Initial parametric study of the flammability of plume releases in Hanford waste tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Recknagle, K.P.
This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less
46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...
46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...
46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...
46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...
46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...
Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow
NASA Technical Reports Server (NTRS)
Tien, J. S.; Yang, Chin Tien
1998-01-01
The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.
46 CFR 154.1350 - Flammable gas detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... each flammable gas detection system that is in a gas-dangerous space or area must meet §§ 154.1000... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section 154.1350 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...
46 CFR 154.1350 - Flammable gas detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... each flammable gas detection system that is in a gas-dangerous space or area must meet §§ 154.1000... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas detection system. 154.1350 Section 154.1350 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...
46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...
46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...
46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...
46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...
46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...
Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples
NASA Technical Reports Server (NTRS)
Olson, S. L.; Tien, J. S.
1999-01-01
A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.
NASA Astrophysics Data System (ADS)
Herman, Jeremy J.
The accidental release of hazardous, denser-than-air gases during their transport or manufacture is a vital area of study for process safety researchers. This project examines the importance of molecular diffusion on the developing concentration field of a gas gravity current released into a calm environment. Questions which arose from the unexpectedly severe explosion in 2005 at Buncefield, England were of particular interest. The accidental overfilling of a large tank with gasoline on a completely calm morning led to a massive open air explosion. Forensic evidence showed that at the time of ignition, a vapor cloud, most of which now appears to have been within the flammability limits, covered approximately 120,000 m2. Neither the severity of the explosion, nor the size of the vapor cloud would have been anticipated. Experiments were conducted in which carbon dioxide was released from a sunken source into a one meter wide channel devoid of any wind. These experiments were designed in such a way as to mitigate the formation of a raised head at the front of the gravity current which would have resulted in turbulent entrainment of air. This was done to create a flow in which molecular diffusion was the controlling form of mixing between the carbon dioxide and air. Concentration measurements were taken using flame ionization detection at varying depths and down channel locations. A model of the experiments was developed using COMSOL Multiphysics. The only form of mixing allowed between carbon dioxide and air in the model was molecular diffusion. In this manner the accuracy of the assertion that molecular diffusion was controlling in our experiments was checked and verified. Experimental measurements showed a large variation of gas concentration with depth of the gravity current at the very beginning of the channel where the gas emerged up from the sunken source and began flowing down channel. Due to this variation, molecular diffusion caused the vertical concentration profile to get more uniform as the gravity current flowed down the channel. A COMSOL model was developed which showed an overall increase in the depth of the flammable region of a cloud with increasing time, due to this effect.
Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
2001-01-01
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.
Flammable Gas Safety Self-Study 52827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
2016-03-17
This course, Flammable Gas Safety Self-Study (COURSE 52827), presents an overview of the hazards and controls associated with commonly used, compressed flammable gases at Los Alamos National Laboratory (LANL).
Code of Federal Regulations, 2014 CFR
2014-07-01
... anticipated, will ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat.... Flammable means capable of being easily ignited and of burning rapidly. Flammable gas means a gas that will burn in the normal concentrations of oxygen in the air. Flammable liquid means a liquid that has a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
WEBER RA
2009-01-16
The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. Themore » first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.« less
46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...
46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...
46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...
46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...
46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...
46 CFR 188.10-43 - Liquefied flammable gas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...
46 CFR 188.10-43 - Liquefied flammable gas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...
46 CFR 188.10-43 - Liquefied flammable gas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...
46 CFR 188.10-43 - Liquefied flammable gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...
46 CFR 188.10-43 - Liquefied flammable gas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...
77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... believes that actions are necessary to install real time monitoring to measure tank ventilation flowrates... monitoring. In its August letter, the Board noted that DOE's SAC for flammable gas monitoring exhibited a... flammable gas monitoring, it remained inadequate as a credited safety control. The SAC is less reliable than...
46 CFR 154.1350 - Flammable gas detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... flammable gas concentration over the concentration or volume ranges under paragraph (t) or (u) of this... a cargo concentration that is 30% or less of the lower flammable limit in air of the cargo carried... the space where the gas detection system's readout is located and must meet § 154.1365. (h) Remote...
Flammable gas technical basis document
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO, C.A.
2003-03-22
This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls.
49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...
49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...
49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...
49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...
Flammable Gas Technical Basis Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO, C.A.
2003-07-30
This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls. Revision 1 incorporates comments received from ORP.
49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Explosives (with no significant blast hazard) 173.50 1 1.5 Very insensitive explosives; blasting agents 173.50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4...
A summary description of the flammable gas tank safety program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.D.; Sherwood, D.J.
1994-10-01
Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less
30 CFR 57.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 56.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 56.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 57.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 57.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 57.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 56.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
30 CFR 56.4604 - Preparation of pipelines or containers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contained flammable or combustible liquids, flammable gases, or explosive solids, the pipelines or... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to and...
Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO, C.A.
2003-07-30
This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.
NASA Technical Reports Server (NTRS)
Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David
2010-01-01
Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.
Near-limit flame structures at low Lewis number
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1990-01-01
The characteristics of premixed gas flames in mixtures with low Lewis numbers near flammability limits were studied experimentally using a low-gravity environment to reduce buoyant convection. The behavior of such flames was found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. Experimental observations are found to be in qualitative agreement with elementary analytical models based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and volumetric heat losses due to gas and/or soot radiation.
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1989-01-01
The characteristics of premixed gas flames in mixtures with low Lewis numbers, free of natural convection effects, were investigated and found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. As a result of these phenomena, well-defined flammability limits were not observed. The experimental results are found to be in qualitative agreement with a simple analytical model based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and heat losses due to gas radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOUGLAS, J.G.
2006-07-06
This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desiresmore » a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, S.A.; Pederson, L.R.; Ryan, J.L.
1992-08-01
Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less
FLAMMABLE GAS TECHNICAL BASIS DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRIPPS, L.J.
2005-02-18
This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, J.E.
1996-02-01
This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review.
NASA Astrophysics Data System (ADS)
Chernyavsky, Boris; Benard, Pierre
2010-11-01
An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, Lenna A.
Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retainedmore » gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.« less
DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A. S.
2016-07-11
The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less
49 CFR 193.2059 - Flammable vapor-gas dispersion protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2013 CFR
2013-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2012 CFR
2012-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
Nagaosa, Ryuichi S
2014-04-30
This study proposes a new numerical formulation of the spread of a flammable gas leakage. A new numerical approach has been applied to establish fundamental data for a hazard assessment of flammable gas spread in an enclosed residential space. The approach employs an extended version of a two-compartment concept, and determines the leakage concentration of gas using a mass-balance based formulation. The study also introduces a computational fluid dynamics (CFD) technique for calculating three-dimensional details of the gas spread by resolving all the essential scales of fluid motions without a turbulent model. The present numerical technique promises numerical solutions with fewer uncertainties produced by the model equations while maintaining high accuracy. The study examines the effect of gas density on the concentration profiles of flammable gas spread. It also discusses the effect of gas leakage rate on gas concentration profiles. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity
NASA Technical Reports Server (NTRS)
Goldmeer, Jeffrey Scott
1996-01-01
Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.
49 CFR 174.14 - Movements to be expedited.
Code of Federal Regulations, 2012 CFR
2012-10-01
... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 174.14 - Movements to be expedited.
Code of Federal Regulations, 2011 CFR
2011-10-01
... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 174.14 - Movements to be expedited.
Code of Federal Regulations, 2014 CFR
2014-10-01
... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 174.14 - Movements to be expedited.
Code of Federal Regulations, 2013 CFR
2013-10-01
... available train. (b) A tank car loaded with any Division 2.1 (flammable gas), Division 2.3 (poisonous gas) or Class 3 (flammable liquid) material, may not be received and held at any point, subject to... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay
1993-01-01
In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.
DOT National Transportation Integrated Search
2005-06-01
This report was prepared in accordance with the Statement of Work and proposal submitted in : response to RFP for Technical Task Order Number 13 (TTO 13) entitled Potential Impact Radius : Formulae for Flammable Gases Other Than Natural Gas. : ...
49 CFR 177.834 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transporting certain flammable material—(i) Use of combustion cargo heaters. A motor vehicle equipped with a combustion cargo heater may be used to transport Class 3 (flammable liquid) or Division 2.1 (flammable gas...) Heater requirements under § 393.77 of this title are complied with. (ii) Effective date for combustion...
The possibility of a reversal of material flammability ranking from normal gravity to microgravity
NASA Technical Reports Server (NTRS)
T'Ien, James S.
1990-01-01
The purpose of the discussion is to show, by a theoretical model, that one of the material flammability indices, the flammability limit, can be reversed in proper circumstances. A stagnation-point diffusion flame adjacent to a spherical solid-fuel surface is considered. It is shown that a reversal of the limiting oxygen indices from normal gravity and microgravity is possible. Although the example is based on a particular theoretical model with a particular flame configuration and specifically for an oxygen limit, the flammability-limit reversal phenomenon is believed to be more general.
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...
16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...
16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...
16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...
16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...
Thermal Flammable Gas Production from Bulk Vitrification Feed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.
2008-05-21
The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less
SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
NOEMAIL), J; David Allison; John Mccord, J
2009-05-06
The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that amore » nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.« less
Flammable gas data evaluation. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.D.; Meyer, P.A.; Miller, N.E.
1996-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements formore » insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.« less
29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subjected to sudden shock, pressure, or high temperature. Flammable means a chemical that falls into one of...: (A) A gas that, at ambient temperature and pressure, forms a flammable mixture with air at a concentration of 13 percent by volume or less; or (B) A gas that, at ambient temperature and pressure, forms a...
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... in which any flammable liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically...
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... in which any flammable liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically...
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... in which any flammable liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically...
DOT National Transportation Integrated Search
2005-05-01
This report provides an overview of polymer flammability from a material science perspective and describes currently accepted test methods to quantify burning behavior. Simplifying assumptions about the gas and condensed phase processes of flaming co...
Numerical Study of Stratified Charge Combustion in Wave Rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi
1997-01-01
A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.
1990-11-01
radioactive) - Determine class of HAZMAT (Class A Explosive, Class B Explosive, Class C Explosive, Blasting Agent , Flammable Gas , Non- flammable Gas ... agent . Specific health and safety plans related to IRP actions amy be obtained from the same source. 2. Interaction of Fire Departments with the...such as digging near a gas line, a fuel tank, or buried explo- sives, the fire department would be briefed before beginning the work, and, under
Fire blocking systems for aircraft seat cushions
NASA Technical Reports Server (NTRS)
Parker, J. A.; Kourtides, D. A. (Inventor)
1984-01-01
A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.
Purification process for .sup.153Gd produced in natural europium targets
Johnsen, Amanda M; Soderquist, Chuck Z; McNamara, Bruce K; Risher, Darrell R
2013-04-23
An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu.sup.2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.
Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.
Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick
2016-12-07
A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.
49 CFR 172.604 - Emergency response telephone number.
Code of Federal Regulations, 2010 CFR
2010-10-01
... vehicle. Carbon dioxide, solid. Castor bean. Castor flake. Castor meal. Castor pomace. Consumer commodity. Dry ice. Engines, internal combustion. Fish meal, stabilized. Fish scrap, stabilized. Refrigerating machine. Vehicle, flammable gas powered. Vehicle, flammable liquid powered. Wheelchair, electric. (3...
Environmental Training Modules. Module 3 - Shipyard Incident Response Training
1999-05-01
112 1.4 Explosives (no significant blast hazard) Orange 114 1.5 Insensitive Explosives; Blasting Agents Orange 112 2.1 Flammable Gas Red 118 2.2 Non...manufacture, distribution, importation, and use of pesticides . Broadly defined, a pesticide is any agent used to kill or control undesired insects...Orange 112 1.4 Explosives (no significant blast hazard) Orange 114 1.5 Very Insensitive Explosives; Blasting Agents Orange 112 2.1 Flammable Gas Red
Flammable gas double shell tank expert elicitation presentations (Part A and Part B)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratzel, D.R.
1998-04-17
This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.
Flammability Indices for Refrigerants
NASA Astrophysics Data System (ADS)
Kataoka, Osami
This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.
A risk-based approach to flammable gas detector spacing.
Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt
2008-11-15
Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and offshore facilities, it is conventional to use computational fluid dynamics (CFD) modeling to determine the size of a flammable cloud that would result from a specific leak scenario. Simpler modeling methods can be used, but the results are not very accurate in the region near the release, especially where flow obstructions are present. The results from CFD analyses on several leak scenarios can be plotted to determine the size of a flammable cloud that could result in an explosion that would generate overpressure exceeding the strength of the mechanical design of the plant. A cloud of this size has the potential to produce a blast pressure or flying debris capable of causing a fatality or subsequent damage to vessels or piping containing hazardous material. In cases where the leak results in a fire, rather than explosion, CFD or other modeling methods can estimate the size of a leak that would cause a fire resulting in subsequent damage to the facility, or would prevent the safe escape of personnel. The gas detector system must be capable of detecting a gas release or vapor cloud, and initiating action to prevent the leak from reaching a size that could cause injury or severe damage upon ignition.
A Discussion of SY-101 Crust Gas Retention and Release Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
SD Rassat; PA Gauglitz; SM Caley
1999-02-23
The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann etmore » al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati on in single-shell tank (SST) waste forms. The much higher void being currently observed in SY-101 represents essentially a new crust configuration, and the mechanisms for sudden gas release need to be evaluated. The purpose of this study is to evaluate the situation of gas bubbles in crust based on the previous work on gas bubble retention, migration, and release in simulants and actual waste. We have also conducted some visual observations of bubble migration through simulated crusts to help understand the interaction of the various mechanisms.« less
Determination of the combustion behavior for pure components and mixtures using a 20-liter sphere
NASA Astrophysics Data System (ADS)
Mashuga, Chad Victor
1999-11-01
The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This methodology requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. An automated apparatus for assessing the flammability region and for determining the potential effect of confined fuel-air explosions is described. Data derived from the apparatus included the limits of combustion, maximum combustion pressure, and the deflagration index, or KG. Accurate measurement of these parameters can be influenced by numerous experimental conditions, including igniter energy, humidity and gas composition. Gas humidity had a substantial effect on the deflagration index, but had little effect on the maximum combustion pressure. Small changes in gas compositions had a greater effect on the deflagration index than the maximum combustion pressure. Both the deflagration indices and the maximum combustion pressure proved insensitive to the range of igniter energies examined. Estimation of flammability limits using a calculated adiabatic flame temperature (CAFT) method is demonstrated. The CAFT model is compared with the extensive experimental data from this work for methane, ethylene and a 50/50 mixture of methane and ethylene. The CAFT model compares well to methane and ethylene throughout the flammability zone when using a 1200K threshold temperature. Deviations between the method and the experimental data occurs in the fuel rich region. For the 50/50 fuel mixture the CAFT deviates only in the fuel rich region---the inclusion of carbonaceous soot as one of the equilibrium products improved the fit. Determination of burning velocities from a spherical flame model utilizing the extensive pressure---time data was also completed. The burning velocities determined compare well to other investigators using this method. The data collected for the methane/ethylene mixture was used to evaluate mixing rules for the flammability limits, maximum combustion pressure, deflagration index, and burning velocity. These rules attempt to predict the behavior of fuel mixtures from pure component data. Le Chatelier's law and averaging both work well for predicting the flammability boundary in the fuel lean region and for mixtures of inerted fuel and air. Both methods underestimate the flammability boundary in the fuel rich region. For a mixture of methane and ethylene, we were unable to identify mixing rules for estimating the maximum combustion pressure and the burning velocity from pure component data. Averaging the deflagration indices for fuel air mixtures did provide a adequate estimation of the mixture behavior. Le Chatelier's method overestimated the maximum deflagration index in air but provided a satisfactory estimation in the extreme fuel lean and rich regions.
ERIC Educational Resources Information Center
Shurpik, Anton J.; Beim, Howard J.
1982-01-01
Discusses characteristics of materials and labels used by the Department of Transportation, including label design and color: red (flammable and spontaneously combustible), white/yellow (radioactives), orange (explosives), white (poisons), yellow (oxidizers), green (non-flammable gas), black/white (corrosive), blue (dangerous when wet). Includes…
29 CFR 1915.7 - Competent person.
Code of Federal Regulations, 2012 CFR
2012-07-01
... testing to the following situations: (i) Repair work on small craft in boat yards where only combustible gas indicator tests are required for fuel tank leaks or when using flammable paints below decks; (ii... is required; (iii) The breaking of vessels where there is no fuel oil or other flammable hazard; and...
29 CFR 1915.7 - Competent person.
Code of Federal Regulations, 2014 CFR
2014-07-01
... testing to the following situations: (i) Repair work on small craft in boat yards where only combustible gas indicator tests are required for fuel tank leaks or when using flammable paints below decks; (ii... is required; (iii) The breaking of vessels where there is no fuel oil or other flammable hazard; and...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
46 CFR 30.10-5 - Cargo-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo-TB/ALL. 30.10-5 Section 30.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-5 Cargo—TB/ALL. The term cargo means combustible liquid, flammable liquid, or liquefied flammable gas unless...
46 CFR 30.10-5 - Cargo-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo-TB/ALL. 30.10-5 Section 30.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-5 Cargo—TB/ALL. The term cargo means combustible liquid, flammable liquid, or liquefied flammable gas unless...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
46 CFR 30.10-5 - Cargo-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo-TB/ALL. 30.10-5 Section 30.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-5 Cargo—TB/ALL. The term cargo means combustible liquid, flammable liquid, or liquefied flammable gas unless...
46 CFR 30.10-5 - Cargo-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo-TB/ALL. 30.10-5 Section 30.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-5 Cargo—TB/ALL. The term cargo means combustible liquid, flammable liquid, or liquefied flammable gas unless...
46 CFR 30.10-5 - Cargo-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo-TB/ALL. 30.10-5 Section 30.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-5 Cargo—TB/ALL. The term cargo means combustible liquid, flammable liquid, or liquefied flammable gas unless...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Refrigerated systems-TB/ALL. 38.05-25 Section 38.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-25 Refrigerated systems—TB/ALL. (a) When a liquefied flammable gas is carried below...
Determination of ammonia in ethylene using ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.
1997-01-01
A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.
Effects of additives on thermal stability of Li ion cells
NASA Astrophysics Data System (ADS)
Doughty, Daniel H.; Roth, E. Peter; Crafts, Chris C.; Nagasubramanian, G.; Henriksen, Gary; Amine, Khalil
Li ion cells are being developed for high-power applications in hybrid electric vehicles, because these cells offer superior combination of power and energy density over current cell chemistries. Cells using this chemistry are proposed for battery systems in both internal combustion engine and fuel cell-powered hybrid electric vehicles. However, the safety of these cells needs to be understood and improved for eventual widespread commercial applications. The thermal-abuse response of Li ion cells has been improved by the incorporation of more stable anode carbons and electrolyte additives. Electrolyte solutions containing vinyl ethylene carbonate (VEC), triphenyl phosphate (TPP), tris(trifluoroethyl)phosphate (TFP) as well as some proprietary flame-retardant additives were evaluated. Test cells in the 18,650 configuration were built at Sandia National Laboratories using new stable electrode materials and electrolyte additives. A special test fixture was designed to allow determination of self-generated cell heating during a thermal ramp profile. The flammability of vented gas and expelled electrolyte was studied using a novel arrangement of a spark generator placed near the cell to ignite vent gas if a flammable gas mixture was present. Flammability of vent gas was somewhat reduced by the presence of certain additives. Accelerating rate calorimetry (ARC) was also used to characterize 18,650-size test cell heat and gas generation. Gas composition was analyzed by gas chromatography (GC) and was found to consist of CO 2, H 2, CO, methane, ethane, ethylene and small amounts of C1-C4 organic molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapko, M.J.; Weiss, E.S.; Watson, R.W.
Single-entry gas-explosion characteristics for the Bruceton Experimental Mine (BEM) are compared to those occurring in the larger geometries of the new Lake Lynn Mine (LLM) within the Lake Lynn Laboratory. (All three are Bureau of Mines facilities). Scale factors and boundary conditions for the BEM and the larger entries of the LLM are reviewed in some detail using representative data for pressure, flame, and wind velocity in the two mines. Measured pressure histories for gas explosions at the BEM are compared with data for comparable explosions in the larger cross section of the LLM. The time evolution for flame-front displacmentmore » can be characterized by a general expression that relates gas concentration and length of flammable volume. The course of the explosion development and its destructive power are dependent upon the development of turbulence in the unburned flammable mixture into which the flame propagates. The results of the study indicated that pressure profiles in the larger cross section are maintained to much larger, distances even though the flame front is accelerated less rapidly in a comparable entry length of smaller flammable volume.« less
Assessment of the impact of TOA partitioning on DWPF off-gas flammability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.
2013-06-01
An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less
NASA Technical Reports Server (NTRS)
Marchese, Anthony J.; Dryer, Fredrick L.; Choi, Mun Y.
1994-01-01
In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial diameter.
Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.
2000-01-24
Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less
46 CFR 154.1350 - Flammable gas detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... detection system must not pass through any gas-safe space, except the gas-safe space in which the gas... system in a gas-safe space must: (1) Have a shut-off valve in each sampling line from an enclosed space...
46 CFR 154.1350 - Flammable gas detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... detection system must not pass through any gas-safe space, except the gas-safe space in which the gas... system in a gas-safe space must: (1) Have a shut-off valve in each sampling line from an enclosed space...
33 CFR 127.1203 - Gas detection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...
33 CFR 127.1203 - Gas detection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...
33 CFR 127.1203 - Gas detection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...
33 CFR 127.1203 - Gas detection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...
33 CFR 127.1203 - Gas detection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cryogenic gas, compressed gas in solution, asphyxiant gas and oxidizing gas). For the purpose of this... °F). (f) Compressed gas in solution. A compressed gas in solution is a non-liquefied compressed gas...% by mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more; (2) An...
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cryogenic gas, compressed gas in solution, asphyxiant gas and oxidizing gas). For the purpose of this... °F). (f) Compressed gas in solution. A compressed gas in solution is a non-liquefied compressed gas... mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more; (2) An...
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cryogenic gas, compressed gas in solution, asphyxiant gas and oxidizing gas). For the purpose of this... °F). (f) Compressed gas in solution. A compressed gas in solution is a non-liquefied compressed gas...% by mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more; (2) An...
Flow Effects on the Flammability Diagrams of Solid Fuels
NASA Technical Reports Server (NTRS)
Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.
1997-01-01
A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
A New Screening Method for Methane in Soil Gas Using Existing Groundwater Monitoring Wells
Methane in soil gas may have undesirable consequences. The soil gas may be able to form a flammable mixture with air and present an explosion hazard. Aerobic biodegradation of the methane in soil gas may consume oxygen that would otherwise be available for biodegradation of gasol...
Dynamics of Diffusion Flames in von Karman Swirling Flows Studied
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Williams, Forman A.
2002-01-01
Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.
30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or soldering, and exposure to flammable liquids. (b) Liquefied and nonliquefied compressed gas... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 57.4463 - Liquefied petroleum gas use underground.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance work...
46 CFR 30.10-29 - Gas free-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...
46 CFR 30.10-29 - Gas free-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...
46 CFR 30.10-29 - Gas free-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...
46 CFR 30.10-29 - Gas free-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...
46 CFR 30.10-29 - Gas free-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...
NASA Astrophysics Data System (ADS)
Nakamura, N.; Aoki, A.
Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Charles W.
Radioactive waste tank SY-101 is one of 177 big underground tanks that store waste from decades of plutonium production at the Hanford Nuclear Reservation in central Washington State. The chemical reactions and radioactivity in all the tanks make bubbles of flammable gas, mainly hydrogen along with a little methane and ammonia. But SY-101 was the most potent gas producer of all. Every few months the gas built up in the million gallons of extra-thick slurry until it suddenly came up in great rushing ''burps''. A few of the tank's larger burps let off enough gas to make the air spacemore » at the top of the tank flammable for a few hours. This flammable gas hazard became a dominating force in DOE nuclear waste management politics in the last two decades of the 20th century. It demanded the toil of scientists, managers, and officials from the time it was filled in 1980, until it was finally declared safe in January 2001. The tank seemed almost a personality--acting with violence and apparent malice, hiding information about itself, deceiving us with false indications, and sometimes lulling us into complacency only to attack in a new way. From 1990 through 1993, SY-101's flammable gas troubles were acknowledged as the highest priority safety issue in the entire DOE complex. Uncontrolled crust growth demanded another high-priority remedial effort from 1998 through April 2000. The direct cost of the bubbles, toils, and troubles was high. Overall, the price of dealing with the real and imagined hazards in SY-101 may have reached $250 million. The indirect cost was also high. Spending all this money fighting SY-101?s safety issues only stirred radioactive waste up and moved it around, but accomplished no cleanup whatever. Worse yet, the flammable gas problem spawned suspicions of a much wider danger that impeded and complicated cleanup in other 176 waste tanks for a decade. The real cleanup job has yet to be done. The SY-101 story is really about the collective experience of people, from pervasive misconception to grand insight, near miss to sweeping success, meddling interference to close teamwork, all on an uncommonly large scale. It was a necessary catharsis that transformed the entire Hanford culture from a closed defense production operation to an open environmental cleanup project. Its tight project discipline and close teamwork became the Hanford standard. The final remediation of SY-101 placed second in an international ''project of the year'' competition. Many consider SY-101 work the peak of their careers and measure all other experience by it. SY-101 defines some of the worst and the best of Hanford history. This book attempts to narrate and explain the whole vast story.« less
49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...
49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...
49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...
49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...
49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...
Offsite radiological consequence analysis for the bounding flammable gas accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO, C.A.
2003-03-19
The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST).more » A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.« less
Fire and Flammability Characteristics of Materials Used in Rail Passenger Cars. A Literature Survey.
1980-04-01
Charac- teristics of Fiber -Reinforced Organic-Matrix Composites ," Report No. MAT-77-21, David W. Taylor Naval Ship R&D Center, Annapolis, MD 21402, June...were limited to poly- vinyl chloride, urethanes, wool, and Nomex fiber ;and gas analysis was limited to carbon monoxide, hydrogen cyanide, and...liberation, smoke emission, combustion products, toxicity, pyrolysis, plastics, polymers, synthetic fibers , flammability test methods. 20, A MT’NACT (mftM m
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditioner. An exhaust conditioner that cools the exhaust gas without direct contact with water. Exhaust conditioner. An enclosure, containing a cooling system, through which the exhaust gases pass. Exhaust system... between which the escape of flame is prevented. Flammable mixture. A mixture of methane or natural gas...
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditioner. An exhaust conditioner that cools the exhaust gas without direct contact with water. Exhaust conditioner. An enclosure, containing a cooling system, through which the exhaust gases pass. Exhaust system... between which the escape of flame is prevented. Flammable mixture. A mixture of methane or natural gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... between which the escape of flame is prevented. Flammable mixture. A mixture of methane or natural gas... conditioner. An exhaust conditioner that cools the exhaust gas without direct contact with water. Exhaust conditioner. An enclosure, containing a cooling system, through which the exhaust gases pass. Exhaust system...
NASA Astrophysics Data System (ADS)
Cai, Shengbing; Duan, Zhe min; Zhang, Yong
2013-08-01
We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.
NASA Astrophysics Data System (ADS)
Karp, Matthew Eugene
Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic manner, where the widest flammability limits are at or near 100 % SOC. [1] IATA. Lithium Battery Guidance Document. 7 Jan. 2016. Guidance for complying with provisions applicable to the transport by air of lithium batteries as set out in the 57th Edition of the IATA Dangerous Goods Regulations (DGR). [2] Webster, Harry. Flammability assessment of bulk-packed, rechargeable lithium-ion cells in transport category aircraft. Office of Aviation Research, Federal Aviation Administration, 2006.
Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas
2014-08-01
and combat support vehicles, ships, and aircraft, the adoption of natural gas —whether as compressed natural gas (CNG) or liquefied natural gas (LNG...dangers to U.S. forces and vehicles. Natural gas has different flammability properties than traditional liquid fuels, and as CNG tanks are under high...tacticaldefensemedia.com16 | DoD Power & Energy Fall 2014 For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas By Bret
Code of Federal Regulations, 2013 CFR
2013-04-01
... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... oil, adsorption to surface-active agents, or refrigeration. (b) The ingredient must be of a purity... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas as...
Code of Federal Regulations, 2011 CFR
2011-04-01
... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... oil, adsorption to surface-active agents, or refrigeration. (b) The ingredient must be of a purity... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas as...
Code of Federal Regulations, 2012 CFR
2012-04-01
... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... oil, adsorption to surface-active agents, or refrigeration. (b) The ingredient must be of a purity... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas as...
Method for Predicting Hypergolic Mixture Flammability Limits
2017-02-01
liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition and the interactions...of what happens in the liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition...and the interactions of all these phases. The ignition happens in the gas -phase but products formed here and there (in the liquid phase or at
Interstage Flammability Analysis Approach
NASA Technical Reports Server (NTRS)
Little, Jeffrey K.; Eppard, William M.
2011-01-01
The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.
49 CFR 173.24 - General requirements for packagings and packages.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Combustion or dangerous evolution of heat; (ii) Evolution of flammable, poisonous, or asphyxiant gases; or... by the evolution of gas from the contents, is permitted only when— (1) Except for shipments of... required to reduce internal pressure that may develop by the evolution of gas subject to the requirements...
49 CFR 173.24 - General requirements for packagings and packages.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Combustion or dangerous evolution of heat; (ii) Evolution of flammable, poisonous, or asphyxiant gases; or... by the evolution of gas from the contents, is permitted only when— (1) Except for shipments of... required to reduce internal pressure that may develop by the evolution of gas subject to the requirements...
49 CFR 173.24 - General requirements for packagings and packages.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Combustion or dangerous evolution of heat; (ii) Evolution of flammable, poisonous, or asphyxiant gases; or... by the evolution of gas from the contents, is permitted only when— (1) Except for shipments of... required to reduce internal pressure that may develop by the evolution of gas subject to the requirements...
49 CFR 173.24 - General requirements for packagings and packages.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Combustion or dangerous evolution of heat; (ii) Evolution of flammable, poisonous, or asphyxiant gases; or... by the evolution of gas from the contents, is permitted only when— (1) Except for shipments of... required to reduce internal pressure that may develop by the evolution of gas subject to the requirements...
Code of Federal Regulations, 2014 CFR
2014-04-01
... dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal temperatures and pressures... surface-active agents, or refrigeration. (b) The ingredient must be of a purity suitable for its intended... practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas as defined...
... safety procedures and operating instructions before operating any gas-powered or electric-powered saws or tools. Clean up spilled medicines, drugs, flammable liquids, and other potentially hazardous materials. Children's Needs After ...
Determination of Time Required for Materials Exposed to Oxygen to Return to Reduced Flammability
NASA Technical Reports Server (NTRS)
Harper, Susana; Hirsch, David; Smith, Sarah
2009-01-01
Increased material flammability due to exposure to high oxygen concentrations is a concern from both a safety and operational perspective. Localized, high oxygen concentrations can occur when exiting a higher oxygen concentration environment due to material saturation, as well as oxygen entrapment between barrier materials. Understanding of oxygen diffusion and permeation and its correlation to flammability risks can reduce the likelihood of fires while improving procedures as NASA moves to longer missions with increased extravehicular activities in both spacecraft and off-Earth habitats. This paper examines the time required for common spacecraft materials exposed to oxygen to return to reduced flammability after removal from the increased oxygen concentration environment. Specifically, NASA-STD-6001A maximum oxygen concentration testing and ASTM F-1927 permeability testing were performed on Nomex 4 HT90-40, Tiburon 5 Surgical Drape, Cotton, Extravehicular Mobility Unit (EMU) Liquid-Cooled Ventilation Garment, EMU Thermal Comfort Undergarment, EMU Mosite Foam with Spandex Covering, Advanced Crew Escape Suit (ACES) Outer Cross-section, ACES Liquid Cooled Garment (LCG), ACES O2 Hose Material, Minicel 6 Polyethylene Foam, Minicel Polyethylene Foam with Nomex Covering, Pyrell Polyurethane Foam, and Zotek 7 F-30 Foam.
49 CFR 173.307 - Exceptions for compressed gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subchapter. (3) Balls used for sports. (4) Refrigerating machines, including dehumidifiers and air... of a flammable, non-toxic liquefied gas. (5) Manufactured articles or apparatuses, each containing...
NASA Astrophysics Data System (ADS)
Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.
2018-02-01
The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.
Functional design criteria for interim stabilization safety class 1 trip circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, R.E., Westinghouse Hanford
1996-06-10
This Functional Design Criteria document outlines the basic requirements for the Safety Class 1 Trip Circuit. The objective of the Safety Class 1 Trip Circuit is to isolate the power circuitry to the Class 1 Division 2, Group B or lesser grade electrically fed loads located in the pump pit. The electrically fed load circuits need to have power isolated to them upon receipt of the following conditions, loss of flammable gases being released (above a predetermined threshold), and seismic(greater than 0.12g acceleration) activity. The two circuits requiring power isolation are the pump and heat trace power circuits. The Safetymore » Class 1 Trip Circuit will be used to support salt well pumping in SST`s containing potentially flammable gas-bearing / gas-producing radioactive waste.« less
Flammability of gas mixtures. Part 1: fire potential.
Schröder, Volkmar; Molnarne, Maria
2005-05-20
International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.
NASA Astrophysics Data System (ADS)
Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan
2018-04-01
Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.
Studies of Flame Structure in Microgravity
NASA Technical Reports Server (NTRS)
Law, C. K.; Sung, C. J.; Zhu, D. L.
1997-01-01
The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... for subsurface related equipment installed in high safety valves (SSSVs) and pressure high temperature (HPHT) related equipment installed in environments. high pressure high temperature (HPHT) environments... flammable liquids (other than produced hydrocarbons) stored on the facility in containers other than bulk...
Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F. C.; Stone, M. E.; Miller, D. H.
2014-09-03
Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less
Analysis of volatile combustion products and a study of their toxicological effects.
NASA Technical Reports Server (NTRS)
Seader, J. D.; Einhorn, I. N.; Drake, W. O.; Mihlfeith, C. M.
1972-01-01
An experimental program was conducted to study the thermochemical, flammability and toxicological characteristics of uncoated and coated polyisocyanurate foams. The coatings used were fluorinated copolymer and an intumescent material. Combustion and pyrolysis gases were analyzed by gas chromatography and mass spectrometry. The LD-50 and LD-100 tests were performed on Sprague-Dawley rats housed in an environmental chamber. The isocyanurate foam, fluorinated-copolymer-coated foam, and the intumescent-coated foam were found to have excellent flammability and insulation characteristics, although smoke development was substantial.
Propane is a colorless and odorless flammable gas that can turn into liquid under very cold temperatures. This article discusses the harmful effects from breathing in or swallowing propane. Breathing in or swallowing propane can be ...
Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel
NASA Technical Reports Server (NTRS)
Olson, S. L.; Tien, J. S.
2000-01-01
A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.
One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok
2015-03-25
In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.
49 CFR 177.848 - Segregation of hazardous materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... evolution of heat or gas. (4) The “*” in the table indicates that segregation among different Class 1... and causing combustion or dangerous evolution of heat, evolution of flammable, poisonous, or...
49 CFR 177.848 - Segregation of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... evolution of heat or gas. (4) The “*” in the table indicates that segregation among different Class 1... and causing combustion or dangerous evolution of heat, evolution of flammable, poisonous, or...
49 CFR 177.848 - Segregation of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... evolution of heat or gas. (4) The “*” in the table indicates that segregation among different Class 1... and causing combustion or dangerous evolution of heat, evolution of flammable, poisonous, or...
49 CFR 177.848 - Segregation of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... evolution of heat or gas. (4) The “*” in the table indicates that segregation among different Class 1... and causing combustion or dangerous evolution of heat, evolution of flammable, poisonous, or...
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically powered and designed to operate...
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Any slack spaces between packages must be filled with dunnage; (7) The weight in a container must be... liquid or gas is stowed. Any heating or air conditioning equipment having a fuel tank containing a flammable liquid or gas may be stowed only “on deck”. Equipment electrically powered and designed to operate...
Safely splicing glass optical fibers
NASA Technical Reports Server (NTRS)
Korbelak, K.
1980-01-01
Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
30 CFR 27.37 - Tests to determine adequacy of safety devices for bulbs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements... filament incandescent at normal operating voltage shall be broken in flammable methane-air or natural gas...
30 CFR 27.37 - Tests to determine adequacy of safety devices for bulbs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements... filament incandescent at normal operating voltage shall be broken in flammable methane-air or natural gas...
1989-10-01
flashback tests FM does not speci- fy the type of enclosure to contain the explosive fuel/air mix -ture. 3.4 INTERNATIONAL CONVENTION FOR THE SAFETY OF...2) Continuous burn tests: ... "Same mix - ture and concentration as for explosion tests; flow rate of the gasoline vapor-air mixture is specified as a...gas temperature of the flammable hexane/air mix - ture on the tank side was used as the representative endu ance burn test temperature for the following
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pool, K.H.; Evans, J.C.; Olsen, K.B.
1997-08-01
This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis planmore » (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.« less
49 CFR 172.400 - General labeling requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 172.411 1.6 EXPLOSIVES 1.6 172.411 2.1 FLAMMABLE GAS 172.417 2.2 NONFLAMMABLE GAS 172.415 2.3 POISON...)) POISON INHALATION HAZARD 172.429 6.1(other than material poisonous by inhalation) POISON 172.430 6.1 (inhalation hazard, Zone A or B) POISON INHALATION HAZARD 172.429 6.1 (other than inhalation hazard, Zone A or...
49 CFR 172.400 - General labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 172.411 1.6 EXPLOSIVES 1.6 172.411 2.1 FLAMMABLE GAS 172.417 2.2 NONFLAMMABLE GAS 172.415 2.3 POISON...)) POISON INHALATION HAZARD 172.429 6.1(other than material poisonous by inhalation) POISON 172.430 6.1 (inhalation hazard, Zone A or B) POISON INHALATION HAZARD 172.429 6.1 (other than inhalation hazard, Zone A or...
49 CFR 172.400 - General labeling requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 172.411 1.6 EXPLOSIVES 1.6 172.411 2.1 FLAMMABLE GAS 172.417 2.2 NONFLAMMABLE GAS 172.415 2.3 POISON...)) POISON INHALATION HAZARD 172.429 6.1(other than material poisonous by inhalation) POISON 172.430 6.1 (inhalation hazard, Zone A or B) POISON INHALATION HAZARD 172.429 6.1 (other than inhalation hazard, Zone A or...
49 CFR 172.400 - General labeling requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 172.411 1.6 EXPLOSIVES 1.6 172.411 2.1 FLAMMABLE GAS 172.417 2.2 NONFLAMMABLE GAS 172.415 2.3 POISON...)) POISON INHALATION HAZARD 172.429 6.1(other than material poisonous by inhalation) POISON 172.430 6.1 (inhalation hazard, Zone A or B) POISON INHALATION HAZARD 172.429 6.1 (other than inhalation hazard, Zone A or...
49 CFR 172.400 - General labeling requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 172.411 1.6 EXPLOSIVES 1.6 172.411 2.1 FLAMMABLE GAS 172.417 2.2 NONFLAMMABLE GAS 172.415 2.3 POISON...)) POISON INHALATION HAZARD 172.429 6.1(other than material poisonous by inhalation) POISON 172.430 6.1 (inhalation hazard, Zone A or B) POISON INHALATION HAZARD 172.429 6.1 (other than inhalation hazard, Zone A or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post
2013-09-01
The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less
49 CFR 173.307 - Exceptions for compressed gases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... non-flammable, non-toxic gas; (ii) 12 L (3 gallons) or less of ammonia solution (UN2672); (iii) Except... projectile effects of any rupture of the bulb will be contained within the package. (b) [Reserved] [Amdt. 173...
49 CFR 173.307 - Exceptions for compressed gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... non-flammable, non-toxic gas; (ii) 12 L (3 gallons) or less of ammonia solution (UN2672); (iii) Except... projectile effects of any rupture of the bulb will be contained within the package. (b) [Reserved] [Amdt. 173...
Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor
NASA Technical Reports Server (NTRS)
Adelman, H. G.; Browning, L. H.; Pefley, R. K.
1975-01-01
A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.
A study of nonflammable ArCO 2-hydrocarbon gas mixtures for limited streamer tubes
NASA Astrophysics Data System (ADS)
Cartwright, S.; Schneekloth, U.; Alpat, B.; Artemi, C.; Battiston, R.; Bilei, G.; Italiani, M.; Pauluzzi, M.; Servoli, L.; Messner, R.; Wyss, J.; Zdarko, R.; Johnson, J.
1989-04-01
The gas mixtures generally used until now in limited streamer tube detectors (Ar+C 4H 10 or Ar+CO 2+C 5H 12) are very flammable when leaked into air. The safety issues are therefore very relevant for large-volume underground experiments. We have found a set of completely safe (i.e. nonflammable) ternary mixtures of the kind Ar + hydrocarbon + CO 2 containing less than ˜ 5% of Ar and less than ˜ 10% of hydrocarbon. We tested C 4H 10, C 5H 12 and C 6H 14 as quenching agents. The main characteristics of the various mixtures have been measured: singles (untriggered) counting rate versus high voltage and with different dead times, and average charge. The stability of these mixtures is good, and their spurious streamer activity is compared with the standard binary or ternary mixture. We studied in particular the combination Ar(2.5%) + C 4H 10(9.5%) + CO 2(88%). All the data suggest that this or a similar gas mixture can successfully replace standard flammable mixtures both in tracking devices and hadron calorimeters.
49 CFR 193.2059 - Flammable vapor-gas dispersion protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... account the same physical factors and have been validated by experimental test data shall be permitted... vapor cloud. (c) The design spill shall be determined in accordance with section 2.2.3.5 of NFPA 59A...
Saran film is fire-retardant in oxygen atmosphere
NASA Technical Reports Server (NTRS)
Goodwin, J. T.; Herrera, W. R.
1968-01-01
Saran was tested for flammability as a wrapping on TFE-insulated electrical wire bundles in oxygen gas at pressures of 7.5 psia and 14.7 psia. It was found to be fire retardant or self-extinguishing in most instances.
Chemical Safety Alert: Shaft Blow-Out Hazard of Check and Butterfly Valves
Certain types of check and butterfly valves can undergo shaft-disk separation and fail catastrophically, even when operated within their design limits of pressure and temperature, causing toxic/flammable gas releases, fires, and vapor cloud explosions.
A mathematical model of diffusion from a steady source of short duration in a finite mixing layer
NASA Astrophysics Data System (ADS)
Bianconi, Roberto; Tamponi, Matteo
This paper presents an analytical unsteady-state solution to the atmospheric dispersion equation for substances subject to chemical-physical decay in a finite mixing layer for releases of short duration. This solution is suitable for describing critical events relative to accidental release of toxic, flammable or explosive substances. To implement the solution, the Modello per Rilasci a Breve Termine (MRBT) code has been developed, for some characteristics parameters of which the results of the sensitivity analysis are presented. Moreover some examples of application to the calculation of exposure to toxic substances and to the determination of the ignition field of flammable substances are described. Finally, the mathematical model described can be used to interpret the phenomenon of pollutant accumulation.
Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures
NASA Astrophysics Data System (ADS)
Fomin, P. A.
2018-03-01
The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.
Studies on the thermal breakdown of common Li-ion battery electrolyte components
Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; ...
2015-08-06
While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF 6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gassesmore » produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF 6. EMC was stable on its own, but the addition of LiPF 6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less
49 CFR 193.2187 - Nonmetallic membrane liner.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank...
NASA Technical Reports Server (NTRS)
Nahra, Henry (Compiler)
2004-01-01
Topic presentations are included on the following: biosensors to monitor the health of astronauts, microgravity effects on flammability, fire prevention and suppression, life support topics, waste management topics, heat transfer; gas flow and liquids flow, and combustion studies.
46 CFR 154.1105 - Exterior water spray system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior water spray system: General. Each liquefied flammable gas vessel...
46 CFR 154.1105 - Exterior water spray system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior water spray system: General. Each liquefied flammable gas vessel...
46 CFR 154.1105 - Exterior water spray system: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior water spray system: General. Each liquefied flammable gas vessel...
Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity
NASA Astrophysics Data System (ADS)
Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui
Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in microgravity. This showed that the horizontal narrow channel can restrict natural convection effectively. In the vertical narrow channel, flame spread became slower as the forced gas flow speed increased. In low speed gas flows, flame spread was not near quench limit. Instead, the spread rate got its maximum value. This was entirely different from the result of microgravity and showed that the vertical narrow channel can not restrict natural convection. For the horizontal narrow channel, when the channel height lowered to 1 cm (The Grashof number was 149 using the half height as a characteristic length), the natural convection was restricted. For vertical narrow channel, a lower height was needed to restrict natural convection. References 1. NASA Technical Standard, "Flammability, Odor, Offgassing, and Compatibility Require-ments and Test Procedures for Materials in Environments That Support Combustion", NASA STD-6001, 1998. 2. Ivanov, A. V., Balashov, Ye. V., Andreeva, T. V., and et al., "Experimental Verification of Material Flammability in Space", NASA CR-1999-209405, 1999. 3. Melikhov, A. S., Bolodyan, I. A., Potyakin, V. I., and et al., "The study of polymer material combustion in simulated microgravity by physical modeling method", In: Sacksteder K, ed, "Fifth Int Microgravity Comb Workshop", NASA CP-1999-208917, 1999, 361. 4. T'ien, J. S., Shih, H.-Y., Jiang, C.-B., and et al., "Mechanisms of flame spread and smol-der wave propagation", In: Ross, H. D., ed, "Microgravity Combustion: Fire in Free Fall", Academic Press, 2001. 299. 5. Olson, S. L., Comb Sci Tech, 76, 233, 1991.
Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.
2013-02-13
An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less
Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed.
Fell, H J; Tuczek, M
1998-01-01
The presented adsorption--process KOMBISORBON is applied for high efficient off-gas purification, preferably of polychlorinated dioxins and furans from off-gas of incineration plants, which are generated, when these are operated under unfavourable conditions [2]. This off-gas purification process complies with german laws, which limit the concentration of these substances to less than 0.1 ng toxicity equivalents (TE) per cubic metre of gas [1]. The adsorbent, the adsorption process and its plant concept (fixed bed) is described in detail including economics and obtained operation results. Alternative removal technologies are briefly outlined.
Code of Federal Regulations, 2010 CFR
2010-10-01
... best quality spring steel consistent with the design of the valve and the service requirement. [CGFR 52... materials melting above 1700 °F. for liquefied flammable gas service. Consideration of lower melting materials for internal pressure-containing parts will be given if their use provides significant improvement...
Large-eddy simulation of plume dispersion within regular arrays of cubic buildings
NASA Astrophysics Data System (ADS)
Nakayama, H.; Jurcakova, K.; Nagai, H.
2011-04-01
There is a potential problem that hazardous and flammable materials are accidentally or intentionally released within populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. In this study, we perform Large-Eddy Simulation (LES) of plume dispersion within regular arrays of cubic buildings with large obstacle densities and investigate the influence of the building arrangement on the characteristics of mean and fluctuating concentrations.
NASA Astrophysics Data System (ADS)
Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin
2018-01-01
Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.
30 CFR 57.4463 - Liquefied petroleum gas use underground.
Code of Federal Regulations, 2010 CFR
2010-07-01
....4463 Section 57.4463 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum...
30 CFR 57.4463 - Liquefied petroleum gas use underground.
Code of Federal Regulations, 2012 CFR
2012-07-01
....4463 Section 57.4463 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum...
30 CFR 57.4463 - Liquefied petroleum gas use underground.
Code of Federal Regulations, 2013 CFR
2013-07-01
....4463 Section 57.4463 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum...
30 CFR 57.4463 - Liquefied petroleum gas use underground.
Code of Federal Regulations, 2014 CFR
2014-07-01
....4463 Section 57.4463 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum...
Wire Insulation Flammability Experiment: USML-1 One Year Post Mission Summary
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi
1994-01-01
Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility on the USML-1 mission. This experiment explored various aspects of electrically induced fire scenarios in a reduced gravity environment. Under quiescent microgravity conditions, heat and mass transfer are dominated by diffusive and radiative transport; while in normal-gravity buoyancy induced convection often dominates. Of considerable scientific and practical interest is the intermediate situation of combustion occurring in the presence of imposed gas flows, with lower characteristic velocities than those induced by buoyancy in noma1 gravity. Two distinct cases naturally arise: flow direction opposed to, or concurrent with, the flame spread direction. Two tests of each kind were conducted in the WIF experiment, providing the first controlled demonstration of flame spreading in forced convection ever conducted in space. Four test modules were flown. The wire insulation, 1.5 mm in diameter, was polyethylene, extruded onto nichrome wire. Temperatures of the wh3 cores and insulation heated in quiescent and flowing environments were measured. Video and still-camera images of the samples, burning in air flowing at approximately 10 cm/sec, were recorded to obtain flame characteristics including spread rate, structure and temperature. Flame spread rates in concurrent flow were approximately twice those in opposed flow. In concurrent and opposed flow regimes, the spreading flames stabilized around a bead of molten insulation material, within which bubble nucleation was observed. An ignition attempt without flow mated a quiescent cloud of vaporized fuel which ignited dramatically yet failed to sustain normal flame spread. Finally, all tests produced substantial soot agglomerates, particularly the concurrent flow tests; and the collected soot has a morphology very distinct from soot formed in normal gravity flames. Several unexpected and unique microgravity combustion phenomena were observed.
Impact of scaling on the nitric-glycolic acid flowsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D.
Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic thanmore » glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Lambert, D.
The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. Tomore » address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... Information Collection; Notification of Methane Detected in Underground Metal and Nonmetal Mine Atmospheres...); or 202-693-9441 (facsimile). SUPPLEMENTARY INFORMATION: I. Background Methane is a flammable gas commonly found in underground mines in the United States. Although methane is often associated with...
46 CFR 28.320 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... protect more than one space. The quantity of extinguishing agent must be at least sufficient for the... to indicate the discharge of the extinguishing agent; (ii) An audible alarm to sound upon discharge...
46 CFR 28.320 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... protect more than one space. The quantity of extinguishing agent must be at least sufficient for the... to indicate the discharge of the extinguishing agent; (ii) An audible alarm to sound upon discharge...
46 CFR 28.320 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... protect more than one space. The quantity of extinguishing agent must be at least sufficient for the... to indicate the discharge of the extinguishing agent; (ii) An audible alarm to sound upon discharge...
49 CFR 177.840 - Class 2 (gases) materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...
49 CFR 177.840 - Class 2 (gases) materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...
49 CFR 177.840 - Class 2 (gases) materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...
49 CFR 177.840 - Class 2 (gases) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...
46 CFR 28.320 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... spaces: (1) A space containing an internal combustion engine of more than 50 horsepower; (2) A space containing an oil fired boiler; (3) An incinerator and; (4) A space containing a gasoline storage tank. (b...
46 CFR 28.320 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... spaces: (1) A space containing an internal combustion engine of more than 50 horsepower; (2) A space containing an oil fired boiler; (3) An incinerator and; (4) A space containing a gasoline storage tank. (b...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted...
ERIC Educational Resources Information Center
Blackledge, Robert D.
1974-01-01
Describes an experiment which can be used to test for the use of accelerants in the origin of a fire. Involves distillation and gas liquid chromatography to identify the accelerants, thus combining two experiments ordinarily included in the beginning organic laboratory. (SLH)
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
High methane natural gas/air explosion characteristics in confined vessel.
Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing
2014-08-15
The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M.; Jantzen, C.; Burket, P.
The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less
Low cost fuel cell diffusion layer configured for optimized anode water management
Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E
2013-08-27
A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.
Estimation of the lower flammability limit of organic compounds as a function of temperature.
Rowley, J R; Rowley, R L; Wilding, W V
2011-02-15
A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56 and...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56 and...
49 CFR 193.2059 - Flammable vapor-gas dispersion protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by..., subject to the Administrator's approval. (b) The following dispersion parameters must be used in computing... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation...
49 CFR 193.2059 - Flammable vapor-gas dispersion protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by..., subject to the Administrator's approval. (b) The following dispersion parameters must be used in computing... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation...
49 CFR 193.2059 - Flammable vapor-gas dispersion protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by..., subject to the Administrator's approval. (b) The following dispersion parameters must be used in computing... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56 and...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56 and...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56 and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... volumetric capacity of each fluid reservoir at 15 °C (59 °F). (3) Each lighter design, including closures... the pressure of the flammable gas at 55 °C (131 °F). (4) Each appropriate lighter design must be... lighter design. (b) Examination and testing of lighter design types—(1) Lighter design type definition. A...
Code of Federal Regulations, 2014 CFR
2014-10-01
... volumetric capacity of each fluid reservoir at 15 °C (59 °F). (3) Each lighter design, including closures... the pressure of the flammable gas at 55 °C (131 °F). (4) Each appropriate lighter design must be... lighter design. (b) Examination and testing of lighter design types—(1) Lighter design type definition. A...
46 CFR 118.410 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with the Marine Design, Installation, Operation, and Maintenance Manual approved for the system by the...), must be at least Schedule 80 (extra heavy). (2) A pressure relief valve or equivalent set to relieve at... installed in a machinery space, paint locker, a space containing flammable liquid stores, or a space with a...
46 CFR 181.410 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... installation must be in accordance with the Marine Design, Installation, Operation, and Maintenance Manual...), must be at least Schedule 80 (extra heavy). (2) A pressure relief valve or equivalent set to relieve at... installed in a machinery space, paint locker, a space containing flammable liquid stores, or a space with a...
46 CFR 118.410 - Fixed gas fire extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with the Marine Design, Installation, Operation, and Maintenance Manual approved for the system by the...), must be at least Schedule 80 (extra heavy). (2) A pressure relief valve or equivalent set to relieve at... installed in a machinery space, paint locker, a space containing flammable liquid stores, or a space with a...
49 CFR 176.205 - Under deck stowage requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... electrical power line in the hold or compartment must be protected by a strong metal covering to prevent... (flammable gas) materials. (6) Full and efficient hatch covers must be used. Tarpaulins, if fitted, must be... from the hold or compartment. The fire screen must completely cover the open area. It must consist of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherburne, Carol; Osterberg, Paul
The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen ismore » flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a fuse wire. A gas combination is considered flammable when a pressure rise of 7% of the initial absolute pressure is observed. The specified testing methodology is consistent with guidelines established in ASTM E-918-83 (2005) 'Standard Practices for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure'. The LFL of hydrogen in air was determined and is in good agreement with the literature data. Ozone-oxygen mixtures were found to be flammable at concentrations above 8.3 vol.% based on the ASTM E918 7% pressure rise criteria for flame propagation. This result is lower than previously reported values which can be explained through the variations in the test setup and procedure. It is believed that the lower values obtained in this work are a result of improvements of the test methodology. Tests performed with hydrogen in various concentrations of ozone in oxygen have shown that the LFL of hydrogen decreases as the concentration of ozone in the mixture increases. This testing was designed to provide data under the conditions considered most optimal to produce deflagration. The geometry and materials of construction of the testing vessel; the location of the fuse wire; the magnitude of the supplied energy; the careful minimization of diluents and other contaminants; and meticulous procedural detail to maintain integrity of the ozone to the maximum extent practical, result in data that reflect not the expected process conditions, but those that enhance the possibility of flame propagation. For this reason, there is believed to be considerable conservatism in the indicated results. Per the vendor, the maximum possible ozone concentration producible by the planned ECC Ozone generator is 8 volume percent (the typical maximum operating setpoint concentration is 6.8 vol%), less than the 8.3 minimum volume % concentration shown to be flammable in a 99.999% pure O{sub 2} environment at the optimally conservative conditions established in this testing. Further, the feed to the ECC ozone generator is only 87% oxygen, the remainder, water vapor and nitrogen, both powerful diluents. It is, thus, believed not credible that deflagration can occur at this maximum feed concentration condition. In addition, once the ozone stream contacts the waste stream, the many simultaneous oxidizing reactions will rapidly decompose available ozone to well below flammable levels. Further, because the radiolytically generated hydrogen quantity is negligible compared to the supplied ozone/oxygen stream (0.0004 moles per minute H{sub 2} vs 76 moles per minute ozone/oxygen), even the total H{sub 2}/O{sub 3} mixture, without crediting decomposition reactions, does not approach flammable concentrations. Finally, even at the 'end' of the ECC batch cycle, when most of the metal oxalates have been decomposed, testing has indicated that the ozone concentration in the vapor space of the ECC process vessel reaches a concentration of no more than 3 vol%, remaining well below concentrations of concern. The major issue for the ECC operation established by this testing is the impact of the data when applied to off normal conditions. While it is possible to discontinue ozone addition to the reaction vessel at any time, the radiolytic hydrogen generation rate continues, varying slightly as ambient pressures and temperatures change. Relative to the data generated and analyzed in this testing, the ECC hazards analysis team will re-evaluate off normal conditions (e.g. those during which process exhaust ventilation is lost) such that issues involving mixtures of hydrogen and ozone in the vapor space can be appropriately controlled. (authors)« less
Application of CFD (Fluent) to LNG spills into geometrically complex environments.
Gavelli, Filippo; Bullister, Edward; Kytomaa, Harri
2008-11-15
Recent discussions on the fate of LNG spills into impoundments have suggested that the commonly used combination of SOURCE5 and DEGADIS to predict the flammable vapor dispersion distances is not accurate, as it does not account for vapor entrainment by wind. SOURCE5 assumes the vapor layer to grow upward uniformly in the form of a quiescent saturated gas cloud that ultimately spills over impoundment walls. The rate of spillage is then used as the source term for DEGADIS. A more rigorous approach to predict the flammable vapor dispersion distance is to use a computational fluid dynamics (CFD) model. CFD codes can take into account the physical phenomena that govern the fate of LNG spills into impoundments, such as the mixing between air and the evaporated gas. Before a CFD code can be proposed as an alternate method for the prediction of flammable vapor cloud distances, it has to be validated with proper experimental data. This paper describes the use of Fluent, a widely-used commercial CFD code, to simulate one of the tests in the "Falcon" series of LNG spill tests. The "Falcon" test series was the only series that specifically addressed the effects of impoundment walls and construction obstructions on the behavior and dispersion of the vapor cloud. Most other tests, such as the Coyote and the Burro series, involved spills onto water and relatively flat ground. The paper discusses the critical parameters necessary for a CFD model to accurately predict the behavior of a cryogenic spill in a geometrically complex domain, and presents comparisons between the gas concentrations measured during the Falcon-1 test and those predicted using Fluent. Finally, the paper discusses the effect vapor barriers have in containing part of the spill thereby shortening the ignitable vapor cloud and therefore the required hazard area. This issue was addressed by comparing the Falcon-1 simulation (spill into the impoundment) with the simulation of an identical spill without any impoundment walls, or obstacles within the impoundment area.
NASA Technical Reports Server (NTRS)
Ju, Yiguang; Masuya, Goro; Ronney, Paul D.
1998-01-01
Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.
Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows
NASA Astrophysics Data System (ADS)
Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng
2016-05-01
Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).
Energy Conversion and Combustion Sciences
2013-03-08
Property issues Flameholding (flammability limit) Flame propagation (turbulent-flame speed) combustion-Mixing interaction shock Cavity Based Scramjet ...focusing: • “Very-high” speed (space access) region • Overlapping interests and close coordination with AF programs ( scramjet , rockets etc.). • NSF...and Relevant Conditions Hypersonics Gas Turbines Rockets M > 0.1 Re ? Da ? wrinkled flame ball laminar flame Auto Engines PGC (1
Solar Water Heater Installation Package
NASA Technical Reports Server (NTRS)
1982-01-01
A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.
Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan
2017-09-15
Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.
Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.
Ye, Qin; Li, Zhimin; Wu, Hui
2016-01-01
Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.
75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... Flammable Solid'' and ``Flammable Solid'' AGENCY: Consumer Product Safety Commission. ACTION: Final rule... to correct internal citations to the definitions of ``extremely flammable solid'' and ``flammable solid'' in our regulations. DATES: This rule is effective on August 13, 2010. FOR FURTHER INFORMATION...
Zhao, Weiwei; Cornwell, William K; van Pomeren, Marinda; van Logtestijn, Richard S P; Cornelissen, Johannes H C
2016-11-01
Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non- Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non- Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.
Mutual influence of molecular diffusion in gas and surface phases
NASA Astrophysics Data System (ADS)
Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya
2018-01-01
We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.
NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew; Long, Dirk; Pesaran, Ahmad
Lithium-ion cells provide the highest specific energy (>280 Wh/kg) and energy density (>600 Wh/L) rechargeable battery building block to date with the longest life. Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions. Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. The Internalmore » Short-Circuit Instigator can be used to study types of separators, non-flammable electrolytes, electrolyte additives, fusible tabs, propagation studies, and gas generation within a cell.« less
On the thermal runaway of combustible fluids in lagging material
NASA Astrophysics Data System (ADS)
McIntosh, A. C.; Griffiths, J. F.
1995-01-01
This paper presents the mathematical foundations for a simple theory for investigating the phenomenon of ignition of flammable fluids in lagging material that are used for insulation of hot pipework, for transport of heat transfer fluids, or other similar situations. Experiments with porous material impregnated with a flammable fluid have simulated the self-heating known to occur when combustible liquids leak from a hot pipe into lagging surrounding the pipe or are split from another source on to the lagging. A theory to explain these findings is presented which shows that there is a watershed temperature beyond which substantial self-heating will take place. Although the theory does not take account of diffusion, it simulates the main physics of the phenomenon-that is, combustible fluid, which normally in the open air would evaporate and not be a hazard, can, within a porous medium, remain dispersed within the porous structure long enough for the exothermic oxidation to develop into ignition.
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
A study of transient flow turbulence generation during flame/wall interactions in explosions
NASA Astrophysics Data System (ADS)
Hargrave, G. K.; Jarvis, S.; Williams, T. C.
2002-07-01
Experimental data are presented for the turbulent velocity field generated during flame/solid wall interactions in explosions. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. In congested process plant, any flame propagating through an accidental release of flammable mixture will encounter obstructions in the form of walls, pipe-work or storage vessels. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake/recirculation, whereby the flame can be wrapped in on itself, increasing the surface area available for combustion. Particle image velocimetry (PIV) was used to characterize the turbulent flow field in the wake of the obstacles placed in the path of propagating flames. This allowed the quantification of the interaction of the propagating flame and the generated turbulent flow field. Due to the accelerating nature of the explosion flow field, the wake flows develop `transient' turbulent fields and PIV provided data to define the spatial and temporal variation of the velocity field ahead of the propagating flame, providing an understanding of the direct interaction between flow and flame.
Basic Considerations in the Combustion of Hydrocarbon Fuels with Air
NASA Technical Reports Server (NTRS)
Barnett, Henry C; Hibbard, Robert R
1957-01-01
Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.
Flammability as an ecological and evolutionary driver
Pausas, Juli G.; Keeley, Jon E.; Schwilk, Dylan W.
2017-01-01
We live on a flammable planet yet there is little consensus on the origin and evolution of flammability in our flora.We argue that part of the problem lies in the concept of flammability, which should not be viewed as a single quantitative trait or metric. Rather, we propose that flammability has three major dimensions that are not necessarily correlated: ignitability, heat release and fire spread rate. These major axes of variation are controlled by different plant traits and have differing ecological impacts during fire.At the individual plant scale, these traits define three flammability strategies observed in fire-prone ecosystems: the non-flammable, the fast-flammable and the hot-flammable strategy (with low ignitability, high flame spread rate and high heat release, respectively). These strategies increase the survival or reproduction under recurrent fires, and thus, plants in fire-prone ecosystems benefit from acquiring one of them; they represent different (alternative) ways to live under recurrent fires.Synthesis. This novel framework based on different flammability strategies helps us to understand variability in flammability across scales, and provides a basis for further research.
OPTIMIZING SYNTHESIS GAS YIELD FROM THE CROSS ...
Symposium Paper Biomass can be gasified to yield synthesis gas, tars, and ash. The process is governed by a number of parameters such as the temperature of the gasifying medium (in this case), and the moisture content of the feedstock. Synthesis gas from gasifying wood pellets was collected and analyzed as a function of inlet air temperature and feedstock moisture content. The air was introduced at temperatures ranging from 630 to 730 °C and the moisture content of the feedstock ranged from 8 to 20%. The data collected was used to establish the relationship between the outcome of gasification and these two parameters, and then to determine optimal operating parameters for maximizing the fuel value (maximizing the concentrations of flammable gases in the synthesis gas) while minimizing the production of gasification tars.
Hazardous Materials Hazard Analysis, Portland, Oregon.
1981-06-01
combustible liquids, primarily petroleum products such as gasoline and fuel oil . Although less prevalent, compressed flammable gases (such as liquid...magnitude when hazardous materials are involved. -- Texas City, Texas, 1947--A ship being loaded with ammonium nitrate exploded, killing 468 people...An overturned gasoline or home heating fuel oil tanker or natural gas leak which does not ignite would be a Level 1 emergency. Level 2: A spill or
Burning of CP Titanium (Grade 2) in Oxygen-Enriched Atmospheres
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Jeffers, Nathan; Gallus, Timothy D.
2012-01-01
The flammability in oxygen-enriched atmospheres of commercially pure (CP) titanium rods as a function of diameter and test gas pressure was determined. Test samples of varying diameters were ignited at the bottom and burned upward in 70% O2/balance N2 and in 99.5+% O2 at various pressures. The burning rate of each ignited sample was determined by observing the apparent regression rate of the melting interface (RRMI) of the burning samples. The burning rate or RRMI increased with decreasing test sample diameter and with increasing test gas pressure and oxygen concentration
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...
16 CFR 1611.4 - Flammability test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The...
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...
2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A.
2014-05-08
Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas datamore » were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the ½ scale SGM, whose data were taken as directly applicable to the DWPF melter and thus used to set all the parameters of the original model. Based on these results of the CEF Phase 1 off-gas and thermal data analyses, it is concluded that: (1) The thermal characteristics of the CEF vapor space are prototypic thanks to its prototypic design; and (2) The CEF off-gas data are scalable in terms of predicting the flammability potential of the DWPF melter off-gas. These results also show that the existing DWPF safety controls on the TOC and antifoam as a function of nitrate are conservative by the same order of magnitude shown by the Phase 1 data at T{sub gas} < ~350°C, since they were set at T{sub gas} = 294°C, which falls into the region of excessive conservatism for the current DWPF model in terms of predicting the TOC-to-H{sub 2} conversion. In order to remedy the overly-conservative antifoam decomposition scheme used in the current DWPF model, the data from two recent tests will be analyzed in detail in order to gain additional insights into the antifoam decomposition chemistry in the cold cap. The first test was run in a temperature-programmed furnace using both normal and spiked feeds with fresh antifoam under inert and slightly oxidizing vapor space conditions. Phase 2 of the CEF test was run with the baseline nitric-glycolic acid flowsheet feeds that contained the “processed antifoam” and those spiked with fresh antifoam in order to study the effects of antifoam concentration as well as processing history on its decomposition chemistry under actual melter conditions. The goal is to develop an improved antifoam decomposition model from the analysis of these test data and incorporate it into a new multistage cold cap model to be developed concurrently for the nitric-glycolic acid flowsheet feeds. These activities will be documented in the Phase 2 report. Finally, it is recommended that some of the conservatism in the existing DWPF safety controls be removed by improving the existing measured-vs.-true gas temperature correlation used in the melter vapor space combustion calculations. The basis for this recommendation comes from the fact that the existing correlation was developed by linearly extrapolating the SGM data taken over a relatively narrow temperature range down to the safety basis minimum of 460°C, thereby under predicting the true gas temperature considerably, as documented in this report. Specifically, the task of improving the current temperature correlation will involve; (1) performing a similar heat/mass balance analysis used in this study on actual DWPF data, (2) validating the measured-vs.-true gas temperature correlation for the CEF developed in this study against the DWPF melter heat/mass balance results, and (3) making adjustments to the CEF correlation, if necessary, before incorporating it into the DWPF safety basis calculations. The steps described here can be completed with relatively minimum efforts.« less
30 CFR 57.4460 - Storage of flammable liquids underground.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...
30 CFR 57.4460 - Storage of flammable liquids underground.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...
30 CFR 57.4460 - Storage of flammable liquids underground.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...
30 CFR 57.4460 - Storage of flammable liquids underground.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...
Density PDFs of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2012-09-01
The probability distribution functions (PDFs) of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5∘ and |b|≥ 5∘ are considered separately. Our results provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.
49 CFR 172.419 - FLAMMABLE LIQUID label.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...
49 CFR 172.419 - FLAMMABLE LIQUID label.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...
49 CFR 172.419 - FLAMMABLE LIQUID label.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...
49 CFR 172.419 - FLAMMABLE LIQUID label.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...
49 CFR 172.419 - FLAMMABLE LIQUID label.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...
49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Class 3 (flammable liquid) materials in tank cars... CARRIAGE BY RAIL Detailed Requirements for Class 3 (Flammable Liquid) Materials § 174.304 Class 3 (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other...
46 CFR 153.465 - Flammable vapor detector.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...
46 CFR 153.465 - Flammable vapor detector.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...
46 CFR 153.465 - Flammable vapor detector.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...
46 CFR 153.465 - Flammable vapor detector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...
46 CFR 153.465 - Flammable vapor detector.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...
16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable solids...
49 CFR 172.420 - FLAMMABLE SOLID label.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a red...
49 CFR 172.420 - FLAMMABLE SOLID label.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a red...
Spacecraft and Navy Materials Flammability: Review of Some Concepts and Test Methods
NASA Technical Reports Server (NTRS)
Hirsch, David
2004-01-01
The agenda covered by this viewgraph presentation includes: 1) Concepts of Spacecraft Fire Safety; 2) Spacecraft materials flammability test methods; 3) Evaluation of flight hardware flammability; 4) Review of flammability data in conditions of interest to the Navy; 5) Overview of some flammability test methods recommended for the Navy.
Experimental Measurements of Two-dimensional Planar Propagating Edge Flames
NASA Technical Reports Server (NTRS)
Villa-Gonzalez, Marcos; Marchese, Anthony J.; Easton, John W.; Miller, Fletcher J.
2007-01-01
The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, free-layer flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.
Coupled nonequilibrium flow, energy and radiation transport for hypersonic planetary entry
NASA Astrophysics Data System (ADS)
Frederick, Donald Jerome
An ever increasing demand for energy coupled with a need to mitigate climate change necessitates technology (and lifestyle) changes globally. An aspect of the needed change is a decrease in the amount of anthropogenically generated CO2 emitted to the atmosphere. The decrease needed cannot be expected to be achieved through only one source of change or technology, but rather a portfolio of solutions are needed. One possible technology is Carbon Capture and Storage (CCS), which is likely to play some role due to its combination of mature and promising emerging technologies, such as the burning of hydrogen in gas turbines created by pre-combustion CCS separation processes. Thus research on effective methods of burning turbulent hydrogen jet flames (mimicking gas turbine environments) are needed, both in terms of experimental investigation and model development. The challenge in burning (and modeling the burning of) hydrogen lies in its wide range of flammable conditions, its high diffusivity (often requiring a diluent such as nitrogen to produce a lifted turbulent jet flame), and its behavior under a wide range of pressures. In this work, numerical models are used to simulate the environment of a gas turbine combustion chamber. Concurrent experimental investigations are separately conducted using a vitiated coflow burner (which mimics the gas turbine environment) to guide the numerical work in this dissertation. A variety of models are used to simulate, and occasionally guide, the experiment. On the fundamental side, mixing and chemistry interactions motivated by a H2/N2 jet flame in a vitiated coflow are investigated using a 1-D numerical model for laminar flows and the Linear Eddy Model for turbulent flows. A radial profile of the jet in coflow can be modeled as fuel and oxidizer separated by an initial mixing width. The effects of species diffusion model, pressure, coflow composition, and turbulent mixing on the predicted autoignition delay times and mixture composition at ignition are considered. We find that in laminar simulations the differential diffusion model allows the mixture to autoignite sooner and at a fuel-richer mixture than the equal diffusion model. The effect of turbulence on autoignition is classified in two regimes, which are dependent on a reference laminar autoignition delay and turbulence time scale. For a turbulence timescale larger than the reference laminar autoignition time, turbulence has little influence on autoignition or the mixture at ignition. However, for a turbulence timescale smaller than the reference laminar timescale, the influence of turbulence on autoignition depends on the diffusion model. Differential diffusion simulations show an increase in autoignition delay time and a subsequent change in mixture composition at ignition with increasing turbulence. Equal diffusion simulations suggest the effect of increasing turbulence on autoignition delay time and the mixture fraction at ignition is minimal. More practically, the stabilizing mechanism of a lifted jet flame is thought to be controlled by either autoignition, flame propagation, or a combination of the two. Experimental data for a turbulent hydrogen diluted with nitrogen jet flame in a vitiated coflow at atmospheric pressure, demonstrates distinct stability regimes where the jet flame is either attached, lifted, lifted-unsteady, or blown out. A 1-D parabolic RANS model is used, where turbulence-chemistry interactions are modeled with the joint scalar-PDF approach, and mixing is modeled with the Linear Eddy Model. The model only accounts for autoignition as a flame stabilization mechanism. However, by comparing the local turbulent flame speed to the local turbulent mean velocity, maps of regions where the flame speed is greater than the flow speed are created, which allow an estimate of lift-off heights based on flame propagation. Model results for the attached, lifted, and lifted-unsteady regimes show that the correct trend is captured. Additionally, at lower coflow equivalence ratios flame propagation appears dominant, while at higher coflow equivalence ratios autoignition appears dominant.
Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G
2016-03-10
Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.
NASA Astrophysics Data System (ADS)
Gao, Jie; Zheng, Jianrong; Zhao, Yinghui
2017-08-01
With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.
Narrow groove welding gas diffuser assembly and welding torch
Rooney, Stephen J.
2001-01-01
A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.
Mechanism of Electro-Static Discharge (ESD) Sensitivity of Reactive Powders and Its Mitigation
2011-03-14
motivated by both safety requirements for handling flammable gas mixtures and convenience of using spark discharge as a controlled energy igniter for...On the other hand, experimental tests of ESD ignition sensitivity for non-aerosolized powders are among the most commonly used safety assessments...materials, including nanomaterials for a variety of applications. Current protocols used for ESD ignition sensitivity testing, e.g., described in
Experiments on Induction Times of Diesel-Fuels and its Surrogates
NASA Astrophysics Data System (ADS)
Eigenbrod, Christian; Reimert, Manfredo; Marks, Guenther; Rickmers, Peter; Klinkov, Konstantin; Moriue, Osamu
Aiming for as low polluting combustion control as possible in Diesel-engines or gas-turbines, pre-vaporized and pre-mixed combustion at low mean temperature levels marks the goal. Low-est emissions of nitric-oxides are achievable at combustion temperatures associated to mixture ratios close to the lean flammability limit. In order to prevent local mixture ratios to be below the flammability limit (resulting in flame extinction or generation of unburned hydrocarbons and carbon-monoxide) or to be richer than required (resulting in more nitric-oxide than possi-ble), well-stirred conditioning is required. The time needed for spray generation, vaporization and turbulent mixing is limited through the induction time to self-ignition in a hot high-pressure ambiance. Therefore, detailed knowledge about the autoignition of fuels is a pre-requisit. Experiments were performed at the Bremen drop tower to investigate the self-ignition behavior of single droplets of fossil-Diesel oil, rapeseed-oil, Gas-to-Liquid (GTL) synthetic Diesel-oil and the fossil Diesel surrogates n-heptane, n-tetradecane, 50 n-tetradecane/ 50 1-methylnaphthalene as well as on the GTL-surrogates n-tetradecane / bicyclohexyl and n-tetradecane / 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). The rules for selection of the above fuels and the experimental results are presented and dis-cussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Kyle; Truong, Thanh-Tam; Magwood, Leroy
In the process of decontaminating and decommissioning (D&D) older nuclear facilities, special precautions must be taken with removable or airborne contamination. One possible strategy utilizes foams and fixatives to affix these loose contaminants. Many foams and fixatives are already commercially available, either generically or sold specifically for D&D. However, due to a lack of revelant testing in a radioactive environment, additional verification is needed to confirm that these products not only affix contamination to their surfaces, but also will function in a D&D environment. Several significant safety factors, including flammability and worker safety, can be analyzed through the process ofmore » headspace analysis, a technique that analyzes the off gas formed before or during the curing process of the foam/fixative, usually using gas chromatography-mass spectrometry (GC-MS). This process focuses on the volatile components of a chemical, which move freely between the solid/liquid form within the sample and the gaseous form in the area above the sample (the headspace). Between possibly hot conditions in a D&D situation and heat created in a foaming reaction, the volatility of many chemicals can change, and thus different gasses can be released at different times throughout the reaction. This project focused on analysis of volatile chemicals involved in the process of using foams and fixatives to identify any potential hazardous or flammable compounds.« less
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that use flammable or combustible liquids. 1910.125 Section 1910.125 Labor Regulations Relating to... requirements for dipping and coating operations that use flammable or combustible liquids. If you use flammable...: And: •The flashpoint of the flammable or combustible liquid is 200 °F (93.3 °C) or above •The liquid...
Three mechanisms model of shale gas in real state transport through a single nanopore
NASA Astrophysics Data System (ADS)
Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai
2018-02-01
At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.
Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, X.R.; Wang, G.X.; Massarotto, P.
2007-12-15
The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less
16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954. The...
Code of Federal Regulations, 2013 CFR
2013-07-01
... that use flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). 1910.125... flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). If you use flammable liquids... provide: (i) Manual fire extinguishers that are suitable for flammable and combustible liquid fires and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that use flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). 1910.125... flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). If you use flammable liquids... provide: (i) Manual fire extinguishers that are suitable for flammable and combustible liquid fires and...
16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954. The...
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport
NASA Astrophysics Data System (ADS)
Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike
2017-04-01
Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.
2001-01-01
A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.
Inherently safe passive gas monitoring system
Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.
2016-09-06
Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.
16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000 ...
16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000 ...
Bark flammability as a fire-response trait for subalpine trees
Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher
2013-01-01
Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473
Core-shell fuel cell electrodes
Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir
2017-07-25
Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui
2018-02-08
The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2013-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2017-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity
NASA Technical Reports Server (NTRS)
Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi
2003-01-01
Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.
Förster, Hans; Günther, Werner
2009-05-30
In Europe, the transport of flammable gases and liquids in tanks has been impacted by new developments: for example, the introduction of the vapour-balancing technique on a broad scale and the steady increase in the application of electronic components with their own power sources; furthermore, new regulatory policies like the ATEX Directives are being enforced in the European Union. With this background in mind, the present investigation aims to provide a basis for future developments of the relevant explosion protection regulations in the safety codes for the transport of dangerous goods (RID/ADR). Specifically, the concentration of gas in the air was measured under various practical conditions while tank vehicles were being loaded with flammable gases or liquids. These spot-test data were supplemented by systematic investigations at a road tanker placed in our test field. With respect to non-electrical ignition sources, a closer investigation of the effect of hot surfaces was carried out. With regard to improving the current regulations, the results of our investigation show that it would be reasonable to implement a stronger differentiation of the characteristics of the dangerous goods (gaseous/liquid, flashpoint) on the one hand and of the techniques applied (loading with and without vapour-balancing system) on the other hand. Conclusions for the further development of the current international regulations are proposed.
Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water.
Johnson, David W; Cornwell, John B
2007-02-20
Current interest in the shipment of liquefied natural gas (LNG) has renewed the debate about the safety of shipping large volumes of flammable fuels. The size of a spreading pool following a release of LNG from an LNG tank ship has been the subject of numerous papers and studies dating back to the mid-1970s. Several papers have presented idealized views of how the LNG would be released and spread across a quiescent water surface. There is a considerable amount of publicly available material describing these idealized releases, but little discussion of how other flammable fuels would behave if released from similar sized ships. The purpose of this paper is to determine whether the models currently available from the United States Federal Energy Regulatory Commission (FERC) can be used to simulate the release, spreading, vaporization, and pool fire impacts for materials other than LNG, and if so, identify which material-specific parameters are required. The review of the basic equations and principles in FERC's LNG release, spreading, and burning models did not reveal a critical fault that would prevent their use in evaluating the consequences of other flammable fluid releases. With the correct physical data, the models can be used with the same level of confidence for materials such as LPG and gasoline as they are for LNG.
Effects of H{sub 2} enrichment on the propagation characteristics of CH{sub 4}-air triple flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briones, Alejandro M.; Aggarwal, Suresh K.; Katta, Viswanath R.
The effects of H{sub 2} enrichment on the propagation of laminar CH{sub 4}-air triple flames in axisymmetric coflowing jets are numerically investigated. A comprehensive, time-dependent computational model, which employs a detailed description of chemistry and transport, is used to simulate the transient ignition and flame propagation phenomena. Flames are ignited in a jet-mixing layer far downstream of the burner. Following ignition, a well-defined triple flame is formed that propagates upstream along the stoichiometric mixture fraction line with a nearly constant displacement velocity. As the flame approaches the burner, it transitions to a double flame, and subsequently to a burner-stabilized nonpremixedmore » flame. Predictions are validated using measurements of the displacement flame velocity. As the H{sub 2} concentration in the fuel blend is increased, the displacement flame velocity and local triple flame speed increase progressively due to the enhanced chemical reactivity, diffusivity, and preferential diffusion caused by H{sub 2} addition. In addition, the flammability limits associated with the triple flames are progressively extended with the increase in H{sub 2} concentration. The flame structure and flame dynamics are also markedly modified by H{sub 2} enrichment, which substantially increases the flame curvature and mixture fraction gradient, as well as the hydrodynamic and curvature-induced stretch near the triple point. For all the H{sub 2}-enriched methane-air flames investigated in this study, there is a negative correlation between flame speed and stretch, with the flame speed decreasing almost linearly with stretch, consistent with previous studies. The H{sub 2} addition also modifies the flame sensitivity to stretch, as it decreases the Markstein number (Ma), implying an increased tendency toward diffusive-thermal instability (i.e. Ma {yields} 0). These results are consistent with the previously reported experimental results for outwardly propagating spherical flames burning a mixture of natural gas and hydrogen. (author)« less
Density probability distribution functions of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2008-10-01
In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of
16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact...
Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101
DOE Office of Scientific and Technical Information (OSTI.GOV)
SD Rassat; CW Stewart; BE Wells
2000-01-26
Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate howmore » added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant stratification resulting from such additions. The effect of the mixer pump on stratified fluid layers below the crust, should they form, is also addressed. It is hypothesized that the crust may sink after the most gaseous portion near the base of the crust is dissolved and after the liquid layer below the crust is diluted sufficiently. Then we discuss the consequences of crust sinking in terms of gas release, the ability of the in-tank mixer pump to remobilize it, and the potential for recurrence of buoyant displacement gas release events.« less
Methods for Evaluating Flammability Characteristics of Shipboard Materials
1994-02-28
E 23 • smoke optical properties; and • (toxic) gas production rates. In general, the prediction of these full-scale burning characteristics requires ...Method. The ASTM Room/Corner Test Method can be used to calculate the heat release rate of a material based upon oxygen depletion calorimetry. As can be...Clearly, more validation is required for the theoretical calculations . All are consistent in the use of calorimeter and UFT-type property data, all show
16 CFR 1611.3 - Flammability-general requirement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...
16 CFR 1611.3 - Flammability-general requirement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...
16 CFR 1611.3 - Flammability-general requirement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...
16 CFR 1611.3 - Flammability-general requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...
16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact adhesives, also known as contact bonding cements, when distributed in containers intended or suitable for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D. P.; Bardon, M. F.; Clark, W.
This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: (1) Flammable liquids in safety cans or in other containers placed in tightly closed cabinets. The... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4431 Surface storage restrictions. (a) On the surface, no unburied flammable or combustible liquids or flammable gases shall be stored...
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Flammable liquids in safety cans or in other containers placed in tightly closed cabinets. The... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4431 Surface storage restrictions. (a) On the surface, no unburied flammable or combustible liquids or flammable gases shall be stored...
49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).
Code of Federal Regulations, 2012 CFR
2012-10-01
... Class 3 (flammable and combustible liquids). (a) General. Exceptions for hazardous materials shipments... flammable liquids (Class 3) and combustible liquids are excepted from labeling requirements, unless the... aircraft, the following combination packagings are authorized: (1) For flammable liquids in Packing Group I...
Bulk diffusion in a kinetically constrained lattice gas
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
Core-shell fuel cell electrodes
Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir
2017-12-26
Embodiments of the disclosure relate to membrane electrode assemblies. The membrane electrode assembly may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?
NASA Technical Reports Server (NTRS)
Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.
2016-01-01
NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
Lashgari, Mohsen; Ghanimati, Majid
2018-03-05
H 2 S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H 2 -source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H 2 S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS - concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2007-01-01
A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation
Code of Federal Regulations, 2011 CFR
2011-01-01
... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...
Code of Federal Regulations, 2010 CFR
2010-01-01
... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...
16 CFR § 1611.3 - Flammability-general requirement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability-general requirement. § 1611.3 Section § 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...
14 CFR 23.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...
14 CFR 25.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...
14 CFR 27.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...
14 CFR 27.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...
14 CFR 29.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...
14 CFR 29.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...
14 CFR 25.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...
14 CFR 29.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...
14 CFR 23.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...
14 CFR 23.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...
14 CFR 29.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...
14 CFR 25.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...
14 CFR 27.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...
14 CFR 25.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...
14 CFR 27.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...
14 CFR 27.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...
14 CFR 23.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...
16 CFR 1611.4 - Flammability test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability test. 1611.4 Section 1611.4... FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The... protect the igniter flame and specimen from air currents during tests, yet contain a suitable door or...
46 CFR 111.105-37 - Flammable anesthetics.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...
46 CFR 111.105-37 - Flammable anesthetics.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...
16 CFR 423.9 - Conflict with flammability standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conflict with flammability standards. 423.9... TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability standards. If there is a conflict between this regulation and any regulations issued under the Flammable Fabrics...
14 CFR 23.863 - Flammable fluid fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... protective devices. (4) Means available for controlling or extinguishing a fire, such as stopping flow of...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
46 CFR 111.105-37 - Flammable anesthetics.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...
46 CFR 111.105-37 - Flammable anesthetics.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...
46 CFR 111.105-37 - Flammable anesthetics.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable and flammable contents of self-pressurized containers. 1500.45 Section 1500.45 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND...
NASA Astrophysics Data System (ADS)
Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao
2018-06-01
Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.
Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.
2013-03-21
Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less
Carosio, F; Kochumalayil, J; Cuttica, F; Camino, G; Berglund, L
2015-03-18
The toxicity of the most efficient fire retardant additives is a major problem for polymeric materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to other clay nanocomposites and fiber composites. The corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/MTM interactions for char formation.
NASA Technical Reports Server (NTRS)
Jayarajan, A.; Johnson, G. A.; Korver, G. L.; Anderson, R. A.
1983-01-01
Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity.
CO2 Suppression of PMMA Flames In Low-Gravity
NASA Technical Reports Server (NTRS)
Ruff, G. A.; Hicks, M.; Mell, W.; Pettegrew, R.; Malcolm, A.
2003-01-01
Even though much has been learned about the effects of microgravity on material flammability, flame spread, and suppressant effectiveness, uncertainties remain regarding some of the practical aspects of fire protection in spacecraft. The experiments and simulations underway in this project are aimed directly at testing, understanding and improving NASA's existing policies and practices toward fire safety in spacecraft and extraterrestrial habitats. Specifically, the objectives of this research are: 1) Determine systematically the conditions that will ignite onboard flammable materials upon passage of an initial premixed gas, firebrand, or aerosol flame over these materials; 2) Test the effect of firebrands and configuration spacing; and 3) Determine the effectiveness of the flow of CO2 extinguisher or other extinguishing agents. Experimental and computational investigations are planned to achieve each of the three objectives above. Even though progress has been made in all of the areas, the majority of data has been collected for objective (3). Current results from these investigations are discussed.
On the hazard of hydrogen explosions at space shuttle launch pads
NASA Technical Reports Server (NTRS)
Russell, John M.
1988-01-01
This report was prepared in support of efforts to assess the hazard of accidental explosions of unburned hydrogen at space shuttle launch pads. It begins with presentation of fundamental detonation theory and a review of relevent experiments. A scenario for a catastrophic explosion at a KSC launch pad and a list of necessary conditions contributing to it is proposed with a view to identifying those conditions which, if blocked, would prevent a catastrophe. The balance of the report is devoted to juxtaposition of reassuring and disquieting facts, presentation of a set of recommendations that ignition of hydrogen-air mixtures by weak ignition sources in unconfined geometries may produce a detonation, provided the effective flame area in the initial fireball is rapidly increased by turbulent mixing. Another conclusion is that detonability limits can be different from and narrower than flammability limits only if one restricts the rate of work that can be done on a flammable gas by mechanical agencies acting on its boundaries.
NASA Astrophysics Data System (ADS)
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
Pulsed-field-gradient measurements of time-dependent gas diffusion
NASA Technical Reports Server (NTRS)
Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.
1998-01-01
Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.
Apparatus for diffusion separation
Nierenberg, William A.; Pontius, Rex B.
1976-08-10
1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldrup, P.; Olesen, T.; Yamaguchi, T.
1999-08-01
Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{submore » 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.« less
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...
49 CFR 172.546 - FLAMMABLE SOLID placard.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519, the...
49 CFR 172.546 - FLAMMABLE SOLID placard.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519, the...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...
46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...
46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...
46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...
46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...
46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...
Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors
NASA Astrophysics Data System (ADS)
Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik
2015-12-01
Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. Electronic supplementary information (ESI) available: BET surface area and pore distribution of palladium architectures without CPPyNPs; Hydrogen sensing ability of palladium architectures without CPPyNPs; HR-TEM image of Pd@CPPy_C16 after 100 cycle exposure of H2. See DOI: 10.1039/c5nr06193h
Interim Air Purity Guidelines for Dry Deck Shelter (DDS) Operations
1990-10-01
The acceptable limits for gaseous contaminants in submarine compressed air for use as diver’s breathing air are derived from the 8-hour Time Weighted...accompanying documentation. Cylinders must be declared as hazardous cargo (" Air , Compressed Non-Flammable Gas") prior to air transport. Analysis of cylinder...capi NAVAL MEDICAL RESEARCH INSTITUTE Bethesda, MD 20889-5055 NMRI 90-109 October 1990 AD-A231 432 INTERIM AIR PURITY GUIDELINES FOR DRY DECK
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 28.0 Allowed Normal 0.43 24.5 22.0 20.0 1078 Refrigerant gas, n.o.s. See MAWP definition in § 178.276..., flammable, n.o.s. See MAWP definition in § 178.276(a) Allowed Normal § 173.32(f) 1958 1,2-Dichloro-1,1,2,2... liquefied, n.o.s. See MAWP definition in 178.276(a) Allowed Normal See § 173.32(f) 1969 Isobutane 8.5...
Planar Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Extinction
NASA Technical Reports Server (NTRS)
Fendell, Francis; Gokoglu, Suleyman; Rungaldier, Harald; Schultz, Donald
1999-01-01
An effectively strain-rate-free diffusion flame constitutes the most vigorous laminar combustion of initially unmixed reactive gases. Such a diffusion flame is characterized by a relatively long residence time and by a relatively large characteristic length scale. If such a flame were also planar, providing high symmetry, it would be particularly suitable for experimental and theoretical investigations of key combustion phenomena, such as multicomponent diffusion, chemical kinetics, and soot inception, growth, and oxidation. Unfortunately, a planar strain-rate-free diffusion flame is highly disrupted in earth-gravity (e.g., in a counterflow-diffusion-flame apparatus) because of the very rapid onset (approx. 100 ms) of gravity-induced instability. Accordingly, a specially dedicated apparatus was designed, fabricated, and initially checked out for the examination of a planar strain-rate-free diffusion flame in microgravity. Such a diffusion flame may be formed within a hollowed-out squat container (initially configured as 25 cm x 25 cm x 9 cm), with isothermal, noncatalytic, impervious walls. At test initiation, a thin metallic sheet (approx. 1 mm in thickness) that separates the internal volume into two equal portions, each of dimensions 25 cm x 25 cm x 4.5 cm, is withdrawn, by uniform translation (approx. 50 cm/s) in its own plane, through a tightly fitting slit in one side wall. Thereupon, diluted fuel vapor (initially confined to one half-volume of the container) gains access to diluted oxygen (initially with the same pressure, density, and temperature as the fuel, but initially confined to the other half-volume). After a brief delay (approx. 10 ms), to permit limited but sufficient-for-flammability diffusional interpenetration of fuel vapor and oxidizer, burning is initiated by discharge of a line igniter, located along that side wall from which the trailing edge of the separator withdraws. The ignition spawns a triple-flame propagation across the 25 cm x 25 cm centerplane. When a diffusion flame is emplaced in the centerplane, any subsequent travel, and change in temperature, of that planar diffusion flame may be tracked, along with the effectively spatially uniform but temporally evolving pressure within the container. Eventually, nearly complete depletion of the stoichiometrically deficient reactant, along with heat loss to the container surfaces, effects extinction. These data afford an opportunity to check theoretical models of diffusion and chemical kinetics under conditions ranging from intense burning to flame out, or, alternatively, to evolve simple empirical representations of these phenomena. Thus, the project sought to utilize microgravity testing to elucidate commonly encountered phenomenology, arising in the commonly-encountered mode of combustion (whether related to heating, manufacturing, boiling, and propulsion, or to uncontrolled, free-burning fire in structures and wildland vegetation), of those commonly utilized fuels usually categorized as gaseous fuels (such as hydrogen, natural gas, and propane, which are gaseous under atmospheric conditions).
A new in-situ method to determine the apparent gas diffusion coefficient of soils
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...
49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...
49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...
49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...
46 CFR 105.10-15 - Flammable liquid.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...
46 CFR 30.10-22 - Flammable liquid-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...
46 CFR 105.10-15 - Flammable liquid.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...
46 CFR 30.10-22 - Flammable liquid-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...
46 CFR 30.10-22 - Flammable liquid-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...
46 CFR 30.10-22 - Flammable liquid-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...
46 CFR 105.10-15 - Flammable liquid.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...
46 CFR 105.10-15 - Flammable liquid.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2009-01-01
This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.
Gas chromatographic determination of 1,4-dioxane at low parts-per-million levels in glycols.
Pundlik, M D; Sitharaman, B; Kaur, I
2001-02-01
1,4-Dioxane is a flammable liquid and tends to form explosive peroxides. Its formation in glycols (low parts-per-million levels), which are used as dehumidifying agents in refineries, may take place by condensation. 1,4-Dioxane thus formed gets distilled over with benzene in the refinery process. Therefore, it is necessary to identify and determine the levels of 1,4-dioxane in glycols as well as benzene. Gas chromatography (GC) is probably the best technique for this purpose. GC analysis may be carried out using a flame ionization detector. Results show that 1,4-dioxane can be comfortably determined down to 2 ppm in glycols and benzene.
2001-01-24
The potential for investigating combustion at the limits of flammability, and the implications for spacecraft fire safety, led to the Structures Of Flame Balls At Low Lewis-number (SOFBALL) experiment flown twice aboard the Space Shuttle in 1997. The success there led to reflight on STS-107 Research 1 mission plarned for 2002. All the combustion in a flame ball takes place in a razor-thin reaction zone that depends on diffusion to keep the ball alive. Such a fragile balance is impossible on Earth. The principal investigator is Dr. Paul Ronney of the University of Southern California, Los Angeles. Glenn Research in Cleveland, OH, manages the project.
NASA Astrophysics Data System (ADS)
Vilain, J.
Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11 m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2 = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.
2013-01-01
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169
14 CFR 125.153 - Flammable fluids.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable...
14 CFR 125.153 - Flammable fluids.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable...
An Approach to the Flammability Testing of Aerospace Materials
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2012-01-01
Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments
Code of Federal Regulations, 2014 CFR
2014-10-01
... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2014-10-01 2014-10-01 false Class 4 (flammable solid) materials, Class 5...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2013-10-01 2013-10-01 false Class 4 (flammable solid) materials, Class 5...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2012-10-01 2012-10-01 false Class 4 (flammable solid) materials, Class 5...
Selected Parametric Effects on Materials Flammability Limits
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.
2011-01-01
NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.
Genetic component of flammability variation in a Mediterranean shrub.
Moreira, B; Castellanos, M C; Pausas, J G
2014-03-01
Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.
Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect
Wang, Junjian; Kang, Qinjun; Chen, Li; ...
2016-11-21
Some recent studies have shown that adsorbed gas and its surface diffusion have profound influence on micro-gaseous flow through organic pores in shale gas reservoirs. Here, a multiple-relaxation-time (MRT) LB model is adopted to estimate the apparent permeability of organic shale and a new boundary condition, which combines Langmuir adsorption theory with Maxwellian diffusive reflection boundary condition, is proposed to capture gas slip and surface diffusion of adsorbed gas. The simulation results match well with previous studies carried out using Molecular Dynamics (MD) and show that Maxwell slip boundary condition fails to characterize gas transport in the near wall regionmore » under the influence of the adsorbed gas. The total molar flux can be either enhanced or reduced depending on variations in adsorbed gas coverage and surface diffusion velocity. The effects of pore width, pressure as well as Langmuir properties on apparent permeability of methane transport in organic pores are further studied. It is found that the surface transport plays a significant role in determining the apparent permeability, and the variation of apparent permeability with pore size and pressure is affected by the adsorption and surface diffusion.« less
Operating room fire prevention: creating an electrosurgical unit fire safety device.
Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J
2014-08-01
To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P < 0.0001). The exact 95% confidence interval for absolute risk reduction of fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
Effects of particulate radiation on premixed gas flames
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; Ronney, Paul D.
1993-01-01
Observations of the effect of the addition of fine solid particles to weakly combustible methane-air mixtures are reported. Burning rates, pressure rise, and thermal characteristics are found to exhibit nonmonotonic trends with increasing particle loading. These results are interpreted in terms of the effects of augmentation of radiant loss at small particle loadings and re-absorption of emitted radiation at larger loadings. It is suggested that in sufficiently large systems, flammability limits might not exist because of this reabsorption effect.
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases and Chemical Under Pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 28.0 Allowed Normal 0.43 24.5 22.0 20.0 1078 Refrigerant gas, n.o.s. See MAWP definition in § 178.276..., flammable, n.o.s. See MAWP definition in § 178.276(a) Allowed Normal § 173.32(f) 1958 1,2-Dichloro-1,1,2,2... liquefied, n.o.s. See MAWP definition in 178.276(a) Allowed Normal See § 173.32(f) 1969 Isobutane 8.5...
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases and Chemical Under Pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 28.0 Allowed Normal 0.43 24.5 22.0 20.0 1078 Refrigerant gas, n.o.s. See MAWP definition in § 178.276..., flammable, n.o.s. See MAWP definition in § 178.276(a) Allowed Normal § 173.32(f) 1958 1,2-Dichloro-1,1,2,2... liquefied, n.o.s. See MAWP definition in 178.276(a) Allowed Normal See § 173.32(f) 1969 Isobutane 8.5...
Determination of Waste Groupings for Safety Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARKER, S.A.
2000-04-27
Two workshops were held in May and July 1999 to review data analysis methodologies associated with the analysis of flammable gas behavior. The workshop participants decided that missing data could he estimated by using a distribution of values that encompassed tanks with wastes that behaved in a similar fashion. It was also determined that because of the limited amount of tank data pertaining to flammable gas generation and retention, it was not justified to divide the tanks into many small waste groupings. The purpose for grouping tanks is so that limited gas retention and release data, which may be availablemore » for some tanks within a group, can be applied to other tanks containing the same waste form. This is necessary when estimating waste properties for tanks with missing or incomplete information. Following the workshop, a preliminary tank grouping was prepared based on content of solids, liquids, sludge, saltcake, or salt slurry The saltcake and salt slurry were then grouped together and referred to as saltcake/salt slurry. Initial tank classifications were based on waste forms from the Rest Basis Inventory, the Hanford Defined Waste (HDW) (''Agnew'') Model, or the Waste Tank Summary (''Hanlon'') Report The results of this grouping arc presented in ''Flamable Gas Safety Analysis Data Review'', SNL-000 198 (Barker, et al., 1999). At the time of the release of SNL-000198, tank waste inventories were not consistent between published sources, such as the ''Best Basis Inventory'' and the ''Waste Tank Summary Report for Month Ending August 31, 1999'' (Hanlon l999). This calculation note documents the process and basis used when revising the waste groupings following the release of SNL-000198. The waste layer volume information is compared between the various databases, including information obtained from process measurements. Differences are then resolved based on tank characterization information and waste behavior.« less
Fuel cell membrane humidification
Wilson, Mahlon S.
1999-01-01
A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.
METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca
2016-05-10
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks
NASA Astrophysics Data System (ADS)
Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin
2017-10-01
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water
NASA Astrophysics Data System (ADS)
Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf
2018-06-01
Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.
A study on flammability limits of fuel mixtures.
Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira
2008-07-15
Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula. As for the upper limits, however, some are close to the calculated values but some are not. It has been found that the deviations of the observed values of upper flammability limits from the calculated ones are mostly to lower concentrations. Modification of Le Chatelier's formula was made to better fit to the observed values of upper flammability limits. This procedure reduced the average difference between the observed and calculated values of upper flammability limits to one-third of the initial value.
Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
NASA Astrophysics Data System (ADS)
Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi
2016-09-01
We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.
Direct monitoring of wind-induced pressure-pumping on gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.
Design and Fabrication of a Hele-Shaw Apparatus for Observing Instabilities of Diffusion Flames
NASA Technical Reports Server (NTRS)
Wichman, I. S.; Oravecz-Simpkins, L.; Olson, S.
2001-01-01
Examinations of flame fronts spreading over solid fuels in an opposed flow of oxidizer have shown that the flame front fragments into smaller (cellular) flames. These 'flamelets' will oscillate, recombine, or extinguish, indicating that they are in the near extinction limit regime (i.e., to one side of the quenching branch of the flammability map). Onset of unstable cellular flamelet formation for flame spread over thin fuels occurs when a heat-sink substrate is placed a small distance from the underside of the fuel. This heat-sink substrate (or backing) displaces the quenching branch of the flammability map in a direction that causes the instabilities to occur at higher air velocities. Similar near-limit behavior has been observed in other works using different fuels, thus suggesting that these dynamic mechanisms are fuel-independent and therefore fundamental attributes of flames in this near-limit flame spread regime. The objective of this project is to determine the contributions of the hydrodynamic and thermodiffusive mechanisms to the observed formation of flame instabilities. From this, a model of diffusion flame instabilities shall be generated. Previously, experiments were conducted in NASA drop towers, thereby limiting observation time to O(1-5 sec). The NASA tests exhibited flamelet survival for the entire drop time, suggesting that flamelets (i.e., small cellular flames) might exist, if permitted, for longer time periods. By necessity, experiments were limited to thermally thin cellulose fuels (approximately 0.001 in thick): instabilities could form by virtue of faster spread rates over thin fuels. Unstable behavior was unlikely in the short drop time for thicker fuels. In the International Space Station (ISS), microgravity time is unlimited, so both thin and thick fuels can be tested.
NASA Astrophysics Data System (ADS)
Tanaka, Shiro; Bradfield, Warwick W.; Legrand, Cloe; Malan, Arnaud G.
2016-10-01
The performance of a perforated metal-sheet gas-diffusion layer incorporated with a microporous layer in a fuel cell is evaluated with fine-pitch channel/land designs for the gas flow field on a bipolar plate. The combination of metal-sheet gas-diffusion layer and microporous layer exhibits significant performance without a large flooding effect. When comparing the performance with wider and narrower land cases, the land width affects the performance. To investigate the roles of the microporous layer, land width, etc. in the fuel cell with the metal-sheet gas-diffusion layer, a single-phase, isothermal, and multi-physics simulation is developed and coupled with electrical, mechanical, electrochemical and fluid dynamics factors. The simulated current-voltage performance is then compared to the experimentally measure performance. These are shown to be in good agreement apart for very high current-density cases i.e. greater than 1.5 A cm-2. This is due the flooding effect predominantly appearing. It is further demonstrated that the microporous layer serves as the key component in facilitating gas diffusion and for preventing flooding. Furthermore, the pressure is found to have a strong impact on the performance, affecting the gas diffusion and electric resistance around the microporous layer.
NASA Technical Reports Server (NTRS)
Joulain, P.; Cordeiro, P.; Torero, J. L.
2001-01-01
Motivated by fire safety concerns and the advent of long-term micro-gravity facilities, a cooperative program has been developed to study the mechanisms and material properties that control flow assisted (co-current) flame spread. This program has used as a common fire scenario a reacting steady-state boundary layer. Preliminary studies explored the aerodynamics of a reacting boundary layer by simulating a condensed fuel by means of a gas burner. Stability curves for ethane air flames were obtained and different burning regimes were identified. An important feature of this study was the independent identification of the different mechanisms leading to the instability of the flow. It was observed that fuel injection velocity and thermal expansion independently contributed to the separation of the flow at the leading edge of the burner. The occurrence of separation resulted in complex three-dimensional flow patterns that have a dominant effect on critical fire safety parameters such as the stand-off distance and flame length. This work was extended to a solid fuel (PMMA) leading to a Sounding Rocket experiment (Mini-Texus-6). The solid phase showed similar flow patterns, mostly present at low flow velocities (<100 mm/s) but the results clearly demonstrated that the thermal balance at the pyrolyzing fuel surface is the dominant mechanism that controls both stand-off distance and flame length. This thermal balance could be described in a global manner by means of a total mass transfer or "B" number. This "B" number incorporates surface re-radiation, radiative feedback and in-depth heat conduction as first prescribed by Emmons. The mass transfer number becomes the single parameter that determines the evolution of these fire safety variables (flame length, stand-off distance) and therefore can be used as a ranking criterion to assess the flammability of materials. The particular configuration is representative of the NASA upward flame spread test (Test 1) therefore this approach can be used in the interpretation of the results obtained from this test. Nevertheless, complete validation of this approach has not been fully achieved due, mainly because all the measurements necessary to compare with the theoretical predictions have not been obtained. Following these studies two different directions have been taken. The first attempts to elucidate the details of the gas phase combustion reaction and the associated flow field by means of quantitative and qualitative measurements. The second approach, a more practical one, is to apply this methodology to the assessment of material flammability. The former is currently being conducted with a gas burner because it allows for easier control and longer experimentation time. The results obtained so far will be presented in more detail. The latter is a new program therefore only a brief summary of the objectives will be presented.