Sample records for flame spread test

  1. Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    1991-01-01

    Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

  2. The Effects of Angular Orientation on Flame Spread over Thin Materials

    DTIC Science & Technology

    1999-12-01

    Notation 7 5 Upward Spread With Burnout 8 6a Observed Flame Lengths on Napkins, Increments 2.5 cm 9 6b Observed Flame Lengths on Pet Film, Increments...Frequency of Extinguishment During Flame Spread 21 15 Flame Spread Velocity 21 VI 16 Flame Length Measured Parallel to the Surface 22 17 Comparison of... flame length (Lf) were measured from a video recording of the test. Despite erratic burn fronts with discontinuous flaming regions, the maximum

  3. Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    NASA Technical Reports Server (NTRS)

    Niehaus, Justin E.; Ferkul, Paul V.; Gokoglu, Suleyman A.; Ruff, Gary A.

    2015-01-01

    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed-flow flame spread, horizontal and angled flame spread, and forced-flow upward and downward flame spread. In addition to these configurations, upward and downward tests were conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. Upward tests in air with an added forced flow were more flammable. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Complementary analyses using EDS, TGA, and SEM techniques suggest the importance of the silica layer deposited downstream onto the unburned sample surface.

  4. Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng

    2016-05-01

    Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).

  5. Flame-spreading phenomena in the fin-slot region of a solid rocket motor

    NASA Astrophysics Data System (ADS)

    Kuo, K. K.; Kokal, R. A.; Paulauskas, M.; Alaksin, P.; Lee, L. S.

    1993-06-01

    Flame-spreading processes in the fin-slot regions of solid-propellant motor grains have the potential to influence the behavior of the overall ignition transient. The work being done on this project is aimed at obtaining a better understanding of the flame-spreading processes in rocket motors with aft-end fin slots. Non-intrusive optical diagnostic methods were employed to acquire flame-spreading measurements in the fin-slot region of a subscale rocket motor. Highly non-uniform flame-spreading processes were observed in both the deep and shallow fin regions of the test rig. The average flame-spreading rates in the fin-slot region were found to be two orders of magnitude less than those in the circular port region of a typical rocket motor. The flame-spreading interval was found to correlate well with the local pressurization rates. A higher pressurization rate produces a shorter flame-spreading time interval.

  6. Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    NASA Technical Reports Server (NTRS)

    Niehaus, Justin; Ferkul, Paul V.; Gokoglu, Suleyman; Ruff, Gary

    2015-01-01

    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed flow flame spread, horizontal and angled flame spread, forced flow upward and downward flame spread. In addition to these configurations, upward and downward tests were also conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Upward tests in air with an added forced flow were more flammable. Complementary analyses using SEM and TGA techniques suggest the importance of the silica layer formed on the burned sample surface. As silicone burns upward, silica deposits downstream •If the silicone is ignited in the downward configuration, it burns the entire length of the sample •Burning upward at an angle increases the burn length in some cases possibly due to less silica deposition •Forced flow in the upward burning case increases flammability, likely due to an increase in convective flow preventing silica from depositing •Samples in upward configuration burning under forced flow self extinguish after forced flow is removed

  7. Microgravity Flame Spread in Exploration Atmospheres: Pressure, Oxygen, and Velocity Effects on Opposed and Concurrent Flame Spread

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ruff, Gary A.; Fletcher, J. Miller

    2008-01-01

    Microgravity tests of flammability and flame spread were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows. Three thin fuels were tested for flammability (Ultem 1000 (General Electric Company), 10 mil film, Nomex (Dupont) HT90-40, and Mylar G (Dupont) and one fuel for flame spread testing (Kimwipes (Kimberly-Clark Worldwide, Inc.). The 1g Upward Limiting Oxygen Index (ULOI) and 1g Maximum Oxygen Concentration (MOC) are found to be greater than those in 0g, by up to 4% oxygen mole fraction, meaning that the fuels burned in 0g at lower oxygen concentrations than they did using the NASA Standard 6001 Test 1 protocol. Flame spread tests with Kimwipes were used to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on flame spread rate. These correlations were used to determine that over virtually the entire range of spacecraft atmospheres and flow conditions, the opposed spread is faster, especially for normoxic atmospheres. The correlations were also compared with 1g MOC for various materials as a function of pressure and oxygen. The lines of constant opposed flow agreed best with the 1g MOC trends, which indicates that Test 1 limits are essentially dictated by the critical heat flux for ignition. Further evaluation of these and other materials is continuing to better understand the 0g flammability of materials and its effect on the oxygen margin of safety.

  8. Microgravity

    NASA Image and Video Library

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  9. The Effect of Microgravity on Flame Spread over a Thin Fuel

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    1987-01-01

    A flame spreading over a thermally thin cellulose fuel was studied in a quiescent microgravity environment. Flame spread over two different fuel thicknesses was studied in ambient oxygen-nitrogen environments from the limiting oxygen concentration to 100 percent oxygen at 1 atm pressure. Comparative normal-gravity tests were also conducted. Gravity was found to play an important role in the mechanism of flame spread. In lower oxygen environments, the buoyant flow induced in normal gravity was found to accelerate the flame spread rate as compared to the microgravity flame spread rates. It was also found to stabilize the flame in oxidizer environments, where microgravity flames in a quiescent environment extinguish. In oxygen-rich environments, however, it was determined that gravity does not play an important role in the flame spread mechanism. Fuel thickness influences the flame spread rate in both normal gravity and microgravity. The flame spread rate varies inversely with fuel thickness in both normal gravity and in an oxygen-rich microgravity environment. In lower oxygen microgravity environments, however, the inverse relationship breaks down because finite-rate kinetics and heat losses become important. Two different extinction limits were found in microgravity for the two thicknesses of fuel. This is in contrast to the normal-gravity extinction limit, which was found to be independent of fuel thickness. In microgravity the flame is quenched because of excessive thermal losses, whereas in normal gravity the flame is extinguished by blowoff.

  10. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  11. Gravitational Influences on Flame Propagation Through Non-Uniform, Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Marchese, Anthony; Hovermann, Fred

    2003-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized recently and in previous Microgravity Workshop papers, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our recent findings on gravitational effects on layered combustion along a floor, in which the fuel concentration gradient exists normal to the direction of flame spread. In an effort to understand the mechanism by which the flames spread faster in microgravity (and much faster, in laboratory coordinates, than the laminar burning velocity for uniform mixtures), we have begun making pressure measurements across the spreading flame front that are described here. Earlier researchers, testing in 1g, claimed that hydrostatic pressure differences could account for the rapid spread rates. Additionally, we present the development of a new apparatus to study flame spread in free (i.e., far from walls), non-homogeneous fuel layers formed in a flow tunnel behind an airfoil that has been tested in normal gravity.

  12. Multidimensional Effects on Ignition, Transition, and Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, T.; Mell, W. E.; Nakamura, Y.; Olson, S. L.; Baum, H. R.; McGrattan, K. B.

    2001-01-01

    Localized ignition is initiated by an external radiant source at the middle of a thermally thin sample under external slow flow, simulating fire initiation in a spacecraft with a slow ventilation flow. Two ignition configurations are simulated, one across the sample surface creating a line shaped flame front (two-dimensional, 2-D, configuration) and the other a small circular ignition (three-dimensional, 3-D, configuration). Ignition, subsequent transition to simultaneously upstream and downstream flame spread, and flame growth behavior are studied experimentally and theoretically. Details of our theoretical models and numerical techniques can be found in previous publications. The effects of the sample width on the transition and subsequent flame spread, and flame spread along open edges of a thermally thin paper sample are determined. Experimental observations of flame spread phenomena were conducted in the 10 s drop tower and also on the space shuttle STS-75 flight to determine the effects of oxygen concentration and external flow velocity on flame spread rate and flame growth pattern. Finally, effects of confinement in a small test chamber on the transition and subsequent flame spread are examined. The results of these studies are briefly reported.

  13. Flammability Aspects of a Cotton-Fiberglass Fabric in Opposed and Concurrent Airflow in Microgravity

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.; Olson, Sandra; Johnston, Michael C.; T'ien, James

    2012-01-01

    Microgravity combustion tests burning fabric samples were performed aboard the International Space Station. The cotton-fiberglass blend samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cm/s. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. For the opposed flow configuration, the flame quickly reached steady spread for each flow speed, and the spread rate was fastest at an intermediate value of flow speed. These tests show the enhanced flammability in microgravity for this geometry, since, in normal gravity air, a flame self-extinguishes in the opposed flow geometry (downward flame spread). In the concurrent flow configuration, flame size grew with time during the tests. A limiting length and steady spread rate were obtained only in low flow speeds ( 10 cm/s) for the short-length samples that fit in the small wind tunnel. For these conditions, flame spread rate increased linearly with increasing flow. This is the first time that detailed transient flame growth data was obtained in purely forced flows in microgravity. In addition, by decreasing flow speed to a very low value (around 1 cm/s), quenching extinction was observed. The valuable results from these long-duration experiments validate a number of theoretical predictions and also provide the data for a transient flame growth model under development.

  14. The USML-1 wire insulation flammability glovebox experiment

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1995-01-01

    Flame spreading tests have been conducted using thin fuels in microgravity where buoyant convection is suppressed. In spacecraft experiments flames were ignited in quiescent atmospheres with an elevated oxygen content, demonstrating that diffusional mechanisms can be sufficient alone to sustain flame spreading. In ground-based facilities (i.e. drop towers and parabolic aircraft) low-speed convection sustains flames at much lower concentrations of atmospheric oxygen than in quiescent microgravity. Ground-based experiments are limited to very thin fuels (e.g., tissue paper); practical fuels, which are thicker, require more test time than is available. The Glovebox Facility provided for the USML 1 mission provided an opportunity to obtain flame spreading data for thicker fuel Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility. This experiment explored the heating, ignition and burning of 0.65 mm thick polyethylene wire insulation in low-speed flows in a reduced gravity environment. Four tests were conducted, two each in concurrent flow (WIF A and C) and opposed flow (WIF B and D), providing the first demonstration of flame spreading in controlled forced convection conducted in space.

  15. Results of Large-Scale Spacecraft Flammability Tests

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot gas expansion. These results clearly demonstrate the unique features of purely forced flow in microgravity on flame spread, the dependence of flame behavior on the scale of the experiment, and the importance of full-scale testing for spacecraft fire safety.

  16. Upward Flame Spread Over Thin Solids in Partial Gravity

    NASA Technical Reports Server (NTRS)

    Feier, I. I.; Shih, H. Y.; Sacksteder, K. R.; Tien, J. S.

    2001-01-01

    The effects of partial-gravity, reduced pressure, and sample width on upward flame spread over a thin cellulose fuel were studied experimentally and the results were compared to a numerical flame spread simulation. Fuel samples 1-cm, 2-cm, and 4-cm wide were burned in air at reduced pressures of 0.2 to 0.4 atmospheres in simulated gravity environments of 0.1-G, 0.16-G (Lunar), and 0.38-G (Martian) onboard the NASA KC-135 aircraft and in normal-gravity tests. Observed steady flame propagation speeds and pyrolysis lengths were approximately proportional to the gravity level. Flames spread more quickly and were longer with the wider samples and the variations with gravity and pressure increased with sample width. A numerical simulation of upward flame spread was developed including three-dimensional Navier-Stokes equations, one-step Arrhenius kinetics for the gas phase flame and for the solid surface decomposition, and a fuel-surface radiative loss. The model provides detailed structure of flame temperatures, the flow field interactions with the flame, and the solid fuel mass disappearance. The simulation agrees with experimental flame spread rates and their dependence on gravity level but predicts a wider flammable region than found by experiment. Some unique three-dimensional flame features are demonstrated in the model results.

  17. Wire Insulation Flammability Experiment: USML-1 One Year Post Mission Summary

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1994-01-01

    Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility on the USML-1 mission. This experiment explored various aspects of electrically induced fire scenarios in a reduced gravity environment. Under quiescent microgravity conditions, heat and mass transfer are dominated by diffusive and radiative transport; while in normal-gravity buoyancy induced convection often dominates. Of considerable scientific and practical interest is the intermediate situation of combustion occurring in the presence of imposed gas flows, with lower characteristic velocities than those induced by buoyancy in noma1 gravity. Two distinct cases naturally arise: flow direction opposed to, or concurrent with, the flame spread direction. Two tests of each kind were conducted in the WIF experiment, providing the first controlled demonstration of flame spreading in forced convection ever conducted in space. Four test modules were flown. The wire insulation, 1.5 mm in diameter, was polyethylene, extruded onto nichrome wire. Temperatures of the wh3 cores and insulation heated in quiescent and flowing environments were measured. Video and still-camera images of the samples, burning in air flowing at approximately 10 cm/sec, were recorded to obtain flame characteristics including spread rate, structure and temperature. Flame spread rates in concurrent flow were approximately twice those in opposed flow. In concurrent and opposed flow regimes, the spreading flames stabilized around a bead of molten insulation material, within which bubble nucleation was observed. An ignition attempt without flow mated a quiescent cloud of vaporized fuel which ignited dramatically yet failed to sustain normal flame spread. Finally, all tests produced substantial soot agglomerates, particularly the concurrent flow tests; and the collected soot has a morphology very distinct from soot formed in normal gravity flames. Several unexpected and unique microgravity combustion phenomena were observed.

  18. Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.

    1999-01-01

    Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.

  19. The solid surface combustion experiment aboard the USML-1 mission

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Sacksteder, Kurt; Bhattacharjee, Subrata; Ramachandra, Prashant A.; Tang, Lin; Wolverton, M. Katherine

    1994-01-01

    AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model.

  20. Quantitative Infrared Image Analysis Of Thermally-Thin Cellulose Surface Temperatures During Upstream and Downstream Microgravity Flame Spread from A Central Ignition Line

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2012-01-01

    Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained at 30 Hz during microgravity flame spread tests in the 10 second Japan Microgravity Center (JAMIC). The tests also used a color video of the surface view and color images of the edge view using 35 millimeter 1600 Kodak Ektapress film at 2 Hz. The cellulose fuel samples (50% long fibers from lumi pine and 50% short fibers from birch) were made with an area density of 60 grams per square meters. The samples were mounted in the center of a 12 centimeter wide by 16 centimeter tall flow duct that uses a downstream fan to draw the air through the flow duct. Samples were ignited after the experiment package was released using a straight hot wire across the center of the 7.5 centimeter wide by 14 centimeter long samples. One case, at 1 atmosphere 35%O2 in N2, at a forced flow of 10 centimeters per second, is presented here. In this case, as the test progresses, the single flame begins to separate into simultaneous upstream and downstream flames. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel.

  1. Spread Across Liquids: The World's First Microgravity Combustion Experiment on a Sounding Rocket

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Spread Across Liquids (SAL) experiment characterizes how flames spread over liquid pools in a low-gravity environment in comparison to test data at Earth's gravity and with numerical models. The modeling and experimental data provide a more complete understanding of flame spread, an area of textbook interest, and add to our knowledge about on-orbit and Earthbound fire behavior and fire hazards. The experiment was performed on a sounding rocket to obtain the necessary microgravity period. Such crewless sounding rockets provide a comparatively inexpensive means to fly very complex, and potentially hazardous, experiments and perform reflights at a very low additional cost. SAL was the first sounding-rocket-based, microgravity combustion experiment in the world. It was expected that gravity would affect ignition susceptibility and flame spread through buoyant convection in both the liquid pool and the gas above the pool. Prior to these sounding rocket tests, however, it was not clear whether the fuel would ignite readily and whether a flame would be sustained in microgravity. It also was not clear whether the flame spread rate would be faster or slower than in Earth's gravity.

  2. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation strategy to incorporate into the microgravity experiment.

  3. Prediction of ISO 9705 Room/Corner Test Results. Volume 1

    DTIC Science & Technology

    1999-11-01

    spread rates depend on the flame length , so that it is not a unique function of the material being burned. The flame spread model developed by Mowrer and...height is expressed as: = kf (5) xp -X16 16I The parameter, kf is a correlating factor used to define the flame length . Cleary and Quintiere (1991

  4. PIV Measurement of Transient 3-D (Liquid and Gas Phases) Flow Structures Created by a Spreading Flame over 1-Propanol

    NASA Technical Reports Server (NTRS)

    Hassan, M. I.; Kuwana, K.; Saito, K.

    2001-01-01

    In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.

  5. Opposed-Flow Flame Spread in a Narrow Channel Apparatus over Thin PMMA Sheets

    NASA Technical Reports Server (NTRS)

    Bornand, G. R.; Olson, Sandra L.; Miller, F. J.; Pepper, J. M.; Wichman, I. S.

    2013-01-01

    Flame spread tests have been conducted over polymethylmethacrylate (PMMA) samples in San Diego State University's Narrow Channel Apparatus (SDSU NCA). The Narrow Channel Apparatus (NCA) has the ability to suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression achieved with a NCA allows for tests to be conducted in a simulated microgravity atmosphere-a characteristic that Test 1 lacks since flames present in Test 1 are buoyantly driven. The SDSU NCA allows for flame spread tests to be conducted with varying opposed flow oxidizer velocities, oxygen percent by volume, and total pressure. Also, since the test sample is placed symmetrically between two confining plates so that there is a gap above and below the sample, this gap can be adjusted. This gap height adjustment allows for a compromise between heat loss from the flame to the confining boundaries and buoyancy suppression achieved by those boundaries. This article explores the effect gap height has on the flame spread rate for 75 µm thick PMMA at 1 atm pressure and 21% oxygen concentration by volume in the SDSU NCA. Flame spread results from the SDSU NCA for thin cellulose fuels have previously been compared to results from tests in actual microgravity at various test conditions with the same sample materials and were found to be in good agreement. This article also presents results from the SDSU NCA for PMMA at 1 atm pressure, opposed oxidizer velocity ranging from 3 to 35 cm/s, oxygen concentration by volume at 21%, 30 %, and 50% and fuel thicknesses of 50 and 75 µm. These results are compared to results obtained in actual microgravity for PMMA obtained at the 4.5s drop tower of MGLAB in Gifu, Japan, and the 5.2s drop tower at NASA's Zero-Gravity Research Facility in Cleveland, OH. This comparison confirms that at 1 atm pressure, the SDSU NCA successfully simulates microgravity for not only thin cellulose fuels, but also for thin PMMA sheets as well. This further supports the idea that the NCA is a viable option to complement or replace NASA's Test 1 for material flammability testing. Tests with thick fuels will be conducted in the future to further characterize the SDSU NCA.

  6. Transport and Chemical Effects on Concurrent and Opposed-Flow Flame Spread at Microgravity

    NASA Technical Reports Server (NTRS)

    Honda, L. K.; Ronney, P. D.

    1999-01-01

    With support from a previous NASA grant, NAG3-161 1, the PI studied the effects of diluent type, the addition of sub-flammability-limit concentrations of combustible gases, and the effects of concurrent buoyant flow on flame spread processes. The results of these studies are reported and directions for the current grant outlined. Most experiments were conducted in a 20 liter combustion chamber. Exactly the same apparatus was used for 1 g and microgravity tests. The effect of inert gases He, Ar, N2, CO2 and SF6 on flame spread were tested since they provide a variety of radiative properties and oxygen Lewis numbers. CO and CH4 were used for the gaseous fuels in partially-premixed atmosphere tests, plus H2, C3H8 and NH3 for 1 g tests only. In most experiments 5 cm wide Kimwipe samples 15 cm long were used and were held by aluminum quenching plates. The samples were ignited by an electrically-heated Kanthal wire. The flame spread process was imaged via three video cameras and a laser shearing interferometer.

  7. Laboratory Experiments Lead to a New Understanding of Wildland Fire Spread

    NASA Astrophysics Data System (ADS)

    Cohen, J. D.; Finney, M.; McAllister, S.

    2015-12-01

    Wildfire flame spread results from a sequence of ignitions where adjacent fuel particles heat from radiation and convection leading to their ignition. Surprisingly, after decades of fire behavior research an experimentally based, fundamental understanding of wildland fire spread processes has not been established. Modelers have commonly assumed radiation to be the dominant heating mechanism; that is, radiation heat transfer primarily determines wildland fire spread. We tested this assumption by focusing on how fuel ignition occurs with a renewed emphasis on experimental research. Our experiments show that fuel particle size can non-linearly influence a fuel particle's convective heat transfer. Fine fuels (less than 1 mm) can convectively cool in ambient air such that radiation heating is insufficient for ignition and thus fire spread. Given fire spread with insufficient radiant heating, fuel particle ignition must occur convectively from flame contact. Further experimentation reveals that convective heating and particle ignition occur when buoyancy-induced instabilities and vorticity force flames down and forward to produce intermittent contact with the adjacent fuel bed. Experimental results suggest these intermittent forward flame extensions are buoyancy driven with predictable average frequencies for flame zones ranging from laboratory (10-2 m) to field scales (101m). Measured fuel particle temperatures and boundary conditions during spreading laboratory fires reveal that convection heat transfer from intermittent flame contact is the principal mechanism responsible for heating fine fuel particles to ignition. Our experimental results describe how fine fuel particles convectively heat to ignition from flame contact related to the buoyant dynamics of spreading flame fronts. This research has caused a rethinking of some of the most basic concepts in wildland fuel particle ignition and flame spread.

  8. Ignition, Transition, Flame Spread in Multidimensional Configurations in Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.; Olson, Sandra L.; Fujita, Osamu; Kikuchi, Masao; Ito, Kenichi

    1997-01-01

    Ignition of solid fuels by external thermal radiation and subsequent transition to flame spread are processes that not only are of considerable scientific interest but which also have fire safety applications. A material which undergoes a momentary ignition might be tolerable but a material which permits a transition to subsequent flame spread would significantly increase the fire hazard in a spacecraft. Therefore, the limiting condition under which flame cannot spread should be calculated from a model of the transition from ignition instead of by the traditional approach based on limits to a steady flame spread model. However, although the fundamental processes involved in ignition have been suggested there have been no definitive experimental or modeling studies due to the flow motion generated by buoyancy near the heated sample surface. In this study, microgravity experiments which required longer test times such as in air and surface smoldering experiment were conducted in the space shuttle STS-75 flight; shorter experimental tests such as in 35% and 50% oxygen were conducted in the droptower in the Japan Microgravity Center, JAMIC. Their experimental data along with theoretically calculated results from solving numerically the time-dependent Navier-Stokes equations are summarized in this paper.

  9. Upward And Downward Flame Spreading And Extinction In Partial Gravity Environments

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Ferkul, Paul V.; Kumar, Amit; T'ien, James S.

    2003-01-01

    The premise of this research effort has been to begin exploring the gap in the literature between studies of material flammability and flame spread phenomena in normal-gravity and those conducted in the microgravity environment, with or without forced flows. From a fundamental point of view, flame spreading in upward (concurrent) buoyant flow is considerably different from concurrent forced flow. The flow accelerates throughout the length of the buoyant flame bringing the streamlines and the flame closer to the fuel surface and strengthening the interaction between the flame and fuel. Forced flows are diverted around the flame and away from the fuel surface, except where the flow might be constrained by a finite duct. The differences may be most clearly felt as the atmospheric conditions, viz. pressure or oxygen content, approach the flammability limit. From a more practical point of view, flame spreading and material flammability behavior have not been studied under the partial gravity conditions that are the natural state in space exploration destinations such as the Moon and Mars. This effort constitutes the beginning of the research needed to engineer fire safety provisions for such future missions. In this program we have performed partial-gravity experiments (from 0.1 to 1 g/g(sub Earth)) considering both upward and downward flame spread over thin solid fuels aboard the NASA KC-135 aircraft. In those tests, the atmospheric pressure and the fuel sample width were varied. Steady flame spread rates and approximate extinction boundaries were determined. Flame images were recorded using video cameras and two-dimensional fuel surface temperature distributions were determined using an IR camera. These results are available, and complement our earlier work in downward spread in partial gravity varying oxygen content. In conjunction with the experiment, three-dimensional models of flame spreading in buoyant flow have been developed. Some of the computed results on upward spreading have been presented. A derivative three-dimensional model of downward spreading has been developed. It is currently being used to evaluate the standard limiting oxygen index (LOI) measuring device and its potential performance in different gravity levels.

  10. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    NASA Astrophysics Data System (ADS)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  11. Fluid Management of and Flame Spread Across Liquid Pools

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Miller, F. J.

    2001-01-01

    The goal of our research on flame spread across pools of liquid fuel remains the quantitative identification of the mechanisms that control the rate and nature of flame spread when the initial temperature of the liquid pool is below the fuel's flash point temperature. As described in, four microgravity (mu-g) sounding rocket flights examined the effect of forced opposed airflow over a 2.5 cm deep x 2 cm wide x 30 cm long pool of 1-butanol. Among many unexpected findings, it was observed that the flame spread is much slower and steadier than in 1g where flame spread has a pulsating character. Our numerical model, restricted to two dimensions, had predicted faster, pulsating flame spread in mu-g. In a test designed to achieve a more 2-D experiment, our investigation of a shallow, wide pool (2 mm deep x 78 mm wide x 30 cm long) was unsuccessful in mu-g, due to an unexpectedly long time required to fill the tray. As such, the most recent Spread Across Liquids (SAL) sounding rocket experiment had two principal objectives: 1) determine if pulsating flame spread in deep fuel trays would occur under the conditions that a state-of-the-art computational combustion code and short-duration drop tower tests predict; and 2) determine if a long, rectangular, shallow fuel tray could achieve a visibly flat liquid surface across the whole tray without spillage in the mu-g time allotted. If the second objective was met, the shallow tray was to be ignited to determine the nature of flame spread in mu-g for this geometry. For the first time in the experiment series, two fuel trays - one deep (30 cm long x 2 cm wide x 25 mm deep) and one shallow (same length and width, but 2 mm deep)-- were flown. By doing two independent experiments in a single flight, a significant cost savings was realized. In parallel, the computational objective was to modify the code to improve agreement with earlier results. This last objective was achieved by modifying the fuel mass diffusivity and adding a parameter to correct for radiative and lateral heat loss.

  12. Analytical model of flame spread in full-scale room/corner tests (ISO9705)

    Treesearch

    Mark Dietenberger; Ondrej Grexa

    1999-01-01

    A physical, yet analytical, model of fire growth has predicted flame spread and rate of heat release (RHR) for an ISO9705 test scenario using bench-scale data from the cone calorimeter. The test scenario simulated was the propane ignition burner at the comer with a 100/300 kW program and the specimen lined on the walls only. Four phases of fire growth were simulated....

  13. Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept

    NASA Astrophysics Data System (ADS)

    Zuo, Q. L.; Wang, Y. J.; Li, J. S.

    2018-05-01

    In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.

  14. Temperature Field During Flame Spread over Alcohol Pools: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Ross, Howard D.; Schiller, David N.

    1994-01-01

    A principal difference between flame spread over solid fuels and over liquid fuels is, in the latter case, the presence of liquid-phase convection ahead of the leading edge of the flame. The details of the fluid dynamics and heat transfer mechanisms in both the pulsating and uniform flame spread regimes were heavily debated, without resolution, in the 1960s and 1970s; recently, research on flame spread over pools was reinvigorated by the advent of enhanced diagnostic techniques and computational power. Temperature fields in the liquid, which enable determination of the extent of preheating ahead of the flame, were determined previously by the use of thermocouples and repetitive tests, and suggested that the surface temperature does not decrease monotonically ahead of the pulsating flame front, but that there exists a surface temperature valley. Recent predictions support this suggestion. However, others' thermocouple measurements and the recent field measurements using Holographic Interferometry (HI) did not find a similar valley. In this work we examine the temperature field using Rainbow Schlieren Deflectometry (RSD), with a measurement threshold exceeding that of conventional interferometry by a factor of 20:1, for uniform and pulsating flame spread using propanol and butanol as fuels. This technique was not applied before to flame spread over liquid pools, except in some preliminary measurements reported earlier. Noting that HI is sensitive to the refractive index while RSD responds to refractive index gradients, and that these two techniques might therefore be difficult to compare, we utilized a numerical simulation, described below, to predict and compare both types of field for the uniform and pulsating spread regimes. The experimental data also allows a validation of the model at a level of detail greater than has been attempted before.

  15. A Method for Assessing Material Flammability for Micro-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Steinhaus, T.; Olenick, S. M.; Sifuentes, A.; Long, R. T.; Torero, J. L.

    1999-01-01

    On a spacecraft, one of the greatest fears during a mission is the outbreak of a fire. Since spacecraft are enclosed spaces and depend highly on technical electronics, a small fire could cause a large amount of damage. NASA uses upward flame spread as a "worst case scenario" evaluation for materials and the Heat and Visible Smoke Release Rates Test to assess the damage potential of a fire. Details of these tests and the protocols followed are provided by the "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion" document. As pointed by Ohlemiller and Villa, the upward flame spread test does not address the effect of external radiation on ignition and spread. External radiation, as that coming from an overheated electrical component, is a plausible fire scenario in a space facility and could result in a reversal of the flammability rankings derived from the upward flame spread test. The "Upward Flame Propagation Test" has been the subject of strong criticism in the last few years. In many cases, theoretical exercises and experimental results have demonstrated the possibility of a reversal in the material flammability rankings from normal to micro-gravity. Furthermore, the need to incorporate information on the effects of external radiation and opposed flame spread when ranking materials based on their potential to burn in micro-gravity has been emphasized. Experiments conducted in a 2.2 second drop tower with an ethane burner in an air cross flow have emphasized that burning at the trailing edge is deterred in micro-gravity due to the decreased oxygen transport. For very low air flow velocities (U<0.005 m/s) the flame envelopes the burner and a slight increase in velocity results in extinction of the trailing edge (U>0.01 m/s). Only for U>0.l m/s extinction is observed at the leading edge (blow-off). Three dimensional numerical calculations performed for thin cellulose centrally ignited with an axisymmetric source have shown that under the presence of a forced flow slower than 0.035 m/s flames spreads only opposing the flow. Extinction is observed at the trailing edge with no concurrent propagation. Experiments conducted by the same authors at the JAMIC 10 second drop tower verified these calculations. Reducing the oxygen supply to the flame also results in a decrease of the Damk6hler number which might lead to extinction. Greyson et al. and Ferkul conducted experiments in micro-gravity (5 second drop tower) with thin paper and observed that at very low flow velocities concurrent flame spread will stop propagating and the flame will reduce in size and extinguish. They noted that quenching differs significantly from blow-off in that the upstream leading edge will remain anchored to the burn out edge.

  16. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in microgravity. This showed that the horizontal narrow channel can restrict natural convection effectively. In the vertical narrow channel, flame spread became slower as the forced gas flow speed increased. In low speed gas flows, flame spread was not near quench limit. Instead, the spread rate got its maximum value. This was entirely different from the result of microgravity and showed that the vertical narrow channel can not restrict natural convection. For the horizontal narrow channel, when the channel height lowered to 1 cm (The Grashof number was 149 using the half height as a characteristic length), the natural convection was restricted. For vertical narrow channel, a lower height was needed to restrict natural convection. References 1. NASA Technical Standard, "Flammability, Odor, Offgassing, and Compatibility Require-ments and Test Procedures for Materials in Environments That Support Combustion", NASA STD-6001, 1998. 2. Ivanov, A. V., Balashov, Ye. V., Andreeva, T. V., and et al., "Experimental Verification of Material Flammability in Space", NASA CR-1999-209405, 1999. 3. Melikhov, A. S., Bolodyan, I. A., Potyakin, V. I., and et al., "The study of polymer material combustion in simulated microgravity by physical modeling method", In: Sacksteder K, ed, "Fifth Int Microgravity Comb Workshop", NASA CP-1999-208917, 1999, 361. 4. T'ien, J. S., Shih, H.-Y., Jiang, C.-B., and et al., "Mechanisms of flame spread and smol-der wave propagation", In: Ross, H. D., ed, "Microgravity Combustion: Fire in Free Fall", Academic Press, 2001. 299. 5. Olson, S. L., Comb Sci Tech, 76, 233, 1991.

  17. Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; Olson, S. L.; Kashiwagi, T.

    2000-01-01

    The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.

  18. Design and Fabrication of a Hele-Shaw Apparatus for Observing Instabilities of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Wichman, I. S.; Oravecz-Simpkins, L.; Olson, S.

    2001-01-01

    Examinations of flame fronts spreading over solid fuels in an opposed flow of oxidizer have shown that the flame front fragments into smaller (cellular) flames. These 'flamelets' will oscillate, recombine, or extinguish, indicating that they are in the near extinction limit regime (i.e., to one side of the quenching branch of the flammability map). Onset of unstable cellular flamelet formation for flame spread over thin fuels occurs when a heat-sink substrate is placed a small distance from the underside of the fuel. This heat-sink substrate (or backing) displaces the quenching branch of the flammability map in a direction that causes the instabilities to occur at higher air velocities. Similar near-limit behavior has been observed in other works using different fuels, thus suggesting that these dynamic mechanisms are fuel-independent and therefore fundamental attributes of flames in this near-limit flame spread regime. The objective of this project is to determine the contributions of the hydrodynamic and thermodiffusive mechanisms to the observed formation of flame instabilities. From this, a model of diffusion flame instabilities shall be generated. Previously, experiments were conducted in NASA drop towers, thereby limiting observation time to O(1-5 sec). The NASA tests exhibited flamelet survival for the entire drop time, suggesting that flamelets (i.e., small cellular flames) might exist, if permitted, for longer time periods. By necessity, experiments were limited to thermally thin cellulose fuels (approximately 0.001 in thick): instabilities could form by virtue of faster spread rates over thin fuels. Unstable behavior was unlikely in the short drop time for thicker fuels. In the International Space Station (ISS), microgravity time is unlimited, so both thin and thick fuels can be tested.

  19. Fire safety in space - Investigating flame spread interaction over wires

    NASA Astrophysics Data System (ADS)

    Citerne, Jean-Marie; Dutilleul, Hugo; Kizawa, Koki; Nagachi, Masashi; Fujita, Osamu; Kikuchi, Masao; Jomaas, Grunde; Rouvreau, Sébastien; Torero, Jose L.; Legros, Guillaume

    2016-09-01

    A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10 cm long samples for up to 20 s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied.

  20. Self Induced Buoyant Blow Off in Upward Flame Spread on Thin Solid Fuels

    NASA Technical Reports Server (NTRS)

    Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Olson, Sandra L.; Ferkul, Paul V.

    2013-01-01

    Upward flame spread experiments were conducted on a thin fabric cloth consisting of 75% cotton and 25% fiberglass. The sample is sandwiched symmetrically with stainless steel plates with the exposed width varying between 2 to 8.8 cm from test to test and >1.5m tall. The bottom edge was ignited resulting in a symmetric two sided flame. For the narrower samples (. 5cm), two sided flame growth would proceed until reaching some limiting value (15-30 cm depending on sample width). Fluctuation or instability of the flame base on one side would initially become visible and then the flame base would retreat downstream and cause extinguishment on one side. Detailed examination of the still images shows that the fuel continues to vaporize from the extinguished side due to the thermally thin nature of the fuel. But, due to the remaining inert fiberglass mesh, which acts as a flashback arrestor, the extinguished side was not able to be reignited by the remaining flame. The remaining flame would then shrink in length due to the reduced heat transfer to the solid to a shorter length. The one-sided flame will spread stably with a constant speed and a constant flame length to the end of the sample. A constant length flame implies that the pyrolysis front and the burnt out fronts move at the same speed. For the wider samples (. 7cm), no one-sided extinction is observed. Two-sided flames spread all the way to the top of the sample. For these wider widths, the flames are still growing and have not reached their limiting length if it exists. Care was taken to minimize the amount of non-symmetries in the experimental configuration. Repeated tests show that blow-off can occur on either side of the sample. The flame growth is observed to be very symmetric during the growth phase and grew to significant length (>10cm) before extinction of the flame on one side. Our proposed explanation of this unusual phenomenon (i.e. stronger two ]sided flame cannot exist but weaker one-sided flame can) is as follows: The observed one-sided extinction is a blow- off induced by buoyant entrainment. It is known that the flammable diffusion flame regime is bounded by quenching and blow ]off limits when varying incoming air velocity. The narrowest samples tested (between 2 and 5 cm) begin within the flammable range, but as the flame grows, the buoyancy driven air velocity increases at the neighborhood of the flame base. The initially stable flame crosses the extinguishment boundary resulting in a flame blow-off. When one-side of the flame extinguishes, the remaining side shrinks due to the reduced heat transfer to the solid. This reduces the induced velocity and the flame becomes stable. It is proposed that this may have implications to upward flame growth beyond this experiment.

  1. Flame spread behavior over combustible thick solid of paper, bagasse and mixed paper/bagasse

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Mohd, Sofian; Sapit, Azwan; Nizam Mohammed, Akmal; Husaini Ismail, Ahmad; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Flame spread behavior on combustible solid is one of important research related to Fire Safety Engineering. Now, there are a lot of combustible solid composed from mixed materials. In this study, experiments have been conducted to investigate flame spread behavior over combustible solid composed by paper, bagasse and mixed paper/bagasse. Experimental data is captured by using video recording and examined flame spread shape and rate. From the results obtained, shows that the different materials produce different flame spread shape and rate. Different flame shape is seen between all types of samples. Flame spread rate of 100% paper is faster than the one of 100% bagasse. Based on the result, it is also inferred that the material composition can be influenced on the flame spread shape and flame spread rate of mixed paper/bagasse.

  2. TIGER Burned Brightly in JAMIC

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Kashiwagi, Takashi

    2001-01-01

    The Transition From Ignition to Flame Growth Under External Radiation in 3D (TIGER- 3D) experiment, which is slated to fly aboard the International Space Station, conducted a series of highly successful tests in collaboration with the University of Hokkaido using Japan's 10-sec JAMIC drop tower. The tests were conducted to test engineering versions of advanced flight diagnostics such as an infrared camera for detailed surface temperature measurements and an infrared spectroscopic array for gas-phase species concentrations and temperatures based on detailed spectral emissions in the near infrared. Shown in the top figure is a visible light image and in the bottom figure is an infrared image at 3.8 mm obtained during the microgravity tests. The images show flames burning across cellulose samples against a slow wind of a few centimeters per second (wind is from right to left). These flow velocities are typical of spacecraft ventilation systems that provide fresh air for the astronauts. The samples are ignited across the center with a hot wire, and the flame is allowed to spread upwind and/or downwind. As these images show, the flames prefer to spread upwind, into the fresh air, which is the exact opposite of flames on Earth, which spread much faster downwind, or with the airflow, as in forest fires.

  3. Polymethylmethacrylate combustion in a narrow channel apparatus simulating a microgravity environment

    NASA Astrophysics Data System (ADS)

    Bornand, Garrett Randall

    Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also compared to results found by Michigan State University's NCA. Flame spread results from the SDSU NCA compare closely to that of the other experimental techniques. Additionally, an infrared camera and species concentration sensors were added to the SDSU NCA and initial results are provided. Fire Dynamics Simulator (FDS) was used to model the combustion of PMMA within the SDSU NCA. Both thin and thick fuel beds were simulated and the numerical results were compared to experimental data. The simulation was then used to determine various results that cannot easily be found with experimentation, including how effectively the NCA simulates microgravity under certain environmental conditions, gas and fuel bed temperatures, heat fluxes, species concentrations, pyrolysis rate, and other various data. The simulation was found to give reasonable results and overall flame spread trends, but could be improved upon with further detailed kinetic parameter studies.

  4. Physics-based modeling of live wildland fuel ignition experiments in the Forced Ignition and Flame Spread Test apparatus

    Treesearch

    C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise

    2017-01-01

    A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...

  5. Radiative Ignition and the Transition to Flame Spread Investigated in the Japan Microgravity Center's 10-sec Drop Shaft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Radiative Ignition and Transition to Spread Investigation (RITSI) is a shuttle middeck Glovebox combustion experiment developed by the NASA Lewis Research Center, the National Institute for Standards and Technology (NIST), and Aerospace Design and Fabrication (ADF). It is scheduled to fly on the third United States Microgravity Payload (USMP-3) mission in February 1996. The objective of RITSI is to experimentally study radiative ignition and the subsequent transition to flame spread in low gravity in the presence of very low speed air flows in two- and three-dimensional configurations. Toward this objective, a unique collaboration between NASA, NIST, and the University of Hokkaido was established to conduct 15 science and engineering tests in Japan's 10-sec drop shaft. For these tests, the RITSI engineering hardware was mounted in a sealed chamber with a variable oxygen atmosphere. Ashless filter paper was ignited during each drop by a tungsten-halogen heat lamp focused on a small spot in the center of the paper. The flame spread outward from that point. Data recorded included fan voltage (a measure of air flow), radiant heater voltage (a measure of radiative ignition energy), and surface temperatures (measured by up to three surface thermocouples) during ignition and flame spread.

  6. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  7. An investigation of flame spread over shallow liquid pools in microgravity and nonair environments

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Sotos, Raymond G.

    1991-01-01

    Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentrations, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.

  8. An Investigation of Flame Spread over Shallow Liquid Pools in Microgravity and Nonair Environments

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Sotos, Raymond G.

    1989-01-01

    Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentration, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.

  9. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  10. Transport and Chemical Effects on Concurrent and Opposed-flow Flame Spread at Microgravity

    NASA Technical Reports Server (NTRS)

    Son, Y.; Honda, L. K.; Ronney, P. D.

    2001-01-01

    Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. The conventional view, as supported by computations and space experiments, is that for quiescent mu-g conditions, the spread rate must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In this work we suggest that radiative transfer from the flame itself, not just from an external source, can lead to steady flame spread at mu-g over thick fuel beds.

  11. Flame Spread and Group-Combustion Excitation in Randomly Distributed Droplet Clouds with Low-Volatility Fuel near the Excitation Limit: a Percolation Approach Based on Flame-Spread Characteristics in Microgravity

    NASA Astrophysics Data System (ADS)

    Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi

    2018-03-01

    Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.

  12. Interactions between flames on parallel solid surfaces

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1995-01-01

    The interactions between flames spreading over parallel solid sheets of paper are being studied in normal gravity and in microgravity. This geometry is of practical importance since in most heterogeneous combustion systems, the condensed phase is non-continuous and spatially distributed. This spatial distribution can strongly affect burning and/or spread rate. This is due to radiant and diffusive interactions between the surface and the flames above the surfaces. Tests were conducted over a variety of pressures and separation distances to expose the influence of the parallel sheets on oxidizer transport and on radiative feedback.

  13. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.

  14. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  15. Premixed Atmosphere and Convection Influences on Flame Inhibition and Combustion (Pacific)

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Ronney, Paul D.

    1997-01-01

    Flame spread over flat solid fuel beds is a useful paradigm for studying the behavior of more complex two-phase nonpremixed flames. For practical applications, two of the most important elements of flame spreading are the effects of (1) the ambient atmosphere (e.g. pressure and composition) and (2) the flow environment on the spread rate and extinction conditions. Concerning (1), studies of flame spread in vitiated air and non-standard atmospheres such as those found in undersea vessels and spacecraft are particularly important for the assessment of fire hazards in these environments as well as determination of the effectiveness of fire suppressants. Concerning (2), the flow environment may vary widely even when no forced flow is present because of buoyancy effects. Consequently, the goal of this work is to employ microgravity (micro g) experiments to extend previous studies of the effects of ambient atmosphere and the flow environment on flame spread through the use of microgravity (micro g) experiments. Because of the considerable differences between upward (concurrent-flow) and downward (opposed-flow) flame spread at 1g (Williams, 1976, Fernandez-Pello, 1984), in this work both upward and downward 1g spread are tested. Two types of changes to the oxidizing atmosphere are considered in this work. One is the addition of sub-flammability-limit concentrations of a gaseous fuel ('partially premixed' atmospheres). This is of interest because in fires in enclosures, combustion may occur under poorly ventilated conditions, so that oxygen is partially depleted from the air and is replaced by combustible gases such as fuel vapors, H2 or CO. Subsequent fire spread over the solid fuel could occur under conditions of varying oxygen and gaseous fuel content. The potential significance of flame spread under vitiated or partially premixed conditions has been noted previously (Beyler, 1984). The second change is the diluent type, which affects the radiative properties of the mixture as well as the Lewis number (Le) of the reactants in the atmosphere, which for oxygen is defined as the thermal diffusivity of the bulk mixture divided by the mass diffusivity of oxygen into the bulk mixture. Understanding the effect of diluent type is desirable because in some undersea and spaceborne habitations, it is desirable to use diluent gases other than nitrogen. Prior experiments have shown that both radiation (Bhattacharjee and Altenkirch, 1993) and Lewis number (Zhang et al, 1992) effects are important in flame spreading problems.

  16. Effect of Longitudinal Oscillations on Downward Flame Spread over Thin Solid Fuels

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Sacksteder, Kurt

    2013-01-01

    Downward flame spread rates over vertically vibrated thin fuel samples are measured in air at one atmospheric pressure under normal gravity. Unlike flame spread against forced-convective flows, the present results show that with increasing vibration acceleration the flame spread rate increases before being blown off at high acceleration levels causing flame extinction. A simple scaling analysis seems to explain this phenomenon, which may have important implications to flammability studies including in microgravity environments.

  17. Prescribed Burn at Pine Bluff Arsenal

    DTIC Science & Technology

    2000-03-01

    length (ft) backfire flame length (ft) hf rate of spread (ch/hr) bf rate of spread (ch/hr) Minimum behavior headfire flame length (ft) backfire... flame length (ft) hf rate of spread (ch/hr) bf rate of spread (ch/hr) 8. FUEL AND WEATHER PRESCRIPTION Source of weather: National Weather Service...and left the site. No spots occurred. Backfire flame lengths were 0.2-3 feet through pine needles and grass. Flanking fire flame lengths were 2-4

  18. Quantitative Infrared Image Analysis Of Simultaneous Upstream and Downstream Microgravity Flame Spread over Thermally-Thin Cellulose in Low Speed Forced Flow

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2013-01-01

    The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.

  19. Investigations into the fire hazard of a composite made from aerated concrete and crushed expanded polystyrene waste

    NASA Astrophysics Data System (ADS)

    Kligys, M.; Laukaitis, A.; Sinica, M.; Sezemanas, G.; Dranseika, N.

    2008-03-01

    The study deals with experimental investigations into the fire hazard of a composite of density 150-350 kg/m3 made of aerated concrete and crushed expanded polystyrene waste. The results of fire tests showed that a single-flame source of low heat output (0.07 kW) did not influence the origination and spread of flame on the surface of test specimens, regardless their density. Upon exposing the specimens to a single burning item of moderate heat output (30.0 kW), during the first 600 s of exposure, neither flaming particles nor droplets originated, nor a lateral flame spread on the long specimen wing was observed. In the case of high heat output (112 kW), the specimens of densities 150 and 250 kg/m3 started to burn, but those of density 150 kg/m3, in addition, lost their integrity.

  20. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  1. An experimental study of the influence of elevated buoyancy levels on flame spread rate over thermally thin cellulosic materials

    NASA Technical Reports Server (NTRS)

    Shang, P. C.; Altenkirch, R. A.; Eichhorn, R.

    1978-01-01

    The role of buoyancy on the flame spread rate over paper and its effect on extinction was studied by changing the gravity level and pressure. It was found that the flame spread rate decreases as the buoyancy induced flow increases. A method for correlating flame spread data using dimensionless parameters is presented. The Damkohler number is shown to be the dependent variable.

  2. Flame spread along thermally thick horizontal rods

    NASA Astrophysics Data System (ADS)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  3. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  4. Transport And Chemical Effects On Concurrent And Opposed-Flow Flame Spread At Microgravity

    NASA Technical Reports Server (NTRS)

    Son, Y.; Zouein, G.; Ronney, P. D.; Gokoglu, S.

    2003-01-01

    Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. With suitable assumptions, deRis showed that the spread rate (S(sub f)) is proportional to the buoyant or forced convection velocity (U) and thus suggests that S(sub f) is indeterminate at mu g (since S(sub f) = U) unless a forced flow is applied. (In contrast, for thermally thin fuels, the ideal S(sub f) is independent of U.) The conventional view, as supported by computations and space experiments, is that for quiescent g conditions, S(sub f) must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In recent work we have found evidence that radiative transfer from the flame itself can lead to steady flame spread at mu g over thick fuel beds. Our current work focuses on refining these experiments and a companion modeling effort toward the goal of a space flight experiment called Radiative Enhancement Effects on Flame Spread (REEFS) planned for the International Space Station (ISS) c. 2007.

  5. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  6. Sounding Rocket Microgravity Experiments Elucidating Diffusive and Radiative Transport Effects on Flame Spread over Thermally-Thick Solids

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.

    2003-01-01

    A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.

  7. Radiative Enhancement Effects on Flame Spread (REEFS) Project Studied "Green House" Effects on Fire Spread

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Ronney, Paul

    2003-01-01

    The Radiative Enhancement Effects on Flame Spread (REEFS) project, slated for flight aboard the International Space Station, reached a major milestone by holding its Science Concept Review this year. REEFS is led by principal investigator Paul Ronney from the University of Southern California in conjunction with a project team from the NASA Glenn Research Center. The study is focusing on flame spread over flat solid fuel beds to improve our understanding of more complex fires, such as those found in manned spacecraft and terrestrial buildings. The investigation has direct implications for fire safety, both for space and Earth applications, and extends previous work with emphasis on the atmospheres and flow environments likely to be present in fires that might occur in microgravity. These atmospheres will contain radiatively active gases such as carbon dioxide (CO2) from combustion products, and likely gaseous fuels such as carbon monoxide (CO) from incomplete combustion of solid fuel, as well as flows induced by ventilation currents. During tests in the 2.2-Second Drop Tower and KC-135 aircraft at Glenn, the principal investigator introduced the use of foam fuels for flame spread experiments over thermally thick fuels to obtain large spread rates in comparison to those of dense fuels such as PMMA. This enables meaningful results to be obtained even in the 2.2 s available in drop tower experiments.

  8. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  9. Prediction of Three-Dimensional Downward Flame Spread Characteristics over Poly(methyl methacrylate) Slabs in Different Pressure Environments.

    PubMed

    Zhao, Kun; Zhou, Xiao-Dong; Liu, Xue-Qiang; Lu, Lei; Wu, Zhi-Bo; Peng, Fei; Ju, Xiao-Yu; Yang, Li-Zhong

    2016-11-22

    The present study is aimed at predicting downward flame spread characteristics over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA slabs were conducted at five locations with different altitudes, which provide different pressures. Pressure effects on the flame spread rate, profile of pyrolysis front and flame height were analyzed at all altitudes. The flame spread rate in the steady-state stage was calculated based on the balance on the fuel surface and fuel properties. Results show that flame spread rate increases exponentially with pressure, and the exponent of pressure further shows an increasing trend with the thickness of the sample. The angle of the pyrolysis front emerged on sample residue in the width direction, which indicates a steady-burning stage, varies clearly with sample thicknesses and ambient pressures. A global non-dimensional equation was proposed to predict the variation tendency of the angle of the pyrolysis front with pressure and was found to fit well with the measured results. In addition, the dependence of average flame height on mass burning rate, sample dimension and pressure was proposed based on laminar diffusion flame theory. The fitted exponent of experimental data is 1.11, which is close to the theoretical value.

  10. A study of flame spread in engineered cardboard fuelbeds: Part I: Correlations and observations

    Treesearch

    Mark A. Finney; Jason Forthofer; Isaac C. Grenfell; Brittany A. Adam; Nelson K. Akafuah; Kozo Saito

    2013-01-01

    Wind tunnel laboratory fires spreading through laser-cut cardboard fuel beds were instrumented and analyzed for physical processes associated with spread. Flames in the span-wise direction appeared as a regular series of peaks-and-troughs that scaled directly with flame length. Flame structure in the stream-wise direction fluctuated with the forward advection of...

  11. Computational predictions of flame spread over alcohol pools

    NASA Technical Reports Server (NTRS)

    Schiller, D. N.; Ross, H. D.; Sirignano, W. A.

    1993-01-01

    The effects of buoyancy and thermocapillarity on pulsating and uniform flame spread above n-propanol fuel pools have been studied using a numerical model. Data obtained indicate that the existence of pulsating flame spread is dependent upon the formation of a gas-phase recirculation cell which entrains evaporating fuel vapor in front of the leading edge of the flame. The size of the recirculation cell which is affected by the extent of liquid motion ahead of the flame, is shown to dictate whether flame spread is uniform or pulsating. The amplitude and period of the flame pulsations are found to be proportional to the maximum extent of the flow head. Under conditions considered, liquid motion was not affected appreciably by buoyancy. Horizontal convection in the liquid is the dominant mechanism for transporting heat ahead of the flame for both the pulsating and uniform regimes.

  12. Analysis of flame spread over multicomponent combustibles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, H.; Sato, J.

    1985-01-01

    A theoretical model of volatile component diffusion in the condensed phase is carried out in order to form a basis for predicting the flame spread rate in thermally thick multicomponent combustibles in a non-fluid condensed phase. The fuels could be, e.g., crude oil, heavy oil, or light oil. Mass transfer occurs only by diffusion so the gas phase volatile concentration at the surface is estimated from the condensed phase volatile concentration and the surface temperature, which increases close to the leading flame edge. The flame spread rate is assumed steady. The velocity of the flame spread is shown to bemore » a function of the initial condensed phase temperature and the temperature at the leading flame edge.« less

  13. Experimental Verification of Material Flammability in Space

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Balashov, Y. V.; Andreeva, T. V.; Melikhov, A. S.

    1999-01-01

    The flammability in microgravity of three US-furnished materials, Delrin, polymethylmethacrylate (PMMA), and high-density polyethylene, was determined using a Russian-developed combustion tunnel on Mir. Four 4.5-mm-diameter cylindrical samples of each plastic were ignited under concurrent airflow (in the direction of flame spread) with velocities from no flow to 8.5 cm/s. The test results identify a limiting air-flow velocity V(sub lim) for each material, below which combustion ceases. Nominal values are V(sub lim) < 0.3 cm/s for Delrin, 0.5 cm/s for PMMA, and 0.3 to 0.5 cm/s for polyethylene. These values are lower than those obtained in prior ground testing. Nevertheless, they demonstrate that flow shutoff is effective for extinguishment in the microgravity environment of spacecraft. Microgravity test results also show that the plastic materials maintain a stable melt ball within the spreading flame zone. In general, as the concurrent flow velocity V decreases, the flame-spread rate V(sub F) decreases, from an average (for all three materials) of V(sub F)= 0.5-0.75 mm/s at V = 8.5 cm/s to V(sub F)= 0.05-0.01 mm/s at V = 0.3-0.5 cm/s. Also, as V decreases, the flames become less visible but expand, increasing the probability of igniting an adjacent surface.

  14. The role of boron in flame-retardant treatments

    Treesearch

    S. L. LeVan; H. C. Tran

    1990-01-01

    Flame retardants for wood alter the combustion properties of wood to reduce surface flame spread. Flame retardant chemicals cause acid catalyzed dehydration reactions in wood to facilitate the formation of char and reduce the effective heat of combustion, resulting in lower heat release and flame spread. Boron compounds can also form glassy fiis that may inhibit mass...

  15. Heat transfer and fire spread

    Treesearch

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  16. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  17. Localized Ignition And Subsequent Flame Spread Over Solid Fuels In Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, T.; Nakamura, Y.; Prasad, K.; Baum, H.; Olson, S.; Fujita, O.; Nishizawa, K.; Ito, K.

    2003-01-01

    Localized ignition is initiated by an external radiant source at the middle of a thin solid sheet under external slow flow, simulating fire initiation in a spacecraft with a slow ventilation flow. Ignition behavior, subsequent transition simultaneously to upstream and downstream flame spread, and flame growth behavior are studied theoretically and experimentally. There are two transition stages in this study; one is the first transition from the onset of the ignition to form an initial anchored flame close to the sample surface, near the ignited area. The second transition is the flame growth stage from the anchored flame to a steady fire spread state (i.e. no change in flame size or in heat release rate) or a quasi-steady state, if either exists. Observations of experimental spot ignition characteristics and of the second transition over a thermally thin paper were made to determine the effects of external flow velocity. Both transitions have been studied theoretically to determine the effects of the confinement by a relatively small test chamber, of the ignition configuration (ignition across the sample width vs spot ignition), and of the external flow velocity on the two transitions over a thermally thin paper. This study is currently extending to two new areas; one is to include a thermoplastic sample such poly(methymethacrylate), PMMA, and the other is to determine the effects of sample thickness on the transitions. The recent results of these new studies on the first transition are briefly reported.

  18. Flame spread over thick polymethylmethacrylate samples in a simulated and actual microgravity environment

    NASA Astrophysics Data System (ADS)

    Shah, Tirthesh Jayesh

    The NASA Burning and Suppression of Solids-II (BASS II) experiment examines the combustion of different solid materials and material geometries in microgravity. While flames in microgravity are driven by diffusion and weak advection due to crew movements and ventilation, the current NASA spacecraft material selection test method (NASA-STD- 6001 Test 1) is driven by buoyant forces as gravity is present. The overall goal of this project is to understand the burning of intermediate and thick fuels in microgravity, and devise a normal gravity test to apply to future materials. Clear cast polymethylmethacrylate (PMMA) samples 10 cm long by 1 or 2 cm wide with thicknesses ranging from 1-5 mm were investigated. PMMA is the ideal choice since it is widely used and we know its stoichiometric chemistry. Tests included both one sided and two sided burns. Samples are ignited by heating a wire behind the sample. The samples are burned in a flow duct within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) to ensure true microgravity conditions. The experiment takes place in opposed flow with varying Oxygen concentrations and flow velocities. Flames are recorded on two cameras and later tracked to determine spread rate. Currently we are modeling combustion of PMMA using Fire Dynamics Simulator (FDS 5.5.3) and Smokeview. The entire modelling for BASS-II is done in DNS mode because of the laminar conditions and small domain. In DNS mode the Navier Stokes equations are solved without the Turbulence model. The model employs the same test sample and MSG geometry as the experiment; but in 2D. The experimental data gave upstream velocity at several points using an anemometer. A flow profile for the inlet velocity is obtained using Matlab and input into the model. The flame spread rates obtained after tracking are then compared with the experimental data and the results follow the trends but the spread rates are higher.

  19. Modeling of Ceiling Fire Spread and Thermal Radiation.

    DTIC Science & Technology

    1981-10-01

    under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8

  20. Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.

    2003-01-01

    Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.

  1. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  2. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Yeboah, Yaw D.; Malbrue, Courtney; Savage, Melane; Liao, Bo; Ross, Howard D. (Technical Monitor)

    2001-01-01

    This work is being conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aims at providing data to supplement the ongoing NASA research activities on fire spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. The fabrication, installation, and testing were completed during this reporting period. The system shakedown and detailed quantitative measurements with High Speed Video and Particle Image Velocimetry (PIV) systems using butanol as fuel were performed. New and interesting results, not previously reported in the literature, were obtained from the experiments using a modified NASA tray and butanol as fuel. Three distinct flame spread regimes, as previously reported, were observed. These were the pseudo-uniform regime below 20 C, the pulsating regime between 22 and 30 C and the uniform regime above about 31 C. In the pulsating regime the jump velocity appeared to be independent of the pool temperature. However, the retreat velocity between jumps appeared to depend on the initial pool temperature. The flame retreated before surging forwards with increasing brightness. Previous literature reported this phenomenon only under microgravity conditions. However, we observed such behavior in our normal gravity experiments. Mini-pulsations behind the flame front were also observed. Two or three of these pulsations were observed within a single flame front pulsating time period. The velocity vector maps of the gas and liquid phases ahead, during, and behind the flame front were characterized. At least one recirculation cell was observed right below the flame front.The size of the liquid phase vortex (recirculation cell) below the flame front appeared to decrease with increasing initial pool temperature. The experiments also showed how multiple vortices developed in the liquid phase. A large recirculation cell, which generally spins counterclockwise as the flame spread from right to left, was observed ahead of and near the flame front in the gas phase. Detailed quantitative measurements will be undertaken with the LDV and PIV systems using the modified NASA tray and propanol.

  3. The starting transient of solid propellant rocket motors with high internal gas velocities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.

    1973-01-01

    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.

  4. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  5. Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth

    NASA Technical Reports Server (NTRS)

    Kim, Inchul; Sirignano, William A.

    1999-01-01

    This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.

  6. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  7. A model of concurrent flow flame spread over a thin solid fuel

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1993-01-01

    A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel. These heat losses lead to lower flame temperatures, and ultimately, extinction. This extinction mechanism differs from that of blowoff, where the flame is unable to be stabilized due to the high flow velocity.

  8. Effects of pressure, oxygen concentration, and forced convection on flame spread rate of Plexiglas, Nylon and Teflon

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.

    1974-01-01

    Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.

  9. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Yeboah, Yaw D.

    2003-01-01

    This project was conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aimed at providing data to supplement the ongoing NASA research activities on flame spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. During this investigation, the detailed physics of flame spread across liquid pools was revealed using particle image velocimetry (PIV), 3-dimensional Laser Doppler velocimetry (LDV) and high-speed video imaging system (HSVS). Flow fields (front and side views) of both the liquid and gas phases were visually investigated for the three subflash regimes of flame spread behavior. Some interesting findings obtained from the front and side views on flame spread across butanol pools are presented. PIV results showed the size of the transient vortex in the liquid phase near the flame front varied with the initial pool temperature. The transient vortex ahead of the flame front in the gas phase was, for the first time, clearly observed located just within 0-3 mm above the liquid surface and its size was dependent on the initial pool temperature. We calculated the flow velocity at 1 mm below the liquid surface near the flame front and inferred the generation mechanism of the vortex in the gas phase. Finally, after comparison of the flow velocity of the liquid surface and the flame spread rate, a reasonable explanation to the formation mechanism of the pulsating characteristic was proposed. This explanation is compatible with the previous numerical calculations and deductions.

  10. An experimental study of opposed flow diffusion flame extinction over a thin fuel in microgravity. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1989-01-01

    The flame spread and flame extinction characteristics of a thin fuel burning in a low-speed forced convective environment in microgravity were examined. The flame spread rate was observed to decrease both with decreasing ambient oxygen concentration as well as decreasing free stream velocity. A new mode of flame extinction was observed, caused by either of two means: keeping the free stream velocity constant and decreasing the oxygen concentration, or keeping the oxygen concentration constant and decreasing the free stream velocity. This extinction is called quenching extinction. By combining this data together with a previous microgravity quiescent flame study and normal-gravity blowoff extinction data, a flammability map was constructed with molar percentage oxygen and characteristic relative velocity as coordinates. The Damkohler number is not sufficient to predict flame spread and extinction in the near quench limit region.

  11. Prediction of fire growth on furniture using CFD

    NASA Astrophysics Data System (ADS)

    Pehrson, Richard David

    A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.

  12. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  13. Experimental study on flame propagation characteristics of Hydrogen premixed gas in gas pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Danzhu; Li, Zhuang; Jia, Fengrui; Li, Zhou

    2018-06-01

    Hydrogen is the cleanest high-energy gas fuel, and also is the main industrial material. However, hydrogen is more explosive and more powerful than conventional gas fuels, which restricts its application. In particular, the expansion of premixed combustion under a strong constraint is more complicated, the reaction spreads faster. The flame propagation characteristics of premixed hydrogen/air were investigated by experiment. The mechanism of reaction acceleration is discussed, and then the speed of the flame propagation and the reaction pressure were tested and analysed.

  14. Solid surface combustion experiment flame spread in a quiescent, microgravity environment implications of spread rate and flame structure

    NASA Technical Reports Server (NTRS)

    Bundy, Matthew; West, Jeff; Thomas, Peter C.; Bhattacharjee, Subrata; Tang, Lin; Altenkirch, Robert A.; Sacksteder, Kurt

    1995-01-01

    A unique environment in which flame spreading, a phenomenon of fundamental, scientific interest, has importance to fire safety is that of spacecraft in which the gravitational acceleration is low compared with that of the Earth, i.e., microgravity. Experiments aboard eight Space Shuttle missions between October 1990 and February 1995 were conducted using the Solid Surface Combustion Experiment (SSCE) payload apparatus in an effort to determine the mechanisms of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy induced or externally imposed oxidizer flow. The overall SSCE effort began in December of 1984. The SSCE apparatus consists of a sealed container, approximately 0.039 cu m, that is filled with a specified O2/N2 mixture at a prescribed pressure. Five of the experiments used a thin cellulosic fuel, ashless filter paper, 3 cm wide x 10 cm long, 0.00825 cm half-thickness, ignited in five different ambient conditions. Three of the experiments, the most recent, used thick polymethylmethacrylate (PMMA) samples 0.635 cm wide x 2 cm long, 0.32 cm half-thickness. Three experiments, STS 41, 40 and 43, were designed to evaluate the effect of ambient pressure on flame spread over the thin cellulosic fuel while flights STS 50 and 47 were at the same pressure as two of the earlier flights but at a lower oxygen concentration in order to evaluate the effect of ambient oxygen level on the flame spread process at microgravity. For the PMMA flights, two experiments, STS 54 and 63, were at the same pressure but different oxygen concentrations while STS 64 was at the same oxygen concentration as STS 63 but at a higher pressure. Two orthogonal views of the experiments were recorded on 16 mm cine-cameras operating at 24 frames/s. In addition to filmed images of the side view of the flames and surface view of the burning samples, solid- and gas-phase temperatures were recorded using thermocouples. The experiment is battery powered and follows an automated sequence upon activation by the Shuttle Crew. In this study we separate the SSCE data into two groups according to the fuel type: (1) thin cellulose; and (2) thick PMMA. The experimental spread rates are compared with prediction from a number of models in an effort to uncover the important physics that characterize microgravity flame spread. Both steady and unsteady solutions are employed to explore the flame evolution, especially for thick fuels. Finally, the flame structure in downward spread is compared with the microgravity flame structure and modeling results to delineate the difference between the two configurations and the influence of normal gravity.

  15. Effects of season on ignition of live wildland fuels using the forced ignition and flame spread test apparatus

    Treesearch

    S. McAllister; D. R. Weise

    2017-01-01

    An understanding of what variables affect the ignition of live wildland fuels is crucial to predicting crown fire spread, the most poorly understood type of wildland fire. Ignition tests were performed over the course of an entire year for ten species (three species in year one, seven in year two) to evaluate seasonal changes in flammability. Ignition delay and mass...

  16. Development of fire-resistant wood structural panels

    NASA Technical Reports Server (NTRS)

    Vaughan, T. W.; Etzold, R.

    1977-01-01

    Structural panels made with Xylok 210 resin as the binder had a burn-through resistance at least equal to the structural panels made with Kerimid 500. Therefore, because of its comparative ease of handling, Xylok 210 was selected as the resin binder to provide the baseline panel for the study of a means of improving the flame-spread resistance of the structural panels. The final resin-filler system consisted of Xylok 210 binder with the addition of ammonium oxalate and ammonium phosphate to the strands of the surface layers, using 24% of each salt based upon the air-dry weight of the strands. This system resulted in a panel with a flame-spread code of about 60, a Class 2 classification. A standard phenolic based structural panel had a flame-spread greater than 200 for laboratory prepared panels. The burn-through tests indicated an average burn-through time of 588 seconds for the specimens made with the final system. This compares to an average burn-through time of 287 seconds for the standard phenolic base structural specimen. One full-size panel was made with the final system.

  17. Uncertainty in Wildfire Behavior

    NASA Astrophysics Data System (ADS)

    Finney, M.; Cohen, J. D.

    2013-12-01

    The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.

  18. Thickness and Fuel Preheating Effects on Material Flammability in Microgravity from the BASS Experiment

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.; Olson, Sandra L.; Takahashi, Fumiaki; Endo, Makoto; Johnson, Michael C.; T'ien, James S.

    2013-01-01

    The Burning and Suppression of Solids (BASS) experiment was performed on the International Space Station. Microgravity combustion tests burning thin and thick flat samples, acrylic spheres, and candles were conducted. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and nitrogen dilution on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. In some cases, a jet of nitrogen was introduced to attempt to extinguish the flame. Microgravity flames were found to be especially sensitive to air flow speed in the range 0 to 5 cms. The gas phase response is much faster compared to the solid and so as the flow speed is changed, the flame responds with almost no delay. At the lowest speeds examined (less than 1 cms) all the flames tended to become dim blue and very stable. However, heat loss at these very low convective rates is small so the flames can burn for a long time. At moderate flow speeds (between about 1 and 5 cms) the flame continually heats the solid fuel resulting in an increasing fuel temperature, higher rate of fuel vaporization, and a stronger, more luminous flame as time progresses. Only the smallest flames burning acrylic slabs appeared to be adversely influenced by solid conductive heat loss, but even these burned for over 5 minutes before self-extinguishing. This has implications for spacecraft fire safety since a tiny flame might be undetected for a long time. While the small flame is not particularly hazardous if it remains small, the danger is that it might flare up if the air convection is suddenly increased or if the flame spreads into another fuel source.

  19. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition delay in the lean case (φ = 0.6) is larger when compared to the rich case (φ = 0.75), in correlation with the instantaneous flame stretch. Partially premixed combustion is simulated for cases where the transverse profile of the inflow equivalence ratio is variable. The simulations show that for mixtures leaner in the core the vortical pattern tends towards anti-symmetry and the heat release decreases, resulting also in instability of the flame. For mixtures richer in the core, the flame displays sinusoidal flapping that results in larger wake spreading. The numerical simulations presented in this study employed simple, one-step chemical mechanisms. More accurate predictions of flame stability will require the use of detailed chemistry, raising the computational cost of the simulation. To address this issue, a novel algorithm for training Artificial Neural Networks (ANN) for prediction of the chemical source terms has been implemented and tested. Compared to earlier methods, such as reaction rate tabulation, the main advantages of the ANN method are in CPU time and disk space and memory reduction. The results of the testing indicate reasonable algorithm accuracy although some regions of the flame exhibit relatively significant differences compared to direct integration.

  20. Nomographs for estimating surface fire behavior characteristics

    Treesearch

    Joe H. Scott

    2007-01-01

    A complete set of nomographs for estimating surface fire rate of spread and flame length for the original 13 and new 40 fire behavior fuel models is presented. The nomographs allow calculation of spread rate and flame length for wind in any direction with respect to slope and allow for nonheading spread directions. Basic instructions for use are included.

  1. Convective Ignition of Propellant Cylinders in a Developing Cross-Flow Field.

    DTIC Science & Technology

    1980-09-01

    Ignition. .. ...... ..... 69 (ii) Polymer Ignition .. ....... ....... 72 F . Flame Spreading and Blow -off Phenomena .. ...... 72 G. Ignition and Flame...polymeric fuel binder for mechanical integrity. It also includes solid additives (like aluminum) and various catalysts and plasticizing agents . Ballistic...placed on distinguishing the ignition sites and the flame spreading (and blow off) tendencies as functions of the external flow velocity pressure and

  2. Characterization of flame radiosity in shrubland fires

    Treesearch

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro

    2011-01-01

    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  3. Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)

    2001-01-01

    Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.

  4. An Investigation of the IMO Spread of Flame Test Method.

    DTIC Science & Technology

    1992-03-01

    Sensors: Medtherm Model 64-3-20 Radiation Pyrometer: Honeywell, Model 939A4 Minature Radiamatic Pyrometer. Data Acquisition: Hewlett Packard Model 7100B...radiant panel. Circular holes were cut along the dummy specimen center line at 50, 200, 350, 500 and 650 mm to accommodate the Medtherm flux sensor...char line 75 0-250 Complete black char; pieces are exploding and separating from backing; heavy smoke 120 Explosive delamination; no flame 130 300

  5. Opposed-flow flame spread and extinction in mixed-convection boundary layers

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Wedha-Nayagam, M.

    1989-01-01

    Experimental data for flame spread down thin fuel samples in an opposing, mixed-convection, boundary-layer flow are analyzed to determine the gas-phase velocity that characterizes how the flame reacts as it spreads toward the leading edge of the fuel sample into a thinning boundary layer. In the forced-flow limit where the cube of the Reynolds number divided by the Grashof number, Re exp 3/Gr, is large, L(q)/L(e), where L(q) is a theoretical flame standoff distance at extinction and L(e) is the measured distance from the leading edge of the sample where extinction occurs, is found to be proportional to Re exp n with n = -0.874 and Re based on L(e). The value of n is established by the character of the flow field near the leading edge of the flame. The Re dependence is used, along with a correction for the mixed-convection situation where Re exp 3/Gr is not large, to construct a Damkohler number with which the measured spread rates correlate for all values of Re exp 3/Gr.

  6. Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.

    1999-01-01

    The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the experiments is to obtain data of ignition delay and flame spread rate at low flow velocities (0.1 to 0.2 m/s), which cannot be obtained under normal gravity because of the natural convection induced flows (approx. 0.5 m/s). Due to the limited reduced gravity time, the data can only be obtained for high radiant fluxes, and are consequently limited in scope. These tests do, however, provide insight into the flammability diagram characteristics at low velocity and reduced gravity, and also into the implications of the flow-dependence of the flammability properties under environments similar to those encountered in space facilities.

  7. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hardboard, (2) Flame-spread rating-25 to 200, (i) Painted metal; (ii) Mineral-base acoustic tile; (iii) 5/16-inch or thicker unfinished gypsum wallboard (both latex- or alkyd-painted); and (iv) Ceramic tile. (The...

  8. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hardboard, (2) Flame-spread rating-25 to 200, (i) Painted metal; (ii) Mineral-base acoustic tile; (iii) 5/16-inch or thicker unfinished gypsum wallboard (both latex- or alkyd-painted); and (iv) Ceramic tile. (The...

  9. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hardboard, (2) Flame-spread rating-25 to 200, (i) Painted metal; (ii) Mineral-base acoustic tile; (iii) 5/16-inch or thicker unfinished gypsum wallboard (both latex- or alkyd-painted); and (iv) Ceramic tile. (The...

  10. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hardboard, (2) Flame-spread rating-25 to 200, (i) Painted metal; (ii) Mineral-base acoustic tile; (iii) 5/16-inch or thicker unfinished gypsum wallboard (both latex- or alkyd-painted); and (iv) Ceramic tile. (The...

  11. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hardboard, (2) Flame-spread rating-25 to 200, (i) Painted metal; (ii) Mineral-base acoustic tile; (iii) 5/16-inch or thicker unfinished gypsum wallboard (both latex- or alkyd-painted); and (iv) Ceramic tile. (The...

  12. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Treesearch

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  13. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    NASA Technical Reports Server (NTRS)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  14. Experimental Measurements of Two-dimensional Planar Propagating Edge Flames

    NASA Technical Reports Server (NTRS)

    Villa-Gonzalez, Marcos; Marchese, Anthony J.; Easton, John W.; Miller, Fletcher J.

    2007-01-01

    The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, free-layer flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.

  15. Role of buoyant flame dynamics in wildfire spread.

    PubMed

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D

    2015-08-11

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling.

  16. Role of buoyant flame dynamics in wildfire spread

    PubMed Central

    Finney, Mark A.; Cohen, Jack D.; Forthofer, Jason M.; McAllister, Sara S.; Gollner, Michael J.; Gorham, Daniel J.; Saito, Kozo; Akafuah, Nelson K.; Adam, Brittany A.; English, Justin D.

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  17. Observations of energy transport and rate of spreads from low-intensity fires in longleaf pine habitat-RxCADRE 2012

    Treesearch

    Bret Butler; C. Teske; Dan Jimenez; Joseph O' Brien; Paul Sopko; Cyle Wold; Mark Vosburgh; Ben Hornsby; E. Louise Loudermilk

    2016-01-01

    Wildland fire rate of spread (ROS) and intensity are determined by the mode and magnitude of energy transport from the flames to the unburned fuels. Measurements of radiant and convective heating and cooling from experimental fires are reported here. Sensors were located nominally 0.5mabove ground level. Flame heights varied from 0.3 to 1.8 m and flaming zone depth...

  18. Structure of diffusion flames from a vertical burner

    Treesearch

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  19. Ignitability analysis using the cone calorimeter and lift apparatus

    Treesearch

    Mark A. Dietenberger

    1996-01-01

    The irradiance plotted as function of time to ignition for wood materials tested in the Cone Calorimeter (ASTM E1354) differs signiticantly from that tested in the Lateral Ignition and Flame spread Test (LIFT) apparatus (ASTM E1321). This difference in piloted ignitabilty is primarily due to the difference in forced convective cooling of the specimen tested in both...

  20. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  1. Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire

    NASA Technical Reports Server (NTRS)

    West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.

    1995-01-01

    The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.

  2. Burning Plastics Investigated in Space for Unique US/Russian Cooperative Project

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    2000-01-01

    It is well known that fires in the low-gravity environment of Earth-orbiting spacecraft are different from fires on Earth. The flames lack the familiar upward plume, which is the result of gravitational buoyancy. These flames, however, are strongly influenced by minor airflow currents. A recent study conducted in low gravity (microgravity) on the Russian orbital station Mir used burning plastic rods mounted in a small chamber with a controllable fan to expose the flame to airflows of different velocities. In this unique project, a Russian scientific agency, the Keldysh Research Center, furnished the apparatus and directed the Mir tests, while the NASA Glenn Research Center at Lewis Field provided the test materials and the project management. Reference testing and calibrations in ground laboratories were conducted jointly by researchers at Keldysh and at the NASA Johnson Space Center's White Sands Test Facility. Multiple samples of three different plastics were burned in the tests: Delrin, a common material for valve bodies; PMMA, a plastic "glass"; and polyethylene, a familiar material for containers and films. Each burned with a unique spherical or egg-shaped flame that spread over the rod. The effect of varying the airflow was dramatic. At the highest airflow attainable in the combustion chamber, nearly 10 cm/sec (a typical ventilation breeze), the flames were bright and strong. As airflow velocity decreased, the flames became shorter but wider. In addition, the flames became less bright, and for PMMA and polyethylene, they showed two colors, a bright part decreasing in volume and a nearly invisible remainder (see the photographs). Finally, at a very low velocity, the flames extinguished. For the plastics tested, this minimum velocity was very low, around 0.3 to 0.5 cm/sec. This finding confirms that at least a slight airflow is required to maintain a flame in microgravity for these types of materials.

  3. Ambient curing fire resistant foams

    NASA Technical Reports Server (NTRS)

    Hamermesh, C. L.; Hogenson, P. A.; Tung, C. Y.; Sawko, P. M.; Riccitiello, S. R.

    1979-01-01

    The feasibility of development of an ambient curing foam is described. The thermal stability and flame spread index of the foams were found to be comparable to those of the high-temperature cured polyimide foams by Monsanto two-foot tunnel test and NASA T-3 Fire test. Adaptation of the material to spray in place applications is described

  4. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    PubMed

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    NASA Technical Reports Server (NTRS)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  6. Reflight of the Solid Surface Combustion Experiment: Opposed-Flow Flame Spread Over Cylindrical Fuels

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.

  7. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  8. Warning signals for eruptive events in spreading fires

    PubMed Central

    Fox, Jerome M.; Whitesides, George M.

    2015-01-01

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–fire coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests). PMID:25675491

  9. Warning signals for eruptive events in spreading fires.

    PubMed

    Fox, Jerome M; Whitesides, George M

    2015-02-24

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).

  10. Warning signals for eruptive events in spreading fires

    DOE PAGES

    Fox, Jerome M.; Whitesides, George M.

    2015-02-09

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less

  11. Warning signals for eruptive events in spreading fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Jerome M.; Whitesides, George M.

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less

  12. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    NASA Technical Reports Server (NTRS)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  13. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    NASA Astrophysics Data System (ADS)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.

  14. Solid Surface Combustion Experiment Completes a Series of Eight Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Solid Surface Combustion Experiment (SSCE) was the first combustion experiment to fly in the space shuttle and the first such experiment in the NASA spaceflight program since Skylab. SSCE was actually a series of experiments designed to begin to characterize flame spreading over solid fuels in microgravity and the differences of this flame spreading from normal gravity behavior. These experiments should lead to a better understanding of the physical processes involved--increasing our understanding of fire behavior, both in space and on Earth. SSCE results will help researchers evaluate spacecraft fire hazards. These experiments were conceived by the principal investigator, Professor Robert A. Altenkirch, Dean of Engineering at Washington State University. In the first five flights, the fuel sample--ashless filter paper instrumented with three thermocouples--was mounted in a sealed chamber filled with a 50-percent or 35-percent mixture of oxygen in nitrogen at pressures of 1.0, 1.5, and 2.0 atm. In the next three flights, a polymethyl methacrylate (plexiglass) fuel was instrumented with three thermocouples and tested in a 70-percent or 50-percent mixture of oxygen and nitrogen at pressures of 1.0 and 2.0 atm. SSCE is a self-contained, battery-operated experiment that can be flown either in the shuttle middeck or in the Spacelab module. More information about the hardware configuration have been published. This past year, the final two of eight flights were completed on STS-64 and STS-63. The NASA Lewis Research Center designed and built the SSCE payload and performed engineering, testing, scientific, and flight operations support. The SSCE project was supported in some way by nearly every major sector of Lewis' organization. Professor Altenkirch developed a numerical simulation of the flame-spreading process from first principles (of fluid mechanics, heat transfer, and reaction kinetics). The spread rates, flame shape, and thermodynamic data from the SSCE flights are being compared directly with the results of the computational model. Results from the eight flights will be used to formulate an improved solid-phase pyrolysis model. In addition, some results of the flights have been published and presented at international combustion symposiums. Additional solid fuel combustion experiments are being investigated for future tests with the existing hardware.

  15. Laboratory modeling of aspects of large fires

    NASA Astrophysics Data System (ADS)

    Carrier, G. F.; Fendell, F. E.; Fleeter, R. D.; Gat, N.; Cohen, L. M.

    1984-04-01

    The design, construction, and use of a laboratory-scale combustion tunnel for simulating aspects of large-scale free-burning fires are described. The facility consists of an enclosed, rectangular-cross section (1.12 m wide x 1.27 m high) test section of about 5.6 m in length, fitted with large sidewall windows for viewing. A long upwind section permits smoothing (by screens and honeycombs) of a forced-convective flow, generated by a fan and adjustable in wind speed (up to a maximum speed of about 20 m/s prior to smoothing). Special provision is made for unconstrained ascent of a strongly buoyant plume, the duct over the test section being about 7 m in height. Also, a translatable test-section ceiling can be used to prevent jet-type spreading into the duct of the impressed flow; that is, the wind arriving at a site (say) half-way along the test section can be made (by ceiling movement) approximately the same as that at the leading edge of the test section with a fully open duct (fully retracted ceiling). Of particular interest here are the rate and structure of wind-aided flame spread streamwise along a uniform matrix of vertically oriented small fuel elements (such as toothpicks or coffee-strirrers), implanted in clay stratum on the test-section floor; this experiment is motivated by flame spread across strewn debris, such as may be anticipated in an urban environment after severe blast damage.

  16. Solid Surface Combustion Experiment

    NASA Image and Video Library

    1994-09-12

    STS064-10-011 (12 Sept. 1994) --- The Solid Surface Combustion Experiment (SSCE), designed to supply information on flame spread over solid fuel surfaces in the reduced-gravity environment of space, is pictured during flight day four operations. The middeck experiment measured the rate of spreading, the solid-phase temperature, and the gas-phase temperature of flames spreading over rectangular fuel beds. STS-64 marked the seventh trip into space for the Lewis Research Center experiment. Photo credit: NASA or National Aeronautics and Space Administration

  17. Modeling flame structure in wildland fires using the one-dimensional turbulence model

    Treesearch

    David O. Lignell; Elizabeth I. Monson; Mark A. Finney

    2010-01-01

    The mechanism of flame propagation in wildland fire fuel beds is of critical importance for understanding and quantifying fire spread rates. Recent observations and experiments have indicated the dominance of flame propagation by direct contact between flames and unburnt fuel, as opposed to propagation via radiative heating alone. It is postulated that effects of...

  18. Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics

    NASA Astrophysics Data System (ADS)

    Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.

    2012-01-01

    Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.

  19. Users Guide for Fire Image Analysis System - Version 5.0: A Tool for Measuring Fire Behavior Characteristics

    Treesearch

    Carl W. Adkins

    1995-01-01

    The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.

  20. Model of large pool fires.

    PubMed

    Fay, J A

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  1. HRR Upgrade to mass loss calorimeter and modified Schlyter test for FR Wood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman

    2013-01-01

    Enhanced Heat Release Rate (HRR) methodology has been extended to the Mass Loss Calorimeter (MLC) and the Modified Schlyter flame spread test to evaluate fire retardant effectiveness used on wood based materials. Modifications to MLC include installation of thermopile on the chimney walls to correct systematic errors to the sensible HRR calculations to account for...

  2. Extinction Criteria for Opposed-Flow Flame Spread in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Subrata; Paolini, Chris; Wakai, Kazunori; Takahashi, Shuhei

    2003-01-01

    A simplified analysis is presented to extend a previous work on flame extinction in a quiescent microgravity environment to a more likely situation of a mild opposing flow. The energy balance equation, that includes surface re-radiation, is solved to yield a closed form spread rate expression in terms of its thermal limit, and a radiation number that can be evaluated from the known parameters of the problem. Based on this spread rate expression, extinction criterions for a flame over solid fuels, both thin and thick, have been developed that are qualitatively verified with experiments conducted at the MGLAB in Japan. Flammability maps with oxygen level, opposing flow velocity and fuel thickness as independent variables are extracted from the theory that explains the well-established trends in the existing experimental data.

  3. Testing and Selection of Fire-Resistant Materials for Spacecraft Use

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Jackson, Brian; Olson, Sandra

    2000-01-01

    Spacecraft fire-safety strategy emphasizes prevention, mostly through the selection of onboard items classified accord- ing to their fire resistance. The principal NASA acceptance tests described in this paper assess the flammability of materials and components under "worst-case" normal-gravity conditions of upward flame spread in controlled-oxygen atmospheres. Tests conducted on the ground, however, cannot duplicate the unique fire characteristics in the nonbuoyant low-gravity environment of orbiting spacecraft. Research shows that flammability an fire-spread rates in low gravity are sensitive to forced convection (ventilation flows) and atmospheric-oxygen concentration. These research results are helping to define new material-screening test methods that will better evaluate material performance in spacecraft.

  4. Feasibility study of liquid pool burning in reduced gravity

    NASA Technical Reports Server (NTRS)

    Kanury, A. M.

    1979-01-01

    The feasibility of conducting experiments in the Spacelab on ignition and flame spread with liquid fuel pools which are initially at a temperature lower than the fuel's flash point temperature was studied. Theories were developed for the ignition and flame spread processes, and experiments were conducted to understand the factors influencing the ignition process and the spread rate. The results were employed to devise a conceptual Spacelab experiment which is expected to be feasible for a safe conduct and to be suitable for obtaining crucial data on the concerned processes.

  5. Study of the influence of fuel load and slope on a fire spreading across a bed of pine needles by using oxygen consumption calorimetry

    NASA Astrophysics Data System (ADS)

    Tihay, V.; Morandini, F.; Santoni, P. A.; Perez-Ramirez, Y.; Barboni, T.

    2012-11-01

    A set of experiments using a Large Scale Heat Release Rate Calorimeter was conducted to test the effects of slope and fuel load on the fire dynamics. Different parameters such as the geometry of the flame front, the rate of spread, the mass loss rate and the heat release rate were investigated. Increasing the fuel load or the slope modifies the fire behaviour. As expected, the flame length and the rate of spread increase when fuel load or slope increases. The heat release rate does not reach a quasi-steady state when the propagation takes place with a slope of 20° and a high fuel load. This is due to an increase of the length of the fire front leading to an increase of fuel consumed. These considerations have shown that the heat release can be estimated with the mass loss rate by considering the effective heat of combustion. This approach can be a good alternative to estimate accurately the fireline intensity when the measure of oxygen consumption is not possible.

  6. Comparison of Carbon Dioxide and Helium as Fire Extinguishing Agents for Spacecraft

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman; Son, Youngjin; Ronney, Paul D.

    2004-01-01

    The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at microgravity as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at microgravity indicates that radiatively-inert diluent such as helium could be preferable in microgravity applications. Helium may be a superior fire suppression agent at microgravity on several bases. First, helium is more effective than CO2 on a mole basis (thus pressure times storage volume basis) at microgravity, meaning that the size and weight of storage bottles would be smaller for the same fire-fighting capability. Second; helium is much more effective on a mass basis (by about 11 times) at microgravity. Third; helium has no physiological activity, unlike CO2 that affects human respiration. Fourth, as compared to N2 or CO2, is not very soluble in water and thus has fewer tendencies to cause bloodstream bubble formation following rapid spacecraft cabin depressurization.

  7. Comparison of Carbon Dioxide and Helium as Fire Extinguishing Agents for Spacecraft

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman; Son, Youngjin; Ronney, Paul D.

    2004-01-01

    The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at g as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at g indicates that radiatively-inert diluent such as helium could be preferable in g applications. Helium may be a superior fire suppression agent at g on several bases. First, helium is more effective than CO2 on a mole basis (thus pressure times storage volume basis) at g, meaning that the size and weight of storage bottles would be smaller for the same fire-fighting capability. Second; helium is much more effective on a mass basis (by about 11 times) at g. Third; helium has no physiological activity, unlike CO2 that affects human respiration. Fourth, as compared to N2 or CO2, is not very soluble in water and thus has fewer tendencies to cause bloodstream bubble formation following rapid spacecraft cabin depressurization.

  8. A Characterization Of Alcohol Fuel Vapor For Wavelength Modulation Spectroscopy Applied To Microgravity Flame Spread

    NASA Technical Reports Server (NTRS)

    Kulis, Michael J.; Perry, David S.; Miller, Fletcher; Piltch, Nancy

    2003-01-01

    A diode laser diagnostic is being developed for use in an ongoing investigation of flame spread in microgravity at NASA Glenn Research Center. Flame spread rates through non-homogenous gas mixtures are significantly different in a microgravity environment because of buoyancy and possibly hydrostatic pressure effects. These effects contribute to the fuel vapor concentration ahead of the flame being altered so that flame spread is more rapid in microgravity. This paper describes spectral transmission measurements made through mixtures of alcohol, water vapor, and nitrogen in a gas cell that was designed and built to allow measurements at temperatures up to 500 C. The alcohols considered are methanol, ethanol, and n-propanol. The basic technique of wavelength modulation spectroscopy for gas species measurements in microgravity was developed by Silver et al. For this technique to be applicable, one must carefully choose the spectral features over which the diode laser is modulated to provide good sensitivity and minimize interference from other molecular lines such as those in water. Because the methanol spectrum was not known with sufficient resolution in the wavelength region of interest, our first task was to perform high-resolution transmission measurements with an FTIR spectrometer for methanol vapor in nitrogen, followed recently by ethanol and n-propanol. A computer program was written to generate synthesized data to mimic that expected from the experiment using the laser diode, and results from that simulation are also presented.

  9. An Experimental Study of Ignition Effects and Flame Growth Over a Thin Solid Fuel in Low-Speed Concurrent Flow Using Drop-Tower Facilities

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard Dale

    1996-01-01

    An experimental study of ignition and flame growth over a thin solid fuel in oxidizer flow speeds from 0 to 10 cm/sec concurrent flow was performed. This study examined the differences between ignition using a resistively heated wire (woven in a sawtooth pattern over the leading edge of the fuel), and a straight resistively heated wire augmented by a chemical ignitor doped onto the leading edge of the fuel. Results showed that the chemical system yielded non-uniform ignition bursts, while the system using only the hotwire gave more uniform ignition. At speeds up to 2.5 cm/sec, the chemical system yielded non-uniform pyrolysis fronts, while the hotwire system gave more uniform pyrolysis fronts. At speeds of 5 cm/sec or greater, both systems gave uniform pyrolysis fronts. The chemically-ignited flames tended to become too dim to see faster than the hotwire-ignited flames, and the flame lengths were observed to be shorter (after the initial burst subsided) for the chemical system for all speeds. Flame and pyrolysis element velocities were measured. Temperature profiles for selected tests were measured using thermocouples at the fuel surface and in the gas phase. Comparisons between the flame element velocities and peak temperatures recorded in these tests with calculated spread rates and peak temperatures from a steady-state model are presented. Agreement was found to be within 20% for most flame elements for nominal velocities of 5 cm/sec and 7.5 cm/sec.

  10. Slope effects on the fluid dynamics of a fire spreading across a fuel bed: PIV measurements and OH* chemiluminescence imaging

    NASA Astrophysics Data System (ADS)

    Morandini, F.; Silvani, X.; Honoré, D.; Boutin, G.; Susset, A.; Vernet, R.

    2014-08-01

    Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.

  11. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  12. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam.

    PubMed

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun

    2017-05-05

    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of Wind Velocity on Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  14. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  15. The Three-D Flow Structures of Gas and Liquid Generated by a Spreading Flame Over Liquid Fuel

    NASA Technical Reports Server (NTRS)

    Tashtoush, G.; Ito, A.; Konishi, T.; Narumi, A.; Saito, K.; Cremers, C. J.

    1999-01-01

    We developed a new experimental technique called: Combined laser sheet particle tracking (LSPT) and laser holographic interferometry (HI), which is capable of measuring the transient behavior of three dimensional structures of temperature and flow both in liquid and gas phases. We applied this technique to a pulsating flame spread over n-butanol. We found a twin vortex flow both on the liquid surface and deep in the liquid a few mm below the surface and a twin vortex flow in the gas phase. The first twin vortex flow at the liquid surface was observed previously by NASA Lewis researchers, while the last two observations are new. These observations revealed that the convective flow structure ahead of the flame leading edge is three dimensional in nature and the pulsating spread is controlled by the convective flow of both liquid and gas.

  16. Ignition of a granular propellant bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildegger-Gaissmaier, A.E.; Johnston, I.R.

    1996-08-01

    An experimental and theoretical study is reported on the ignition process of a low vulnerability ammunition (LOVA) propellant bed in a 127-mm (5-in) bore gun charge. The theoretical investigation was with a two-phase flow interior ballistics code and the model predictions showed the marked influence the igniter system can have on pressure wave development, flame spreading, and the overall interior ballistics performance. A number of different igniter systems were investigated in an empty and propellant-filled gun simulator. Pressure, flame spreading, and high-speed film records were used to analyze the ignition/combustion event. The model predictions for flame spreading were confirmed qualitativelymore » by the experimental data. Full-scale instrumented gun firings were conducted with the optimized igniter design. Pressure waves were not detected in the charge during the firings. Model predictions on overall interior ballistics performance agreed well with the firing data.« less

  17. Scientific support for an orbiter middeck experiment on solid surface combustion

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Vedha-Nayagam, M.; Srikantaiah, Nataraj

    1988-01-01

    The objective is to determine the mechanism of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy or externally imposed gas-phase flow. Such understanding can be used to improve the fire safety aspects of space travel by providing information that will allow judicious selections of spacecraft materials and environments to be made. The planned experiment consists of measuring the flame spread rate over thermally thin and thermally thick fuels in a closed container in the low-gravity environment of the Space Shuttle. Measurements consist of flame spread rate and shape obtained from two views of the process as recorded on movie film and surface and gas-phase temperatures obtained from fine-wire thermocouples. The temperature measurements along with appropriate modeling provide information about the gas-to-solid heat flux. Environmental parameters to be varied are the oxygen concentration and pressure.

  18. Burning of solids in oxygen-rich environments in normal and reduced gravity. [combustion of cellulose acetates

    NASA Technical Reports Server (NTRS)

    Andracchio, C. R.; Cochran, T. H.

    1974-01-01

    An experimental program was conducted to investigate the combustion characteristics of solids burning in a weightless environment. The combustion characteristics of thin cellulose acetate material were obtained from specimens burned in supercritical as well as in low pressure oxygen atmospheres. Flame spread rates were measured and found to depend on material thickness and pressure in both normal gravity (1-g) and reduced gravity (0-g). A gravity effect on the burning process was also observed; the ratio of 1-g to 0-g flame spread rate becomes larger with increasing material thickness. Qualitative results on the combustion characteristics of metal screens (stainless steel, Inconel, copper, and aluminum) burning in supercritical oxygen and normal gravity are also presented. Stainless steel (300 sq mesh) was successfully ignited in reduced gravity; no apparent difference in the flame spread pattern was observed between 1-g and 0-g.

  19. CO2 Suppression of PMMA Flames In Low-Gravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Hicks, M.; Mell, W.; Pettegrew, R.; Malcolm, A.

    2003-01-01

    Even though much has been learned about the effects of microgravity on material flammability, flame spread, and suppressant effectiveness, uncertainties remain regarding some of the practical aspects of fire protection in spacecraft. The experiments and simulations underway in this project are aimed directly at testing, understanding and improving NASA's existing policies and practices toward fire safety in spacecraft and extraterrestrial habitats. Specifically, the objectives of this research are: 1) Determine systematically the conditions that will ignite onboard flammable materials upon passage of an initial premixed gas, firebrand, or aerosol flame over these materials; 2) Test the effect of firebrands and configuration spacing; and 3) Determine the effectiveness of the flow of CO2 extinguisher or other extinguishing agents. Experimental and computational investigations are planned to achieve each of the three objectives above. Even though progress has been made in all of the areas, the majority of data has been collected for objective (3). Current results from these investigations are discussed.

  20. Thermochemical properties of flame gases from fine wildland fuels

    Treesearch

    Frank A. Albini

    1979-01-01

    Describes a theoretical model for calculating thermochemical properties of the gaseous fuel that burns in the free flame at the edge of a spreading fire in fine forest fuels. Predicted properties are the heat of combustion, stoichiometric air/fuel mass ratio, mass-averaged temperature, and mass fraction of unburned fuel in the gas mixture emitted from the flame-...

  1. Technical background of the FireLine Assessment MEthod (FLAME)

    Treesearch

    Jim Bishop

    2007-01-01

    The FireLine Assessment MEthod (FLAME) provides a fireline-practical tool for predicting significant changes in fire rate-of-spread (ROS). FLAME addresses the dominant drivers of large, short-term change: effective windspeed, fuel type, and fine-fuel moisture. Primary output is the ROS-ratio, expressing the degree of change in ROS. The application process guides and...

  2. Preparation, testing, and delivery of low density polyimide foam panels

    NASA Technical Reports Server (NTRS)

    Ball, G. L., III; Post, L. K.; Salyer, I. O.

    1975-01-01

    Plastic foams based on polyimide resins were shown to be stable at relatively high temperatures, and to possess very low flame spread and smoke generation characteristics. A system and process were developed to prepare low-density polyimide foam from a liquid formulation. The system is based on the reaction of micropulverized grade pyromellitic dianhydride with a polymeric diisocyanate. The panels produced were postcured at elevated temperatures to achieve maximum thermal and fire resistance, and incorporation of a fire retardant into the formulation was considered. The effects of a flame retardant (Flameout 5600B1) were investigated, but eliminated in preference to the postcuring approach.

  3. Fire resistant films for aircraft applications

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  4. Microgravity

    NASA Image and Video Library

    1997-11-01

    The goal of the ELF investigation is to improve our fundamental understanding of the effects of the flow environment on flame stability. The flame's stability refers to the position of its base and ultimately its continued existence. Combustion research focuses on understanding the important hidden processes of ignitions, flame spreading, and flame extinction. Understanding these processes will directly affect the efficiency of combustion operations in converting chemical energy to heat and will create a more balanced ecology and healthy environment by reducing pollutants emitted during combustion.

  5. Prevention of Over-Pressurization During Combustion in a Sealed Chamber

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Niehaus, Justin E.; Olson, Sandra L.; Dietrich, Daniel L.; Ruff, Gary A.; Johnston, Michael C.

    2012-01-01

    The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle over-pressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure falloff after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various mitigation approaches are suggested to prevent vehicle over-pressurization and help guide the definition of the space experiment.

  6. The 17th JANNAF Combustion Meeting, Volume 2

    NASA Technical Reports Server (NTRS)

    Eggleston, D. S. (Editor)

    1980-01-01

    Combustion of gun and nitramine propellants are discussed. Topics include gun charge designs, flame spreading in granular and stick charges, muzzle flash, ignition and combustion of liquid propellants for guns, laminar flames, decomposition and combustion of nitramine ingredients and nitramine propellant development.

  7. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  8. Intumescent flame retardant properties of graft copolymerized vinyl monomers onto cotton fabric

    NASA Astrophysics Data System (ADS)

    Rosace, G.; Colleoni, C.; Trovato, V.; Iacono, G.; Malucelli, G.

    2017-10-01

    In this paper, an intumescent flame retardant treatment, obtained by a combination of vinylphosphonic acid (VPA) and methacrylamide (MAA), was applied to cotton fabrics. In order to improve the cross-linking degree onto cellulose polymers, potassium persulfate was used as initiator of a radical polymerization technique. The application on cotton was carried out by padding, followed by drying and a curing treatment. The treated samples were characterized by SEM, TGA and FTIR-ATR analyses and tested in terms of flammability and washing fastness. The thermal and fire behavior of the treated fabrics was thoroughly investigated. The results clearly showed that the VPA/MAA coating was able to exert a protective action, giving rise to the formation of a stable char on the surface of textile fibers upon heating, hence improving the flame retardant performance of cotton. Horizontal flame spread tests confirmed that the coated fabrics achieved self-extinction, and the residues well preserved the original weave structure and fiber morphology; at variance, the uncoated fabric left only ashes. A remarkable weight loss was observed only after the first washing cycle, then the samples did not show any significant weight loss, hence confirming the durability of the self-extinguishing treatment, even after five laundering cycles.

  9. Influences of metal ions crosslinked alginate based coatings on thermal stability and fire resistance of cotton fabrics.

    PubMed

    Pan, Ying; Wang, Wei; Liu, Longxiang; Ge, Hua; Song, Lei; Hu, Yuan

    2017-08-15

    Bio-based and phosphorus-free coating was fabricated by layer-by-layer assembly method to obtain the flame retardant cotton fabric. For the first time, the modified cotton fabrics were prepared by utilizing positively charged polyethylenimine and negatively charged alginate together with subsequent crosslinking of barium, nickel and cobalt ions. Scanning electron microscopy and energy-dispersive X-ray demonstrated that the metal ions crosslinked coating was successfully constructed on the substrate. The thermal stability and flame retardancy were investigated by thermogravimetric analysis (TGA) and horizontal flame tests. TGA results showed that the degradation of the coated cotton fabrics were retarded at high temperature and the char residue of the cotton fabrics were improved after covered with the barium, nickel and cobalt ions crosslinked coatings. Furthermore, the fire resistance of cotton-Ba sample was enhanced significantly compared with the untreated sample, as evidenced by the obvious reduction (28%) of flame spread rate and complete char residue. Finally, the washing durability of coating on the fabric was enhanced after metal ions crosslinked with alginate based coating. Copyright © 2017. Published by Elsevier Ltd.

  10. The effects of radiative heat loss on microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Fakheri, Ahmad; Olson, Sandra L.

    1989-01-01

    The effect of radiative heat loss from the surface of a solid material burning in a zero gravity environment in an opposed flow is studied through the use of a numerical model. Radiative heat loss is found to decrease the flame spread rate, the boundary layer thickness, and pyrolysis lengths. Blowoff extinction is predicted to occur at slower opposesd flow velocities than would occur if the radiative loss is not present. The radiative heat fluxes are comparable to the conduction fluxes, indicating the significance of the surface energy loss.

  11. BROMINATED FLAME RETARDANTS: WHY DO WE CARE?

    EPA Science Inventory

    Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...

  12. Group Combustion Module (GCM) Installation

    NASA Image and Video Library

    2016-09-27

    ISS049e011638 (09/27/2016) --- Expedition 49 crewmember Takuya Onishi of JAXA works on the setup of the Group Combustion Module (GCM) inside the Japanese Experiment Module. The GCM will be used to house the Group Combustion experiment from the Japan Aerospace Exploration Agency (JAXA) to test a theory that fuel sprays change from partial to group combustion as flames spread across a cloud of droplets.

  13. Trioxane-Air Counterflow Diffusion Flames in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Linteris, Gregory T.; Urban, David L.

    2001-01-01

    Trioxane, a weakly bound polymer of formaldehyde (C3H6O3, m.p. 61 C, b.p. 115 C), is a uniquely suited compound for studying material flammability. Like many of the more commonly used materials for such tests (e.g., delrin, polyethylene, acrylic sheet, wood, and paper), it displays relevant phenomena (internal heat conduction, melting, vaporization, thermal decomposition, and gas phase reaction of the decomposition products). Unlike the other materials, however, it is non-sooting and has simple and well-known chemical kinetic pathways for its combustion. Hence it should prove to be much more useful for numerical modeling of surface combustion than the complex fuels typically used. We have performed the first exploratory tests of trioxane combustion in the counterflow configuration to determine its potential as a surrogate solid fuel which allows detailed modeling. The experiments were performed in the spring and summer of 1998 at the National Institute of Standards and Technology in Gaithersburg, MD, and at NASA-GRC in Cleveland. Using counterflow flames at 1-g, we measured the fuel consumption rate and the extinction conditions with added N2 in the air; at mg conditions, we observed the ignition characteristics and flame shape from video images. We have performed numerical calculations of the flame structure, but these are not described here due to space limitations. This paper summarizes some burning characteristics of trioxane relevant to its use for studying flame spread and fire suppression.

  14. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture contents is central to this study, for fuel moisture is a fire retardant that may offset the fire-enhancing effects of high oxygen conditions. Earliest preliminary results at low moisture show that, as expected, increasing oxygen concentration significantly increases the rate of fuel consumption. This is expressed as both an increase in the speed of the flame spread and the temperature of the flames. It was found that a 35% oxygen (balance nitrogen) gas mixture caused fire to spread at about five times the rate of a fire in ambient air. The fire in the high-oxygen gas mixture was roughly 1.3 times the temperature of the fire in ambient air. The current work is not intended to exactly represent forest ecosystems; rather, it is intended to establish an understanding of flame-spread behavior in natural fuels and future work will include fuels that better represent natural ecosystems such as those used in the TGA experimentation.

  15. Performance of solvent-borne intumescent fire protective coating with Palm oil clinker as novel bio-filler on steel

    NASA Astrophysics Data System (ADS)

    Mustapa, S. A. S.; Ramli Sulong, N. H.

    2017-06-01

    This research deals with contribution of hybrid fillers with palm oil clinker (POC) as a novel bio-filler in solvent-borne intumescent fire protective coating for steel. The hybrid fillers with POC were mixed in appropriate amount of additives and acrylic binder to produce the intumescent coatings. The intumescent coatings were characterized by using Bunsen burner test, surface spread of flame, thermogravimetric analysis, field emission scanning electron microscopy, static immersion and Instron micro tester equipment. Specimen with POC as a single filler has significantly enhanced the fire protection performances of the intumescent coating due to the high thermal stability of POC, where less than 10% of temperature different when compared to specimens with hybrid fillers. From the flame spread classification, class 1 is the best classification while Class 4 is the worst and considered high risk. All specimens was classified as class 1 since the final spread of flame was less than 165 mm. For hybrid fillers composition, specimen consist of POC/Al(OH)3/TiO2 has significantly improved the water resistance of the coating due to the low solubility of Al(OH)3 in water, while specimen contain of Mg(OH)2 had higher mechanical strength due to the strong bonding between the metal surface and acrylic binder/Mg(OH)2 filler. It was found that coating with the incorporation of all hybrid fillers gives excellent fire protection performance with good thermal stability, water resistance and mechanical properties. It can be concluded that, the selection of appropriate composition of fillers and binder in intumescent coating was highly influence the intumescent coating performance.

  16. Combustion in microgravity: The French contribution

    NASA Astrophysics Data System (ADS)

    Prud'homme, Roger; Legros, Guillaume; Torero, José L.

    2017-01-01

    Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.

  17. Cavity-actuated supersonic mixing and combustion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.H.; Schadow, K.C.

    1994-11-01

    Compressible shear layers in supersonic jets are quite stable and spread very slowly compared with incompressible shear layers. In this paper, a novel use of a cavity-actuated forcing technique is demonstrated for increasing the spreading rate of compressible shear layers. Periodic modulations were applied to Mach 2.0 reacting and nonreacting jets using the cavities that were attached at the exit of a circular supersonic nozzle. The effect of cavity-actuated forcing was studied as a function of the cavity geometry, in particular, the length and the depth of the cavity. When the cavities were tuned to certain frequencies, large-scale highly coherentmore » structures were produced in the shear layers substantially increasing the growth rate. The cavity excitation was successfully applied to both cold and hot supersonic jets. When applied to cold Mach 2.0 air jets. the cavity-actuated forcing increased the spreading rate of the initial shear layers with the convective Mach number (M[sub C]) of 0.85 by a factor of three. For high-temperature Mach 2.0 jets with M[sub C] of 1.4, a 50% increase in the spreading rate was observed with the forcing. Finally, the cavity-actuated forcing was applied to reacting supersonic jets with ethylene-oxygen afterburning. For this case, the forcing caused a 20%--30% reduction in the afterburning flame length and modified the afterburning intensity significantly. The direction of the modification depended on the characteristics of the afterburning flames. The intensity was reduced with forcing for unstable flames with weak afterburning while it was increased for stable flames with strong afterburning.« less

  18. Fluid dynamics structures in a fire environment observed in laboratory-scale experiments

    Treesearch

    J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac

    2010-01-01

    Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...

  19. Thermocouples for forest fire research

    Treesearch

    Erwin H. Breuer

    1965-01-01

    Thermocouples have proved valuable in research conducted by the Fire Physics Project at the Northern Forest Fire Laboratory because they can measure several important fire variables besides flame and convection column temperatures. These include rate of spread and flame residence time. Describes a simple, rapid method of fabrication and reports useful and diverse...

  20. Smoke Point in Co-flow Experiment

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Sunderland, Peter B.; Yuan, Zeng-Guang

    2009-01-01

    The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet diffusion flames (i.e., the properties of the largest laminar jet diffusion flames that do not emit soot) for several fuels under different nozzle diameter/co-flow velocity configurations. Luminous flame shape measurements would also be made to verify models of the flame shapes under co-flow conditions. The smoke point is a simple measurement that has been found useful to study the influence of flow and fuel properties on the sooting propensity of flames. This information would help support current understanding of soot processes in laminar flames and by analogy in turbulent flames of practical interest.

  1. Characterization of a Laminate Flat Plate Diffusion Flame in Microgravity using PIV, Visible and CH Emissions

    NASA Technical Reports Server (NTRS)

    Joulain, P.; Cordeiro, P.; Torero, J. L.

    2001-01-01

    Motivated by fire safety concerns and the advent of long-term micro-gravity facilities, a cooperative program has been developed to study the mechanisms and material properties that control flow assisted (co-current) flame spread. This program has used as a common fire scenario a reacting steady-state boundary layer. Preliminary studies explored the aerodynamics of a reacting boundary layer by simulating a condensed fuel by means of a gas burner. Stability curves for ethane air flames were obtained and different burning regimes were identified. An important feature of this study was the independent identification of the different mechanisms leading to the instability of the flow. It was observed that fuel injection velocity and thermal expansion independently contributed to the separation of the flow at the leading edge of the burner. The occurrence of separation resulted in complex three-dimensional flow patterns that have a dominant effect on critical fire safety parameters such as the stand-off distance and flame length. This work was extended to a solid fuel (PMMA) leading to a Sounding Rocket experiment (Mini-Texus-6). The solid phase showed similar flow patterns, mostly present at low flow velocities (<100 mm/s) but the results clearly demonstrated that the thermal balance at the pyrolyzing fuel surface is the dominant mechanism that controls both stand-off distance and flame length. This thermal balance could be described in a global manner by means of a total mass transfer or "B" number. This "B" number incorporates surface re-radiation, radiative feedback and in-depth heat conduction as first prescribed by Emmons. The mass transfer number becomes the single parameter that determines the evolution of these fire safety variables (flame length, stand-off distance) and therefore can be used as a ranking criterion to assess the flammability of materials. The particular configuration is representative of the NASA upward flame spread test (Test 1) therefore this approach can be used in the interpretation of the results obtained from this test. Nevertheless, complete validation of this approach has not been fully achieved due, mainly because all the measurements necessary to compare with the theoretical predictions have not been obtained. Following these studies two different directions have been taken. The first attempts to elucidate the details of the gas phase combustion reaction and the associated flow field by means of quantitative and qualitative measurements. The second approach, a more practical one, is to apply this methodology to the assessment of material flammability. The former is currently being conducted with a gas burner because it allows for easier control and longer experimentation time. The results obtained so far will be presented in more detail. The latter is a new program therefore only a brief summary of the objectives will be presented.

  2. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen

    2012-06-01

    A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.

  3. Study of thermal and fire behavior of wood fiber/thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Oladipo, Adedejo Bukola

    The fire safety characteristics of wood fiber/thermoplastic composite materials were investigated in this study. Composites comprising wood fiber fillers and polymeric binders are known to offer many advantages such as good strength to weight ratio, ease of manufacture, low cost, and the possibility for recycling. In spite of these advantages however, the fire safety question of plastic-based materials is an important one since they can, under certain conditions, drip or run, under fire, thereby potentially spreading fire from one location to the other. It is important therefore to understand the fire behavior of such a composite if the advantages it offers are to be fully utilized. To this end, numerical and experimental studies of opposed flow flame spread over the composite were conducted with emphasis on the influences of gravity, material thermal property variations, and finite-rate chemistry on the rate of spread. The thermal properties of the composite material, needed for opposed flame spread computations, were first determined using a combination of inverse heat conduction and non-linear parameter estimation procedures. The influences of wood fiber mass fraction and temperature on the effective thermal properties of the composite were established. The means for predicting the effective properties from those of the individual constituents were also examined and the results showed that the composite is close to being isotropic. The experimental and numerical methods used to determine the thermal properties of the composite were also adapted for the investigation of various proprietary automobile sound blanket materials to assess their effectiveness as thermal barriers separating the engine compartment from the passenger cabin. The results of opposed flame spread study over the composite suggests that, for opposed flow velocities lower than about 245 cm/s, finite rate chemistry will dominate the spread process when the oxygen mass fraction is 70% or less. Above this limit, heat transfer from the flame to the unburned fuel ahead seems to be the dominant factor. Also, the composite was observed to exhibit wood-like fire behavior when the wood fiber mass fraction is 40% or more.

  4. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  5. Research of Flammability of Fireproof Materials in Ship Safety

    NASA Astrophysics Data System (ADS)

    Jiang, Yizhou; Han, Duanfeng; Zhang, Ziwei

    2017-09-01

    This paper analyzes the classification, performance and application of ship fireproof and heat insulating materials, and describes the test standard and performance evaluation criteria of the non-combustibility, low flame-spread characteristics and smoke and toxicity of marine fireproof materials in detail. So the paper has certain reference value and guidance significance for the selection of heat insulating materials with fire divisions and the use of flammable materials on board in accordance with requirements.

  6. Safer Pleasure Boats

    NASA Technical Reports Server (NTRS)

    1976-01-01

    'Flamarest' coating developed by Avco Corporation for NASA to protect fuel lines and tanks is sprayed on the interior of polyester boat hull in commercial application. About 30 mils of the coating prevented structural damage to hull during test in which a 13 minute interior gasoline fire was started. An unprotected hull would begin to burn in 30 seconds. Same material applied as tape to wrap fuel lines effectively insulates hose when charred while also reducing spread of flame.

  7. A study of flame spread in engineered cardboard fuelbeds: Part II: Scaling law approach

    Treesearch

    Brittany A. Adam; Nelson K. Akafuah; Mark Finney; Jason Forthofer; Kozo Saito

    2013-01-01

    In this second part of a two part exploration of dynamic behavior observed in wildland fires, time scales differentiating convective and radiative heat transfer is further explored. Scaling laws for the two different types of heat transfer considered: Radiation-driven fire spread, and convection-driven fire spread, which can both occur during wildland fires. A new...

  8. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  9. Measuring fire behavior with photography

    Treesearch

    Hubert B. Clements; Darold E. Ward; Carl W. Adkins

    1983-01-01

    Photography is practical for recording and measuring some aspects of forest fire behavior if the scale and perspective can be determined. This paper describes a photogrammetric method for measuring flame height and rate of spread for fires on flat terrain. The flames are photographed at known times with a camera in front of the advancing fire. Scale and perspective of...

  10. Heat Transfer to a Thin Solid Combustible in Flame Spreading at Microgravity

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, S.; Altenkirch, R. A.; Olson, S. L.; Sotos, R. G.

    1991-01-01

    The heat transfer rate to a thin solid combustible from an attached diffusion flame, spreading across the surface of the combustible in a quiescent, microgravity environment, was determined from measurements made in the drop tower facility at NASA-Lewis Research Center. With first-order Arrhenius pyrolysis kinetics, the solid-phase mass and energy equations along with the measured spread rate and surface temperature profiles were used to calculate the net heat flux to the surface. Results of the measurements are compared to the numerical solution of the complete set of coupled differential equations that describes the temperature, species, and velocity fields in the gas and solid phases. The theory and experiment agree on the major qualitative features of the heat transfer. Some fundamental differences are attributed to the neglect of radiation in the theoretical model.

  11. Fire safety in space - beyond flammability testing of small samples

    NASA Astrophysics Data System (ADS)

    Jomaas, Grunde; Torero, Jose L.; Eigenbrod, Christian; Niehaus, Justin; Olson, Sandra L.; Ferkul, Paul V.; Legros, Guillaume; Fernandez-Pello, A. Carlos; Cowlard, Adam J.; Rouvreau, Sebastien; Smirnov, Nickolay; Fujita, Osamu; T`ien, James S.; Ruff, Gary A.; Urban, David L.

    2015-04-01

    An international research team has been assembled to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing material samples in a series of flight experiments (Saffire 1, 2, and -3) to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the International Space Station (ISS). The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle re-enters the atmosphere. The unmanned, pressurized environment in the Saffire experiments allows for the largest sample sizes ever to be tested for material flammability in microgravity, which will be based on the characteristics of flame spread over the surface of the combustible material. Furthermore, the experiments will have a duration that is unmatched in scale compared to earth based microgravity research facilities such as drop towers (about 5 s) and parabolic flights (about 20 s). In contrast to sounding rockets, the experiments offer a much larger volume, and the reduction in the oxygen concentration during the Saffire experiments will be minimal. The selection of the experimental settings for the first three Saffire experiments has been based on existing knowledge of scenarios that are relevant, yet challenging, for a spacecraft environment. Given that there is always airflow in the space station, all the experiments are conducted with flame spread in either concurrent or opposed flow, though with the flow being stopped in some tests, to simulate the alarm mode environment in the ISS and thereby also to study extinguishment. The materials have been selected based on their known performance in NASA STD-6001Test-1, and with different materials being classified as charring, thermally thin, and thermally thick. Furthermore, materials with non-uniform surfaces will be investigated.

  12. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  13. Theoretical Prediction of Microgravity Ignition Delay of Polymeric Fuels in Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Torero, J. L.; Zhou, Y. Y.; Walther, D.; Ross, H. D.

    2001-01-01

    A new flammability apparatus and protocol, FIST (Forced Flow Ignition and Flame Spread Test), is under development. Based on the LIFT (Lateral Ignition and Flame Spread Test) protocol, FIST better reflects the environments expected in spacebased facilities. The final objective of the FIST research is to provide NASA with a test methodology that complements the existing protocol and provides a more comprehensive assessment of material flammability of practical materials for space applications. Theoretical modeling, an extensive normal gravity data bank and a few validation space experiments will support the testing methodology. The objective of the work presented here is to predict the ignition delay and critical heat flux for ignition of solid fuels in microgravity at airflow velocities below those induced in normal gravity. This is achieved through the application of a numerical model previously developed of piloted ignition of solid polymeric materials exposed to an external radiant heat flux. The model predictions will provide quantitative results about ignition of practical materials in the limiting conditions expected in space facilities. Experimental data of surface temperature histories and ignition delay obtained in the KC-135 aircraft are used to determine the critical pyrolysate mass flux for ignition and this value is subsequently used to predict the ignition delay and the critical heat flux for ignition of the material. Surface temperature and piloted ignition delay calculations for Polymethylmethacrylate (PMMA) and a Polypropylene/Fiberglass (PP/GL) composite were conducted under both reduced and normal gravity conditions. It was found that ignition delay times are significantly shorter at velocities below those induced by natural convection.

  14. Guide to PBDE: Toxic Flame Retardant--What Women, Children and School Personnel Need to Know. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Chemical flame-retardants are used in a variety of products to prevent the spread and occurrence of fire. While fire safety is critical, this family of chemicals, known as Polybrominated diphenyl ethers (PBDEs) are highly toxic. They are found in carpeting, foam cushions, polyester clothing and bedding, wallpaper, toys, household dust, a variety…

  15. Catalysts for polyimide foams from aromatic isocyanates and aromatic dianhydrides. [flame retardant foams

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M.; Estrella, C. A. (Inventor)

    1979-01-01

    Polyimide foam products having greatly improved burn-through and flame-spread resistance are prepared by the reaction of aromatic polyisocyanates with aromatic dianhydrides in the presence of metallic salts of octoic acid. The salts, for example stannous octoate, ferric octoate and aluminum octoate, favor the formation of imide linkages at the expense of other possible reactions.

  16. Radiative Heat Loss Measurements During Microgravity Droplet Combustion in a Slow Convective Flow

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Kaib, Nathan; Easton, John; Nayagam, Vedha; Williams, Forman A.

    2003-01-01

    Radiative heat loss from burning droplets in a slow convective flow under microgravity conditions is measured using a broad-band (0.6 to 40 microns) radiometer. In addition, backlit images of the droplet as well as color images of the flame were obtained using CCD cameras to estimate the burning rates and the flame dimensions, respectively. Tests were carried out in air at atmospheric pressure using n-heptane and methanol fuels with imposed forced flow velocities varied from 0 to 10 centimeters per second and initial droplet diameters varied from 1 to 3 millimeters. Slow convective flows were generated using three different experimental configurations in three different facilities in preparation for the proposed International Space Station droplet experiments. In the 2.2 Second Drop-Tower Facility a droplet supported on the leading edge of a quartz fiber is placed within a flow tunnel supplied by compressed air. In the Zero-Gravity Facility (five-second drop tower) a tethered droplet is translated in a quiescent ambient atmosphere to establish a uniform flow field around the droplet. In the KC 135 aircraft an electric fan was used to draw a uniform flow past a tethered droplet. Experimental results show that the burn rate increases and the overall flame size decreases with increases in forced-flow velocities over the range of flow velocities and droplet sizes tested. The total radiative heat loss rate, Q(sub r), decreases as the imposed flow velocity increases with the spherically symmetric combustion having the highest values. These observations are in contrast to the trends observed for gas-jet flames in microgravity, but consistent with the observations during flame spread over solid fuels where the burning rate is coupled to the forced flow as here.

  17. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  18. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma

    NASA Astrophysics Data System (ADS)

    An, Bin; Wang, Zhenguo; Yang, Leichao; Li, Xipeng; Zhu, Jiajian

    2017-08-01

    Cavity ignition of a model scramjet combustor fueled by ethylene was achieved through laser induced plasma, with inflow conditions of Ma = 2.92, total temperature T0 = 1650 K and stagnation pressure P0 = 2.6 MPa. The overall equivalent ratio was kept at 0.152 for all the tests. The ignition processes at different ignition energies and various ignition positions were captured by CH∗ and OH∗ chemiluminescence imaging. The results reveal that the initial flame kernel is carried to the cavity leading edge by the recirculation flow, and resides there for ∼100 μs before spreading downstream. The ignition time can be reduced, and the possibility of successful ignition for single laser pulse can be promoted by enhancing ignition energy. The scale and strength of the initial flame kernel is influenced by both the ignition energy and position. In present study, the middle part of the cavity is the best position for ignition, as it keeps a good balance between the strength of initial flame kernel and the impacts of strain rate in recirculation flow.

  19. Investigation of flameholding mechanisms in a kerosene-fueled scramjet combustor

    NASA Astrophysics Data System (ADS)

    Wang, Yu-hang; Song, Wen-yan; Shi, De-yong

    2017-11-01

    Laser-induced fluorescence and high-speed photography were employed to investigate the kerosene flame stabilization mechanism in a cavity-based scramjet combustor with an inlet condition corresponds to flight Mach number of 4. Pilot hydrogen was used to ignite the kerosene fuel. The PLIF results of kerosene distribution in the reacting cases showed that the mixing process was dramatically enhanced compared to the non-reacting cases. Sharp OH gradients were observed in the shear layer and the aft region of cavity, which indicated that the flame was located at these positions. A portion of hot products participated in the recirculation of the cavity and preheated the kerosene-air mixture in the leading edge. The heated mixture was ignited in the mid-cavity and the reaction zone spread into the mainstream flow. Due to the competition between the local flame speed and the local flow speed, the high-speed images showed that the spreading location was in fluctuation. This movement was observed to cause a low-frequency wall pressure fluctuation.

  20. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth's gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth's gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA's KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns. In November of 2003, this new apparatus was used on the KC-135 aircraft to test cotton and cotton/polyester blend fabric specimens in microgravity. These materials were also been tested using the same apparatus in 1-g, and using a standard vertical flammability test that utilizes a flame. In this presentation, the design of the test apparatus will be briefly described. Examples of results from the KC-135 tests will be provided, including heat fluxes and skin burn predictions. These results will be compared with results from 1-g tests using the same apparatus and a standard fabric flammability test apparatus. Recommendations for future microgravity fabric flammability tests will also be discussed.

  1. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  2. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  3. Fire spread in chaparral: comparison of data with flame-mass loss relationships

    Treesearch

    David R. Weise; Thomas H. Fletcher; Shankar Mahalingam; Xiangyang Zhou; Lulu Sun

    2017-01-01

    The relationships between flame length, mass loss rate, and the Froude number have become well-established for many different fuels over the past 60 years. Chaparral, a mixture of shrub plants from the Mediterranean climate zone of southwestern North America, represents a fuel type—living plants—that has seldom been included in the development of these relationships....

  4. Laser-Induced Incandescence in Microgravity

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1997-01-01

    Microgravity offers unique opportunities for studying both soot growth and the effect of soot radiation upon flame structure and spread. LII has been characterized and developed at NASA-Lewis for soot volume fraction determination in a wide range of 1-g combustion applications. Reported here are the first demonstrations of LII performed in a microgravity environment. Examples are shown for laminar and turbulent gas-jet diffusion flames in 0-g.

  5. Role of buoyant flame dynamics in wildfire spread

    Treesearch

    Mark A. Finney; Jack D. Cohen; Jason M. Forthofer; Sara S. McAllister; Michael J. Gollner; Daniel J. Gorham; Kozo Saito; Nelson K. Akafuah; Brittany A. Adam; Justin D. English

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively...

  6. How to predict the spread and intensity of forest and range fires

    Treesearch

    Richard C. Rothermel

    1983-01-01

    This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems. This is a companion publication to "

  7. 29 CFR 1915.71 - Scaffolds or staging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...

  8. 29 CFR 1915.71 - Scaffolds or staging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...

  9. 29 CFR 1915.71 - Scaffolds or staging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...

  10. 29 CFR 1915.71 - Scaffolds or staging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...

  11. Numerical modeling of laboratory-scale surface-to-crown fire transition

    NASA Astrophysics Data System (ADS)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.

  12. A NON-PRE DOUBLE-PEAKED BURST FROM 4U 1636-536: EVIDENCE FOR BURNING FRONT PROPAGATION

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2005-01-01

    We analyse Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of a double-peaked burst from the low mass X-ray binary (LMXB) 4U 1636-536 that shows no evidence for photospheric radius expansion (PRE). We find that the X-ray emitting area on the star increases with time as the burst progresses, even though the photosphere does not expand. We argue that this is a strong indication of thermonuclear flame spreading on the stellar surface during such bursts. We propose a model for such double-peaked bursts, based on thermonuclear flame spreading, that can qualitatively explain their essential features, as well as the rarity of these bursts.

  13. Qualitative flow visualization of flame attachment on slopes

    Treesearch

    Torben P. Grumstrup; Sara S. McAllister; Mark A. Finney

    2017-01-01

    Heating of unburned fuel by attached flames and plume of a wildfire can produce high spread rates that have resulted in firefighter fatalities worldwide. Qualitative flow fields of the plume of a gas burner embedded in a table tilted to 0°, 10°, 20°, and 30° above horizontal were imaged using the retroreflective shadowgraph technique as a means to understand plume...

  14. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  15. Charts for interpreting wildland fire behavior characteristics

    Treesearch

    Patricia L. Andrews; Richard C. Rothermel

    1982-01-01

    The fire characteristics chart is proposed as a graphical method ofpresenting two primary characteristics of fire behavior – spread rate and intensity. Its primary use is communicating and interpreting either site-specific predictions of fire behavior or National Fire-Danger Rating System (NFDRS) indexes and components. Rate of spread, heat per unit area, flame length...

  16. Predicting fire behavior in palmetto-gallberry fuel complexes

    Treesearch

    W A. Hough; F. A. Albini

    1978-01-01

    Rate of spread, fireline intensity, and flame length can be predicted with reasonable accuracy for backfires and low-intensity head fires in the palmetto-gallberry fuel complex of the South. This fuel complex was characterized and variables were adjusted for use in Rothermel's (1972) spread model. Age of rough, height of understory, percent of area covered by...

  17. Measuring fire spread rates from repeat pass airborne thermal infrared imagery

    Treesearch

    Douglas A. Stow; Philip J. Riggan; Emanual A. Storey; Lloyd L. Coulter

    2014-01-01

    The objective is to evaluate procedures for direct measurement of fire spread rates (FSRs) based on archived repeat pass airborne thermal infrared (ATIR) imagery and to identify requirements for more refined measurements of FSR and environmental factors that influence FSR. Flaming front positions are delineated on sequential FireMapper ATIR images captured at...

  18. Research on ignition and flame spread of solid materials in Japan

    NASA Technical Reports Server (NTRS)

    Ito, Kenichi; Fujita, Osamu

    1995-01-01

    Fire safety is one of the main concerns for crewed missions such as the space station. Materials used in spacecraft may burn even if metalic. There are severe restrictions on the materials used in spacecraft from the view of fire safety. However, such restrictions or safety standards are usually determined based on experimental results under normal gravity, despite large differences between the phenomena under normal and microgravity. To evaluate the appropriateness of materials for use in space, large amount of microgravity fire-safety combustion data is urgently needed. Solid material combustion under microgravity, such as ignition and flame spread, is a relatively new research field in Japan. As the other reports in this workshop describe, most of microgravity combustion research in Japan is droplet combustion as well as some research on gas phase combustion. Since JAMIC, the Japan Microgravity Center, (which offers 10 seconds microgravity time) opened in 1992, microgravity combustion research is robust, and many drop tests relating to solid combustion (paper combustion, cotton string combustion, metal combustion with Aluminium or Magnesium) have been performed. These tests proved that the 10 seconds of microgravity time at JAMIC is useful for solid combustion research. Some experiments were performed before JAMIC opened. For example, latticed paper was burned under microgravity by using a 50 m drop tower to simulate porous material combustion under microgravity. A 50 m tower provides only 2 seconds microgravity time however, and it was not long enough to investigate the solid combustion phenomena.

  19. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  20. Flame Movement and Pressure Development in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Best, Robert D

    1932-01-01

    This investigation describes a visual method for making stroboscopic observations, through a large number of small windows, of the spread of flame throughout the combustion chamber of a gasoline engine. Data, secured by this method on a small engine burning gaseous fuels, are given to show the effects of mixture ratio, spark advance, engine speed, charge density, degree of dilution, compression ratio, and fuel composition on flame movement in the cylinder. Partial indicator diagrams showing pressure development during the combustion period are included. Although present knowledge is not sufficient to permit qualitative evaluation of the separate effects on flame movement of chemical reaction velocity, thermal expansion of burned gases, resonance, turbulence, and piston movement, the qualitative influence of certain of these factors on some of the diagrams is indicated.

  1. Partially Premixed Flame (PPF) Research for Fire Safety

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Hegde, Uday

    2004-01-01

    Incipient fires typically occur after the partial premixing of fuel and oxidizer. The mixing of product species into the fuel/oxidizer mixture influences flame stabilization and fire spread. Therefore, it is important to characterize the impact of different levels of fuel/oxidizer/product mixing on flame stabilization, liftoff and extinguishment under different gravity conditions. With regard to fire protection, the agent concentration required to achieve flame suppression is an important consideration. The initial stage of an unwanted fire in a microgravity environment will depend on the level of partial premixing and the local conditions such as air currents generated by the fire itself and any forced ventilation (that influence agent and product mixing into the fire). The motivation of our investigation is to characterize these impacts in a systematic and fundamental manner.

  2. Validation of behave fire behavior predictions in oak savannas

    USGS Publications Warehouse

    Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.

  3. Understanding Combustion Processes Through Microgravity Research

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  4. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.

  5. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  6. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  7. Predicting behavior and size of crown fires in the northern Rocky Mountains

    Treesearch

    Richard C. Rothermel

    1991-01-01

    Describes methods for approximating behavior and size of a wind-driven crown fire in mountainous terrain. Covers estimation of average rate of spread, energy release from tree crowns and surface fuel, fireline intensity, flame length, and unit area power of the fire and ambient wind. Plume-dominated fires, which may produce unexpectedly fast spread rates even with low...

  8. Burning Questions in Gravity-Dependent Combustion Science

    NASA Technical Reports Server (NTRS)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  9. Two Dimensional Heat Transfer in Non-Thermally Thin Poly(Methyl Methacrylate) During Combustion in a Narrow Channel Apparatus

    NASA Astrophysics Data System (ADS)

    Lage, Nicholas Alexander

    Experimentation and Computational modeling of non-thermally thin samples of poly(methyl methacrylate) (PMMA) burning in a Narrow Channel Apparatus (NCA) was conducted. The Narrow Channel Apparatus is used to replicate a microgravity environment by flowing of mixtures of nitrogen and oxygen through a narrow gap to suppress buoyancy above the burning sample. A new NCA was built, and experiments were conducted using it to provide the empirical data presented in this thesis. Samples of PMMA were burned, with thicknesses of 3, 5, and 10 mm, with an opposed-flow mean velocity of 15 cm/s and a 21% oxygen concentration. Flame spread rates were obtained from tracked flame positions. Thermocouples were embedded in the top and bottom surfaces of some of the samples to measure surface temperatures. Using Fire Dynamics Simulator (FDS), version 6.2.0, coupled with Gpyro, a two-dimensional model was developed for non-thermally thin samples of PMMA that are burned in the NCA. A 5 mm gap height was used as well as a laminar, parabolic flow at the inlet. Direct numerical simulation (DNS) was set. Finite rate kinetics were used to model the pyrolysis and combustion reactions. Complete combustion was assumed. Simulations with fuel thicknesses of 1, 3, 5, and 10 mm were run, under the same conditions as the experiment. A comparison between one-dimensional and two-dimensional heat conduction within the sample was made to show the effect the heat transfer parallel to flame propagation has on flame spread rates and solid-phase temperature profiles. A comparison between mica and an adiabatic plane set beneath the PMMA was also made as well as the length of time the sample is exposed to the ignition source. Through comparison of the model with the experiment, it was found that the flame spread rates of the model showed unrealistic trends with thickness. An investigation was completed with the aid of an energy balance as well as graphs, such as equivalence ratios, surface temperatures, surface heat fluxes, fuel vapor mass fluxes, etc., that were plotted with respect to the flame position to find the source of the unrealistic trends, but conclusive evidence was never obtained.

  10. Proceedings of the International Wire and Cable Symposium (33rd) Held at Cherry Hill, New Jersey on 13-15 November 1984

    DTIC Science & Technology

    1984-11-15

    Rl TRW Inc. Philadelphia, PA UBE Industries Jcpan Union Carbide Corporation Danbury, CT Union Carbide Corporation Long Beach, CA U.S...since it is UL Classified to a demanding flame spread requirement, viz., no than 5 feet7 in the UL 910 test.y» more DUPUX OPIICAl HBtB ( ABil Ttie...4,243,579, January 6, 1981 ( Union Carbide Corporation) 2) J. R. Pedersen, et.al., "Low-Smoke, Halogen Free Ship-Off Shore/On Shore Cables with

  11. Flashback flame arrester devices for fuel cargo tank vapor vents

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Kushida, R. O.

    1981-01-01

    The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.

  12. Development and Characterization of Laser-Induced Incandescence Towards Nanoparticle (Soot) Detection

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2000-01-01

    The production of particulates, notably soot, during combustion has both positive and negative ramifications. Exhaust from diesel engines under load (for example, shifting gears), flickering candle flames and fireplaces all produce soot leaving a flame. From an efficiency standpoint, emission of soot from engines, furnaces or even a simple flickering candle flame represents a loss of useful energy. The emission of soot from diesel engines, furnaces, power generation facilities, incinerators and even simple flames poses a serious environmental problem and health risk. Yet some industries intentionally produce soot as carbon black for use in inks, copier toner, tires and as pigments. Similarly, the presence of soot within flames can act both positively and negatively. Energy transfer from a combustion process is greatly facilitated by the radiative heat transfer from soot yet radiative heat transfer also facilitates the spread of unwanted fires. To understand soot formation and develop control strategies for soot emission/formation, measurements of soot concentration in both practical devices such as engines and controlled laboratory flames are necessary. Laser-induced incandescence (LII) has been developed and characterized to address this need, as described here.

  13. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests. The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation.

  14. The Rothermel surface fire spread model and associated developments: A comprehensive explanation

    Treesearch

    Patricia L. Andrews

    2018-01-01

    The Rothermel surface fire spread model, with some adjustments by Frank A. Albini in 1976, has been used in fire and fuels management systems since 1972. It is generally used with other models including fireline intensity and flame length. Fuel models are often used to define fuel input parameters. Dynamic fuel models use equations for live fuel curing. Models have...

  15. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  16. Structure and Soot Formation Properties of Laminar Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion-generated pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide emissions associated with soot emissions are responsible for most fire deaths, and limited understanding of soot processes in flames is a major impediment to the development of computational combustion. Motivated by these observations, soot processes within laminar premixed and nonpremixed (diffusion) flames are being studied during this investigation. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. Nonbuoyant flames are emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. This study involves both ground- and space-based experiments, however, the following discussion will be limited to ground-based experiments because no space-based experiments were carried out during the report period. The objective of this work was to complete measurements in both premixed and nonpremixed flames in order to gain a better understanding of the structure of the soot-containing region and processes of soot nucleation and surface growth in these environments, with the latter information to be used to develop reliable ways of predicting soot properties in practical flames. The present discussion is brief, more details about the portions of the investigation considered here can be found in refs. 8-13.

  17. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  18. Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions

    NASA Astrophysics Data System (ADS)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin

    2017-09-01

    Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnation temperature of 947 K. Ethylene is injected 35 mm upstream of cavity flameholder from four orifices with 2-mm-diameter. The 1064 nm laser beam, from a Q-switched Nd:YAG laser source running at 10 Hz and 940 mJ per pulse, is focused into cavity for ignition. High speed photography is used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation are all recorded and ensuing stable supersonic combustion is established in cavity. The highly ionized plasma zone is almost round at starting, and then the surface of the flame kernel is wrinkled severely in 150 μs after the laser pulse due to the strong turbulence flow in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upstream as the entrainment of circulation flow in cavity. The flame is stabilized at the corner of the cavity for about 200 μs, and then spreads from leading edge to trailing edge via the under part of shear layer to fully fill the entire cavity. The corner recirculation zone of cavity is of great importance for flame spreading. Eventually, a cavity shear-layer stabilized combustion is established in the supersonic flow roughly 2.9 ms after the laser pulse. Both the temporal evolution of normalized chemiluminescence intensity and normalized flame area show that the entire ignition process can be divided into four stages, which are referred as turbulent dissipation stage, combustion enhancement stage, reverting stage and combustion stabilization stage. The results show promising potentials of laser induced plasma for ignition in real scramjets.

  19. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    DTIC Science & Technology

    2014-11-13

    Evaluation of Flame Resistant Clothing for Protection Against Fire Simulations Using an Instrumented Manikin. Several UHMWPE fabrics were tested underneath...PROTECTIVE CLOTHING COTTON FLASH FLAMES UNDERGARMENTS TEST AND EVALUATION FABRICS FLAME TESTING FIRE ...PROTECTION FIRE RESISTANT TEXTILES UHMWPE(ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

  20. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  1. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  2. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  3. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  4. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  5. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  6. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  7. Flamelet Formation In Hele-Shaw Flow

    NASA Technical Reports Server (NTRS)

    Wichman, I. S.; Olson, S. L.

    2003-01-01

    A Hele-Shaw flow apparatus constructed at Michigan State University (MSU) produces conditions that reduce influences of buoyancy-driven flows. In addition, in the MSU Hele-Shaw apparatus it is possible to adjust the heat losses from the fuel sample (0.001 in. thick cellulose) and the flow speed of the approaching oxidizer flow (air) so that the "flamelet regime of flame spread" is entered. In this regime various features of the flame-to-smolder (and vice versa) transition can be studied. For the relatively wide (approx. 17.5 cm) and long (approx. 20 cm) samples used, approximately ten flamelets existed at all times. The flamelet behavior was studied mechanistically and statistically. A heat transfer analysis of the dominant heat transfer mechanisms was conducted. Results indicate that radiation and conduction processes are important, and that a simple 1-D model using the Broido-Shafizadeh model for cellulose decomposition chemistry can describe aspects of the flamelet spread process. Introduction

  8. Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.

  9. SAMS Acceleration Measurements on Mir (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  10. 46 CFR 154.467 - Submission of insulation information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conductivity. (m) Resistance to vibrations. (n) Resistance to fire and flame spread. (o) The manufacturing and... (5) Quality control. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782...

  11. 46 CFR 154.467 - Submission of insulation information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... conductivity. (m) Resistance to vibrations. (n) Resistance to fire and flame spread. (o) The manufacturing and... (5) Quality control. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782...

  12. 46 CFR 154.467 - Submission of insulation information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... conductivity. (m) Resistance to vibrations. (n) Resistance to fire and flame spread. (o) The manufacturing and... (5) Quality control. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782...

  13. 46 CFR 154.467 - Submission of insulation information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conductivity. (m) Resistance to vibrations. (n) Resistance to fire and flame spread. (o) The manufacturing and... (5) Quality control. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782...

  14. Flow Effects on the Flammability Diagrams of Solid Fuels

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.

    1997-01-01

    A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.

  15. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS, including the distance of required separation for flammable materials. Additional information is included in the original extended abstract.

  16. Preparation and characterizations of flame retardant polyamide 66 fiber

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Liu, K.; Xiao, R.

    2017-06-01

    The polyamide 66 (PA66) is one of the most important thermoplastic materials, but it has the drawback of flammability. So the flame retardant PA66 was prepared by condensation polymerization using nylon salt and DOPO-based flame retardant in this paper. Then the flame retardant PA66 fiber was manufactured via melt spinning. The properties of flame retardant PA66 and flame retardant PA66 fiber were investigated by relative viscosity, differential scanning calorimetry (DSC), tensile test, vertical burning test (UL94) and limiting oxygen index (LOI) test. Although the loading of the DOPO-based flame retardant decreased the molecular weight, the melting temperature, the crystallinity and the mechanical properties of flame retardant PA66, the flame retardancy properties improved. The flame retardant PA66 loaded with 5.5 wt% of DOPO-based flame retardant can achieve a UL94 V-0 rating with a LOI value of 32.9%. The tenacity at break decreased from 4.51 cN·dtex-1 for PA66 fiber to 2.82 cN·dtex-1 for flame retardant PA66 fiber which still satisfied the requirements for fabrics. The flame retardant PA66 fiber expanded the application of PA66 materials which had a broad developing prospect.

  17. Firing test of propellant-cracked solid motor under X-ray TV

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tsutomu; Tanemura, Toshiharu; Itoh, Katsuya; Kakuta, Yoshiaki; Shimizu, Morio; Takahashi, Michio

    This paper presents the effects of a big crack on the combustion behaviors of the scaled-down Japanese H-I upper stage motors of the National Space Development Agency (NASDA). The big crack was generated by cooling down the propellant grain below -100 C; the crack was identified and measured with the X-ray computer tomography (CT) system designed for medical use. It was found that the crack spread widely from inner bore to liner and fore-and-aft of the motor. The firing test of the propellant-cracked solid motor was performed under X-ray TV observation, and the motor exploded just after the ignition because of the abrupt chamber pressure increase due to flame propagation into the crack.

  18. Sorption of Organophosphorus Flame-Retardants on Settled ...

    EPA Pesticide Factsheets

    Dust is an important sink for indoor air pollutants, such as organophosphorus flame-retardants (OPFRs) that are used as additives in industrial and consumer products including electrical and electronic products, furniture, plastics, textile, and building/construction materials. This research investigated the sorption of OPFRs, tris(2-chloroethyl) phosphate (TCEP), tris(1-chlor-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on settled Arizona Test Dust (ATD) using a dual small chamber system. During the test, seven free film release paper dust trays covered with ATD were placed in the sink test chamber. Constant gas phase OPFRs from the source chamber were dosed into the test chamber. The dust evenly spread on each dust tray was removed from the test chamber at different exposure times to determine the amount of OPFRs absorbed by the dust. The ATD has been characterized for a nominal particle size and surface area. The mass of dust on each of seven dust trays was weighed before the dust was placed inside the sink chamber. OPFRs concentrations at the inlet and faceplate of the test chamber were monitored by collecting polyurethane foam (PUF) samples. The OPFR exposed dust and PUF samples were extracted by 1:1 ethyl acetate/methylene chloride and analyzed on GC/MS. The data were used to calculate the OPFR sorption concentration on the dust through dust/air partition. Settled dust can adsorb OPFR from air. The sorption concentration wa

  19. Classroom Activity Connections: Demonstrating Various Flame Tests Using Common Household Materials

    ERIC Educational Resources Information Center

    Baldwin, Bruce W.; Hasbrouck, Scott; Smith, Jordan; Kuntzleman, Thomas S.

    2010-01-01

    In "JCE" Activity #67, "Flame Tests: Which Ion Causes the Color?", Michael Sanger describes how to conduct flame tests with household items. We have used this activity in outreach settings, and have extended it in a variety of ways. For example, we have demonstrated large-scale strontium (red), copper (green), and carbon (blue) flames using only…

  20. Conference on the Development of Fire-Resistant Aircraft Passenger Seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Kourtides, D. A.; Rosser, R. W.; Parker, J. A.

    1976-01-01

    Papers are presented dealing with the development of aircraft seats with the minimum fire risk. Criteria examined include: flame spread, heat release, and smoke and/or toxic fumes. Materials and performance specifications of all seat material options are provided.

  1. The Flames Stop Here.

    ERIC Educational Resources Information Center

    Brunette, Len

    2000-01-01

    Explains how advancements in glass manufacturing can help prevent fire and smoke from spreading through a building. The benefit of using wired glass and see-through ceramics are highlighted, and is the importance of glass in minimizing smoke and reducing smoke-related mortality. (GR)

  2. Lectures on combustion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A.

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  3. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  4. Validation and Verification (V and V) Testing on Midscale Flame Resistant (FR) Test Method

    DTIC Science & Technology

    2016-12-16

    Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Validation and...complement (not replace) the capabilities of the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire ...Engineering Center (NSRDEC) to complement the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire

  5. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    NASA Astrophysics Data System (ADS)

    Tan, Giam

    2009-11-01

    The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.

  6. Preliminary Results of the Third Test Series of Nonmetal Material Flammability Evaluation In SKOROST Apparatus on the Space Station Mir

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Alymov, V. F.; Smirnov, A. B.; Shalayev, S. P.; Ye.Belov, D.; Balashov, Ye.V.; Andreeva, T. V.; Semenov, A. V.; Melikhov, A. S.; Bolodyan, I. A.; hide

    1999-01-01

    The work has been done according to the US/Russian Joint Project "Experimental Evaluation of the Material Flammability in Microgravity" a continued combustion study in the SKOROST test apparatus on the OS Mir. The objective of the project was to evaluate the flammability and flame-spread rate for the selected polymer materials in low velocity flow in microgravity. Lately, the issue of nonmetal material combustion in microgravity has become of great importance, based on the necessity to develop the fire safety system for the new International Space Station (ISS). Lack of buoyant flow in microgravity reduces oxygen transfer into the combustion zone, which leads to flame extinction when the flow velocity is less than the limiting flow velocity V(sub lim) for the material. The ISS FGB fire-safety system was developed based on this phenomenon. The existence of minimum flow velocity V(sub lim) to sustain fire for the selected materials was determined both theoretically and experimentally. In the latter, it is shown that, even for thermally thin nonmetal materials with a very low oxygen index C(sub lim) of 12.5% (paper sheets with the thickness of 0.1 mm), a limiting flow velocity V(sub lim) exists at oxygen concentration Co(sub OX) = 17-21%, and is about 1.0 - 0.1 cm/sec. This might be explained by the relative increase in thermal losses due to radiation from the surface and from the gaseous phase. In the second series of experiments in Skorost apparatus on Orbital Station Mir the existence of the limiting flow velocity V(sub lim) for combustion was confirmed for PMMA and glass-epoxy composite strip samples 2 mm thick at oxygen concentration C(sub OX) = 21.5%. It was concluded that V(sub lim) depends on C(sub OX) for the PMMA sample with a low oxygen index of 15.5%, the limiting flow velocity V(sub lim) was less than 0.5 cm/sec, and for the glass-epoxy composite sample with a high oxygen index of 19%, the limiting flow velocity V(sub lim) was higher than 15 cm/sec. As of now only those materials that maintain their integrity during combustion were investigated. The materials that disintegrate when burning present more danger for fire safety because the flame can spread farther with the parts of the structure, ejected melt drops, et cetera. Materials such as polyethylene are of great interest since they form a lengthy melt zone during the combustion in normal gravity. This melt zone generates drops of liquids that promote faster flame spread compared to usual combustion. The preliminary results of polyethylene insulation flammability evaluation in microgravity are shown in the NASA Wire Insulation Flammability (WIF) experiment during Space Shuttle flight STS-50. A lot of interesting data was collected during the WIF test program. However, one of the most important results was that, in microgravity, the extinction of the polyethylene occurred almost immediately when the flow of relatively low oxygen concentration (C(sub OX)=21%) was stopped. The purpose of the work reported here is to expand the existing data base on material flammability in microgravity and to conduct the third series of the space experiment using Skorost apparatus on Orbiatl Station Mir with melting polymers, which might increase the probability of fire and its propagation in ventilated microgravity environment of orbiting spacecraft.

  7. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame test apparatus. 7.406 Section 7.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for...

  8. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flame test apparatus. 7.406 Section 7.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for...

  9. 30 CFR 7.26 - Flame test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flame test apparatus. 7.26 Section 7.26 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... test apparatus. The principal parts of the apparatus used to test for flame-resistance of brattice...

  10. 30 CFR 7.26 - Flame test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame test apparatus. 7.26 Section 7.26 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... test apparatus. The principal parts of the apparatus used to test for flame-resistance of brattice...

  11. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  12. Occupational exposure to polybrominated diphenyl ethers (PBDEs) and other flame retardant foam additives at gymnastics studios: Before, during and after the replacement of pit foam with PBDE-free foams.

    PubMed

    Ceballos, Diana M; Broadwater, Kendra; Page, Elena; Croteau, Gerry; La Guardia, Mark J

    2018-07-01

    Coaches spend long hours training gymnasts of all ages aided by polyurethane foam used in loose blocks, mats, and other padded equipment. Polyurethane foam can contain flame retardant additives such as polybrominated diphenyl ethers (PBDEs), to delay the spread of fires. However, flame retardants have been associated with endocrine disruption and carcinogenicity. The National Institute for Occupational Safety and Health (NIOSH) evaluated employee exposure to flame retardants in four gymnastics studios utilized by recreational and competitive gymnasts. We evaluated flame retardant exposure at the gymnastics studios before, during, and after the replacement of foam blocks used in safety pits with foam blocks certified not to contain several flame retardants, including PBDEs. We collected hand wipes on coaches to measure levels of flame retardants on skin before and after their work shift. We measured flame retardant levels in the dust on window glass in the gymnastics areas and office areas, and in the old and new foam blocks used throughout the gymnastics studios. We found statistically higher levels of 9 out of 13 flame retardants on employees' hands after work than before, and this difference was reduced after the foam replacement. Windows in the gymnastics areas had higher levels of 3 of the 13 flame retardants than windows outside the gymnastics areas, suggesting that dust and vapor containing flame retardants became airborne. Mats and other padded equipment contained levels of bromine consistent with the amount of brominated flame retardants in foam samples analyzed in the laboratory. New blocks did not contain PBDEs, but did contain the flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and 2-ethylhexyl 2,3,4,5-tetrabromophthalate. We conclude that replacing the pit foam blocks eliminated a source of PBDEs, but not 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and 2-ethylhexyl 2,3,4,5-tetrabromophthalate. We recommend ways to further minimize employee exposure to flame retardants at work and acknowledge the challenges consumers have identifying chemical contents of new products. Published by Elsevier Ltd.

  13. Laminar Premixed and Diffusion Flames (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames.

  14. Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments

    ERIC Educational Resources Information Center

    Yu, Henson L. Lee; Domingo, Perfecto N., Jr.; Yanza, Elliard Roswell S.; Guidote, Armando M., Jr.

    2015-01-01

    This article demonstrates how to make a low-cost ethanol burner utilizing soda cans. It burns with a light blue flame suitable for out-of-laboratory flame test demonstrations where interference from a yellow flame needs to be avoided.

  15. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    NASA Astrophysics Data System (ADS)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  16. Simple Flame Test Techniques Using Cotton Swabs

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Phelps, Amy J.; Banks, Catherine

    2004-01-01

    Three alternative methods for performing flame tests using cheaply and easily available cotton swabs are described. These flame tests are useful for chemical demonstrations or laboratory experiments because they are quick and easy to perform with easy cleanup and disposal methods.

  17. Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    2000-01-01

    A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.

  18. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  19. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  20. Flame Spread and Damaged Properties of RCD Cases by Tracking

    NASA Astrophysics Data System (ADS)

    Choi, Chung-Seog; Kim, Hyang-Kon; Shong, Kil-Mok; Kim, Dong-Woo

    In this paper, the flame spread and damaged properties of residual current protective devices (RCDs) by tracking were analyzed. Pictures of tracking process were taken by High Speed Imaging System (HSIS), and fire progression was observed by timeframe. During the tracking process of RCD, it seemed to explode just once in appearance, but in the results of HSIS analysis, a small fire broke out and disappeared repeatedly 35 times and a flash of light repeated 15 times. Finally, an explosion with a flash of light occurred and lots of particles were scattered. Electric muffle furnace was used for heat treatment of RCD cases. The surface characteristics of specimens due to heat treatment and tracking deterioration were taken by Scanning Electron Microscope (SEM). Chemical and thermal properties of these deteriorated specimens were analyzed by Fourier Transform Infrared Spectrometer (FT-IR) and Differential Thermal Analyzer (DTA). The carbonization characteristics showed different chemical properties due to energy sources, and the results could be applicable to judge the accident causes.

  1. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  2. Mixed Convection Blowoff Limits as a Function of Oxygen Concentration and Upward Forced Stretch Rate for Burning Pmma Rods of Various Sizes

    NASA Technical Reports Server (NTRS)

    Marcum, Jeremy W.; Ferkul, Paul V.; Olson, Sandra L.

    2017-01-01

    Normal gravity flame blowoff limits in an axisymmetric pmma rod geometry in upward axial stagnation flow are compared with microgravity Burning and Suppression of Solids II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (pmma) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18 by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity upward flame spread test method which extrapolates the linear blowoff boundary to the zero stretch limit to resolve microgravity flammability limits, something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  3. A Dramatic Flame Test Demonstration.

    ERIC Educational Resources Information Center

    Johnson, Kristin A.; Schreiner, Rodney

    2001-01-01

    Flame tests are used for demonstration of atomic structure. Describes a demonstration that uses spray bottles filled with methanol and a variety of salts to produce a brilliantly colored flame. (Contains 11 references.) (ASK)

  4. Fire Hazards from Combustible Ammunition, Methodology Development. Phase I

    DTIC Science & Technology

    1980-06-01

    5.3 Flame Length , Flame Diameter and Mass Burning Rate 37 5.4 Flame Emissive Power 41 5.5 Fire Plume Axial Gas Velocity 41 5.6 Flame Temperature...B.2 Exit Velocity 93 B.3 Rate of Energy Flow 93 B.4 Chamber Characteristics 94 B.5 Flame Length 95 B.6 Flame Lift Angle 95 B.7 Summary 97...Viewing Flame in Test Series 5 17. Flame Length Scaling 18. Scaling Trends for Mass Burning Rate 19. Effective Flame Emissive Power versus Flame

  5. SAMS Acceleration Measurements on Mir From January to May 1997 (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFT), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine burn, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  6. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  7. Combustion and Flammability Characteristics of Solids at Microgravity in very Small Velocity Flows

    NASA Technical Reports Server (NTRS)

    Sanchez-Tarifa, C.; Rodriguez, M.

    1999-01-01

    Fires still remain as one of the most important safety risks in manned spacecraft. This problem will become even more important in long endurance non orbital flights in which maintenance will be non existing or very difficult. The basic process of a fire is the combustion of a solid at microgravity conditions in O2/N2 mixtures. Although a large number of research programs have been carried out on this problem, especially on flame spreading, several aspects of these processes are not yet well understood. It may be mentioned, for example, the temperature and characteristic of low emissivity flames in the visual range that take place in some conditions at microgravity; and there exists a lack of knowledge on the influence of key parameters, such as convective flow velocities of the order of magnitude of typical oxygen diffusion velocities. The "Departamento de Motopropulsion y Termofluidodinamica" of the "Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Aeronauticos" is conducting a research program on the combustion of solids at reduced gravity conditions within O2/N2 mixtures. The material utilized has been polymethylmethacrylate (PMMA) in the form of rectangular slabs and hollow cylinders. The main parameters of the process have been small convective flow velocities (including velocity angle with the direction of the spreading flame) and oxygen concentration. Some results have also been obtained on the influence of material thickness and gas pressure.

  8. X-Ray Burst Oscillations: From Flame Spreading to the Cooling Wake

    NASA Technical Reports Server (NTRS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2016-01-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such "cooling wake" models, a "canonical" cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an "asymmetric" model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.

  9. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  10. 16 CFR 1610.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanism of the test apparatus. (c) Dry cleaning means the cleaning of samples in a commercial dry cleaning... 1 second during which the ignition flame is applied to the test specimen. (g) Ignition means that there is a self-sustaining flame on the specimen after the test flame is removed. (h) Interlining means...

  11. 16 CFR 1610.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanism of the test apparatus. (c) Dry cleaning means the cleaning of samples in a commercial dry cleaning... 1 second during which the ignition flame is applied to the test specimen. (g) Ignition means that there is a self-sustaining flame on the specimen after the test flame is removed. (h) Interlining means...

  12. 16 CFR § 1610.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanism of the test apparatus. (c) Dry cleaning means the cleaning of samples in a commercial dry cleaning... 1 second during which the ignition flame is applied to the test specimen. (g) Ignition means that there is a self-sustaining flame on the specimen after the test flame is removed. (h) Interlining means...

  13. 16 CFR 1610.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanism of the test apparatus. (c) Dry cleaning means the cleaning of samples in a commercial dry cleaning... 1 second during which the ignition flame is applied to the test specimen. (g) Ignition means that there is a self-sustaining flame on the specimen after the test flame is removed. (h) Interlining means...

  14. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  15. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  16. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    PubMed

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  17. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism, following the work on diffusion-controlled cool flames by Fairlie et,al., 2000.

  18. Cooperative Research Projects in the Microgravity Combustion Science Programs Sponsored by NASA and NEDO

    NASA Technical Reports Server (NTRS)

    Ross, Howard (Compiler)

    2000-01-01

    This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.

  19. 30 CFR 14.22 - Test for flame resistance of conveyor belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of conveyor belts. 14... Technical Requirements § 14.22 Test for flame resistance of conveyor belts. (a) Test procedures. The test... ±0.3 cm) wide, flat at a temperature of 70 ±10 °Fahrenheit (21 ±5 °Centigrade) for at least 24 hours...

  20. 30 CFR 14.22 - Test for flame resistance of conveyor belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of conveyor belts. 14... Technical Requirements § 14.22 Test for flame resistance of conveyor belts. (a) Test procedures. The test... ±0.3 cm) wide, flat at a temperature of 70 ±10 °Fahrenheit (21 ±5 °Centigrade) for at least 24 hours...

  1. 30 CFR 14.22 - Test for flame resistance of conveyor belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of conveyor belts. 14... Technical Requirements § 14.22 Test for flame resistance of conveyor belts. (a) Test procedures. The test... ±0.3 cm) wide, flat at a temperature of 70 ±10 °Fahrenheit (21 ±5 °Centigrade) for at least 24 hours...

  2. Pressure Modeling of Char-Forming and Laminated Materials.

    DTIC Science & Technology

    1983-06-01

    flame spread rates for various types of materials. For instance, the PMMA fuel used for the laminated wall fires in the present study has a pyroly - sis...thermal conduction and pyroly - sis with one-step Arrhenius kinetics. This numerical procedure is documented in detail in Appendix A, which is taken from

  3. Development of a Midscale Test for Flame Resistant Protection

    DTIC Science & Technology

    2016-08-01

    Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin, which provides both radiant and convective heat...TEST METHODS FIRE RESISTANT MATERIALS TORCHES SIMULATION TEST EQUIPMENT FLAME RESISTANT CLOTHING PERFORMANCE(ENGINEERING... fabric during a fire , and even after the fire has been extinguished. The best known full scale transmitted heat flux test is the "ASTM F1930

  4. Development of the Flame Test Concept Inventory: Measuring Student Thinking about Atomic Emission

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Murata Mayo, Ana Vasquez

    2018-01-01

    This study reports the development of a 19-item Flame Test Concept Inventory, an assessment tool to measure students' understanding of atomic emission. Fifty-two students enrolled in secondary and postsecondary chemistry courses were interviewed about atomic emission and explicitly asked to explain flame test demonstrations and energy level…

  5. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  6. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  7. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  8. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  9. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  10. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  11. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  12. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  13. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.

  14. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.

  15. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,

  16. Candle Flames in Microgravity: USML-1 Results - 1 Year Later

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Dietrich, D. L.; Tien, J. S.

    1994-01-01

    We report on the sustained behavior of a candle flame in microgravity determined in the glovebox facility aboard the First United States Microgravity Labomtofy. In a quiescent, microgmvjfy environment, diffusive transport becomes the dominant mode of heat and mass transfer; whether the diffusive transport rate is fast enough to sustain low-gravity candle flames in air was unknown to this series of about 70 tests. After an initial transient in which soot is observed, the microgravity candle flame in air becomes and remains hemispherical and blue (apparently soot-Ne) with a large flame standoff distance. Near flame extinction, spontaneous flame oscillations are regularly observed; these are explained as a flashback of flame through a premixed combustible gas followed by a retreat owed to flame quenching. The frequency of oscillations can be related to diffusive transport rates, and not to residual buoyant convective flow. The fact that the flame tip is the last point of the flame to survive suggests that it is the location of maximum fuel reactivity; this is unlike normal gravity, where the location of maximum fuel reactivity is the flame base. The flame color, size, and shape behaved in a quasi-steady manner; the finite size of the glovebox, combined with the restricted passages of the candlebox, inhibited the observation of true steady-state burning. Nonetheless, through calculations, and inference from the series of shuttle tests, if is concluded that a candle can burn indefinitely in a large enough ambient of air in microgravity. After igniting one candle, a second candle in close pximity could not be lit. This may be due to wax coating the wick and/or local oxygen depletion around the second, unlit candle. Post-mission testing suggests that simultaneous ignition may overcome these behaviors and enable both candles to be ignited.

  17. 30 CFR 7.27 - Test for flame resistance of brattice cloth.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of brattice cloth. 7... Ventilation Tubing § 7.27 Test for flame resistance of brattice cloth. (a) Test procedures. (1) Prepare 6... for a minimum of 24 hours at a temperature of 70 ±10 °F (21 ±5.5 °C) and a relative humidity of 55 ±10...

  18. 30 CFR 7.27 - Test for flame resistance of brattice cloth.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of brattice cloth. 7... Ventilation Tubing § 7.27 Test for flame resistance of brattice cloth. (a) Test procedures. (1) Prepare 6... for a minimum of 24 hours at a temperature of 70 ±10 °F (21 ±5.5 °C) and a relative humidity of 55 ±10...

  19. 30 CFR 7.27 - Test for flame resistance of brattice cloth.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of brattice cloth. 7... Ventilation Tubing § 7.27 Test for flame resistance of brattice cloth. (a) Test procedures. (1) Prepare 6... for a minimum of 24 hours at a temperature of 70 ±10 °F (21 ±5.5 °C) and a relative humidity of 55 ±10...

  20. 30 CFR 7.27 - Test for flame resistance of brattice cloth.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of brattice cloth. 7... Ventilation Tubing § 7.27 Test for flame resistance of brattice cloth. (a) Test procedures. (1) Prepare 6... for a minimum of 24 hours at a temperature of 70 ±10 °F (21 ±5.5 °C) and a relative humidity of 55 ±10...

  1. 30 CFR 7.27 - Test for flame resistance of brattice cloth.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of brattice cloth. 7... Ventilation Tubing § 7.27 Test for flame resistance of brattice cloth. (a) Test procedures. (1) Prepare 6... for a minimum of 24 hours at a temperature of 70 ±10 °F (21 ±5.5 °C) and a relative humidity of 55 ±10...

  2. Thermal particle image velocity estimation of fire plume flow

    Treesearch

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  3. Predicting wildfire behavior in black spruce forests in Alaska.

    Treesearch

    Rodney A. Norum

    1982-01-01

    The current fire behavior system, when properly adjusted, accurately predicts forward rate of spread and flame length of wildfires in black spruce (Picea mariana (Mill.) B.S.P.) forests in Alaska. After fire behavior was observed and quantified, adjustment factors were calculated and assigned to the selected fuel models to correct the outputs to...

  4. Designing fire safe interiors.

    PubMed

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Exploratory Development of Coated Fabric for Fire Proximity Suits

    DTIC Science & Technology

    1978-06-01

    burner flame impinged directly on the surface for 1 minute. The Solucote urethane was the only coating which incorporated a flame retardant , so all the...blistering or flashing in the above test, but only some charring. On the basis of all the above tests, it was decided to use the flame retardant treated...fch4- fabric Wa8 not flame retardant . Consequently this surface coat ignited after 10 seconds of exposure. If ignition had not occurred, this

  6. Combustion of Solids in Microgravity: Results from the BASS-II Experiment

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.; Bhattacharjee, Subrata; Fernandez-Pello, Carlos; Miller, Fletcher; Olson, Sandra L.; Takahashi, Fumiaki; T’ien, James S.

    2014-01-01

    The Burning and Suppression of Solids-II (BASS-II) experiment was performed on the International Space Station. Microgravity combustion tests burned thin and thick flat samples, acrylic slabs, spheres, and cylinders. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 53 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and oxygen concentration on flame appearance, growth, spread rate, and extinction were examined in both the opposed and concurrent flow configuration. The flames are quite sensitive to air flow speed in the range 0 to 5 cms. They can be sustained at very low flow speeds of less than 1 cms, when they become dim blue and stable. In this state they are not particularly dangerous from a fire safety perspective, but they can flare up quickly with a sudden increase in air flow speed. Including earlier BASS-I results, well over one hundred tests have been conducted of the various samples in the different geometries, flow speeds, and oxygen concentrations. There are several important implications related to fundamental combustion research as well as spacecraft fire safety. This work was supported by the NASA Space Life and Physical Sciences Research and Applications Division (SLPSRA).

  7. Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea

    2010-12-01

    Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.

  8. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  9. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  10. Lag-driven motion in front propagation

    NASA Astrophysics Data System (ADS)

    Amor, Daniel R.; Fort, Joaquim

    2013-10-01

    Front propagation is a ubiquitous phenomenon. It arises in physical, biological and cross-disciplinary systems as diverse as flame propagation, superconductors, virus infections, cancer spread or transitions in human prehistory. Here we derive a single, approximate front speed from three rather different time-delayed reaction-diffusion models, suggesting a general law. According to our approximate speed, fronts are crucially driven by the lag times (periods during which individuals or particles do not move). Rather surprisingly, the approximate speed is able to explain the observed spread rates of completely different biophysical systems such as virus infections, the Neolithic transition in Europe, and postglacial tree recolonizations.

  11. Evaluation of a passive flame-height sensor to estimate forest fire intensity.

    Treesearch

    Kevin C. Ryan

    1981-01-01

    The length of flames of wildland fires is a relative indicator of fireline intensity and an important index to fire effects and difficulty of control. A technique for measuring flame height and flame-tilt angle for the purpose of calculating flame length is described. Laboratory tests determined the feasibility of using cotton string treated with ammonium phosphate...

  12. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  13. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  14. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  15. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  16. Analysis of Flame Retardancy in Polymer Blends by Synchrotron X-ray K-edge Tomography and Interferometric Phase Contrast Movies.

    PubMed

    Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G

    2016-03-10

    Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.

  17. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; hide

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  18. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  19. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  20. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  1. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  2. Managing wildland fires: integrating weather models into fire projections

    Treesearch

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  3. Fanning the flames: climate change stacks odds against fire suppression.

    Treesearch

    Jonathan Thompson

    2005-01-01

    There is little question that global warming would increase the risk of wildfires by drying out vegetation and stirring the winds that spread fire. Until recently, however, land managers were unable to formulate appropriate responses because the spatial scales of predictions were far too coarse. Current research being done at the PNW Research Station in Portland,...

  4. Testing of Action of Direct Flame on Concrete

    PubMed Central

    Valek, Jaroslav; Novosad, Petr

    2015-01-01

    The paper states results of experimental exposition of concrete test specimens to direct flame. Concrete test specimens made from various mixtures differing in the type of aggregate, binder, dispersed reinforcement, and technological procedure were subjected to thermal load. Physicomechanical and other properties of all test specimens were tested before exposition to open flame: density, compressive strength, flexural strength, moisture content, and surface appearance. The specimens were visually observed during exposition to open flame and changes were recorded. Exposed surface was photographically documented before thermal load and at 10-minute intervals. Development of temperature of the specimens was documented with a thermocamera. After exposition to thermal load and cooling down, concrete specimens were visually observed, network of cracks was photographically documented, and maximal depth of spalled area was measured. PMID:25830162

  5. An Improved Flame Test for Qualitative Analysis Using a Multichannel UV-Visible Spectrophotometer

    ERIC Educational Resources Information Center

    Blitz, Jonathan P.; Sheeran, Daniel J.; Becker, Thomas L.

    2006-01-01

    Qualitative analysis schemes are used in undergraduate laboratory settings as a way to introduce equilibrium concepts and logical thinking. The main component of all qualitative analysis schemes is a flame test, as the color of light emitted from certain elements is distinctive and a flame photometer or spectrophotometer in each laboratory is…

  6. Hydrogen and hydrocarbon diffusion flames in a weightless environment

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.; Cochran, T. H.

    1973-01-01

    An experimental investigation was performed on laminar hydrogen-, ethylene-, and propylene-air diffusion burning in a weightless environment. The flames burned on nozzles with radii ranging from 0.051 to 0.186 cm with fuel Reynolds numbers at the nozzle exit from 9 to 410. Steady-state diffusion flames existed in a weightless environment for all the fuels tested. A correlation was obtained for their axial length as a function of Schmidt number, Reynolds numbers, and stoichiometric mole fraction. The maximum flame radii were correlated with the ratio of nozzle radius to average fuel velocity. The flames of ethylene and propylene on nozzles with radii 0.113 or larger appeared to be constantly changing color and/or length throughout the test. No extinguishment was observed for any of the gases tested within the 2.2 seconds of weightlessness.

  7. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    NASA Astrophysics Data System (ADS)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images of unstable flames were used to identify several instability mechanisms and infer how these mechanisms are affected by the pilot flame. Flame images of cases in which the pilot flame did not eliminate the instability were investigated to understand why the pilot flame is not effective in certain cases. The phase of unstable pilot flame oscillations was investigated to determine how the phase of pilot flame oscillations may affect its ability to interfere with instability mechanisms in the main flame. A forced flame response study was conducted to determine the effect of inlet velocity oscillation amplitude on the pilot flame. The flame response was characterized by measurements of velocity oscillations in the injector and chemiluminescence intensity oscillations determined from flame images. As the forcing amplitude increases, the pilot flame's effect on the flame transfer function magnitude becomes weaker. Flame images show that as the forcing amplitude increases, the pilot flame oscillations increase, leading to an ineffective pilot. The results of the flame response portion of this study highlight the effect of instability amplitude on the ability of a pilot flame to eliminate a combustion instability.

  8. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  9. Assessing and ranking the flammability of some ornamental plant species to select firewise plants for landscaping in WUI (SE France).

    NASA Astrophysics Data System (ADS)

    Ganteaume, A.; Jappiot, M.; Lampin, C.

    2012-04-01

    The increasing urbanization of Wildland-Urban Interfaces (WUI) as well as the high fire occurrence in these areas requires the assessment and the ranking of the flammability of the ornamental vegetation surrounding houses especially that planted in hedges. Thus, the flammability of seven species, among those most frequently planted in hedges in Provence (South-Eastern France), were studied at particle level and at dead surface fuel level (litters) under laboratory conditions. The flammability parameters (ignition frequency, time-to-ignition, flaming duration) of the very fine particles (live leaves and particles <2 mm in diameter) were measured using an epiradiator as burning device. The flammability parameters (ignition frequency, time-to-ignition, flaming duration and initial flame propagation) of the undisturbed litter samples were recorded during burning experiments performed on fire bench. Burning experiments using the epiradiator showed that live leaves of Phyllostachys sp., Photinia frasei and Prunus laurocerasus had the shortest time-to-ignition and the highest ignition frequency and flaming duration whereas Pittosporum tobira and Nerium oleander were the longest to ignite with a low frequency. Phyllostachys sp. and Nerium oleander litters were the shortest to ignite while Prunus laurocerasus litter had the lowest bulk density and long time-to-ignition, but high flame propagation. Photinia fraseri litter ignited frequently and had a high flame spread while Pittosporum tobira litter ignited the least frequently and for the shortest duration. Cupressus sempervirens litter had the highest bulk density and the longest flaming duration but the lowest flame propagation. Pyracantha coccinea litter was the longest to ignite and flame propagation was low but lasted a long time. Hierarchical cluster analysis performed on the flammability parameters of live leaves and of litters ranked the seven species in four distinct clusters from the most flammable (Prunus laurocerasus and Pyracantha coccinea) to the least flammable (Pittosporum tobira and Nerium oleander); the other species displaying two groups of intermediate flammabilities (Phyllostachys sp.- Photinia fraseri and Cupressus sempervirens ). The species with highly flammable characteristics should not be used in hedges planted in WUIs in South-Eastern France.

  10. The Water-Mist Fire Suppression Experiment (Mist): Preliminary Results From The STS-107 Mission

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Amon, Francine; Gokoglu, Suleyman

    2003-01-01

    An investigation of the effect of water mists on premixed flame propagation has been conducted onboard the Space Shuttle to take advantage of the prolonged microgravity environment to study the effect of uniformly distributed clouds of polydisperse water mists on the speed and shape of propagating propane-air premixed flames. The suspension of a quiescent and uniform water mist cloud was confirmed during the microgravity tests. Preliminary results show good agreement with trends obtained by the numerical predictions of a computational model that uses a hybrid Eulerian-Lagrangian formulation to simulate the two-phase, flame/mist interaction. Effective flame suppression is observed at progressively higher water loadings and smaller water droplet sizes. Other unusual flame behavior, such as flame front breakup and pulsating flames, is still under investigation. The promising results from the microgravity tests will be used to assess the feasibility of using water mists as fire suppressants on Earth and on spacecraft.

  11. How to generate and interpret fire characteristics charts for surface and crown fire behavior

    Treesearch

    Patricia L. Andrews; Faith Ann Heinsch; Luke Schelvan

    2011-01-01

    A fire characteristics chart is a graph that presents primary related fire behavior characteristics-rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by...

  12. Testing of Flame Screens and Flame Arresters as Devices Designed to Prevent the Passage of Flame (DPPF) into Tanks Containing Flammable Atmospheres According to an IMO Standard

    DTIC Science & Technology

    1989-10-01

    flashback tests FM does not speci- fy the type of enclosure to contain the explosive fuel/air mix -ture. 3.4 INTERNATIONAL CONVENTION FOR THE SAFETY OF...2) Continuous burn tests: ... "Same mix - ture and concentration as for explosion tests; flow rate of the gasoline vapor-air mixture is specified as a...gas temperature of the flammable hexane/air mix - ture on the tank side was used as the representative endu ance burn test temperature for the following

  13. Burning Laminar Jet Diffusion Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.

  14. 7. FLAME DEFLECTOR, VIEW TOWARDS SOUTHWEST. Glenn L. Martin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. FLAME DEFLECTOR, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. 6. FLAME DEFLECTOR, VIEW TOWARDS NORTHWEST. Glenn L. Martin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FLAME DEFLECTOR, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. Neurotoxicity and risk assessment of brominated and alternative flame retardants.

    PubMed

    Hendriks, Hester S; Westerink, Remco H S

    2015-01-01

    Brominated flame retardants (BFRs) are widely used chemicals that prevent or slow the onset and spreading of fire. Unfortunately, many of these compounds pose serious threats for human health and the environment, indicating an urgent need for safe(r) and less persistent alternative flame retardants (AFRs). As previous research identified the nervous system as a sensitive target organ, the neurotoxicity of past and present flame retardants is reviewed. First, an overview of the neurotoxicity of BFRs in humans and experimental animals is provided, and some common in vitro neurotoxic mechanisms of action are discussed. The combined epidemiological and toxicological studies clearly underline the need for replacing BFRs. Many potentially suitable AFRs are already in use, despite the absence of a full profile of their environmental behavior and toxicological properties. To prioritize the suitability of some selected halogenated and non-halogenated organophosphorous flame retardants and inorganic halogen-free flame retardants, the available neurotoxic data of these AFRs are discussed. The suitability of the AFRs is rank-ordered and combined with human exposure data (serum concentrations, breast milk concentrations and house dust concentrations) and physicochemical properties (useful to predict e.g. bioavailability and persistence in the environment) for a first semi-quantitative risk assessment of the AFRs. As can be concluded from the reviewed data, several BFRs and AFRs share some neurotoxic effects and modes of action. Moreover, the available neurotoxicity data indicate that some AFRs may be suitable substitutes for BFRs. However, proper risk assessment is hampered by an overall scarcity of data, particularly regarding environmental persistence, human exposure levels, and the formation of breakdown products and possible metabolites as well as their toxicity. Until these data gaps in environmental behavioral and toxicological profiles are filled, large scale use of these chemicals should be cautioned.

  17. 5. FLAME DEFLECTOR, COMPLETE X15 VEHICLE TEST STAND. Looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLAME DEFLECTOR, COMPLETE X-15 VEHICLE TEST STAND. Looking east. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  18. 5. SOUTHEAST FLAME DEFLECTOR, VIEW TOWARDS NORTHWEST. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTHEAST FLAME DEFLECTOR, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 8. NORTH FLAME DEFLECTOR, VIEW TOWARDS WEST. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. NORTH FLAME DEFLECTOR, VIEW TOWARDS WEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Cyanuric Chloride and Hexachlorocyclotriphosphazene Derivatives as Flame Retardants in Cotton Textile Applications

    USDA-ARS?s Scientific Manuscript database

    In a series of experiments cyanuric chloride and hexachlorocyclotriphosphazene derivatives were synthesized and characterized using spectroscopic, thermogravimetric, limiting oxygen index, and vertical flame analyses. Standardized test results have determined these compounds are promising flame reta...

  1. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  2. Simulations of normal and inverse laminar diffusion flames under oxygen enhancement and gravity variation

    NASA Astrophysics Data System (ADS)

    Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.

    2012-10-01

    Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.

  3. Adhesion Testing of Firebricks from Launch Pad 39A Flame Trench after STS-124

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Curran, Jerome P.

    2009-01-01

    Adhesion testing was performed on the firebricks in the flame trench of Launch Complex 39A to determine the strength of the epoxy/firebrick bond to the backing concrete wall. The testing used an Elcometer 110 pneumatic adhesion tensile testing instrument (PATTI).

  4. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  5. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  6. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  7. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  8. 30 CFR 7.26 - Flame test apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.26 Flame... cloth and ventilation tubing shall be constructed as follows: (a) A 16-gauge stainless steel gallery...

  9. 30 CFR 7.26 - Flame test apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.26 Flame... cloth and ventilation tubing shall be constructed as follows: (a) A 16-gauge stainless steel gallery...

  10. 30 CFR 7.26 - Flame test apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.26 Flame... cloth and ventilation tubing shall be constructed as follows: (a) A 16-gauge stainless steel gallery...

  11. 1. FLAME DEFLECTOR FROM FERROCEMENT APRON, VIEW TOWARDS NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. FLAME DEFLECTOR FROM FERROCEMENT APRON, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 4. CLOSE UP OF FLAME DEFLECTOR, VIEW TOWARDS SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CLOSE UP OF FLAME DEFLECTOR, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. 6. FLAME DEFLECTOR AND FERROCEMENT APRON, VIEW TOWARD SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FLAME DEFLECTOR AND FERROCEMENT APRON, VIEW TOWARD SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  15. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    NASA Astrophysics Data System (ADS)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  16. Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.

    PubMed

    Rebec, A; Kolšek, J; Plešec, P

    2016-04-05

    Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert; Tedder, Sarah

    2016-01-01

    This paper presents results from tests in a NASA Glenn Research Center (GRC) flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include 2D, planar laser-based imaging as well as basic flow visualization of the flame. Four conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics and Environmentally Responsible Aviation Projects were tested.

  18. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    NASA Astrophysics Data System (ADS)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  19. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  20. 16 CFR 1633.3 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.3 General requirements. (a) Summary of test method. The test method set forth in § 1633.7 measures the flammability (fire test response... allowing it to burn freely under well-ventilated, controlled environmental conditions. The flaming ignition...

  1. 7. COUNTERFORT, NORTHWEST SIDE OF FLAME DEFLECTOR, VIEW TOWARDS SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COUNTERFORT, NORTHWEST SIDE OF FLAME DEFLECTOR, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. 4. DETAIL SHOWING FLAME DEFLECTOR. Looking southeast. Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL SHOWING FLAME DEFLECTOR. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. Testing Method for External Cladding Systems - Incerc Romania

    NASA Astrophysics Data System (ADS)

    Simion, A.; Dragne, H.

    2017-06-01

    This research presents a new testing method in a natural scale for external cladding systems tested on buildings with minimum than 3 floors [1]. The testing method is unique in Romania and it is similar about many fire testing current methods from European Union states. Also, presents the fire propagation and the effect of fire smoke on the building façade composed of thermal insulation. Laboratory of testing and research for building fire safety from National Institute INCERC Bucharest, provides a test method for determining the fire performance characteristics of non-loadbearing external cladding systems and external wall insulation systems when applied to the face of a building and exposed to an external fire under controlled conditions [2]. The fire exposure is representative of an external fire source or a fully-developed (post-flashover) fire in a room, venting through an opening such as a window aperture that exposes the cladding to the effects of external flames, or an external fire source. On the future, fire tests will be experimented for answer demande a number of high-profile fires where the external facade of tall buildings provided a route for vertical fire spread.

  4. Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less

  5. Utility gas turbine combustor viewing system: Volume 1, Conceptual design and initial field testing: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less

  6. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth...

  7. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth...

  8. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth...

  9. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth...

  10. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth...

  11. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...

  12. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...

  13. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...

  14. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  15. 31. VIEW LOOKING EAST DOWN THE FLAME TRENCH OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW LOOKING EAST DOWN THE FLAME TRENCH OF THE STATIC TEST TOWER AS A JUPITER ROCKET IS BEING HOISTED INTO POSITION. DATE AND PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  16. 2. CLOSE UP OF FLAME DEFLECTOR FROM FERROCEMENT APRON, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CLOSE UP OF FLAME DEFLECTOR FROM FERROCEMENT APRON, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. 2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. 9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 3. SOUTH FLAME DEFLECTOR FROM THE REINFORCED CONCRETE ROOF, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH FLAME DEFLECTOR FROM THE REINFORCED CONCRETE ROOF, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. "Magic Eraser" Flame Tests

    ERIC Educational Resources Information Center

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  1. 1. FLAME DEFLECTOR AT LEFT, COUNTERFORT AT RIGHT, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. FLAME DEFLECTOR AT LEFT, COUNTERFORT AT RIGHT, VIEW TOWARDS SOUTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. 6. FLAME DEFLECTOR AT LEFT, COUNTERFORT AT RIGHT, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FLAME DEFLECTOR AT LEFT, COUNTERFORT AT RIGHT, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. Effect of Flame Stabilizer Design on Performance and Exhaust Pollutants of a Two-Row Swirl-Can Combustor Operated to Near-Stoichiometric Conditions

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Trout, Arthur M.

    1977-01-01

    Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.

  4. An Experimental Study of Upward Burning Over Long Solid Fuels: Facility Development and Comparison

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Yuan, Zeng-Guang

    2011-01-01

    As NASA's mission evolves, new spacecraft and habitat environments necessitate expanded study of materials flammability. Most of the upward burning tests to date, including the NASA standard material screening method NASA-STD-6001, have been conducted in small chambers where the flame often terminates before a steady state flame is established. In real environments, the same limitations may not be present. The use of long fuel samples would allow the flames to proceed in an unhindered manner. In order to explore sample size and chamber size effects, two large chambers were developed at NASA GRC under the Flame Prevention, Detection and Suppression (FPDS) project. The first was an existing vacuum facility, VF-13, located at NASA John Glenn Research Center. This 6350 liter chamber could accommodate fuels sample lengths up to 2 m. However, operational costs and restricted accessibility limited the test program, so a second laboratory scale facility was developed in parallel. By stacking additional two chambers on top of an existing combustion chamber facility, this 81 liter Stacked-chamber facility could accommodate a 1.5 m sample length. The larger volume, more ideal environment of VF-13 was used to obtain baseline data for comparison with the stacked chamber facility. In this way, the stacked chamber facility was intended for long term testing, with VF-13 as the proving ground. Four different solid fuels (adding machine paper, poster paper, PMMA plates, and Nomex fabric) were tested with fuel sample lengths up to 2 m. For thin samples (papers) with widths up to 5 cm, the flame reached a steady state length, which demonstrates that flame length may be stabilized even when the edge effects are reduced. For the thick PMMA plates, flames reached lengths up to 70 cm but were highly energetic and restricted by oxygen depletion. Tests with the Nomex fabric confirmed that the cyclic flame phenomena, observed in small facility tests, continued over longer sample. New features were also observed at the higher oxygen/pressure conditions available in the large chamber. Comparison of flame behavior between the two facilities under identical conditions revealed disparities, both qualitative and quantitative. This suggests that, in certain ranges of controlling parameters, chamber size and shape could be one of the parameters that affect the material flammability. If this proves to be true, it may limit the applicability of existing flammability data.

  5. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  6. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE PAGES

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...

    2016-06-01

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  7. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  8. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  9. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  10. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  11. 1. VIEW EAST/SOUTHEAST FROM LEFT TO RIGHT REMAINS OF POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW EAST/SOUTHEAST FROM LEFT TO RIGHT REMAINS OF POWER PLANT TEST STAND INCLUDING SUPPORT BUILDING (BACKGROUND), FLAME TRENCH (FOREGROUND) RECENT ADDITION (O-RING FACILITY) OVER OTHER FLAME TRENCH. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  12. TG-FTIR characterization of flame retardant polyurethane foams materials

    NASA Astrophysics Data System (ADS)

    Liu, W.; Tang, Y.; Li, F.; Ge, X. G.; Zhang, Z. J.

    2016-07-01

    Dimethyl methylphosphonate (DMMP) and trichloroethyl phosphtate (TCEP) have been used to enhance the flame retardancy of polyurethane foams materials (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results indicate that the excellent flame retardancy can be achieved due to the presence of the flame retardant system containing DMMP and TCEP. TG-FTIR reveals that the addition of DMMP/TCEP can not only improve the thermal stability of PUF samples but can also affect the gaseous phase at high temperature.

  13. 3. FLAME DEFLECTOR AT CENTER, CONNECTING TUNNEL AT CENTER RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FLAME DEFLECTOR AT CENTER, CONNECTING TUNNEL AT CENTER RIGHT, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. 5. CLOSE UP OF FLAME DEFLECTOR, COUNTERFORT VISIBLE AT REAR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CLOSE UP OF FLAME DEFLECTOR, COUNTERFORT VISIBLE AT REAR, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  16. 36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH AT THE TEST STAND. NOTE THE MOTORIZED LIFT TO THE LEFT OF THE TEST STAND, USED TO ACCESS THE INSTRUMENTATION PLATFORM ('BIRDCAGE') MOUNTED ON TOP OF THE ROCKET DURING TEST FIRINGS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  17. Laminar Jet Diffusion Flame Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.

  18. A Series of Laminar Jet Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (249KB JPEG, 1350 x 1524 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300185.html.

  19. Critical mass flux for flaming ignition of wood as a function of external radiant heat flux and moisture content

    Treesearch

    S. McAllister; M. Finney; J. Cohen

    2011-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  20. Organic Substitutes for Charcoal in ’Black Powder’ Type Pyrotechnic Formulations

    DTIC Science & Technology

    1984-07-01

    mixture, containing phenolphthalein, strand-burn rates were measured at various high pressures of nitrogen. Cinematography , at 1000 frames per second...the cinematography the burning phenolphthalein "sticks" showed a liquid surface that was in extreme turbulence and liquid drops were propelled by...This has led to a hypothetical mechanism explaining sulfur’s role in flame spreading which should be explored in future work. From cinematography

  1. Fire Safety in Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1998-01-01

    Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.

  2. Critical mass flux for flaming ignition of dead, dry wood as a function of exernal radiant heat flux

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  3. Effects of wind velocity and slope on fire behavior

    Treesearch

    D.R. Weise; G.S. Biging

    1994-01-01

    Effects of wind velocity and slope on fire spread rate and flame length were examined. Fuel beds of vertical sticks (13.97 cm x 0.455 cm x 0.1 10 cm) and coarse excelsior were burned in an open-topped tilting wind tunnel. Mean fuel moisture content of sticks and excelsior was 11% and 12%, respectively. Mean surface area to volume ratio was 23 cm-! Five slopes (negative...

  4. Propagation of Avalanches in Mn12-Acetate: Magnetic Deflagration

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Sarachik, M. P.; Chudnovsky, E. M.; McHugh, S.; Gonzalez-Rubio, R.; Avraham, Nurit; Myasoedov, Y.; Zeldov, E.; Shtrikman, H.; Chakov, N. E.; Christou, G.

    2005-09-01

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.

  5. Numerical simulation study on impact of slope on smoke temperature distribution and smoke spread pattern in spiral tunnel fires

    NASA Astrophysics Data System (ADS)

    Li, Tao; Xie, Wei

    2017-04-01

    The spiral tunnel arises as a new form of tunnel, with great differences in fire development pattern when compared with traditional straight line tunnel, this paper takes method of numerical simulation, based on computation fluid dynamics theory and fire-turbulence numerical simulation theory, establishing a full-scale spiral tunnel model, and applies CFX simulation software to research full-scale spiral tunnel fire and its ventilation condition. The results indicate that with increasing tunnel slope, high temperature area gradually extends to downstream area, high temperature mainly distributes near fire source area, and symmetrically distributes among the fire center point; With increasing tunnel slope, the highest temperature underneath tunnel arch rises first followed by a downward trend and then rising again, which strengthens chimney effect, and promotes more fresh cold air flow into the tunnel, suppressing fire smoke backflow and simultaneously accelerating fire smoke spread to downstream area; Fire plume presents vertical slender shape with 1% or 3% tunnel slope, and burning flame hits tunnel arch and then extending all around into the ceiling jet flow, when tunnel slope increases to 5% or 7%, fire plume cross section grows bigger and wider with unstable burning flame swaying in all directions, integrally incline to fire downstream.

  6. The effect of leaf beetle herbivory on the fire behaviour of tamarisk (Tamarix ramosissima Lebed.)

    USGS Publications Warehouse

    Drus, Gail M.; Dudley, Tom L.; Brooks, Matthew L.; Matchett, John R.

    2012-01-01

    The non-native tree, Tamarix spp. has invaded desert riparian ecosystems in the south-western United States. Fire hazard has increased, as typically fire-resistant native vegetation is replaced by Tamarix. The tamarisk leaf beetle, Diorhabda carinulata Desbrochers, introduced for biological control, may affect fire behaviour by converting hydrated live Tamarix leaves and twigs into desiccated and dead fuels. This potentially increases fire hazard in the short term before native vegetation can be re-established. This study investigates how fire behaviour is altered in Tamarix fuels desiccated by Diorhabda herbivory at a Great Basin site, and by herbivory simulated by foliar herbicide at a Mojave Desert site. It also evaluates the influence of litter depth on fire intensity. Fire behaviour was measured with a fire intensity index that integrates temperature and duration (degree-minutes above 70°C), and with maximum temperature, duration, flame lengths, rates of spread and vegetation removal. Maximum temperature, flame length and rate of spread were enhanced by foliar desiccation of Tamarix at both sites. At only the Mojave site, there was a trend for desiccated trees to burn with greater fire intensity. At both sites, fire behaviour parameters were influenced to a greater degree by litter depth, vegetation density and drier and windier conditions than by foliar desiccation.

  7. 11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL BUILDING B AT FAR CENTER RIGHT. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  8. 7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR AT RIGHT, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 3. FLAME DEFLECTOR AT UPPER LEFT, FERROCEMENT APRON CONTROLS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FLAME DEFLECTOR AT UPPER LEFT, FERROCEMENT APRON CONTROLS AT LOWER RIGHT, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  11. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  12. Edge attachment study for fire-resistant canopies

    NASA Technical Reports Server (NTRS)

    Wintermute, G. E.

    1982-01-01

    Twenty-two resin systems were evaluated in laminate form for possible use as edge attachment material for fire-resistant canopies. The evaluation uncovered an unexpected development when the laminates were subjected to an intense flame: (1) the high-heat-resistant materials could withstand the flame test quite well, but experienced rapid heat transfer through the test specimen; (2) the laminates which exhibited a low rate of heat transfer were materials which lost strength rapidly in the presence of the flame by decomposition, delamination, and blistering.

  13. Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Gilwee, W. J., Jr.; Parker, J. A.

    1979-01-01

    The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated include polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated include epoxy, bismaleimide, a modified phenolic, and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass-reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented, and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.

  14. Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane air flames

    NASA Astrophysics Data System (ADS)

    Furukawa, Junichi; Noguchi, Yoshiki; Hirano, Toshisuke; Williams, Forman A.

    2002-07-01

    The density change across premixed flames propagating in turbulent flows modifies the turbulence. The nature of that modification depends on the regime of turbulent combustion, the burner design, the orientation of the turbulent flame and the position within the flame. The present study addresses statistically stationary turbulent combustion in the flame-sheet regime, in which the laminar-flame thickness is less than the Kolmogorov scale, for flames stabilized on a vertically oriented cylindrical burner having fully developed upward turbulent pipe flow upstream from the exit. Under these conditions, rapidly moving wrinkled laminar flamelets form the axisymmetric turbulent flame brush that is attached to the burner exit. Predictions have been made of changes in turbulence properties across laminar flamelets in such situations, but very few measurements have been performed to test the predictions. The present work measures individual velocity changes and changes in turbulence across flamelets at different positions in the turbulent flame brush for three different equivalence ratios, for comparison with theory.

  15. Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.

  16. 6. DETAIL OF NORTH ELEVATION AND FOOTINGS FOR FLAME DEFLECTOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF NORTH ELEVATION AND FOOTINGS FOR FLAME DEFLECTOR, NOW MISSING. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. 2. FLAME DEFLECTOR AT RIGHT, COUNTERFORT AT CENTER, FRAGMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FLAME DEFLECTOR AT RIGHT, COUNTERFORT AT CENTER, FRAGMENT OF CONCRETE CAMERA STAND IN FOREGROUND, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. 8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER DRAINAGE AREA IN THE DISTANCE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 3. FLAME DEFLECTOR AT LEFT, COUNTERFORT AT RIGHT, CONTROL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FLAME DEFLECTOR AT LEFT, COUNTERFORT AT RIGHT, CONTROL BUILDING B AT UPPER LEFT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  1. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less

  2. Test Case RCM-3 Using CPS

    DTIC Science & Technology

    2001-03-01

    influence We observe an important variation of the flame length with the ratio gas / liquid injected (Figure 6 and Figure 7). The flame length increases with...fraction, the flame length increases (Figure 7). This is due to the increase of the oxygen injection speed to obtain the correct amount of oxygen...influence of C, with have made calculation with an arbitrary value for a witch is 10-6 N / m. The flame length decrease with the surface tension

  3. Microgravity Apparatus And Ground-Based Study Of The Flame Propagation And Quenching In Metal Dust Suspensions

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Kolbe, Massimilliano; Bellerose, Julie; Lee, John

    2003-01-01

    Due to particle sedimentation and relatively low laminar flame speeds in dust suspensions, microgravity environment is essential for the observation of laminar dust flames in a wide range of particle sizes and fuel concentrations [1]. The capability of a reduced-gravity environment to facilitate study of dust combustion was realized by researchers long before current microgravity programs were established by the various national Space Agencies. Thus, several experimentalists even built their own, albeit very short-duration, drop tower facilities to study flames in particle and droplet suspensions [2,3]. About ten years ago, authors of the present paper started their dust combustion reduced gravity research with the investigation of the constant volume dust flames in a spherical-bomb on board a parabolic flight aircraft [4]. However it was soon realized that direct observation of the constant-pressure flame might be more beneficial. Thus, microgravity apparatus, permitting examination of the freely propagating flames in open-end tubes, was tested in parabolic flights three years later [5]. The improved design of the newlyconstructed apparatus for the experiments on board the NASA KC-135 aircraft is also based on the observation of the dust flame propagating in semi-opened tubes with free expansion of the combustion products that are continuously vented overboard. The apparatus design and results of its extensive ground-based testing are presented below.

  4. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches. The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  5. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion-suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  6. MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR

    EPA Science Inventory

    A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...

  7. Thermal Characteristics and Structure of Fully-Modulated, Turbulent Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Stocker, D. P.; Hegde, U. G.

    2003-01-01

    Turbulent jet diffusion flames are studied in microgravity and normal gravity under fully-modulated conditions for a range of injection times and a 50% duty cycle. Diluted ethylene was injected through a 2-mm nozzle at a Reynolds number of 5,000 into an open duct, with a slow oxidizer co-flow. Microgravity tests are conducted in NASA's 2.2 Second Drop Tower. Flames with short injection times and high duty cycle exhibit a marked increase in the ensemble-averaged flame length due to the removal of buoyancy. The cycle-averaged centerline temperature profile reveals higher temperatures in the microgravity flames, especially at the flame tip where the difference is about 200 K. In addition, the cycle-averaged measurements of flame radiation were about 30% to 60% greater in microgravity than in normal gravity.

  8. Inverse problem of flame surface properties of wood using a repulsive particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung-Beom; Park, Won-Hee

    2015-04-01

    The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algorithm and cone heater test results. The cone heater specified in the ISO 5660 standards was used, and six cone heater heat fluxes were tested. Preservative-treated Douglas fir 21 mm in thickness was used as the wood specimen in the tests. This study confirmed that the surface temperature of the specimen, which was calculated using the convective heat transfer coefficient, surface emissivity and flame heat flux on the wood specimen by a repulsive particle swarm optimization algorithm, was consistent with the measured temperature. Considering the measurement errors in the surface temperature of the specimen, the applicability of the optimization method considered in this study was evaluated.

  9. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) shall be used in the test procedure, described in paragraph (c) of this section. (c) Test procedures. (1... adjusted to provide a nonluminous flame approximately 4 inches in height without forming a sharp inner cone... described in paragraph (c) (2) of this section, until a self-sustaining flame shall be observed on the pipe...

  10. Sooting turbulent jet flame: characterization and quantitative soot measurements

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  11. Pulsed Turbulent Diffusion Flames in a Coflow

    NASA Astrophysics Data System (ADS)

    Usowicz, James E.; Hermanson, James C.; Johari, Hamid

    2000-11-01

    Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.

  12. A Burke-Schumann Analysis of Dual-Flame Structure Supported by a Burning Droplet

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Dietrich, D.; Williams, F. A.

    2016-01-01

    Droplet combustion experiments carried out onboard the International Space Station (ISS), using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a "cool flame" burning in the "partial-burning" regime where both fuel and oxygen leak through the low-temperature controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possibility of simultaneous presence of "cool" and "hot" flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot-flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface called the "cool-flame," and other farther away from the droplet surface, termed the "hot-flame." A Burke-Schumann analysis of this dual-structure seems to indicate such flame structures are possible over a narrow range of initial conditions. Theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.

  13. Advanced Morphological — Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants

    PubMed Central

    Noyes, Pamela D.; Haggard, Derik E.; Gonnerman, Greg D.; Tanguay, Robert L.

    2015-01-01

    The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to many flame retardants currently in use and can be used to understand potential vulnerabilities to human health. PMID:25711236

  14. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Water Mist commercial research program is scheduled to fly an investigation on STS-107 in 2002 in the updated Combustion Module (CM-2), a sophisticated combustion chamber plus diagnostic equipment. The Center for the Commercial Applications of Combustion in Space (CCACS), a NASA Commercial Space Center located at the Colorado School of Mines, is investigating the properties of mist fire suppression in microgravity with Industry Partner Environmental Engineering Concepts. These experiments consist of varying water droplet sizes and water mist concentrations applied to flame fronts of different propane/air mixtures. Observations from these tests will provide valuable information on the change of flame speed in the presence of water mist. Shown here is a flame front propagating through the Mist flame tube during 1-g testing at NASA/Glenn Research Center.

  15. Water Mist Experiment

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Water Mist commercial research program is scheduled to fly an investigation on STS-107 in 2002 in the updated Combustion Module (CM-2), a sophisticated combustion chamber plus diagnostic equipment. The Center for the Commercial Applications of Combustion in Space (CCACS), a NASA Commercial Space Center located at the Colorado School of Mines, is investigating the properties of mist fire suppression in microgravity with Industry Partner Environmental Engineering Concepts. These experiments consist of varying water droplet sizes and water mist concentrations applied to flame fronts of different propane/air mixtures. Observations from these tests will provide valuable information on the change of flame speed in the presence of water mist. Shown here is a flame front propagating through the Mist flame tube during 1-g testing at NASA/Glenn Research Center.

  16. A Theory of Oscillating Edge Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Zhang, Yi

    1999-01-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the oscillations in all three experiments; and no new mechanism is invoked (Occam's original 'Razor'). Such a strategy eliminates Marangoni effects as the source, for these are absent in the second and third experiments. And it eliminates arguments that point to numerically predicted gas eddies as the source, a new mechanism, unelucidated. Indeed, we hypothesize that the essential driving mechanism for the instability is a combination of large Lewis number and heat losses from the reacting structure near the flame edge. Instabilities driven by these mechanisms are commonplace in 1D configurations. Chemical reactor theory, for example, leads to system responses which mimic the response of the candle flame - steady flame, oscillations, extinction. In a combustion context, oscillating instabilities were first reported for diffusion flames in a theoretical study by Kirkby and Schmitz, and here also the instabilities are associated with near-extinction conditions, large Lewis numbers, and heat losses. And deflagrations will oscillate if the Lewis number is large enough, oscillations that are exacerbated when heat losses are present, whether global or to a surface.

  17. Imaging Fluorescent Combustion Species in Gas Turbine Flame Tubes: On Complexities in Real Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Locke, R. J.; Anderson, R. C.; Zaller, M.; Schock, H. J.

    1997-01-01

    Planar laser-induced fluorescence (PLIF) is used to visualize the flame structure via OH, NO, and fuel imaging in kerosene- burning gas turbine combustor flame tubes. When compared to simple gaseous hydrocarbon flames and hydrogen flames, flame tube testing complexities include spectral interferences from large fuel fragments, unknown turbulence interactions, high pressure operation, and the concomitant need for windows and remote operation. Complications of these and other factors as they apply to image analysis are considered. Because both OH and gas turbine engine fuels (commercial and military) can be excited and detected using OH transition lines, a narrowband and a broadband detection scheme are compared and the benefits and drawbacks of each method are examined.

  18. Regression rate study of porous axial-injection, endburning hybrid fuel grains

    NASA Astrophysics Data System (ADS)

    Hitt, Matthew A.

    This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration. Results from the model suggested that both kinetic and diffusion processes could be relevant to the combustion depending on the chamber pressure.

  19. 2. NORTH FRONT, FROM SUPERSTRUCTURE TO FLAME DEFLECTOR. Looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. NORTH FRONT, FROM SUPERSTRUCTURE TO FLAME DEFLECTOR. Looking south southwest from Observation Post No. 1 (Building 8767). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  20. Great (Flame) Balls of Fire! Structure of Flame Balls at Low Lewis-number-2 (SOFBALL-2)

    NASA Technical Reports Server (NTRS)

    Ronney, Paul; Weiland, Karen J.; Over, Ann (Technical Monitor)

    2002-01-01

    Everyone knows that an automobile engine wastes fuel and energy when it runs with a fuel-rich mixture. 'Lean' burning, mixing in more air and less fuel, is better for the environment. But lean mixtures also lead to engine misfiring and rough operation. No one knows the ultimate limits for lean operation, for 'weak' combustion that is friendly to the environment while still moving us around. This is where the accidental verification of a decades-old prediction may have strong implications for designing and running low-emissions engines in the 21st century. In 1944, Soviet physicist Yakov Zeldovich predicted that stationary, spherical flames are possible under limited conditions in lean fuel-air mixtures. Dr. Paul Ronney of the University of Southern California accidentally discovered such 'flame balls' in experiments with lean hydrogen-air mixtures in 1984 during drop-tower experiments that provided just 2.2 seconds of near weightlessness. Experiments aboard NASA's low-g aircraft confirmed the results, but a thorough investigation was hampered by the aircraft's bumpy ride. And stable flame balls can only exist in microgravity. The potential for investigating combustion at the limits of flammability, and the implications for spacecraft fire safety, led to the Structure of Flame Balls at Low Lewis-number (SOFBALL) experiment flown twice aboard the Space Shuttle on the Microgravity Sciences Laboratory-1 (MSL-1) in 1997. Success there led to the planned reflight on STS-107. Flame balls are the weakest fires yet produced in space or on Earth. Typically each flame ball produced only 1 watt of thermal power. By comparison, a birthday candle produces 50 watts. The Lewis-number measures the rate of diffusion of fuel into the flame ball relative to the rate of diffusion of heat away from the flame ball. Lewis-number mixtures conduct heat poorly. Hydrogen and methane are the only fuels that provide low enough Lewis-numbers to produce stable flame balls, and even then only for very weak, barely flammable mixtures. Nevertheless, under these conditions flame balls give scientists the opportunity to test models in one of the simplest combustion experiments possible. SOFBALL-2 science objectives include: Improving our understanding of the flame ball phenomenon; Determining the conditions under which flame balls exist; Testing predictions of flame ball lifetimes; Acquiring more precise data for critical model comparison.

  1. Initial Fire Suppression Reactions of Halons Phase 1. Development of Experimental Approach

    DTIC Science & Technology

    1990-09-01

    Engineering News, pp. 22-46, August 31, 1987. Mitani, T., " Flame Retardant Effects of CF 3Br and NaHCO 3 Combustion and Flame , Vol. 50, pp. 177-188, 1983...occurring when halons enter flame fronts are unclear. It is these initial reactions, however, that determine differences in halon performance, the effect of...LABORATORY FLAMES Over the past four decades, numerous tests have been performed in an effort to characterize the relative effectiveness of candidate

  2. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments

    PubMed Central

    Litton, Charles D.; Perera, Inoka E.; Harteis, Samuel P.; Teacoach, Kara A.; DeRosa, Maria I.; Thomas, Richard A.; Smith, Alex C.

    2018-01-01

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments. PMID:29599565

  3. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    PubMed

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  4. KSC-05PD-0893

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During a walkdown of Launch Pad 39B, the STS-114 crew pauses for a photograph in the flame trench underneath the pad. The flame trench, built with concrete and refractory brick, bisects the pad at ground level. It is 490 feet long, 58 feet wide and 42 feet deep. The flame deflector system includes an inverted, V-shaped steel structure covered with a high-temperature concrete material five inches thick that extends across the center of the flame trench. One side of the V receives and deflects the flames from the Orbiter main engines; the opposite side deflects the flames from the Solid Rocket Boosters. There are also two movable deflectors at the top of the trench to provide additional protection to Shuttle hardware from the Solid Rocket Booster flames. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31. The crew is at KSC for Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad.

  5. NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation

    NASA Technical Reports Server (NTRS)

    Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.

    2017-01-01

    Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.

  6. EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Greene, Nate; Xu, Hua

    2004-01-01

    The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.

  7. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    PubMed Central

    Palacios, Anabel; De Gracia, Alvaro

    2018-01-01

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated. PMID:29329212

  8. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  9. Degradation and Characterization of Antimisting Kerosene (AMK).

    DTIC Science & Technology

    1981-06-01

    the pass/fail criterion in the JPL test, which is taken as a flame length of I meter, appeared to be different from the critical velocity in the...SPILLAG;E TEST 9 passed at velocities up to 80 m/s, the flame length in all these cases appeared to be about 1/2 to 3/4 meter and did not increase...significantly with air velocity from 50-80 m/s. More importantly, the flame length for the sample without amine, which was rated as a fail at 50 m/s (i.e., had

  10. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    PubMed Central

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  11. Performance of a protected wireless sensor network in a fire. Analysis of fire spread and data transmission.

    PubMed

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).

  12. Rocket Combustion Modelling Test Case RCM-3. Numerical Calculation of MASCOTTE 60 bar Case with THESEE

    DTIC Science & Technology

    2001-03-01

    flame length is about 230 mm. Figure 10 shows three characteristic structures of a cryogenic flame : "* A first expansion cone of length L1 = 15xDlox...correctly represented. However, the computed flame length is longer than the experimental data. This phenomenon is due to the droplets injection

  13. Evaluation of Materials and Concepts for Aircraft Fire Protection

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Price, J. O.; Mcclure, A. H.; Tustin, E. A.

    1976-01-01

    Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure.

  14. 5. FLAME DEFLECTOR AT LEFT, FERROCEMENT APRON AT RIGHT CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLAME DEFLECTOR AT LEFT, FERROCEMENT APRON AT RIGHT CENTER, CONTROL BUILDING A AT FAR RIGHT, CONNECTING TUNNEL AT UPPER CENTER, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Pratikash P.; Hecht, Ethan S.

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less

  17. Size and Shape of Solid Fuel Diffusion Flames in Very Low Speed Flows. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Foutch, David W.

    1987-01-01

    The effect of very low speed forced flows on the size and shape of a solid fuel diffusion flame are investigated experimentally. Flows due to natural convection are eliminated by performing the experiment in low gravity. The range of velocities tested is 1.5 cm/s to 6.3 cm/s and the mole fraction of oxygen in the O2/N2 atmosphere ranges from 0.15 to 0.19. The flames did not reach steady state in the 5.2 sec to which the experiment was limited. Despite limited data, trends in the transient flame temperature and, by means of extrapolation, the steady state flame size are deduced. As the flow velocity is reduced, the flames move farther from the fuel surface, and the transient flame temperature is lowered. As the oxygen concentration is reduced the flames move closer to the fuel sample and the transient flame temperature is reduced. With stand off distances up to 8.5 + or - 0.7 mm and thicknesses around 1 or 2 mm, these flames are much weaker than flames observed at normal gravity. Based on the performance of the equipment and several qualitative observations, suggestions for future work are made.

  18. Series of Laminar Soot Processes Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (189KB JPEG, 1350 x 1517 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300183.html.

  19. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation and technology development. This paper presents the objectives, status and concept of this project.

  20. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation and technology development. This paper presents the objectives, status and concept of this project.

  1. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  2. Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.; Daily, J. W.

    1981-01-01

    A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward facing step. The mean and rms averages of the turbulent velocity flow field are determined by LDV for both reacting (equivalence ratio 0.57) and nonreacting flows (Reynolds number 15,000-37,000 based on step height). The effect of combustion is to shift the layer toward the recirculation zone and reduce the flame spread. For reacting flow, the growth rate is unchanged except very near the step. The probability density function of the velocity is bimodial near the origin of the reacting layer and single-peaked but often skewed elsewhere. Large-scale structures dominate the reacting shear layer. Measurements of their passing frequency from LDV are consistent with high-speed Schlieren movies of the reacting layer and indicate that the coalescence rate of the eddies in the shear layer is reduced by combustion.

  3. Effect of flame-tube head structure on combustion chamber performance

    NASA Technical Reports Server (NTRS)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  4. Burst Oscillation Probes of Neutron Stars and Nuclear Burning with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2012-01-01

    X-ray brightness oscillations during thermonuclear X-ray bursts--burst oscillations--have provided a new probe of neutron star spins as well as of the dependent nuclear burning processes. The frequency drift and amplitude evolution of the oscillations observed during bursts can in principle place constraints on the physics of thermonuclear flame spreading and the dynamics of the burning atmosphere. I use simulations appropriate to LOFT to explore the precision with which the time dependence of the oscillation frequency can be inferred. This can test, for example, different models for the frequency drift, such as up-lift versus geostrophic drift. I also explore the precision with which asymptotic frequencies can be constrained in order to estimate the capability for LOFT to detect the Doppler shifts induced by orbital motion of the neutron star from a sample of bursts at different orbital phases.

  5. Characterization of flammability properties of some thermoplastic and thermoset resins. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.

  6. Fire-related medical science

    NASA Technical Reports Server (NTRS)

    Knight, Douglas R.

    1987-01-01

    Spacecraft fire safety may be improved by the use of a fire-retardant atmosphere in occupied spaces. Low concentrations of oxygen can protect humans from fire damage by reducing the rate and spread of combustion, but care must be taken to avoid the hypoxic effects of oxygen-lean atmospheres. Crews can live and work in 11 percent oxygen if barometric pressure were adjusted to maintain the partial pressure of oxygen above 16 kPa. Eleven percent oxygen should prevent most types of fires, since 15 percent oxygen retards the combustion of paper and 13 percent oxygen extinguishes pentane flames. Test results indicate that seated humans can perform mental tasks in atmospheres containing 11.5 percent oxygen. Although this strategy of fire safety is under consideration for submarines, it could be adapted to spacecraft once operational procedures define a maximum hyperbaric pressure and fire research defines the effects of reduced oxygen concentrations on combustion in low gravity environments.

  7. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

  8. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... variable-speed electric fan and an ASME flow nozzle (16-81/2 inches reduction) to attain constant air velocities at any speed between 50-500 feet a minute. (4) An electric timer or stopwatch to measure the...

  9. 2. Credit GE. Photographic copy of photograph, refractory brick lining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit GE. Photographic copy of photograph, refractory brick lining being laid in Test Stand 'A' flame pit to protect concrete from heat of rocket engine flames. (JPL negative no. 383-764, 8 March 1945) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  10. Flame Tests Performed Safely: A Safe and Effective Alternative to the Traditional Flame Test

    ERIC Educational Resources Information Center

    Dogancay, Deborah

    2005-01-01

    The trend toward inquiry-based learning is providing today's students with a more enriching education. When implementing inquiry it is important to recognize the great number of safety concerns that accompany this paradigm shift. Fortunately, with some consideration, teachers can shape students' laboratory experiments into safe and valuable…

  11. Critical mass flux for flaming ignition of dead, dry wood as a function of external radiant heat flux and oxidizer flow velocity

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion – that a sufficient amount of pyrolysis gases must be...

  12. Augmentation of Solar Thermal Propulsion Systems Via Phase Change Thermal Energy Storage and Thermal Electric Conversion

    DTIC Science & Technology

    2012-04-01

    vapor infiltration on erosion and thermal properties of porous carbon/carbon composite on thermal insulation . Carbon, (38):441– 449, 2000. [14] J. Mueller...Thermal Energy Storage and Thermal Electric Conversion 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...with thermo-acoustic instabilities. Results will be reported on the flame structure, liquid core length and spreading rate, and comparison with data

  13. Cigarette Fires Involving Upholstered Furniture in Residences: The Role that Smokers, Smoker Behavior, and Fire Standard Compliant Cigarettes Play.

    PubMed

    Butry, David T; Thomas, Douglas S

    2017-05-01

    Residential structure fires pose a significant risk to life and property. A major source of these fires is the ignition of upholstered furniture by cigarettes. It has long been established that cigarettes and other lighted tobacco products could ignite upholstered furniture and were a leading cause of fire deaths in residences. In recent years, states have adopted fire standard compliant cigarettes ('FSC cigarettes') that are made with a wrapping paper that contains regularly spaced bands, which increases the likelihood of self-extinguishment. This paper measures the effectiveness of FSC cigarettes on the number of residential fires involving upholstered furniture, and the resulting fatalities, injuries, and extent of flame spread, while accounting for the under-reporting of fire incidents. In total, four models were estimated using fire department data from 2002 to 2011. The results provide evidence that FSC cigarettes, on average, reduced the number of residential fires by 45 %, reduced fatalities by 23 %, and extent of flame spread by 27 % in 2011. No effect on injuries was found. Within each state, effectiveness is moderated by the number of smokers and their consumption patterns. In general, FSC cigarettes are more effective in places with a large smoking population who engage in heavier smoking. There is a very limited effect on the lightest of smokers, suggesting behavioral differences between heavy and light smokers that influence fire risk.

  14. Cigarette Fires Involving Upholstered Furniture in Residences: The Role that Smokers, Smoker Behavior, and Fire Standard Compliant Cigarettes Play

    PubMed Central

    Butry, David T.; Thomas, Douglas S.

    2017-01-01

    Residential structure fires pose a significant risk to life and property. A major source of these fires is the ignition of upholstered furniture by cigarettes. It has long been established that cigarettes and other lighted tobacco products could ignite upholstered furniture and were a leading cause of fire deaths in residences. In recent years, states have adopted fire standard compliant cigarettes (‘FSC cigarettes’) that are made with a wrapping paper that contains regularly spaced bands, which increases the likelihood of self-extinguishment. This paper measures the effectiveness of FSC cigarettes on the number of residential fires involving upholstered furniture, and the resulting fatalities, injuries, and extent of flame spread, while accounting for the under-reporting of fire incidents. In total, four models were estimated using fire department data from 2002 to 2011. The results provide evidence that FSC cigarettes, on average, reduced the number of residential fires by 45 %, reduced fatalities by 23 %, and extent of flame spread by 27 % in 2011. No effect on injuries was found. Within each state, effectiveness is moderated by the number of smokers and their consumption patterns. In general, FSC cigarettes are more effective in places with a large smoking population who engage in heavier smoking. There is a very limited effect on the lightest of smokers, suggesting behavioral differences between heavy and light smokers that influence fire risk. PMID:28751788

  15. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    PubMed Central

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively. PMID:29324716

  16. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    PubMed

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively.

  17. Silk flame retardant finish by ternary silica sol containing boron and nitrogen

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang-hua; Chen, Guo-qiang; Xing, Tie-ling

    2017-11-01

    A ternary flame retardant sol system containing Si, B and N was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor, boric acid (H3BO3) and urea (CO(NH2)2) as flame retardant additives and then applied to silk fabric flame retardant finish. The FT-IR and SEM results showed that the nitrogen-boron-silica ternary sol was successfully prepared and entrapped onto the surface of silk fibers. The limiting oxygen index (LOI) test indicated that the silk fabric treated with 24% boric acid and 6% urea (relative to the TEOS) doped ternary silica sol system performed excellent flame retardancy with the LOI value of 34.6%. Furthermore, in order to endow silk fabric with durable flame retardancy, the silk fabric was pretreated with 1,2,3,4-butanetetracarboxylic acid (BTCA) before the ternary sol system treatment. The BTCA pretreat ment applied to silk could effectively promote the washing durability of the ternary sol, and the LOI value of the treated sample after 10 times washing could still maintain at 30.8% compared with that of 31.0% before washing. Thermo gravimetric (TG), micro calorimeter combustion (MCC) and smoke density test results demonstrated that the thermal stability, heat release and smoke suppression of the nitrogen-boron-silica ternary system decreased somewhat compared with the boron-silica binary flame retardant system.

  18. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  19. Properties of Refractory Concrete in Tension and Compression

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey

    2009-01-01

    Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.

  20. Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate.

    PubMed

    McKenna, Sean T; Birtles, Robert; Dickens, Kathryn; Walker, Richard G; Spearpoint, Michael J; Stec, Anna A; Hull, T Richard

    2018-04-01

    This paper uses fire statistics to show the importance of fire toxicity on fire deaths and injuries, and the importance of upholstered furniture and bedding on fatalities from unwanted fires. The aim was to compare the fire hazards (fire growth and smoke toxicity) using different upholstery materials. Four compositions of sofa-bed were compared: three meeting UK Furniture Flammability Regulations (FFR), and one using materials without flame retardants intended for the mainland European market. Two of the UK sofa-beds relied on chemical flame retardants to meet the FFR, the third used natural materials and a technical weave in order to pass the test. Each composition was tested in the bench-scale cone calorimeter (ISO 5660) and burnt as a whole sofa-bed in a sofa configuration in a 3.4 × 2.25 × 2.4 m 3 test room. All of the sofas were ignited with a No. 7 wood crib; the temperatures and yields of toxic products are reported. The sofa-beds containing flame retardants burnt somewhat more slowly than the non-flame retarded EU sofa-bed, but in doing so produced significantly greater quantities of the main fire toxicants, carbon monoxide and hydrogen cyanide. Assessment of the effluents' potential to incapacitate and kill is provided showing the two UK flame retardant sofa-beds to be the most dangerous, followed by the sofa-bed made with European materials. The UK sofa-bed made only from natural materials (Cottonsafe ® ) burnt very slowly and produced very low concentrations of toxic gases. Including fire toxicity in the FFR would reduce the chemical flame retardants and improve fire safety. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

Top