summarized to illustrate the wide range of possibilities.
Development of flame resistant treatment for nomex fibrous structures
NASA Technical Reports Server (NTRS)
Toy, M. S.
1978-01-01
Technology which renders aramid fibrous structures flame resistant through chemical modification was developed. The project scaled up flame resistant treatment from laboratory fabric swatches of a few inches to efficiently producing ten yards of commercial width (41 inches) aromatic polyamide. The radiation intensity problem of the processor was resolved. Further improvement of the processor cooling system was recommended for two reasons: (1) To advance current technology of flame proofing Nomex fabric to higher oxygen enriched atmospheres; and (2) To adapt the processor for direct applicability to low cost commercial fabrics.
Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ternes, MP
A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use ofmore » the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.« less
Adjustable Powder Injector For Vacuum Plasma Sprayer
NASA Technical Reports Server (NTRS)
Burns, D. H.; Woodford, W. H.; Mckechnie, T. N.; Mcferrin, D. C.; Davis, W. M.; Beason, G. P., Jr.
1993-01-01
Attachment for plasma spray gun provides four degrees of freedom for adjustment of position and orientation at which powder injected externally into plasma flame. Manipulator provides for adjustment of pitch angle of injection tube: set to inject powder at any angle ranging from perpendicular to parallel to cylindrical axis. Scribed lines on extension bar and manipulator indicate pitch angle of extension tube. Collar changed to adapt injector to different gun.
1993-09-24
Environmental Safety - nad Irreconcilable Antagonism in the Chemical 097 Application of Electrochemical Impedance Spectroscopy to Study Process Industry the...195 569 Study of Enameling Properties on the Hot-RolledTi-Containing 044 Compatability of Organic Coatings with Flame Spraying...204 COATINGS METALLIC COATING AND SURFACE TREATMENTS 025 Study of Anticorrosion Properties
NASA Technical Reports Server (NTRS)
Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.
1974-01-01
Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.
Estimation of Laminar Burning Velocities by Direct Digital Photography
ERIC Educational Resources Information Center
Uske, J.; Barat, R.
2004-01-01
The Bunsen burner flame, which is the most common flame in the laboratory, can be easily studied for its dynamics because of modern, economical digital technology available to student laboratories. Direct digital photography of Bunsen flames is used to obtain laminar burning velocities of selected gaseous hydrocarbon/air flames.
Spray combustion at normal and reduced gravity in counterflow and co-flow configurations
NASA Technical Reports Server (NTRS)
Gomez, Alessandro; Chen, Gung
1995-01-01
Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and 1688) in which the ES was used as a research tool to examine spray combustion in counter-flow and co-flow spray diffusion flames, as summarized below. The ultimate objective of this investigation is to examine the formation and burning of sprays of liquid fuels, at both normal and reduced gravity, first in laminar regimes and then in turbulent ones.
NASA Astrophysics Data System (ADS)
Betancur Granados, Natalia; Yi, Eongyu; Laine, Richard M.; Restrepo Baena, Oscar Jaime
2016-01-01
Zn1- x Co x Al2O4 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) spinel nanoparticles were synthesized by a liquid-feed flame spray pyrolysis (LF-FSP) method by combusting metallorganic precursor solutions to produce nanopowders with precise composition control. The precursor solutions were aerosolized into a methane/oxygen flame where it was combusted in an oxygen-rich environment to result in nanopowders at a single step. The nanopowders were analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, colorimetry, field emission scanning electron microscopy, transmission electron microscopy, and BET (Brunauer-Emmett-Teller) N2 adsorption. Results show formation of spherical nanopowders with specific surface areas of 42 m2/g to 50 m2/g, which correspond to average particle sizes of 26 nm to 31 nm. Single-phase materials were obtained with a high control of composition, which indicates that LF-FSP is an excellent method to produce mixed-metal oxides for applications in which powder homogeneity is crucial. The products were evaluated for ceramic pigment application, where the ratio of Zn to Co was gradually changed to observe the color change in the structure with the increase of cobalt concentration. The resulting pigments were calcined at 1200°C, which aimed to identify the color stability after a high-temperature process, whereby the colors were measured using the color space CIE L*a*b* under standardized light, D65. Finally, the powders were tested for ceramic decoration using transparent glazes and ceramic bodies. The application was carried out at 1250°C to evaluate the color performance after a decoration process.
Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings
NASA Astrophysics Data System (ADS)
Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.
2010-01-01
Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.
A SITE demonstration of the Horsehead Resource Development (HRD) Company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. or this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclable...
NASA Astrophysics Data System (ADS)
Abani, Neerav; Reitz, Rolf D.
2010-09-01
An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.
Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application
NASA Technical Reports Server (NTRS)
Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.
1998-01-01
The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement
Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali
2013-01-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali
2015-09-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.
Structure of Monopropellant Spray Flames at Elevated Pressures
1990-01-15
process were developed , both ignoring and considering effects of separated flow, and evaluated using the new measurements. Supercritical combustion...McliJUTV CL*.S’a»’ iCAr ’ON 0’ Igj iadf REPORT DOCUMENTATION PAGE i*. Kiwwr Jicjmry CLASSiFiCATtow unclsssified i*. sicumrr cuusiwcAnoN AUTHORITY...separated flow. Deterministic and stochastic separated flow models were developed which yielded predictions that were similar to each other and were
Explosive Testing of Class 1.3 Rocket Booster Propellant
1994-08-01
molds were lined with 0.025 mm (0.001 in.) Velostat conductive plastic sheet and sprayed with a mold release that dried leaving fine Teflon powder... Velostat sheet (0.03 in.) was wrapped around the sample and grounded for improved electrostatic safety. Similar to previous cylinder tests, the...layer of thin Velostat plastic sheet, its contribution to camera viewing distortion of the flame front is not known. Overall, an average velocity over
NASA Technical Reports Server (NTRS)
1976-01-01
'Flamarest' coating developed by Avco Corporation for NASA to protect fuel lines and tanks is sprayed on the interior of polyester boat hull in commercial application. About 30 mils of the coating prevented structural damage to hull during test in which a 13 minute interior gasoline fire was started. An unprotected hull would begin to burn in 30 seconds. Same material applied as tape to wrap fuel lines effectively insulates hose when charred while also reducing spread of flame.
Flame Acceleration and Transition to Detonation in High-Speed Turbulent Combustion
2016-12-21
Turbulent Combustion 1. Introduction to the Challenge Problem The importance of high-speed t urbulent combustion of gas mixtures and sprays is dif...engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high-speed combustion is critical for...the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus, the development of more fuel
Flame Acceleration and Transition to Detonation in High Speed Turbulent Combustion
2016-12-21
gas mixtures and sprays is dif- ficult to overestimate, as it is the main process in all internal-combustion engines used for propulsion and energy...generation. These include piston engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high...speed combustion is critical for the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus
Thermal Spraying of CuAlFe Powder on Cu5Sn Alloy
NASA Astrophysics Data System (ADS)
Roata, I. C.; Pascu, A.; Croitoru, C.; Stanciu, E. M.; Pop, M. A.
2017-06-01
To improve the corrosion and wear resistance of copper and its alloys, flame spraying has been employed to obtain a relatively homogenous Cu/Al/Fe-based coating. To minimize the defects that usually occur by using this method, a post-coating annealing step has been employed, by using concentrated solar energy as means of thermal surface treatment. Scanning electron micrographs have indicated a reduction in the cracks/pores density and accelerated corrosion testing have indicated a higher performance of the solar-annealed sample, in comparison with the initial reference material. The coating approach mentioned in this paper could be successfully applied to restore several worn tools and instruments, and could also be of use in the renewable energy field (IR-absorbent coatings) or in advanced oxidation processes, such as photocatalysis.
ENVIORNMENTAL TECHNOLOGY VERIFICATION REPORT: ANEST IWATA CORPORATION LPH400-LV HVLP SPRAY GUN
This Enviornmental Technology Verification reports on the characteristics of a paint spray gun. The research showed that the spray gun provided absolute and relative increases in transfer efficiency over the base line and provided a reduction in the use of paint.
Computational Analysis of End-of-Injection Transients and Combustion Recession
NASA Astrophysics Data System (ADS)
Jarrahbashi, Dorrin; Kim, Sayop; Knox, Benjamin W.; Genzale, Caroline L.; Georgia Institute of Technology Team
2016-11-01
Mixing and combustion of ECN Spray A after end of injection are modeled with different chemical kinetics models to evaluate the impact of mechanism formulation and low-temperature chemistry on predictions of combustion recession. Simulations qualitatively agreed with the past experimental observations of combustion recession. Simulations with the Cai mechanism show second-stage ignition in distinct regions near the nozzle, initially spatially separated from the lifted diffusion flame, but then rapidly merge with flame. By contrast, the Yao mechanism fails to predict sufficient low-temperature chemistry in mixtures upstream of the diffusion flame and combustion recession. The effects of the shape and duration of the EOI transient on the entrainment wave near the nozzle, the likelihood of combustion recession, and the spatiotemporal development of mixing and chemistry in near-nozzle mixtures are also investigated. With a more rapid ramp-down injection profile, a weaker combustion recession occurs. For extremely fast ramp-down, the entrainment flux varies rapidly near the nozzle and over-leaning of the mixture completely suppresses combustion recession. For a slower ramp-down profile complete combustion recession back toward the nozzle is observed.
Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.
Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi
2014-01-01
In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.
Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters
NASA Astrophysics Data System (ADS)
Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel
2013-08-01
Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.; Key, James F.
1993-01-01
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.
Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin
2007-12-01
Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.
[Analysis of H2S/PH3/NH3/AsH3/Cl2 by Full-Spectral Flame Photometric Detector].
Ding, Zhi-jun; Wang, Pu-hong; Li, Zhi-jun; Du, Bin; Guo, Lei; Yu, Jian-hua
2015-07-01
Flame photometric analysis technology has been proven to be a rapid and sensitive method for sulfur and phosphorus detection. It has been widely used in environmental inspections, pesticide detection, industrial and agricultural production. By improving the design of the traditional flame photometric detector, using grating and CCD sensor array as a photoelectric conversion device, the types of compounds that can be detected were expanded. Instead of a single point of characteristic spectral lines, full spectral information has been used for qualitative and quantitative analysis of H2S, PH3, NH3, AsH3 and Cl2. Combined with chemometric method, flame photometric analysis technology is expected to become an alternative fast, real-time on-site detection technology to simultaneously detect multiple toxic and harmful gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitativemore » high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.« less
High-pressure flame visualization of autoignition and flashback phenomena with liquid-fuel spray
NASA Technical Reports Server (NTRS)
Marek, C. J.; Baker, C. E.
1983-01-01
A study was undertaken to determine the effect of boundary layers on autoignition and flashback for premixed Jet-A fuel in a unique high-pressure windowed test facility. A plate was placed in the center of the fuel-air stream to establish a boundary layer. Four experimental configurations were tested: a 24.5-cm-long plate with either a pointed leading edge, a rounded edge or an edge with a 0.317-cm step, or the duct without the plate. Experiments at an equivalence ratio ranging from 0.4 to 0.9 were performed at pressures to 2500 kPa (25 atm.) at temperatures of 600, 645, and 700 K and velocities to 115 meters per second. Flame shapes were observed during flashback and autoignition using high speed cinematography. Flashback and autoignition limits were determined.
APPLICATION ANALYSIS REPORT: HORSEHEAD RESOURCE DEVELOPMENT COMPANY INC., FLAME REACTOR TECHNOLOGY
A SITE demonstration of the Horsehead Resource Development (HRD) company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. For this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclabl...
Combustion Characteristics of Sprays
1989-08-01
Lin. T. H.. and Sohrab. S. H. (1987). On the transition oi’diffusion to premixed I’lames in consers.ed ssstem Cornhusio. Flume 68. 73. Mlizutani. Y ...and Nakauima. A. (1973a). Combustion of fuel vapor-drop-air systems: Part 1-Open burner flames. Combust. F/ante 21.14. Mizutani. Y .. and Nakajima. A...AFOSR LES Final Report. AFRPL. Sohrab. S. H.. Ye. Z. Y .. and Law~k C. K. (1984). An experimenial investication on ilame interaction ano the
The Cost Effectiveness of Flame Sprayed Coatings for Shipboard Corrosion Control
1990-06-01
the substrate. 2. Existing condition of the surface to be painted. 3. Type of exposure. 4. Past history of the surface to be presened. 5. Practical... Psychrometer (B) Holiday Detector (Portable) (P) Wet Film Thickness Gauge (p) Dry Film Thickness Gauge (P) Air Compressor and Dryer (P) Battery Operated...34, typical. 3. Utility Requirements None 4. Estimated Cost $140 61 Y. 1. 2. 3. 4. PORTABLE ELECTRIC PSYCHROMETER Intended Use (B) To measure relative
NASA Astrophysics Data System (ADS)
Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua
2016-12-01
Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.
Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M
2018-05-04
Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.
NASA Astrophysics Data System (ADS)
Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.
2018-05-01
Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.
Validation testing of drift reduction technology testing protocol
A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on the effectiveness of these technologies in reducing spray drift. Working with a stakeholder technical panel under EPA's Env...
Self-sharpening-effect of nickel-diamond coatings sprayed by HVOF
NASA Astrophysics Data System (ADS)
Tillmann, W.; Brinkhoff, A.; Schaak, C.; Zajaczkowski, J.
2017-03-01
The durability of stone working and drilling tools is an increasingly significant requirement in industrial applications. These tools are mainly produced by brazing diamond metal matrix composites inserts to the tool body. These inserts are produced by sintering diamonds and metal powder (e.g. nickel). If the wear is too high, the diamonds will break out of the metal matrix and other diamonds will be uncovered. This effect is called self-sharpening. But diamonds are difficult to handle because of their thermal sensitivity. Due to their high thermal influence, manufacturing costs, and complicate route of manufacturing (first sintering, then brazing), there is a great need for alternative production methods for such tools. One alternative to produce wear-resistant and self-sharpening coatings are thermal spray processes as examined in this paper. An advantage of thermal spray processes is their smaller thermal influence on the diamond, due to the short dwelling time in the flame. To reduce the thermal influence during spraying, nickel coated diamonds were used in the HVOF-process (high velocity oxygen fuel process). The wear resistance was subsequently investigated by means of a standardized ball-on-disc test. Furthermore, a SEM (scanning electron microscope) was used to gain information about the wear-mechanism and the self-sharpening effect of the coating.
Combustion characteristics in the transition region of liquid fuel sprays
NASA Technical Reports Server (NTRS)
Cernansky, N. P.; Namer, I.; Tidona, R. J.
1986-01-01
A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.
Field Effects of Buoyancy on Lean Premixed Turbulent Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.
2003-01-01
The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This problem poses major challenges to combustion modeling due to its need for a computation domain extending into the farfield and full specifications of upstream, wall and downstream boundary conditions.
Pesticide spray drift is defined as the movement of spray droplets through the air at the time of application or soon thereafter from the target site to any non- or off-target site, excluding pesticide movements by erosion, migration, volatility, or windblown soil particles after...
2007-12-01
Projects Agency (DARPA). The program evaluated HVOF, physical vapor deposition (PVD) and laser cladding , and concluded that HVOF was the best overall...components such as titanium flap tracks. 5 2.0 TECHNOLOGY DESCRIPTION 2.1 TECHNOLOGY DEVELOPMENT AND APPLICATION Technology background and...theory of operation: High-velocity oxygen-fuel (HVOF) is a standard commercial thermal spray process in which a powder of the material to be sprayed
Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.
Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément
2018-06-05
Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.
Flame resistant cellulose fiber insulation and process of preparing it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinto, M.J.
1979-11-06
This invention produces flame resistant cellulose fiber insulation, which will be referred to as CFI. The best flameproofing agents which have been used in the past are mixtures of boric acid and borax as the major portion of the mix and have been applied both as dry powders and sprayed from water dispersions. Boric acid is quite expensive as it is prepared from borax by the addition of acid and purification of the boric acid. In the present invention lower cost materials and process are obtained by applying a mixture of boric acid and borax which has been prepared bymore » adding acid, such as sulfuric acid, a mixture of sulfuric and phosphoric acid, and the like, to borax to transform a portion of the borax into boric acid. The reaction products, sodium sulfate, or a mixture of sodium sulfate and sodium phosphate in the case both acids are used, remain in the material applied to CFI. While they are not by themselves highly effective flameproofing agents, particularly sodium sulfate is not, they do add somewhat to flame resistance. In other words, wht elimination of the step of separating and/or purifying boric acid is eliminated without, however, eliminating its function. The product produced is as good a flame retarder when applied to CFI; in fact it is slightly better. Additionally there are great savings in cost.« less
Burning Questions in Gravity-Dependent Combustion Science
NASA Technical Reports Server (NTRS)
Urban, David; Chiaramonte, Francis P.
2012-01-01
Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
1994-06-01
Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ANEST IWATA CORPORATION W400-LV SPRAY GUN
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SHARPE MANUFACTURING TITANIUM T1-CG SPRAY GUN
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...
This evaluation, part of the Pollution Prevention Clean Technology Demonstration (CTD) Program, addresses the product quality, waste reduction, and economic issues of spray paint application using supercritical carbon dioxide (CO2). Anion Carbide has developed this technology and...
TAZ-8A Alloy Increases The Thermal Endurance Of Steel
NASA Technical Reports Server (NTRS)
Waters, William J.
1990-01-01
TAZ-8A exhibits high strength at temperatures as high as 1,400 degrees F (760 degrees C) and resistance to oxidation; also exhibits excellent cyclic shock resistance between 600 and 2,000 degrees F (316 and 1,093 degrees C) and superplasticity at 1,800 degrees F (982 degrees C). Converts into fine powder and then flame-, plasma-, arc-, or wire-sprayed onto inexpensive steel substrate. Surface treatment with this alloy prolongs service life and reduces costs.
1983-12-01
with 1 in. mineral wool insulation positioned on the tunnel ledges to provide a more positive seal. These tests will be identified with the letter "I...during test minus 4-1/2 ft igniting flame. (1) - Mineral wool insulation positioned on the tunnel ledges. -A41 File USNC77 Issued: 12-29-78... Mineral wool insulation positioned on the tunnel ledges. ,-A2 Fie SNśIsud: 12297 ;. "’"’._." "-...:. " ., , ’ "’" .k
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1980-02-01
resto A faire . Connaissant lea conditions do fonctionnoment ot los performances du foyer recherch6os, 1e motoristo va, A partir d’un certain nombre de...shock. How precisely do you manage to obtain the required good definition of the shock %ave ,itlth a finite ifference tedinique. Author’s Reply Actually...turbulent ..diffusion -lamos. ’Comb. S6i.. and Tech. 14, 229 #3. 6. A.C,, Styles and; N.A. Chigier . Combustion of air blast atomiz’d spray flames. 16th
2017-04-23
192. 4. Chehroudi, B., Davis, D.W., and Talley, D.G., "The Effects of Pressure and Acoustic Field on a Cryogenic Coaxial Jet", 42nd AIAA Aerospace...the Presence of Acoustic Excitation", Combustion and Flame, 2014; 6, 161, pp. 1604-1619. 15. Glassman, I., and Yetter, R.A., Combustion: Fourth...pressure vessel. - Investigate combustion dynamics of nanofuel sprays under acoustic forcing at supercritical conditions (>600 psi). 3 DISTRIBUTION A
Plasma impregnation of wood with fire retardants
NASA Astrophysics Data System (ADS)
Pabeliña, Karel G.; Lumban, Carmencita O.; Ramos, Henry J.
2012-02-01
The efficacy of chemical and plasma treatments with phosphate and boric compounds, and nitrogen as flame retardants on wood are compared in this study. The chemical treatment involved the conventional method of spraying the solution over the wood surface at atmospheric condition and chemical vapor deposition in a vacuum chamber. The plasma treatment utilized a dielectric barrier discharge ionizing and decomposing the flame retardants into innocuous simple compounds. Wood samples are immersed in either phosphoric acid, boric acid, hydrogen or nitrogen plasmas or a plasma admixture of two or three compounds at various concentrations and impregnated by the ionized chemical reactants. Chemical changes on the wood samples were analyzed by Fourier transform infrared spectroscopy (FTIR) while the thermal changes through thermo gravimetric analysis (TGA). Plasma-treated samples exhibit superior thermal stability and fire retardant properties in terms of highest onset temperature, temperature of maximum pyrolysis, highest residual char percentage and comparably low total percentage weight loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westbrook, C K; Mizobuchi, Y; Poinsot, T J
2004-08-26
Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surfacemore » and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.« less
Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients
NASA Astrophysics Data System (ADS)
Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.
1984-06-01
To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.
Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients
NASA Technical Reports Server (NTRS)
Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.
1984-01-01
To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.
EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION
The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...
This generic verification protocol provides a detailed method to conduct and report results from a verification test of pesticide application technologies that can be used to evaluate these technologies for their potential to reduce spray drift.
Investigation of the effect of pilot burner on lean blow out performance of a staged injector
NASA Astrophysics Data System (ADS)
Yang, Jinhu; Zhang, Kaiyu; Liu, Cunxi; Ruan, Changlong; Liu, Fuqiang; Xu, Gang
2014-12-01
The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine. In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section. The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper, conclusions are drawn and suggestions are made for the optimization of the present staged injector.
Quick-Change Ceramic Flame Holder for High-Output Torches
NASA Technical Reports Server (NTRS)
Haskin, Henry
2010-01-01
Researchers at NASA's Langley Research Center have developed a new ceramic design flame holder with a service temperature of 4,000 F (2,204 C). The combination of high strength and high temperature capability, as well as a twist-lock mounting method to the steel burner, sets this flame holder apart from existing technology.
Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.
Yang, Liang; Wang, Simin; Lv, Zhicheng; Liu, Sheng
2013-04-01
An advanced phosphor conformal coating technology is proposed, good correlated color temperature (CCT) and chromaticity uniformity samples are fabricated through phosphor spray painting technology. Spray painting technology is also suitable for phosphor conformal coating of whole LED wafers. The samples of different CCTs are obtained through controlling the phosphor film thickness in the range of 6-80 μm; CCT variation of samples can be controlled in the range of ±200 K. The experimental Δuv reveals that the spray painting method can obtain a much smaller CCT variation (Δuv of 1.36e(-3)) than the conventional dispensing method (Δuv of 11.86e(-3)) when the light is emitted at angles from -90° to +90°, and chromaticity area uniformity is also improved significantly.
Evaluation of different flamelet tabulation methods for laminar spray combustion
NASA Astrophysics Data System (ADS)
Luo, Yujuan; Wen, Xu; Wang, Haiou; Luo, Kun; Fan, Jianren
2018-05-01
In this work, three different flamelet tabulation methods for spray combustion are evaluated. Major differences among these methods lie in the treatment of the temperature boundary conditions of the flamelet equations. Particularly, in the first tabulation method ("M1"), both the fuel and oxidizer temperature boundary conditions are set to be fixed. In the second tabulation method ("M2"), the fuel temperature boundary condition is varied while the oxidizer temperature boundary condition is fixed. In the third tabulation method ("M3"), both the fuel and oxidizer temperature boundary conditions are varied and set to be equal. The focus of this work is to investigate whether the heat transfer between the droplet phase and gas phase can be represented by the studied tabulation methods through a priori analyses. To this end, spray flames stabilized in a three-dimensional counterflow are first simulated with detailed chemistry. Then, the trajectory variables are calculated from the detailed chemistry solutions. Finally, the tabulated thermo-chemical quantities are compared to the corresponding values from the detailed chemistry solutions. The comparisons show that the gas temperature cannot be predicted by "M1" with only a mixture fraction and reaction progress variable being the trajectory variables. The gas temperature can be correctly predicted by both "M2" and "M3," in which the total enthalpy is introduced as an additional manifold. In "M2," variations of the oxidizer temperature are considered with a temperature modification technique, which is not required in "M3." Interestingly, it is found that the mass fractions of the reactants and major products are not sensitive to the representation of the interphase heat transfer in the flamelet chemtables, and they can be correctly predicted by all tabulation methods. By contrast, the intermediate species CO and H2 in the premixed flame reaction zone are over-predicted by all tabulation methods.
36th International Symposium on Combustion (ISOC2016)
2016-12-01
GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants
Weidenhof, B; Reiser, M; Stöwe, K; Maier, W F; Kim, M; Azurdia, J; Gulari, E; Seker, E; Barks, A; Laine, R M
2009-07-08
We describe here the use of liquid-feed flame spray pyrolysis (LF-FSP) to produce high surface area, nonporous, mixed-metal oxide nanopowders that were subsequently subjected to high-throughput screening to assess a set of materials for deNO(x) catalysis and hydrocarbon combustion. We were able to easily screen some 40 LF-FSP produced materials. LF-FSP produces nanopowders that very often consist of kinetic rather than thermodynamic phases. Such materials are difficult to access or are completely inaccessible via traditional catalyst preparation methods. Indeed, our studies identified a set of Ce(1-x)Zr(x)O(2) and Al(2)O(3)-Ce(1-x)Zr(x)O(2) nanopowders that offer surprisingly good activities for both NO(x) reduction and propane/propene oxidation both in high-throughput screening and in continuous flow catalytic studies. All of these catalysts offer activities comparable to traditional Pt/Al(2)O(3) catalysts but without Pt. Thus, although Pt-free, they are quite active for several extremely important emission control reactions, especially considering that these are only first generation materials. Indeed, efforts to dope the active catalysts with Pt actually led to lower catalytic activities. Thus the potential exists to completely change the materials used in emission control devices, especially for high-temperature reactions as these materials have already been exposed to 1500 degrees C; however, much research must be done before this potential is verified.
Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.
Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F
2010-10-15
Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.
Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.
Snyder, Herman E
2012-07-01
Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.
This generic verification protocol provides a detailed method for conducting and reporting results from verification testing of pesticide application technologies. It can be used to evaluate technologies for their potential to reduce spray drift, hence the term “drift reduction t...
Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility
NASA Astrophysics Data System (ADS)
Paxton, Brendan
Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude environment simulation. To evaluate future testing applications, as well as to understand the abilities of the HARTF to accommodate different sizes and configurations of industrial gas turbine engine combustor hardware, ignition testing was conducted at challenging high-altitude windmilling conditions with a linearly-arranged five-swirler array, replicating the implementation of a multi-cup combustor sector.
Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2011-01-01
The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis
NASA Astrophysics Data System (ADS)
Li, R.-T.; Khor, K. A.; Yu, L.-G.
2016-12-01
We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.
NASA Astrophysics Data System (ADS)
Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati
2013-06-01
Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.
Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.
1994-01-01
Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
ENCOURAGING THE USE OF DRIFT REDUCTION TECHNOLOGIES IN THE UNITED STATES
A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on their effectiveness in reducing spray drift. The United States Environmental Protection Agency (EPA) is taking initiatives ...
Target reflectance measurements for calibration of lidar atmospheric backscatter data
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T.; Haner, D. A.; Oppenheim, U. P.; Flamant, P. H.
1983-01-01
Wavelength and angular dependence of reflectances and depolarization in the 9-11 micron region are reported for four standard targets: flowers of sulfur, flame-sprayed aluminum, 20-grit sandblasted aluminum, and 400-grit silicon carbon sandpaper. Measurements are presented and compared using a CW CO2 grating-tunable laser in a laboratory backscatter apparatus, an integrating sphere, and a coherent pulsed TEA-CO2 lidar system operating in the 9-11 micron region. Reflectance theory related to the use of hard targets to calibrate lidar atmospheric backscatter data is discussed.
NASA Technical Reports Server (NTRS)
Rohy, D. A.; Meier, J. G.
1983-01-01
Fuel spray and air flow characteristics were determined using nonintrusive (optical) measurement techniques in a fuel preparation duct. A very detailed data set was obtained at high pressures (to 10 atm) and temperatures (to 750 K). The data will be used to calibrate an analytical model which will facilitate the design of a lean premixed prevaporized combustor. This combustor has potential for achieving low pollutant emissions and low levels of flame radiation and pattern factors conductive to improved durability and performance for a variety of fuels.
No Heat Spray Drying Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beetz, Charles
No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1997-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus, progressive changes in the apparent strain behavior were corroborated by the extensometer, which unlike the mounted gage can distinguish quantitative changes in the material's thermal strain response. One specimen was instrumented with both a fixed and floating gage. From the difference in output of these two gages, the thermal expansion strains were calculated. These data, which are given in the figure, show excellent agreement with the values measured by the high-temperature extensometry.
NASA Astrophysics Data System (ADS)
Wu, Hai-ying; Zhang, San-xi; Liu, Biao; Yue, Peng; Weng, Ying-hui
2018-02-01
The photoelectric theodolite is an important scheme to realize the tracking, detection, quantitative measurement and performance evaluation of weapon systems in ordnance test range. With the improvement of stability requirements for target tracking in complex environment, infrared scene simulation with high sense of reality and complex interference has become an indispensable technical way to evaluate the track performance of photoelectric theodolite. And the tail flame is the most important infrared radiation source of the weapon system. The dynamic tail flame with high reality is a key element for the photoelectric theodolite infrared scene simulation and imaging tracking test. In this paper, an infrared simulation method for the full-path tracking of tail flame by photoelectric theodolite is proposed aiming at the faint boundary, irregular, multi-regulated points. In this work, real tail images are employed. Simultaneously, infrared texture conversion technology is used to generate DDS texture for a particle system map. Thus, dynamic real-time tail flame simulation results with high fidelity from the theodolite perspective can be gained in the tracking process.
Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao
2016-09-10
In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.
One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper
NASA Astrophysics Data System (ADS)
Brobbey, Kofi J.; Haapanen, Janne; Gunell, Marianne; Mäkelä, Jyrki M.; Eerola, Erkki; Toivakka, Martti; Saarinen, Jarkko J.
2017-10-01
Nanoparticles are used in several applications due to the unique properties they possess compared to bulk materials. Production techniques have continuously evolved over the years. Recently, there has been emphasis on environmentally friendly manufacturing processes. Substrate properties often limit the possible production techniques and, for example; until recently, it has been difficult to incorporate nanoparticles into paper. Chemical reduction of a precursor in the presence of paper changes the bulk properties of paper, which may limit intended end-use. In this study, we present a novel technique for incorporating silver nanoparticles into paper surface using a flame pyrolysis procedure known as Liquid Flame Spray. Papers precoated with mineral pigments and plastic are used as substrates. Silver nanoparticles were analyzed using SEM and XPS measurements. Results show a homogeneous monolayer of silver nanoparticles on the surface of paper, which demonstrated antibacterial properties against E. coli. Paper precoated with plastic showed more nanoparticles on the surface compared to pigment coated paper samples except for polyethylene-precoated paper. The results demonstrate a dry synthesis approach for depositing silver nanoparticles directly onto paper surface in a process which produces no effluents. The production technique used herein is up scalable for industrial production of antibacterial paper.
From drop impact physics to spray cooling models: a critical review
NASA Astrophysics Data System (ADS)
Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron
2018-03-01
Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.
Two intelligent spraying systems developed for tree crop production
USDA-ARS?s Scientific Manuscript database
Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...
Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology
NASA Astrophysics Data System (ADS)
Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza
2018-01-01
In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.
Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.
Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza
2018-01-10
In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.
This report gives results of an evaluation of carbon paper adsorption catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) as control technologies to reduce volatile organic compound (VOC) emissions from paint spray booths.
Results Outbrief from the 2014 CombustionLab Workshop
NASA Technical Reports Server (NTRS)
Urban, David
2015-01-01
On October 24-25, 2014, NASA Headquarters and the NASA Glenn Research Center sponsored the CombustionLab Workshop in Pasadena, CA as part of the 30th Annual Meeting of the American Society for Gravitational and Space Research. The two-day event brought together scientists and engineers from academia, industry, other government agencies, and international space agencies. The goal of the workshop was to identify key engineering drivers and research priorities, and to provide overall recommendations for the development of the next generation of combustion science experiments for the International Space Station (ISS). The workshop was divided in to 6 topical areas: Droplets, Sprays and Aerosols; Non-Premixed Flames; Premixed Flames; High Pressure and Supercritical Reacting Systems; Fire Safety; Heterogeneous Reaction Processes. Each of these areas produced summary findings which were assembled into a report and were integrated into the NASA budget planning process. The summary results of this process are presented with implementation plans and options for the future.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
NASA Astrophysics Data System (ADS)
Xin, D. Y.; Komatsu, Keiji; Abe, Keita; Costa, Takashi; Ikeda, Yutaka; Nakamura, Atsushi; Ohshio, Shigeo; Saitoh, Hidetoshi
2017-03-01
Recently, a new deposition technique using a metal-ethylenediamine tetraacetic acid (EDTA) complex has been developed. In this study, the heat-shock properties of metal-oxide films synthesized from a metal-EDTA complex were investigated. Y2O3 films were synthesized on stainless-steel (SUS) substrate from EDTA•Y•H through the combustion of H2-O2 gas. A cyclic heat-shock test was conducted on the fabricated Y2O3 films through exposure to the H2-O2 flame. The existence of Y2O3 crystals was confirmed. Surface cracks or damages were not observed in the samples after the cyclic thermal test. Although the number of cross-sectional cracks, crack lengths, and cracks per unit area was increased by the heat shock, delaminations were not observed in the Y2O3 films. The results show that the prepared Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.
The Effects of Gravity on Wrinkled Laminar Flames
NASA Technical Reports Server (NTRS)
Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.
1993-01-01
The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.
NASA Astrophysics Data System (ADS)
Hamid, N. A.; Wennig, S.; Hardt, S.; Heinzel, A.; Schulz, C.; Wiggers, H.
2012-10-01
Olivine, LiFePO4 is a promising cathode material for lithium-ion batteries due to its low cost, environmental acceptability and high stability. Its low electric conductivity prevented it for a long time from being used in large-scale applications. Decreasing its particle size along with carbon coating significantly improves electronic conductivity and lithium diffusion. With respect to the controlled formation of very small particles with large specific surface, gas-phase synthesis opens an economic and flexible route towards high-quality battery materials. Amorphous FePO4 was synthesized as precursor material for LiFePO4 by flame spray pyrolysis of a solution of iron acetylacetonate and tributyl phosphate in toluene. The pristine FePO4 with a specific surface from 126-218 m2 g-1 was post-processed to LiFePO4/C composite material via a solid-state reaction using Li2CO3 and glucose. The final olivine LiFePO4/C particles still showed a large specific surface of 24 m2 g-1 and were characterized using X-ray diffraction (XRD), electron microscopy, X-ray photoelectron spectrocopy (XPS) and elemental analysis. Electrochemical investigations of the final LiFePO4/C composites show reversible capacities of more than 145 mAh g-1 (about 115 mAh g-1 with respect to the total coating mass). The material supports high drain rates at 16 C while delivering 40 mAh g-1 and causes excellent cycle stability.
Thermal annealing dynamics of carbon-coated LiFePO{sub 4} nanoparticles studied by in-situ analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumeich, Frank, E-mail: krumeich@inorg.chem.ethz.ch; Waser, Oliver; Pratsinis, Sotiris E.
The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO{sub 4}-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO{sub 4}-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO{sub 4} starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further tomore » T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO{sub 4} particles (diameter in the range 300–400 nm), in agreement with ex-situ experiments. - Graphical abstract: TEM images of a typical sample area recorded at room temperature and after heating in-situ heating reveal the growth of particles and the formation of empty carbon cages. - Highlights: • LiFePO{sub 4} coated by a carbon shell is produced by flame spray pyrolysis. • The amorphous LiFePO{sub 4} starts to crystallize at 400 °C as revealed by in-situ XRD. • Crystal growth was visualized by TEM heating experiments. • The formation of empty carbon cages starts at 700 °C.« less
NASA Astrophysics Data System (ADS)
Ataol, Sibel; Tezcaner, Ayşen; Duygulu, Ozgur; Keskin, Dilek; Machin, Nesrin E.
2015-02-01
The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20-2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA-DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5-50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.
Demonstration and Field Test of airjacket technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, D.; Fisk, W.J.; Gadgil, A.J.
1998-06-01
There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The differencemore » between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.« less
Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review
NASA Astrophysics Data System (ADS)
Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.
2018-06-01
Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.
Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review
NASA Astrophysics Data System (ADS)
Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.
2018-02-01
Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.
Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Sampath, Sanjay
2010-09-01
Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.
Determination of selection criteria for spray drift reduction from atomization data
USDA-ARS?s Scientific Manuscript database
When testing and evaluating drift reduction technologies (DRT), there are different metrics that can be used to determine if the technology reduces drift as compared to a reference system. These metrics can include reduction in percent of fine drops, measured spray drift from a field trial, or comp...
DEVELOPMENT OF A TEST PLAN TO VERIFY PESTICIDE DRIFT REDUCTION TECHNOLOGIES
Considerable research has taken place in recent years to determine the sources, pathways, and exposure to the environment from airborne pesticide spray which can often drift off target at the time of spray application. Verification of the effectiveness of pesticide spray drift r...
NASA Astrophysics Data System (ADS)
Taylor, Nathan John
In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.
Bello, Anila; Carignan, Courtney C; Xue, Yalong; Stapleton, Heather M; Bello, Dhimiter
2018-04-01
Spray polyurethane foam (SPF) is a highly effective thermal insulation material that has seen considerable market growth in the past decade. Organophosphate flame retardants (PFRs) are added to SPF formulations to meet fire code requirements. A common flame retardant used in SPF formulations is tris 1-chloro 2-propyl phosphate (TCIPP), a suspected endocrine disruptor. Exposure monitoring efforts during SPF applications have focused primarily on the isocyanate component, a potent respiratory and dermal sensitizer. However, to our knowledge, there is no monitoring data for TCIPP. To characterize occupational exposures to TCIPP and other flame retardants during SPF insulation. Workers at four SPF insulation sites and one foam removal site (total n = 14) were recruited as part of this pilot study. Personal inhalation exposure to TCIPP was monitored with a CIP-10MI inhalable sampler and potential dermal exposure was assessed through the use of a glove dosimeter. Biomarkers of TCIPP and three other PFRs were measured in urine collected from workers pre-and post-shift. Linear mixed effect models were used to analyze associations of urinary biomarkers with inhalation and dermal exposures and paired t-tests were used to examine the difference on the means of urinary biomarkers pre-and post-shift. Chemical analysis of all species was performed with liquid chromatography-electrospray ionization tandem mass spectrometry. Geometric mean (GM) concentrations of TCIPP in personal air monitors and glove dosimeters collected from SPF applicators, 294.7 μg/m 3 and 18.8 mg/pair respectively. Overall, GM concentrations of the two TCIPP urinary biomarkers BCIPP and BCIPHIPP and (6.2 and 88.8 μg/mL) were 26-35 times higher than reported in the general population. Post-shift levels of TCIPP biomarkers were higher than pre-shift even though workers at insulation sites wore supplied air respirators, gloves and coveralls. The urinary biomarkers for the other PFRs were not elevated post shift. Concentrations of TCIPP on glove dosimeters were positively associated with post-shift urinary TCIPP biomarkers (p < 0.05) whereas concentrations in personal air samples were not. High levels of urinary biomarkers for TCIPP among SPF applicators, including post-shift, points to absorption of TCIPP during the work shift, in spite of the use of best industry exposure control practices. Dermal exposure appears to be an important, if not the primary exposure pathway for TCIPP, although inhalation or incidental ingestion of foam particles post-SPF application cannot be ruled out in this pilot study. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ferguson, J Connor; Chechetto, Rodolfo G; O'Donnell, Chris C; Dorr, Gary J; Moore, John H; Baker, Greg J; Powis, Kevin J; Hewitt, Andrew J
2016-08-01
Previous research has sought to adopt the use of drift-reducing technologies (DRTs) for use in field trials to control diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Plutellidae) in canola (Brassica napus L.). Previous studies observed no difference in canopy penetration from fine to coarse sprays, but the coverage was higher for fine sprays. DBM has a strong propensity to avoid sprayed plant material, putting further pressure on selecting technologies that maximise coverage, but often this is at the expense of a greater drift potential. This study aims to examine the addition of a DRT oil that is labelled for control of DBM as well and its effect on the drift potential of the spray solution. The objectives of the study are to quantify the droplet size spectrum and spray drift potential of each nozzle type to select technologies that reduce spray drift, to examine the effect of the insecticide tank mix at both (50 and 100 L ha(-1) ) application rates on droplet size and spray drift potential across tested nozzle type and to compare the droplet size results of each nozzle by tank mix against the drift potential of each nozzle. The nozzle type affected the drift potential the most, but the spray solution also affected drift potential. The fine spray quality (TCP) resulted in the greatest drift potential (7.2%), whereas the coarse spray quality (AIXR) resulted in the lowest (1.3%), across all spray solutions. The spray solutions mixed at the 100 L ha(-1) application volume rate resulted in a higher drift potential than the same products mixed at the 50 L ha(-1) mix rate. The addition of the paraffinic DRT oil was significant in reducing the drift potential of Bacillus thuringiensis var. kurstkai (Bt)-only treatments across all tested nozzle types. The reduction in drift potential from the fine spray quality to the coarse spray quality was up to 85%. The addition of a DRT oil is an effective way to reduce the spray solution drift potential across all nozzle types and tank mixes evaluated in this study. The greatest reduction in drift potential can be achieved by changing nozzle type, which can reduce the losses of the spray to the surrounding environment. Venturi nozzles greatly reduce the drift potential compared with standard nozzles by as much as 85% across all three insecticide spray solutions. Results suggest that a significant reduction in drift potential can be achieved by changing the nozzle type, and can be achieved without a loss in control of DBM. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.
Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P
2015-08-19
Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.
Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel.
Yuan, Liming; Smith, Alex C
2015-05-01
Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect.
Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel
Yuan, Liming; Smith, Alex C.
2015-01-01
Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect. PMID:26190905
Cold Spray Technology for Repair of Magnesium Rotorcraft Components (Briefing Charts)
2007-01-01
control valve Nozzle Braided flex hose Helium Tank Powder Feeder Spray Nozzle ARL Portable System Parameters for Applying CP-Al to ZE41A - Mg...and Advantages of Cold Spray •Present Test Results to Date •Coating Integrity and Microstructural Analysis •Adhesion, Hardness and Corrosion Tests
Pesticide spray application, behavior, and assessment: workshop proceedings
Richard B. Roberts
1976-01-01
Experts from relevant disciplines exchanged information on three important problems of pesticide spray technology. The four papers presented are Physical Parameters Relating to Pesticide Applications by N. B. Akesson and W. E. Yates; The Micrometeorology and Physics of Spray Particle Behavior by H. E. Cramer and D. G. Boyle;
Lu, Zhe; Myoung, Sang-Won; Jung, Yeon-Gil; Balakrishnan, Govindasamy; Lee, Jeongseung; Paik, Ungyu
2013-01-01
The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. PMID:28811441
NASA Astrophysics Data System (ADS)
Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.
2015-01-01
Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.
Comparative Programs for Arthropod, Disease and Weed Management in New York Organic Apples
Agnello, Arthur; Cox, Kerik; Lordan, Jaume; Francescatto, Poliana; Robinson, Terence
2017-01-01
Organic apple production in the eastern US is small and is mostly based on existing varieties, which are susceptible to scab, and rootstocks, which are susceptible to fire blight. This requires numerous sprays per year of various pesticides to produce acceptable fruit. From 2014 to 2016, we tested different arthropod, disease and weed management programs in an advanced tall spindle high-density production system that included disease-resistant cultivars and rootstocks, in an organic research planting of apples in Geneva, New York. Arthropod and disease management regimens were characterized as Advanced Organic, Minimal Organic, or Untreated Control. Results varied by year and variety, but, in general, the Advanced program was more effective than the Minimal program in preventing damage from internal-feeding Lepidoptera, plum curculio, and obliquebanded leafroller, and less effective than the Minimal program against damage by foliar insects. Both organic programs provided comparable control of sooty blotch, cedar apple rust, and fire blight, with some variability across cultivars and years. The advanced selection CC1009 and Modi seemed to possess complete resistance to cedar apple rust, while Pristine had partial resistance. For weed control, bark chip mulch, organic soap sprays, and limonene sprays tended to be most effective, while mechanical tillage and flame weeding had lower success. PMID:28869562
NASA Astrophysics Data System (ADS)
Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay
2018-06-01
In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.
USDA-ARS?s Scientific Manuscript database
The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...
Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames
NASA Astrophysics Data System (ADS)
Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.
2010-11-01
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.
NASA Astrophysics Data System (ADS)
Cannamela, Michael J., III
The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.
Fast and slow active control of combustion instabilities in liquid-fueled combustors
NASA Astrophysics Data System (ADS)
Lee, Jae-Yeon
This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations. It is shown that the "fast" and "slow" active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.
Develop of innovative technologies for flame resistant cotton fabrics at USDA
USDA-ARS?s Scientific Manuscript database
Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carb...
Development of innovative technologies for flame resistant cotton fabrics at USDA
USDA-ARS?s Scientific Manuscript database
Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carbo...
NASA Astrophysics Data System (ADS)
Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei
2017-06-01
In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
NASA Astrophysics Data System (ADS)
von Niessen, Konstantin; Gindrat, Malko
2011-06-01
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.
Large Eddy Simulations of the Vortex-Flame Interaction in a Turbulent Swirl Burner
NASA Astrophysics Data System (ADS)
Lu, Zhen; Elbaz, Ayman M.; Hernandez Perez, Francisco E.; Roberts, William L.; Im, Hong G.
2017-11-01
A series of swirl-stabilized partially premixed flames are simulated using large eddy simulation (LES) along with the flamelet/progress variable (FPV) model for combustion. The target burner has separate and concentric methane and air streams, with methane in the center and the air flow swirled through the tangential inlets. The flame is lifted in a straight quarl, leading to a partially premixed state. By fixing the swirl number and air flow rate, the fuel jet velocity is reduced to study flame stability as the flame approaches the lean blow-off limit. Simulation results are compared against measured data, yielding a generally good agreement on the velocity, temperature, and species mass fraction distributions. The proper orthogonal decomposition (POD) method is applied on the velocity and progress variable fields to analyze the dominant unsteady flow structure, indicating a coupling between the precessing vortex core (PVC) and the flame. The effects of vortex-flame interactions on the stabilization of the lifted swirling flame are also investigated. For the stabilization of the lifted swirling flame, the effects of convection, enhanced mixing, and flame stretching introduced by the PVC are assessed based on the numerical results. This research work was sponsored by King Abdullah University of Science and Technology (KAUST) and used computational resources at KAUST Supercomputing Laboratory.
Spray Forming Aluminum - Final Report (Phase II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Leon
1999-07-08
The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Incmore » developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.« less
Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation
NASA Astrophysics Data System (ADS)
Fauchais, P.; Vardelle, M.; Goutier, S.
2016-12-01
The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.V.K. Singh; V.K. Singh
2004-10-15
Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less
Vapor Phase Deposition Using Plasma Spray-PVD™
NASA Astrophysics Data System (ADS)
von Niessen, K.; Gindrat, M.; Refke, A.
2010-01-01
Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.
This test/QA plan for evaluation the generic test protocol for high speed wind tunnel, representing aerial application, pesticide spray drift reduction technologies (DRT) for row and field crops is in conformance with EPA Requirements for Quality Assurance Project Plans (EPA QA/R...
This test/QA plan for evaluation the generic test protocol for high speed wind tunnel, representing aerial application, pesticide spray drift reduction technologies (DRT) for row and field crops is in conformance with EPA Requirements for Quality Assurance Project Plans (EPA QA/R...
Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine
2002-05-01
Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR
Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
NASA Astrophysics Data System (ADS)
Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan
2016-02-01
Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).
Progress in Fire Detection and Suppression Technology for Future Space Missions
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
2000-01-01
Fire intervention technology (detection and suppression) is a critical part of the strategy of spacecraft fire safety. This paper reviews the status, trends, and issues in fire intervention, particularly the technology applied to the protection of the International Space Station and future missions beyond Earth orbit. An important contribution to improvements in spacecraft fire safety is the understanding of the behavior of fires in the non-convective (microgravity) environment of Earth-orbiting and planetary-transit spacecraft. A key finding is the strong influence of ventilation flow on flame characteristics, flammability limits and flame suppression in microgravity. Knowledge of these flow effects will aid the development of effective processes for fire response and technology for fire suppression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Righettoni, Marco; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch
Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensormore » applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.« less
[Study on spray-drier preparation technology of weitai granules using orthogonal experiments].
Qu, Cai-Hong; Yang, Li; Chen, Zhi-Liang
2006-04-01
To screen preparation technique in order to raise the end-product and economical efficiency of spray-drier preparation technology of weitai granules. Newly Fluid-bed-spray-drier-granulation technique was adoped and taken extracting technique, temperature of exit and entry and the matching of accessories as inspecting factors, two levels of each factors, end-product and the water content of semi-finished weitai granules as inspecting marker, the best preparation technique of weitai granules was screened by orthogonal desing. Among the 3 factors, the matching of accessories was most notalbe (P < 0.01), next was the temperature of exit and entry (P < 0.05). However, the extracting technique was of little importance (P > 0.05). The optimum spray-drier granulation technique of weitai granules is A3B1C3.
Transparent electrodes made with ultrasonic spray coating technique for flexible heaters
NASA Astrophysics Data System (ADS)
Wroblewski, G.; Krzemiński, J.; Janczak, D.; Sowiński, J.; Jakubowska, M.
2017-08-01
Transparent electrodes are one of the basic elements of various electronic components. The paper presents the preliminary results related to novel method of ultrasonic spray coating used for fabrication of transparent flexible electrodes. Experiments were conducted by means of specially made laboratory setup composed of ultrasonic spray generator and XYZ plotter. In the first part of the paper diverse solvents were used to determine the crucial technological parameters such as atomization voltage and fluid flow velocity. Afterwards paint containing carbon nanotubes suspended in the two solvent system was prepared and deposited on the polyethylene terephthalate foil. Thickness, roughness and electrical measurements were performed to designate the relations of technological parameters of ultrasonic spray coating on thickness, roughness, sheet resistance and optical transmission of fabricated samples.
Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter
2016-01-01
Flame Curtain Biochar Kilns Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16—PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production. PMID:27191397
Arc spray process for the aircraft and stationary gas turbine industry
NASA Astrophysics Data System (ADS)
Sampson, E. R.; Zwetsloot, M. P.
1997-06-01
Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.
Palladium-chromium static strain gages for high temperatures
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1992-01-01
An electrical resistance strain gage that can provide accurate static strain measurement to a temperature of 1500 F or above is being developed both in fine wire and thin film forms. The gage is designed to be temperature compensated on any substrate material. It has a dual element: the gage element is a special alloy, palladium-13wt percent chromium (PdCr), and the compensator element is platinum (Pt). Earlier results of a PdCr based wire gage indicated that the apparent strain of this gage can be minimized and the repeatability of the apparent strain can be improved by prestabilizing the gage on the substrate for a long period of time. However, this kind of prestabilization is not practical in many applications and therefore the development of a wire gage which is prestabilized before installation on the substrate is desirable. This paper will present our recent progress in the development of a prestabilized wire gage which can provide meaningful strain data for the first thermal cycle. A weldable PdCr gage is also being developed for field testing where conventional flame-spraying installation can not be applied. This weldable gage is narrower than a previously reported gage, thereby allowing the gage to be more resistant to buckling under compressive loads. Some preliminary results of a prestabilized wire gage flame-sprayed directly on IN100, an engine material, and a weldable gage spot-welded on IN100 and SCS-6/(beta)21-S Titanium Matrix Composite (TMC), a National Aero-Space Plane (NASP) structure material, will be reported. Progress on the development of a weldable thin film gage will also be addressed. The measurement technique and procedures and the lead wire effect will be discussed.
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions
2014-10-01
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b
Prospective environmental life cycle assessment of nanosilver T-shirts.
Walser, Tobias; Demou, Evangelia; Lang, Daniel J; Hellweg, Stefanie
2011-05-15
A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The "cradle-to-gate" climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO(2)-equiv (FSP) and 7.67-166 kg of CO(2)-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO(2)-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required.
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.
2015-01-01
Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran
2018-01-01
The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran
2018-05-01
The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.
Amorphous or Crystalline? A Comparison of Particle Engineering Methods and Selection.
Thakkar, Sachin G; Fathe, Kristin; Smyth, Hugh D C
2015-01-01
This review is intended to provide a critical account of the current goals and technologies of particle engineering regarding the production of crystalline and amorphous particles. The technologies discussed here cover traditional crystallization technologies, supercritical fluid technologies, spray drying, controlled solvent crystallization, and sonocrystallization. Also recent advancements in particle engineering including spray freezing into liquid, thin-film freeze-drying, PRINT technology are presented. The paper also examines the merits and limitations of these technologies with respect to their methods of characterization. Additionally a section discussing the utility of creating amorphous and crystalline formulation approaches in regards to bioavailability and utility in formulation is presented.
NASA Astrophysics Data System (ADS)
Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.
2017-03-01
Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.
Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.
Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel
2014-08-01
The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).
Cahoon, D.R.; Cowan, J.H.
1988-01-01
The capabilities of a new wetland dredging technology were assessed along with associated newly developed state and federal regulatory policies to determine if policy expectations realistically match the technological achievement. Current regulatory practices require amelioration of spoil bank impacts upon abandonment of an oil/gas well, but this may not occur for many years or decades, if at all. Recently, a dreding method (high-pressure spray spoil disposal) was developed that does not create a spoil bank in the traditional sense. Its potential for reducing environmental impacts was recognized immediately by regulatory agencies for whom minimizing spoil bank impacts is a major concern. The use of high-pressure spray disposal as a suitable alternative to traditional dreding technology has been adopted as policy even though its value as a management tool has never been tested or verified. A qualitative evaluation at two spoil disposal sites in saline marsh indicates that high-pressure spray disposal may indeed have great potential to minimize impacts, but most of this potential remains unverified. Also, some aspects of current regulatory policy may be based on unrealistic expectations as to the ability of this new technology to minimize or eliminate spoil bank impacts.
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2008-01-01
Stereo Imaging Velocimetry (SIV) is a NASA Glenn Research Center (GRC) developed fluid physics technique for measuring threedimensional (3-D) velocities in any optically transparent fluid that can be seeded with tracer particles. SIV provides a means to measure 3-D fluid velocities quantitatively and qualitatively at many points. This technique provides full-field 3-D analysis of any optically clear fluid or gas experiment using standard off-the-shelf CCD cameras to provide accurate and reproducible 3-D velocity profiles for experiments that require 3-D analysis. A flame ball is a steady flame in a premixed combustible atmosphere which, due to the transport properties (low Lewis-number) of the mixture, does not propagate but is instead supplied by diffusive transport of the reactants, forming a premixed flame. This flame geometry presents a unique environment for testing combustion theory. We present our analysis of flame ball phenomena utilizing SIV technology in order to accurately calculate the 3-D position of a flame ball(s) during an experiment, which can be used as a direct comparison of numerical simulations.
EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Greene, Nate; Xu, Hua
2004-01-01
The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.
Oxy-combustion of high water content fuels
NASA Astrophysics Data System (ADS)
Yi, Fei
As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the spray were measured in the chamber for a stable flame. The experimental results indicate significant preferential vaporization of ethanol over water. Modeling results support this observation and indicate that the vaporization process is best described as the distillation limit mode with enhanced mass transfer by convection. Further, the influence of preferential vaporization on flame stability was investigated. A procedure was developed to evaluate the extent of preferential vaporization and subsequent flame stability of a fuel in aqueous solution. Various water soluble fuels were analyzed via this procedure in order to identify a chemical fuel showing strong preferential vaporization. t-Butanol was identified as having excellent physical and chemical properties, indicating stronger preferential vaporization than ethanol. Flame stability tests were run for aqueous solutions of both t-butanol and ethanol under identical flow conditions. Flame stability was characterized by the blow-off limit. In each comparison, the energy contents in the two solutions were kept the same. For the experiments under high swirl flow conditions (100% swirl flow), 12.5 wt% t-butanol has slightly lower blow-off limits than 15 wt% ethanol, and 8.3 wt% t-butanol has much lower blow-off limits than 10 wt% ethanol. For the experiments under a low swirl flow condition (50% swirl/50% axial flow), 12.5 wt% t-butanol has a much lower blow-off limit than 15 wt% ethanol. The time to release the fuel from a droplet was also calculated for both ethanol and t-butanol. For the same size droplet, the time to release t-butanol is much shorter than that of ethanol under the same conditions. Faster release of the fuel from water enhances flame stability, which is consistent with the experimental results. For the oxy-combustion characteristics of low-volatility fuel with high water content, glycerol was chosen as the fuel to study. It is found that self-sustained flame can be obtained for glycerol solution with concentration as high as 60 wt%, when burned in pure O2. However, the flame is lifted far away from the nozzle. To obtain a stable flame for a low glycerol concentration solution, t-butanol or ethanol was added as an additive. Experiments showed that an attached flame can be obtained by burning a mixture of 8.3 wt% t-butanol, 30 wt% glycerol and 61.7 wt% water (B8.3/G30) or 10 wt% ethanol, 30 wt% glycerol and 60 wt% water (E10/G30) under oxy-fired condition. The flame stability for B8.3/G30 and E10/G30 was characterized under 100% and 85% swirl flow conditions. Under 100% swirl flow condition, the blow-off limits are approximately the same for both cases. Under 85% swirl, the blow-off limits for B8.3/G30 are much lower in the low flow rate region. Additionally, the lift-off limits for B8.3/G30 are lower than those for E10/G30, which means the flame stability for B8.3/G30 is better. To study the flame structure, contours of temperature across the chamber's centerline were obtained for four attached flames. It was found that the flame becomes narrower as the swirl intensity decreases. A high temperature zone in the inner recirculation zone (IRZ) is formed for the four flames. This hot zone is critical to provide heat to vaporize the glycerol in near burner region, so that flame can be attached on the nozzle. For practical purposes, a PRB coal water slurry was studied in terms of preparation, characterization, atomization and combustion. A procedure to prepare stable coal water slurry from PRB coal was developed. Triton X-100 is a good nonionic surfactant for PRB coal. On the contrary, PSS, which is ionic, is not effective for PRB coal. Due to the hydrophilic surface property of PRB coal, the maximum loading of the coal in slurry can only reach 50 wt%. The viscosities of slurries containing various concentrations of Triton X-100 were measured. To deliver the slurry in a burner, two types of two fluid nozzles -- internal mixing and external mixing -- were investigated and both nozzles were able to generate a spray with good quality. Preliminary oxy-combustion experiments were successfully conducted. Due to the high swirl flow in the combustor, the nozzle overheated which caused clogging. Additional research is needed to solve this issue and characterize the flame systematically.
Advances on Propulsion Technology for High-Speed Aircraft. Volume 1
2007-03-01
sprayed Cu -3% Ag alloys , ITSC 2001 - Singapour - 6dit6e par C.C. Berndt - K.A. Khor et E.F. Lugscheider - ASM-TSS - Materials park - OH-USA, p.633... spraying of CuCrNb powder and a more advanced approach which combines the advantages of a high temperature, low density and porous carbon-fibre...physical vapour deposition (EB-PVD), vacuum plasma spraying (VPS) and solution plasma spraying (SPS) [38-41]. A segmented sub-scale model combustor with
Space and Industrial Brine Drying Technologies
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali
2014-01-01
This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.
2011-02-01
identified the hysteresis property of this flame system; this was later confirmed by experiments. For the given flow conditions, the flame system can......transport properties . This concept increased the computational speed by a factor of five for a 208-species mechanism and is expected to have even higher
Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review
NASA Astrophysics Data System (ADS)
Gardon, M.; Guilemany, J. M.
2014-04-01
Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.
Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.
2017-06-01
Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).
Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam
2014-01-01
Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.
NASA Technical Reports Server (NTRS)
Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker
1995-01-01
The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.
2008-07-23
CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Center, workers spray a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the May 31 launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller
2008-07-23
CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Center, workers spray a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the May 31 launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller
2008-07-23
CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Center, workers spray a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the May 31 launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller
2008-07-23
CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA's Kennedy Space Center, workers on a platform spray a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the May 31 launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller
Compressibility of porous TiO2 nanoparticle coating on paperboard
2013-01-01
Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS 61.46.-w; 68.08.Bc; 81.07.-b PMID:24160373
Methods of Responsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants: Part II.
Lucas, Donald; Petty, Sara M; Keen, Olya; Luedeka, Bob; Schlummer, Martin; Weber, Roland; Yazdani, Ramin; Riise, Brian; Rhodes, James; Nightingale, Dave; Diamond, Miriam L; Vijgen, John; Lindeman, Avery; Blum, Arlene; Koshland, Catherine P
2018-06-01
This is Part II of a review covering the wide range of issues associated with all aspects of the use and responsible disposal of foam and plastic wastes containing toxic or potentially toxic flame retardants. We identify basic and applied research needs in the areas of responsible collection, pretreatment, processing, and management of these wastes. In Part II, we explore alternative technologies for the management of halogenated flame retardant (HFR) containing wastes, including chemical, mechanical, and thermal processes for recycling, treatment, and disposal.
Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications
NASA Technical Reports Server (NTRS)
Cheng, R. K.
1999-01-01
Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that rely on a recirculation zone to anchor the flame. In LSBS, flow recirculation is not promoted to allow the premixed turbulent flames to propagate freely. A LSB with an air-jet swirler is essentially an open tube with the swirler at its mid section. The small air-jets generate swirling motion only in the annular region and leaving the central core of the flow undisturbed, When this flow exits the burner tube, the angular momentum generates radial mean pressure gradient to diverge the non-swirling reactants stream. Consequently, the mean flow velocity decreases linearly. Propagating against this decelerating flow, the flame self-sustains at the position where the local flow velocity equals the flame speed, S(sub f). The LSB operates with a swirl number, S, between 0.02 to 0.1. This is much lower than the minimum S of 0.6 required for the high-swirl burners. We found that the swirl number needed for flame stabilization varies only slightly with fuel type, flow velocity, turbulent conditions and burner dimensions (i.e. throat diameter and swirl injection angle).
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Numerical solutions of the Jet-A spray combustion were obtained by means of the KIVA-II computer code after Jet-A properties were added to the 12 chemical species the program had initially contained. Three different reaction mechanism models are considered. The first model consists of 131 reactions and 45 species; it is evaluated by comparing calculated ignition delay times with available shock tube data, and it is used in the evaluation of the other two simplified models. The simplified mechanisms consider 45 reactions and 27 species and 5 reactions and 12 species, respectively. In the prediction of pollutants NOx and CO, the full mechanism of 131 reactions is considered to be more reliable. The numerical results indicate that the variation of the maximum flame temperature is within 20 percent as compared with that of the full mechanism of 131 reactions. The chemical compositions of major components such as C3H8, H2O, O2, CO2, and N2 are of the same order of magnitude. However, the concentrations of pollutants are quite different.
NASA Astrophysics Data System (ADS)
Singh, Tejinder Pal; Singh, Harpreet; Singh, Hazoor
2012-09-01
The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.
Tavares, Rafael M; Cunha, João Par; Alves, Thales C; Bueno, Mariana R; Silva, Sérgio M; Zandonadi, César Hs
2017-06-01
Owing to the difficulty in reaching targets during pesticide applications on guava trees, it is important to evaluate new technologies that may improve pest management. In electrostatic spraying, an electric force is added to the droplets to control their movements such that they are efficiently directed to the target. The present study evaluated the performance of electrostatic and non-electrostatic spraying in the control of the guava psyllid, the deposition of the spray mixture on the leaves and the losses to the soil. The deposition of the spray mixture was up to 2 times greater when using electrostatic spraying in comparison with non-electrostatic application. The losses of the spray mixture to the soil were up to 4 times smaller with the electrostatic spraying. Electrostatic spraying had better control of the psyllid. It was possible to reduce the volume rate of application with electrostatic spraying without adversely affecting the control of the guava psyllid. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
High pressure optical combustion probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, S.D.; Richards, G.A.
1995-06-01
The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod inmore » a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.« less
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-06-14
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.
NASA Astrophysics Data System (ADS)
Akridis, Petros; Rigopoulos, Stelios
2017-01-01
A discretised population balance equation (PBE) is coupled with an in-house computational fluid dynamics (CFD) code in order to model soot formation in laminar diffusion flames. The unsteady Navier-Stokes, species and enthalpy transport equations and the spatially-distributed discretised PBE for the soot particles are solved in a coupled manner, together with comprehensive gas-phase chemistry and an optically thin radiation model, thus yielding the complete particle size distribution of the soot particles. Nucleation, surface growth and oxidation are incorporated into the PBE using an acetylene-based soot model. The potential of the proposed methodology is investigated by comparing with experimental results from the Santoro jet burner [Santoro, Semerjian and Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, Vol. 51 (1983), pp. 203-218; Santoro, Yeh, Horvath and Semerjian, The transport and growth of soot particles in laminar diffusion flames, Combustion Science and Technology, Vol. 53 (1987), pp. 89-115] for three laminar axisymmetric non-premixed ethylene flames: a non-smoking, an incipient smoking and a smoking flame. Overall, good agreement is observed between the numerical and the experimental results.
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-01-01
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250
Kilian, Daniel; Polster, Sebastian; Vogeler, Isabell; Jank, Michael P M; Frey, Lothar; Peukert, Wolfgang
2014-08-13
Indium-zinc oxide (IZO) films were deposited via flame spray pyrolysis (FSP) by pulsewise shooting a Si/SiO2 substrate directly into the combustion area of the flame. Based on UV-vis measurements of thin-films deposited on glass substrates, the optimal deposition parameters with respect to low haze values and film thicknesses of around 100 nm were determined. Thermal annealing of the deposited films at temperatures between 300 and 700 °C was carried out and staggered bottom gate thin-film transistors (TFT) were fabricated. The thin films were investigated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and room-temperature photoluminescence measurements. The outcome of these investigations lead to two major requirements in order to implement a working TFT: (i) organic residues from the deposition process need to be removed and (ii) the net free charge carrier concentration has to be minimized by controlling the trap states in the semiconductor. The optimal annealing temperature was 300 °C as both requirements are fulfilled best in this case. This leads to field effect transistors with a low hysteresis, a saturation mobility of μSat = 0.1 cm(2)/(V s), a threshold voltage of Vth = -18.9 V, and an Ion/Ioff ratio on the order of 10(7). Depending on thermal treatment, the defect density changes significantly strongly influencing the transfer characteristics of the device.
Coupled nonequilibrium flow, energy and radiation transport for hypersonic planetary entry
NASA Astrophysics Data System (ADS)
Frederick, Donald Jerome
An ever increasing demand for energy coupled with a need to mitigate climate change necessitates technology (and lifestyle) changes globally. An aspect of the needed change is a decrease in the amount of anthropogenically generated CO2 emitted to the atmosphere. The decrease needed cannot be expected to be achieved through only one source of change or technology, but rather a portfolio of solutions are needed. One possible technology is Carbon Capture and Storage (CCS), which is likely to play some role due to its combination of mature and promising emerging technologies, such as the burning of hydrogen in gas turbines created by pre-combustion CCS separation processes. Thus research on effective methods of burning turbulent hydrogen jet flames (mimicking gas turbine environments) are needed, both in terms of experimental investigation and model development. The challenge in burning (and modeling the burning of) hydrogen lies in its wide range of flammable conditions, its high diffusivity (often requiring a diluent such as nitrogen to produce a lifted turbulent jet flame), and its behavior under a wide range of pressures. In this work, numerical models are used to simulate the environment of a gas turbine combustion chamber. Concurrent experimental investigations are separately conducted using a vitiated coflow burner (which mimics the gas turbine environment) to guide the numerical work in this dissertation. A variety of models are used to simulate, and occasionally guide, the experiment. On the fundamental side, mixing and chemistry interactions motivated by a H2/N2 jet flame in a vitiated coflow are investigated using a 1-D numerical model for laminar flows and the Linear Eddy Model for turbulent flows. A radial profile of the jet in coflow can be modeled as fuel and oxidizer separated by an initial mixing width. The effects of species diffusion model, pressure, coflow composition, and turbulent mixing on the predicted autoignition delay times and mixture composition at ignition are considered. We find that in laminar simulations the differential diffusion model allows the mixture to autoignite sooner and at a fuel-richer mixture than the equal diffusion model. The effect of turbulence on autoignition is classified in two regimes, which are dependent on a reference laminar autoignition delay and turbulence time scale. For a turbulence timescale larger than the reference laminar autoignition time, turbulence has little influence on autoignition or the mixture at ignition. However, for a turbulence timescale smaller than the reference laminar timescale, the influence of turbulence on autoignition depends on the diffusion model. Differential diffusion simulations show an increase in autoignition delay time and a subsequent change in mixture composition at ignition with increasing turbulence. Equal diffusion simulations suggest the effect of increasing turbulence on autoignition delay time and the mixture fraction at ignition is minimal. More practically, the stabilizing mechanism of a lifted jet flame is thought to be controlled by either autoignition, flame propagation, or a combination of the two. Experimental data for a turbulent hydrogen diluted with nitrogen jet flame in a vitiated coflow at atmospheric pressure, demonstrates distinct stability regimes where the jet flame is either attached, lifted, lifted-unsteady, or blown out. A 1-D parabolic RANS model is used, where turbulence-chemistry interactions are modeled with the joint scalar-PDF approach, and mixing is modeled with the Linear Eddy Model. The model only accounts for autoignition as a flame stabilization mechanism. However, by comparing the local turbulent flame speed to the local turbulent mean velocity, maps of regions where the flame speed is greater than the flow speed are created, which allow an estimate of lift-off heights based on flame propagation. Model results for the attached, lifted, and lifted-unsteady regimes show that the correct trend is captured. Additionally, at lower coflow equivalence ratios flame propagation appears dominant, while at higher coflow equivalence ratios autoignition appears dominant.
Thermal Spray Maps: Material Genomics of Processing Technologies
NASA Astrophysics Data System (ADS)
Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.
2013-10-01
There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.
Zhu, Chune; Huang, Ying; Zhang, Xiaoying; Mei, Liling; Pan, Xin; Li, Ge; Wu, Chuanbin
2015-08-01
The purpose of this study was to compare the properties of exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles (Ex-PLGA-MPs) prepared by a novel ultra-fine particle processing system (UPPS) and spray drying. UPPS is a proprietary technology developed by our group based on the disk rotation principle. Characteristics of the MPs including morphology, particle size distribution, drug content, encapsulation efficiency and in vitro release were comparatively studied. Cytotoxicity of the MPs was examined on A549 cells and the pharmacodynamics was investigated in vivo in type 2 diabetes Sprague-Dawley (SD) rats. Ex-PLGA-MPs prepared by UPPS showed larger particle size, denser surface, greater encapsulation efficiency, less initial burst release, and stable sustained release for more than one month in vitro as compared with the spray drying MPs. Meanwhile, the UPPS MPs effectively controlled the body growth rate and blood glucose in diabetes rats for at least three weeks after a single injection, while the spray drying MPs showed effective control period of about two weeks. UPPS technology was demonstrated to manufacture Ex-PLGA-MPs as a potential sustained release protein/polypeptide delivery system, which is an alternative method for the most commonly used spray drying. This comparative research provides a new guidance for microparticle preparation technology. Copyright © 2015 Elsevier B.V. All rights reserved.
Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter
2016-01-01
Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16-PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production.
Sprayer technology: reduce spray drift
USDA-ARS?s Scientific Manuscript database
Enhancing environmental quality and sustaining the economic viability of food production are keys to sustainable agriculture. Modern vegetable production uses a variety of materials to manage pest problems. Selecting the proper spray nozzle for the application of liquid products is critical to red...
Testing of Action of Direct Flame on Concrete
Valek, Jaroslav; Novosad, Petr
2015-01-01
The paper states results of experimental exposition of concrete test specimens to direct flame. Concrete test specimens made from various mixtures differing in the type of aggregate, binder, dispersed reinforcement, and technological procedure were subjected to thermal load. Physicomechanical and other properties of all test specimens were tested before exposition to open flame: density, compressive strength, flexural strength, moisture content, and surface appearance. The specimens were visually observed during exposition to open flame and changes were recorded. Exposed surface was photographically documented before thermal load and at 10-minute intervals. Development of temperature of the specimens was documented with a thermocamera. After exposition to thermal load and cooling down, concrete specimens were visually observed, network of cracks was photographically documented, and maximal depth of spalled area was measured. PMID:25830162
About the Drift Reduction Technology Program
The new voluntary Drift Reduction Technology (DRT) Program will encourage the manufacture, marketing, and use of safer spray technology and equipment scientifically verified to reduce pesticide drift.
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.
1999-01-01
Most combustion processes in industrial applications (e.g., furnaces and engines) and in nature (e.g., forest fires) are turbulent. A better understanding of turbulent combustion could lead to improved combustor design, with enhanced efficiency and reduced emissions. Despite its importance, turbulent combustion is poorly understood because of its complexity. The rapidly changing and random behavior of such flames currently prevents detailed analysis, whether experimentally or computationally. However, it is possible to learn about the fundamental behavior of turbulent flames by exploring the controlled interaction of steady laminar flames and artificially induced flow vortices. These interactions are an inherent part of turbulent flames, and understanding them is essential to the characterization of turbulent combustion. Well-controlled and defined experiments of vortex interaction with laminar flames are not possible in normal gravity because of the interference of buoyancy- (i.e., gravity) induced vortices. Therefore, a joint microgravity study was established by researchers from the Science and Technology Development Corp. and the NASA Lewis Research Center. The experimental study culminated in the conduct of the Turbulent Gas-Jet Diffusion Flames (TGDF) Experiment on the STS-87 space shuttle mission in November 1997. The fully automated hardware, shown in photo, was designed and built at Lewis. During the mission, the experiment was housed in a Get Away Special (GAS) canister in the cargo bay.
Gas Dynamic Spray Technology Demonstration
NASA Technical Reports Server (NTRS)
Burford, Pattie Lewis
2011-01-01
Zinc primer systems are currently used across NASA and AFSPC for corrosion protection of steel. AFSPC and NASA have approved the use of Thermal Spray Coatings (TSCs) as an environmentally preferable alternative. TSCs are approved in NASA-STD-5008 and AFSPC and KSC is currently looking for additional applications in which TSC can be used. Gas Dynamic Spray (GDS, also known as Cold Spray) is being evaluated as a means of repairing TSCs and for areas such as corners and edges where TSCs do not work as well. Other applications could include spot repair/maintenance of steel on structures, facilities, and ground support equipment.
Flame dynamics in a micro-channeled combustor
NASA Astrophysics Data System (ADS)
Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan
2015-01-01
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.
Solar radiation synthesis of functional carbonaceous materials using Al2O3/TiO2-Cu-HA doped catalyst
NASA Astrophysics Data System (ADS)
Stanciu, Elena Manuela; Pascu, Alexandru; Roată, Ionut Claudiu; Croitoru, Cătălin; Tierean, Mircea; Rosca, Julia Mirza; Hulka, Iosif
2018-04-01
Single carbon nanotubes were synthesized through a physical vapor deposition method, using concentrated solar radiation as means of vaporization and promoting the formation of carbonaceous plasma plume. A novel catalyst, containing multiple hybrid ceramic/metal phases has been obtained through flame spraying. In conjunction with this catalyst, good quality nanomaterials, such as long single-walled nanotubes and nanoparticles have been obtained and characterized by both morphological (SEM, TEM) as well as structural means on analysis (XRD, FTIR). A mild oxidation of the carbonaceous phase has been reported, which could prove useful in applications in conjunction with metals or hydrophilic polymers as potential matrices for nanocomposites obtaining.
METAL SPRAYER FOR USE IN VACUUM OR INERT ATMOSPHERE
Monroe, R.E.
1958-10-14
A metal sprayer is described for use in a vacuum or inert atmosphere with a straight line wire feed and variable electrode contact angle. This apparatus comprises two wires which are fed through straight tubes of two mechanisms positioned on opposite sides of a central tube to which an inert gas is fed. The two mechanisms and the wires being fed constitute electrodes to which electrical current is supplied so that the wires are melted by the electric are formed at their contacting region and sprayed by the gas supplied by the central tube. This apparatus is designed specifically to apply a zirconium coating to uranium in an inert atmosphere and without the use of an oxidizing flame.
Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly
Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui
2018-01-01
This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric. PMID:29570646
Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui
2018-03-23
This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.
Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries
NASA Astrophysics Data System (ADS)
Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.
Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.
Stability Models for Augmentor Design Tools and Technology Assessment
2010-07-14
AFRL experiments of the flame holders proposed here for further validation. 63 Appendix A A.1 Contributors Prof. Heinz Pitsch Stanford University Prof...Related Publications & Presentations 1. Hossam El-Asrag, Heinz Pitsch, Wookyung Kim, Hyungrok Do & M. Godfrey Mungal, Flame Stability in Augmentor...Flows, Comb. Sci. Tech., submitted, 2010. 2. Hossam El-Asrag, Heinz Pitsch, Wookyung Kim, Hyungrok Do & M. Godfrey Mungal, A Computational and
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
The Environmental Technology Verification Program, established by the EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance.
Thermal Protection System Application to Composite Cryotank Technology Demonstrator
NASA Technical Reports Server (NTRS)
Protz, Alison; Nettles, Mindy
2015-01-01
The EM41 Thermal Protection System (TPS) team contributed to the success of the Composite Cryotank Technology Demonstrator (CCTD) manufacturing by developing and implementing a low-cost solution to apply cryoinsulation foam on the exterior surface of the tank in the NASA Marshall Space Flight Center (MSFC) TPS Development Facility, Bldg. 4765. The TPS team used techniques developed for the smallscale composite cryotank to apply Stepanfoam S-180 polyurethane foam to the 5.5-meter CCTD using a manual spray process. Manual spray foam technicians utilized lifts and scaffolding to access the barrel and dome sections of the large-scale tank in the horizontal orientation. During manufacturing, the tank was then oriented vertically, allowing access to the final barrel section for manual spray foam application. The CCTD was the largest application of manual spray foam performed to date with the S-180 polyurethane foam and required the TPS team to employ best practices for process controls on the development article.
The Prospect of Y2SiO5-Based Materials as Protective Layer in Environmental Barrier Coatings
NASA Astrophysics Data System (ADS)
García, E.; Miranzo, P.; Osendi, M. I.
2013-06-01
Bulk yttrium monosilicate (Y2SiO5) possesses interesting properties, such as low thermal expansion coefficient and stability in water vapor atmospheres, which make it a promising protective layer for SiC-based composites, intended for the hottest parts in the future gas turbines. Because protective layers are commonly applied by thermal spraying techniques, it is important to analyze the changes in structure and properties that these methods may produce in yttrium silicate coatings. In this work, two SiO2-Y2O3 compositions were flame sprayed in the form of coatings and beads. In parallel, the beads were spark plasma sintered at relatively low temperature to obtain partially amorphous bulk specimens that are used as model bulk material. The thermal aging—air and water vapor atmosphere—caused extensive nucleation of Y2SiO5 and Y2Si2O7 in both the bulk and coating. The rich water vapor condition caused the selective volatilization of SiO2 from Y2Si2O7 at the specimen surface leaving a very characteristic micro-ridged Y2SiO5 zones—either in coatings or sintered bodies. An important increase in the thermal conductivity of the aged materials was measured. The results of this work may be used as a reference body for the production of Y2SiO5 coatings using thermal spraying techniques.
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1996-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approximately 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding.
Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts
2011-01-01
A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The “cradle-to-gate” climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO2-equiv (FSP) and 7.67–166 kg of CO2-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO2-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required. PMID:21506582
Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M
2016-02-12
Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2) g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Droplet evaporation and combustion in a liquid-gas multiphase system
NASA Astrophysics Data System (ADS)
Muradoglu, Metin; Irfan, Muhammad
2017-11-01
Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.
Sand effects on thermal barrier coatings for gas turbine engines
NASA Astrophysics Data System (ADS)
Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin
Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.
1980-12-01
spray process ...... ............... .. 40 9 Etched microstructures of as-received alloys ................ 42 10 Microstructures of as...Figure 8. Schematic sketch of spray process . 40 4.5 Results and Discussion 4.5.1 Alloy Procurement The desired compositions of the deposits (after... deposited samples...................... 44 11 As- Sprayed x-ray patterns obtained on two deposits made with 34 wt % Sm and one with 30 wt % Sm powders
Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liu, Hongwei; Sun, Sihao
2017-12-01
Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.
Joint Test Plan for Gas Dynamic Spray Technology Demonstration
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2008-01-01
Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Influence of grinding on service properties of VT-22 powder applied in additive technologies
NASA Astrophysics Data System (ADS)
Zakharov, M. N.; Rybalko, O. F.; Romanova, O. V.; Gelchinskiy, B. R.; Il'inykh, S. A.; Krashaninin, V. A.
2017-01-01
Powder of titanium alloy (VT-22) produced by plasma-spraying was subjected to grinding to obtain powder with size less 100 microns. These powders were sprayed by plasma unit using two types of gases, namely, air and air with methane (spraying in water and sputtering of coating on steel support). Influence of grinding time on yield of powder of required fraction was studied. Morphology and phase composition of the grinded powder and plasma sprayed one were under investigation. In the result of experiments, it appears that the grinding time genuinely influences the chemical and phase compositions, but there is no effect on physical-processing properties. For powders after plasma spraying some changes of non-metal elements content were detected by chemical analysis. Using gaseous mixture of air and methane in plasma spraying unit leads to formation of a new phase in the powder according X-ray diffraction data.
Spray drift and off-target loss reduction with a precision air-assisted sprayer
USDA-ARS?s Scientific Manuscript database
Spray drift and off-target losses are inherent problems of conventional air-assisted sprayers. Their low efficiencies cause environmental pollutions resulting in public anxieties. A new drift reduction technology incorporating laser scanning capabilities with a variable-rate air-assisted sprayer w...
Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer
USDA-ARS?s Scientific Manuscript database
Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN
The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...
Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology
Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk
2015-01-01
This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
NASA Astrophysics Data System (ADS)
Hardwicke, Canan U.; Lau, Yuk-Chiu
2013-06-01
Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.
Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M.; Wu, Lemuel D.; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M. S. Riana; Seto, Edmund
2015-01-01
Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based “mSpray” app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2,865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment. PMID:24769412
NASA Astrophysics Data System (ADS)
Punginsang, Matawee; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn
2017-12-01
In this work, the roles of cobalt (Co) and electrolytically exfoliated graphene additives on ethanol gas-sensing properties of flame-spray-made SnO2 nanoparticles were systematically studied. Structural characterizations indicated that Co dopants formed solid solution with SnO2 nanoparticles while multilayer graphene sheets were well dispersed within the Co-doped SnO2 matrix at low graphene loading contents. The sensing films were fabricated by a spin coating process and tested towards 50-1000 ppm ethanol at 150-400 °C. It was found that the response to 1000 ppm ethanol at the optimal working temperature of 350 °C was enhanced from 91 to 292 and to 803 by 0.5 wt% graphene loading and 0.5 wt% Co-doping, respectively. The combination of Co-doping and graphene loading with the same concentration of 0.5 wt% led to a synergistic enhancement of ethanol response to 2147 at 1000 ppm with a short response time of ∼0.9 s and fast recovery stabilization at 350 °C, proving the significance of dopant on the gas-sensing performances of graphene/SnO2 composites. Furthermore, the optimal sensor exhibited high ethanol selectivity against C3H6O, NO2, H2S, H2, CH4 and humidity. The mechanisms for the ethanol response enhancement were proposed on the basis of combinative effects of catalytic substitutional p-type Co dopants and active graphene-Co-doped SnO2 M-S junctions with highly accessible surface area of micropores and mesopores in the composites. Therefore, the graphene loaded Co-doped SnO2 sensor is highly potential for responsive and selective detection of ethanol vapor at ppm levels and may be practically useful for drunken driving applications.
Model for Steady-State Combustion of Unimodal Composite Solid Propellants.
1978-01-01
Research and Technology Div.do= * 5390 Cherokee Avenue Alexandria, Virginia 22314 Cw* Contract F49620-78-C-0016 Air Force Office of Scientific Research ...owmaretgli w SW MODEL FOR STEADY-STATE COMBUSTION OF UNIMODAL COMPOSITE SOLID PROPELLANTS* Dr. Merrill K. Kingk* Atlantic Research Corporation...this country today) for pre- model, all flames are considered to occur in flame sheets at discrete distances from the * Research sponsored by the Air
Xu, Jianbing; Tai, Yu; Ru, Chengbo; Dai, Ji; Ye, Yinghua; Shen, Ruiqi; Zhu, Peng
2017-02-15
Reactive multilayer films (RMFs) can be integrated into semiconducting electronic structures with the use of microelectromechanical systems (MEMS) technology and represent potential applications in the advancement of microscale energy-demanding systems. In this study, aluminum/molybdenum trioxide (Al/MoO 3 )-based RMFs with different modulation periods were integrated on a semiconductor bridge (SCB) using a combination of an image reversal lift-off process and magnetron sputtering technology. This produced an energetic semiconductor bridge (ESCB)-chip initiator with controlled ignition performance. The effects of the Al/MoO 3 RMFs with different modulation periods on ignition properties of the ESCB initiator were then systematically investigated in terms of flame duration, maximum flame area, and the reaction ratio of the RMFs. These microchip initiators achieved flame durations of 60-600 μs, maximum flame areas of 2.85-17.61 mm 2 , and reaction ratios of ∼14-100% (discharged with 47 μF/30 V) by simply changing the modulation periods of the Al/MoO 3 RMFs. This behavior was also consistent with a one-dimensional diffusion reaction model. The microchip initiator exhibited a high level of integration and proved to have tuned ignition performance, which can potentially be used in civilian and military applications.
This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...
Evaluation of a Proposed Drift Reduction Technology High-Speed Wind Tunnel Testing Protocol
2009-03-01
05: “Standard Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light- Scattering Instruments” 15...Method for Determining Liquid Drop Size Characteris- tics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards
Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation
NASA Astrophysics Data System (ADS)
Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian
2017-10-01
During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.
Laser surface processing on sintered PM alloys
NASA Astrophysics Data System (ADS)
Reiter, Wilfred; Daurelio, Giuseppe; Ludovico, Antonio D.
1997-08-01
Usually the P.M. alloys are heat treated like case hardening, gas nitriding or plasma nitriding for a better wear resistance of the product surface. There is an additional method for gaining better tribological properties and this is the surface hardening (or remelting or alloying) of the P.M. alloy by laser treatment on a localized part of the product without heating the whole sample. This work gives a cured experimentation about the proper sintering powder alloys for laser surface processing from the point of view of wear, fatigue life and surface quality. As concerns the materials three different basic alloy groups with graduated carbon contents were prepared. Regarding these sintered powder alloys one group holds Fe, Mo and C and other group holds Fe, Ni, Mo and C and the last one holds Fe, Ni, Cu, Mo and C contents. Obviously each group has a different surface hardness, different porosity distribution, different density and diverse metallurgical structures (pearlite or ferrite-pearlite, etc.). ON the sample surfaces a colloidal graphite coating, in different thicknesses, has been sprayed to increase laser energy surface absorption. On some other samples a Mo coating, in different thicknesses, has been produced (on the bulk alloy) by diverse deposition techniques (D.C. Sputtering, P.V.D. and Flame Spraying). Only a few samples have a Mo coating and also an absorber coating, that is a bulk material- Mo and a colloidal graphite coating. All these sintered alloys have been tested by laser technology; so that, many laser working parameters (covering gas, work-speed, focussed and defocussed spot, rastered and integrated beam spots, square and rectangular beam shapes and so on) have been experimented for two different processes at constant laser power and at constant surface temperature (by using a temperature surface sensor and a closed controlled link). For all experiments a transverse fast axial flow CO2 2.5 kW c.w. laser source has been employed.
Flame dynamics in a micro-channeled combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk; Markides, Christos N.
2015-01-22
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modesmore » of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.« less
NASA Technical Reports Server (NTRS)
Brindley, W. J.; Miller, R. A.
1990-01-01
The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.
Environmental Durability of Coated GRCop-84 Copper Alloys
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Robinson, C.; Barrett, C.; Humphrey, D.
2005-01-01
An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as liners in combustor chambers and nozzle ramps in NASA s future generations of reusable launch vehicles (RLVs). However, past experience has shown that unprotected copper alloys undergo an environmental attack called "blanching" in rocket engines using liquid hydrogen as fuel and liquid oxygen as the oxidizer. Potential for sulfidation attack of the liners in hydrocarbon-fueled engines is also of concern. As a result, protective overlay coatings alloys are being developed for GRCop-84. The oxidation behavior of several new coating alloys has been evaluated. GRCop-84 specimens were coated with several copper and nickel-based coatings, where the coatings were deposited by either vacuum plasma spraying or cold spraying techniques. Coated and uncoated specimens were thermally cycled in a furnace at different temperatures in order to evaluate the performance of the coatings. Additional studies were conducted in a high pressure burner rig using a hydrocarbon fuel and subjected to a high heat flux hydrogen-oxygen combustion flame in NASA s Quick Access Rocket Exhaust (QARE) rig. The performance of these coatings are discussed.
Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity
NASA Technical Reports Server (NTRS)
Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.
1999-01-01
Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting the test droplet by a fiber fixes the droplet position but the fiber can perturb the burning process especially for a sooting fuel. Prior studies on heptane showed little evidence for soot formation due to g-droplets of similar size the relationship between sooting and droplet diameter. For nonane droplets we expect increased sooting due to the greater number of carbon atoms. As a sooting droplet burns and its diameter decreases, proportionally less soot should form. This reduced soot, as well as the influence of soot formed earlier in the burning process which collects in a 'shell', on heat transport to the flame offers the potential for a time-varying burning rate. Such an effect was investigated and revealed in results reported here. Speculation is offered for the cause of this effect and its possible relation to soot formation.
Tabulated Combustion Model Development For Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Kundu, Prithwish
Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.
OH PLIF measurement in a spark ignition engine with a tumble flow
NASA Astrophysics Data System (ADS)
Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team
2017-11-01
Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.
The feasibility study of hot cell decontamination by the PFC spray method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon
2008-01-15
The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu{sub 2}O{sub 3} powder. The spray pressure was 41 kgf/cm{sup 2}, the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm{sup 2}. From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm{sup 2} and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the collection equipment. After the termination of the decontamination test, the flexible hose was cut near a toboggan. The collection equipment that contained the spent PFC solution, vacuum cup, spray nozzle and the flexible hose was stored in a radioactive waste storage tank. A feasibility study for the PFC spray decontamination method for an application to a hot cell surface was performed. The decontamination equipment that consisted of four modules operated well in the hot cell. The collection module gathered the sprayed PFC solution. The solution was purified in the filtration or distillation modules. The main characteristic of the distillation module is the use of dry ice as a coolant. The decontamination factor of IMEF hot cell was in the range from 10 to 15. It was difficult to measure the radioactivity accurately at a given time. We, however, concluded that the PFC spray decontamination method is a promising technology. It generated a small amount of secondary waste and used a non-toxic and non-conducting material. Decontamination work was performed with a little loss of the main decontamination agent. Based on the test results, we are developing an improved PFC spray decontamination process.« less
Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M; Wu, Lemuel D; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M S Riana; Seto, Edmund
2014-07-01
Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based "mSpray" app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment. Copyright © 2014. Published by Elsevier Ltd.
Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P
2013-07-16
Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A nanosuspension transfer to tablets that maintained the fast dissolution properties of the drug nanocrystals was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.
Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.
Air/fuel ratio visualization in a diesel spray
NASA Astrophysics Data System (ADS)
Carabell, Kevin David
1993-01-01
To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a small pilot. This arrangement provided the best combination of short ignition delay and diffusion burn for the majority of cases.
Cryogenic Moisture Analysis of Spray-On Foam Insulation (SOFI)
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions. The lab tested NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68 (acreage foam with the flame retardant removed). Specimens of all three materials were placed at a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (Atmospheric Exposure Test Site [beach site]). After aging/ weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their ability to absorb moisture under conditions similar to those experienced by the Space Shuttle External Tank (ET) during the loading of cryogenic propellants.
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.; Dembele, Siaka; Wen, Jennifer X.
2018-06-01
The computational analysis of downward motion and evaporation of water droplets used to suppress a typical transient pool fire shows local regions of a high volume fraction of relatively small droplets. These droplets are comparable in size with the infrared wavelength in the range of intense flame radiation. The estimated scattering of the radiation by these droplets is considerable throughout the entire spectrum except for a narrow region in the vicinity of the main absorption peak of water where the anomalous refraction takes place. The calculations of infrared radiation field in the model pool fire indicate the strong effect of scattering which can be observed experimentally to validate the fire computational model.
The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DEVILBISS JGHV-531-46FF HVLP SPRAY GUN
This report presents the results of the verification test of the DeVilbiss JGHV-531-46FF high-volume, low-pressure pressure-feed spray gun, hereafter referred to as the DeVilbiss JGHV, which is designed for use in industrial finishing. The test coating chosen by ITW Industrial Fi...
USDA-ARS?s Scientific Manuscript database
Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...
Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling
USDA-ARS?s Scientific Manuscript database
The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...
To Spray or Not To Spray? A Debate Over DDT.
ERIC Educational Resources Information Center
Dinan, Frank J.; Bieron, Joseph F.
2001-01-01
Presents an activity in which students grapple with the complex issues surrounding the use of DDT to control malaria which affects millions of people in developing nations. Considers risk/benefit analysis and the pre-cautionary principle, two techniques used when making policy decisions involving the impact of science and technology on society.…
Evaluation of the EPA Drift Reduction Technology (DRT) Low-Speed Wind Tunnel Protocol
2009-01-01
Characteristics in a Spray Using Optical Nonimaging Light-Scattering by ASTM Int’l (all rights reserved); Thu May 7 10:08:26 EDT 2009 ed/printed by itz...Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003. 9
The report describes in detail the source testing, construction, and data reduction/analysis activities that comprise the three phases of a technology demonstration program. Phase I consisted of a detailed baseline evaluation of several paint spray booths operated at the Barstow,...
NASA Astrophysics Data System (ADS)
Sakata, K.; Tagomori, K.; Sugiyama, N.; Sasaki, S.; Shinya, Y.; Nanbu, T.; Kawashita, Y.; Narita, I.; Kuwatori, K.; Ikeda, T.; Hara, R.; Miyahara, H.
2014-01-01
Compared to conventional thermal spray coating, cold spray processing typically employs finer, smaller-diameter metal powders. Furthermore, cold-sprayed particles exhibit fewer surface oxides than thermally sprayed particles due to the absence of particle melting during spraying. For these reasons, it is important to consider the potential for dust explosions or fires during cold spray processing, for both industrial and R&D applications. This work examined the dust explosion characteristics of metal powders typically used in cold spray coating, for the purpose of preventing dust explosions and fires and thus protecting the health and safety of workers and guarding against property damage. In order to safely make use of the new cold spray technology in industrial settings, it is necessary to manage the risks based on an appropriate assessment of the hazards. However, there have been few research reports focused on such risk management. Therefore, in this study, the dust explosion characteristics of aluminum, titanium, zinc, carbonyl iron, and eutectoid steel containing chromium at 4 wt.% (4 wt.% Cr-eutectoid steel) powders were evaluated according to the standard protocols JIS Z 8818, IEC61241-2-3(1994-09) section 3, and JIS Z 8817. This paper reports our results concerning the dust explosion properties of the above-mentioned metal powders.
Development of 6-DOF painting robot control system
NASA Astrophysics Data System (ADS)
Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang
2017-01-01
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations
Fousova, Michaela; Vojtech, Dalibor; Jablonska, Eva; Fojt, Jaroslav; Lipov, Jan
2017-01-01
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability. PMID:28837101
Improved bonding strength of bioactive cermet Cold Gas Spray coatings.
Gardon, M; Concustell, A; Dosta, S; Cinca, N; Cano, I G; Guilemany, J M
2014-12-01
The fabrication of cermet biocompatible coatings by means Cold Gas Spray (CGS) provides prosthesis with outstanding mechanical properties and the required composition for enhancing the bioactivity of prosthetic materials. In this study, hydroxyapatite/Titanium coatings were deposited by means of CGS technology onto titanium alloy substrates with the aim of building-up well-bonded homogeneous coatings. Powders were blended in different percentages and sprayed; as long as the amount of hydroxyapatite in the feedstock increased, the quality of the coating was reduced. Besides, the relation between the particle size distribution of ceramic and metallic particles is of significant consideration. Plastic deformation of titanium particles at the impact eased the anchoring of hard hydroxyapatite particles present at the top surface of the coating, which assures the looked-for interaction with the cells. Coatings were immersed in Hank's solution for 1, 4 and 7 days; bonding strength value was above 60 MPa even after 7 days, which enhances common results of HAp coatings obtained by conventional thermal spray technologies. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa
2015-07-01
An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.
A novel scaling approach for sooting laminar coflow flames at elevated pressures
NASA Astrophysics Data System (ADS)
Abdelgadir, Ahmed; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.
2016-11-01
Laminar coflow diffusion flames are often used to study soot formation at elevated pressures due to their well-characterized configuration. In these expriments, these flames are operated at constant mass flow rate (constant Reynolds number) at increasing pressures. Due to the effect of gravity, the flame shape changes and as a results, the mixing field changes, which in return has a great effect on soot formation. In this study, a novel scaling approach of the flame at different pressures is proposed. In this approach, both the Reynolds and Grashof's numbers are kept constant so that the effect of gravity is the same at all pressures. In order to keep the Grashof number constant, the diameter of the nozzle is modified as pressure varies. We report both numerical and experimental data proving that this approach guarantees the same nondimensional flow fields over a broad range of pressures. In the range of conditions studied, the Damkoehler number, which varies when both Reynolds and Grashof numbers are kept constant, is shown to play a minor role. Hence, a set of suitable flames for investigating soot formation at pressure is identified. This research made use of the resources of IT Research Computing at King Abdullah University of Science & Technology (KAUST), Saudi Arabia.
Review of patents and application of spray drying in pharmaceutical, food and flavor industry.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis
2014-04-01
Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.
NASA Astrophysics Data System (ADS)
Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji
2007-05-01
There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ctibor, Pavel; Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz; Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6
Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-raymore » diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.« less
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials
Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions. PMID:29109810
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.
Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.
The Environmental Technology Verification (ETV) Program has been established to verify the performance characteristics of innovative environmental technologies and report this objective information, thus, accelerating the entrance of these new technologies into the marketplace. V...
NASA Astrophysics Data System (ADS)
Basu, Saptarshi
Three critical problem domains namely water transport in PEM fuel cell, interaction of vortices with diffusion flames and laminar diffusion layers and thermo-physical processes in droplets heated by a plasma or monochromatic radiation have been analyzed in this dissertation. The first part of the dissertation exhibits a unique, in situ, line-of-sight measurements of water vapor partial pressure and temperature in single and multiple gas channels on the cathode side of an operating PEM fuel cell. Tunable diode laser absorption spectroscopy was employed for these measurements for which water transitions sensitive to temperature and partial pressure were utilized. The technique was demonstrated in a PEM fuel cell operating under both steady state and time-varying load conditions. The second part of the dissertation is dedicated to the study of vortex interaction with laminar diffusion flame and non-reacting diffusion layers. For the non-reacting case, a detailed computational study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams. A detailed parametric study was conducted to determine the effects of vortex strength, convection time, and non-uniform temperature on scalar mixing characteristics. For the reacting case, an experimental study of the interaction of a planar diffusion flame with a line vortex is presented. The flame-vortex interactions are diagnosed by laser induced incandescence for soot yield and by particle image velocimetry for vortex flow characterization. The soot topography was studied as a function of the vortex strength, residence time, flame curvature and the reactant streams from which vortices are initiated. The third part of the dissertation is modeling of thermo-physical processes in liquid ceramic precursor droplets injected into plasma as used in the thermal spray industry to generate thermal barrier coatings on high value materials. Models include aerodynamic droplet break-up process, mixing of droplets in the high temperature plasma, heat and mass transfer within individual droplets as well as droplet precipitation and internal pressurization. The last part of the work is also concerned with the modeling of thermo-physical processes in liquid ceramic precursor droplets heated by monochromatic radiation. Purpose of this work was to evaluate the feasibility of studying precipitation kinetics and morphological changes in a droplet by mimicking similar heating rates as the plasma.
Fuel properties to enable lifted-flame combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Eric
The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.« less
Level II Documentation of Launch Complex 31/32, Cape Canaveral Air Force Station, Florida
2008-12-01
a mobile launcher tied down on the concrete pad, with a concrete flame bucket descending off one side of the surface area (Figure...pedestal (Figure 9). The complex’s Launch Pad 10 was a hex- agonal reinforced concrete surface with tie down points and a concrete flame bucket at its...fuel propel- lant.126 This allowed for rapid deployment, and for a more effective and less expensive weapon system . Technological advancements
Research Progresses and Suggestions of Manufacturing Technologies of Engine Bearing Bushes
NASA Astrophysics Data System (ADS)
Cao, J.; Yin, Z. W.; Li, H. L.; Y Gao, G.
2017-12-01
Bearing bush is a key part of diesel engine, and its performance directly influences the life of whole machine. Several manufacturing technologies of bearing bush such as centrifugal casting, sintering, electroplating and magnetron sputtering have been overviewed. Their bond strength, porosity, production efficient, layer thickness, frictional coefficient and corresponding materials analyzed and compared. Results show that the porosity and oxidation of sintering and centrifugal casting are higher than that of other two methods. However, the production efficiency and coating thickness are better than that of electroplating and magnetron sputtering. Based on above comparisons and discussions, the improvements of all manufacturing technologies are suggested and supersonic cold spraying is suggested. It is proved that cold spraying technology is the best choice in the future with the developing of low frictional materials.
Comparison of eggshell surface sanitization technologies and impacts on consumer acceptability.
Al-Ajeeli, Morouj N; Taylor, T Matthew; Alvarado, Christine Z; Coufal, Craig D
2016-05-01
Shell eggs can be contaminated with many types of microorganisms, including bacterial pathogens, and thus present a risk for the transmission of foodborne disease to consumers. Currently, most United States egg processors utilize egg washing and sanitization systems to decontaminate surfaces of shell eggs prior to packaging. However, previous research has indicated that current shell egg sanitization technologies employed in the commercial egg industry may not completely eliminate bacteria from the surface of eggshells, and thus alternative egg sanitization technologies with the potential for increased microbial reductions on eggshells should be investigated. The objectives of this study were to compare the antimicrobial efficacy and consumer sensory attributes of industry-available eggshell sanitization methods (chlorine and quaternary ammonium compounds (QAC) applied via spray) to various alternative egg sanitization technologies. Eggs (White Leghorn hens; n=195) were obtained for evaluation of sanitizer-induced reduction in mesophilic aerobic bacteria (n=90) or inoculated Salmonella Enteritidis (SE) reduction (n=105). Sanitizing treatments evaluated in this experiment were: chlorine spray (100 ppm available chlorine), QAC spray (200 ppm), peracetic acid spray (PAA; 135 ppm) alone or in combination with ultraviolet light (UV; 254 nm), and hydrogen peroxide (H2O2; 3.5% solution) spray in combination with UV (H2O2+UV). For enumeration of aerobic bacteria, eggs were sampled at 0, 7, and 14 days of storage at 4°C; surviving SE cells from inoculated eggs were enumerated by differential plating. Sensory trials were conducted to determine consumer liking of scrambled eggs made from eggs sanitized with chlorine, QAC, H2O2+UV, or no treatment (control). The H2O2 and UV treatment resulted in the greatest reductions in eggshell aerobic plate counts compared to other treatments throughout egg storage (P<0.05). All treatments utilized reduced SE below the limit of detection by eggshell rinse. There were no differences in consumers' liking of overall flavor between the 4 treatments evaluated. The application of H2O2+UV treatment to shell eggs represents a novel technology that could have important implications for egg quality and safety preservation. © 2016 Poultry Science Association Inc.
Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System
NASA Technical Reports Server (NTRS)
Parrish, Lewis M.
2009-01-01
NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.
[Investigation of the recrystallization of trehalose as a good glass-former excipient].
Katona, Gábor; Orsolya, Jójártné Laczkovich; Szabóné, Révész Piroska
2014-01-01
An amorphous form of trehalose is easy to prepare by using a solvent method. The recrystallization kinetics can be followed well, which is important because of the occurrence of polymorphic forms of trehalose. This is especially significant in the case of dry powder inhalers. Spray-drying was used as a preparation method this being one of the most efficient technologies with which to obtain an amorphous form. This method can result in the required particle size and a monodisperse distribution with excellent flowability and with moreover considerable amorphization. In our work, trehalose was applied as a technological auxiliary agent, and literature data relating to the spray-drying technology of trehalose were collected. Studies were made of the influence of the spraying process on the amorphization of trehalose and on the recrystallization of amorphous trehalose during storage. Amorphous samples were investigated under 3 different conditions during 3 months. The recrystallization process was followed by differential scanning calorimetry and X-ray powder diffraction. The results demonstrated the perfect amorphization of trehalose during the spray-drying process. The glass transition temperature was well measurable in the samples and proved to be the same as the literature data. Recrystallization under normal conditions was very slow but at high relative humidity the process was accelerated greatly. Amorphous trehalose gave rise to dihydrate forms (gamma- and h-trehaloses) during recrystallization, and beta-trehalose was also identified as an anhydrous form.
Smith, L A; Thomson, S J
2003-01-01
A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.
This report presents the results of the verification test of the DeVilbiss GTi-600G high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss GTi, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refinis...
This report presents the results of the verification test of the DeVilbiss FLG-631-318 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss FLG, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refi...
Measurement and Classification Methods Using the ASAE S572.1 Reference Nozzles
2012-01-01
Accepted: September 17, 2012 Abstract: An increasing number of spray nozzle and agrochemical manufacturers are incorporating droplet size...are incorporating droplet size measurements into both research and development of agrochemical technologies. Each laboratory has invariably...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT An increasing number of spray nozzle and agrochemical manufacturers are incorporating droplet
Laboratory-and mill-scale study of surfactant spray flotation deinking
Greg Delozier; Yulin Zhao; Yulin Deng; David White; Junyong Zhu; Mark Prein
2005-01-01
As the cost of quality waste paper continues to escalate in response to an increased global demand for this finite resource, loss of saleable fiber within flotation rejects becomes both environmentally and economically unacceptable. The ability of surfactant spray technology to reduce fiber loss without detriment to pulp brightness gains has been demonstrated during...
NASA Technical Reports Server (NTRS)
1979-01-01
Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.
SPATTER! SPATTER! SPATTER! Workers' health and the spray machine debate.
Frounfelker, Rochelle L
2006-02-01
A conflict between industrialization and worker health developed in the painting industry during the early 1900s with the introduction of the spray machine. This technological innovation allowed the application of paint at greater speed and lower cost than hand painting and increased the rate at which painters were exposed to lead and other toxins contained in paint. From roughly 1919 to 1931, the painters' trade union clashed with employers, paint manufacturers, and legislatures over the impact of the spray machine on the health of workers and the need to enact legislation to regulate its use. While painters made gains on local, state, and national levels during the 1920s to prevent the use of the spray machine, their efforts ultimately failed.
Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology
NASA Astrophysics Data System (ADS)
Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Chraska, Tomas; Curry, Nicholas
2017-01-01
Technology of water-stabilized plasma torch was recently substantially updated through introduction of a so-called hybrid concept that combines benefits of water stabilization and gas stabilization principles. The high-enthalpy plasma provided by the WSP-H ("hybrid") torch may be used for thermal spraying of powders as well as liquid feedstocks with high feed rates. In this study, results from three selected experiments with suspension plasma spraying with WSP-H technology are presented. Possibility of deposition of coatings with controlled microstructures was demonstrated for three different ceramics (YSZ—yttria-stabilized zirconia, YAG—yttrium aluminum garnet and Al2O3) introduced into ethanol-based suspensions. Shadowgraphy was used for optimization of suspension injection and visualization of the liquid fragmentation in the plasma jet. Coatings were deposited onto substrates attached to the rotating carousel with integrated temperature monitoring and air cooling, which provided an excellent reproducibility of the deposition process. Deposition of columnar-like YSZ and dense YAG and Al2O3 coatings was successfully achieved. Deposition efficiency reached more than 50%, as evaluated according to EN ISO 17 836 standard.
Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B
2009-11-25
Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Anderson, Robert C.; Locke, Randy J.; Hicks, Yolanda R.
2010-01-01
Performance of a multipoint, lean direct injection (MP-LDI) strategy for low emission aero-propulsion systems has been tested in a Jet-A fueled, lean flame tube combustion rig. Operating conditions for the series of tests included inlet air temperatures between 672 and 828 K, pressures between 1034 and 1379 kPa and total equivalence ratios between 0.41 and 0.45, resulting in equilibrium flame temperatures approaching 1800 K. Ranges of operation were selected to represent the spectrum of subsonic and supersonic flight conditions projected for the next-generation of commercial aircraft. This document reports laser-based measurements of in situ fuel velocities and fuel drop sizes for the NASA 9-point LDI hardware arranged in a 3 3 square grid configuration. Data obtained represent a region of the flame tube combustor with optical access that extends 38.1-mm downstream of the fuel injection site. All data were obtained within reacting flows, without particle seeding. Two diagnostic methods were employed to evaluate the resulting flow path. Three-component velocity fields have been captured using phase Doppler interferometry (PDI), and two-component velocity distributions using planar particle image velocimetry (PIV). Data from these techniques have also offered insight into fuel drop size and distribution, fuel injector spray angle and pattern, turbulence intensity, degree of vaporization and extent of reaction. This research serves to characterize operation of the baseline NASA 9- point LDI strategy for potential use in future gas-turbine combustor applications. An additional motive is the compilation of a comprehensive database to facilitate understanding of combustor fuel injector aerodynamics and fuel vaporization processes, which in turn may be used to validate computational fluid dynamics codes, such as the National Combustor Code (NCC), among others.
Monte Carlo Simulation of Nanoparticle Encapsulation in Flames
NASA Technical Reports Server (NTRS)
Sun, Z.; Huertas, J. I.; Axelbaum, R. L.
1999-01-01
Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature environment of a flame is excellent for producing high-purity simple compounds, ultrafine metals and non-oxide ceramic powders are inherently reactive in the presence of oxygen and/or moisture. Thus, the handling of these powders after synthesis poses a challenging problem. Impurities acquired during handling of nanoparticles have plagued the advancement of nanostructured materials technology.
Sustainability of Metal Structures via Spray-Clad Remanufacturing
NASA Astrophysics Data System (ADS)
Smith, Gregory M.; Sampath, Sanjay
2018-04-01
Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with "as good or better" performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.
Fire Suppression in Low Gravity Using a Cup Burner
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.
2004-01-01
Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches. The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.
Fire Suppression in Low Gravity Using a Cup Burner
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.
2004-01-01
Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion-suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.