Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.
2016-01-01
The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.
On the generation of side-edge flap noise. [part span trailing edge flaps
NASA Technical Reports Server (NTRS)
Howe, M. S.
1981-01-01
A theory is proposed for estimating the noise generated at the side edges of part span trailing edge flaps in terms of pressure fluctuations measured just in-board of the side edge of the upper surface of the flap. Asymptotic formulae are developed in the opposite extremes of Lorentz contracted acoustic wavelength large/small compared with the chord of the flap. Interpolation between these limiting results enables the field shape and its dependence on subsonic forward flight speed to be predicted over the whole frequency range. It is shown that the mean width of the side edge gap between the flap and the undeflected portion of the airfoil has a significant influence on the intensity of the radiated sound. It is estimated that the noise generated at a single side edge of a full scale part span flap can exceed that produced along the whole of the trailing edge of the flap by 3 dB or more.
Reduction of Flap Side Edge Noise - the Blowing Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, THomas F.
2005-01-01
A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.
PIV Measurements on a Blowing Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.
2004-01-01
PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.
Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)
2014-01-01
A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.
Computational Study of Porous Treatment for Altering Flap Side-Edge Flowfield
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Khorrami, Mehdi R.
2003-01-01
Reynolds-averaged Navier-Stokes calculations are used to investigate porous side-edge treatment as a passive means for flap noise reduction. Steady-state simulations are used to infer effects of the treatment on acoustically relevant features of the mean flow near the flap side edge. Application of the porous treatment over a miniscule fraction of the wetted flap area (scaling with the flap thickness) results in significantly weaker side-edge vortex structures via modification of the vortex initiation and roll-up processes. At high flap deflections, the region of axial flow reversal associated with the breakdown of the side-edge vortex is also eliminated, indicating an absence of vortex bursting in the presence of the treatment. Potential ramifications of the mean-flow modifications for flap-noise reduction are examined in the light of lessons learned from recent studies on flap noise. Computations confirm that any noise reduction benefit via the porous treatment would be achieved without compromising the aerodynamic effectiveness of the flap. Results of the parameter study contribute additional insight into the measured data from the 7x10 wind tunnel at NASA Ames and provide preliminary guidance for specifying optimal treatment characteristics in terms of treatment location, spatial extent, and flow resistance of the porous skin.
Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2005-01-01
A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.
Aeroacoustic Measurements of a Wing-Flap Configuration
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.; Brooks, Thomas F.; Humphreys, William M.; Hunter, William H.; Gerhold, Carl H.
1997-01-01
Aeroacoustic measurements are being conducted to investigate the mechanisms of sound generation in high-lift wing configurations, and initial results are presented. The model is approximately 6 percent of a full scale configuration, and consists of a main element NACA 63(sub 2) - 215 wing section and a 30 percent chord half-span flap. Flow speeds up to Mach 0.17 are tested at Reynolds number up to approximately 1.7 million. Results are presented for a main element at a 16 degree angle of attack, and flap deflection angles of 29 and 39 degrees. The measurement systems developed for this test include two directional arrays used to localize and characterize the noise sources, and an array of unsteady surface pressure transducers used to characterize wave number spectra and correlate with acoustic measurements. Sound source localization maps show that locally dominant noise sources exist on the flap-side edge. The spectral distribution of the noise sources along the flap-side edge shows a decrease in frequency of the locally dominant noise source with increasing distance downstream of the flap leading edge. Spectra are presented which show general spectral characteristics of Strouhal dependent flow-surface interaction noise. However, the appearance of multiple broadband tonal features at high frequency indicates the presence of aeroacoustic phenomenon following different scaling characteristics. The scaling of the high frequency aeroacoustic phenomenon is found to be different for the two flap deflection angles tested. Unsteady surface pressure measurements in the vicinity of the flap edge show high coherence levels between adjacent sensors on the flap-side edge and on the flap edge upper surface in a region which corresponds closely to where the flap-side edge vortex begins to spill over to the flap upper surface. The frequency ranges where these high levels of coherence occur on the flap surface are consistent with the frequency ranges in which dominant features appear in far field acoustic spectra. The consistency of strongly correlated unsteady surface pressures and far field pressure fluctuations suggests the importance of regions on the flap edge in generating sound.
Detached Eddy Simulation of Flap Side-Edge Flow
NASA Technical Reports Server (NTRS)
Balakrishnan, Shankar K.; Shariff, Karim R.
2016-01-01
Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.
Brackenbush, L.W.; Hoenes, G.R.
A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.
Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation
NASA Technical Reports Server (NTRS)
Fink, M. R.; Bailey, D. A.
1980-01-01
Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.
Brackenbush, Larry W.; Hoenes, Glenn R.
1981-01-01
According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.
On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics
NASA Technical Reports Server (NTRS)
Casalino, D.; Hazir, A.; Fares, E.; Duda, B.; Khorrami, M. R.
2015-01-01
The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed.
Passive Porous Treatment for Reducing Flap Side-Edge Noise
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Khorrami, Mehdi R.
2008-01-01
A passive porous treatment has been proposed as a means of suppressing noise generated by the airflow around the side edges of partial-span flaps on airplane wings when the flaps are extended in a high-lift configuration. The treatment proposed here does not incur any aerodynamic penalties and could easily be retrofit to existing airplanes. The treatment could also be applied to reduce noise generated by turbomachinery, including wind turbines. Innovative aspects of the proposed treatment include a minimum treatment area and physics-based procedure for treatment design. The efficacy of the treatment was confirmed during wind-tunnel experiments at NASA Ames, wherein the porous treatment was applied to a minute surface area in the vicinity of a flap edge on a 26-percent model of Boeing 777-200 wing.
Lifting-surface theory for calculating the loading induced on a wing by a flap
NASA Technical Reports Server (NTRS)
Johnson, W. A.
1972-01-01
A method is described for using lifting-surface theory to obtain the pressure distribution on a wing with a trailing-edge flap or control surface. The loading has a logarithmic singularity at the flap edges, which may be determined directly by the method of matched asymptotic expansions. Expressions are given for the singular flap loading for various flap hinge line and side edge geometries, both for steady and unsteady flap deflection. The regular part of the flap loading must be obtained by inverting the lifting-surface-theory integral equation relating the pressure and the downwash on the wing: procedures are described to accomplish this for a general wing and flap geometry. The method is applied to several example wings, and the results are compared with experimental data. Theory and test correlate well.
Noise Radiation from a Continuous Mold-Line Link Flap Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Humphreys, William M., Jr.
2011-01-01
The results of an experimental study of the noise from a Continuous Mold-Line Link (CML) flap are presented. Acoustic and unsteady surface pressure measurements were performed on a main element wing section with a half-span CML flap in NASA Langley s Quiet Flow Facility. The acoustic data were acquired with a medium aperture directional array (MADA) of microphones. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method is applied to determine the spatial distribution and strength of the noise sources over the surface of the test model. A Coherent Output Power (COP) method which relates the output from unsteady surface pressure sensors to the output of the MADA is also used to obtain more detailed characteristics of the noise source distribution in the trailing edge region of the CML. These results are compared to those obtained for a blunt flap to quantify the level of noise benefit that is achieved with the CML flap. The results indicate that the noise from the CML region of the flap is 5 to 17 dB lower (depending on flap deflection and Mach number) than the noise from the side edge region of the blunt flap. Lower noise levels are obtained for all frequencies. Spectral analysis of the noise from the cove region of the CML and blunt flap models also reveal a spectral peak in the high frequency range that is related to noise scattering at the trailing edge of the main element. The peaks in the CML and blunt flap cove noise spectra are close in level and often exceed blunt side edge noise. Applying a strip of serrated tape to the trailing edge of the CML flap model main airfoil reduced the peak but increased other noise somewhat. Directivity measurements show that the CML flap can be more directional than the blunt flap.
Noise Radiation from a Continuous Mold-Line Link Flap Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Humphreys, William M.
2008-01-01
The results of an experimental study of the noise from a Continuous Mold-Line Link (CML) flap are presented. Acoustic and unsteady surface pressure measurements were performed on a main element wing section with a half-span CML flap in NASA Langley s Quiet Flow Facility. The acoustic data were acquired with a medium aperture directional array (MADA) of microphones. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method is applied to determine the spatial distribution and strength of the noise sources over the surface of the test model. A Coherent Output Power (COP) method which relates the output from unsteady surface pressure sensors to the output of the MADA is also used to obtain more detailed characteristics of the noise source distribution in the trailing edge region of the CML. These results are compared to those obtained for a blunt flap to quantify the level of noise benefit that is achieved with the CML flap. The results indicate that the noise from the CML region of the flap is 5 to 17 dB lower (depending on flap deflection and Mach number) than the noise from the side edge region of the blunt flap. Lower noise levels are obtained for all frequencies. Spectral analysis of the noise from the cove region of the CML and blunt flap models also reveal a spectral peak in the high frequency range that is related to noise scattering at the trailing edge of the main element. The peaks in the CML and blunt flap cove noise spectra are close in level and often exceed blunt side edge noise. Applying a strip of serrated tape to the trailing edge of the CML flap model main airfoil, reduced the peak but increased other noise somewhat. Directivity measurements show that the CML flap can be more directional than the blunt flap.
Structurally efficient inflatable protective device
Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.
1997-01-01
An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.
Structurally efficient inflatable protective device
Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.
1997-03-04
An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.
Structurally efficient inflatable protective device
Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.
1996-01-09
An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.
Structurally efficient inflatable protective device
Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.
1996-01-01
An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being Joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.
Structurally efficient inflatable protective device
Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.
1996-01-01
An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.
Flap Side Edge Liners for Airframe Noise Reduction
NASA Technical Reports Server (NTRS)
Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)
2014-01-01
One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.
On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Khorrami, Mehdi R.
2017-01-01
A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.
Flap Edge Aeroacoustic Measurements and Predictions
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M., Jr.
2000-01-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling methods developed herein.
Flap Edge Aeroacoustic Measurements and Predictions
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M., Jr.
2000-01-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling method developed herein.
NASA Astrophysics Data System (ADS)
Crighton, David G.
1991-08-01
Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.
Investigation of the Relationship of Vortex-Generated Sound and Airframe Noise
NASA Technical Reports Server (NTRS)
Smith, Sonya T.
1998-01-01
Airframe noise contributes the most to the environmental contamination from airports during take-off and landing. Two sources of noise are from the vortex-system associated with the slat and flap of multi-element wing designs. The flap-side edge vortex experiences bursting, known as vortex breakdown, at a critical deflection angle and experimental results show that this event may be one source of increased noise levels. Understanding of the edge roll-up phenomenon has increased but further focused studies on the role of the growth and bursting of the vortex structure are needed. The goal of the research is to plan a research program that will contribute to the understanding of the fluid physics of vortex breakdown and its relationship to noise production. The success of this program will lead to a priori predictions of when vortex breakdown will occur on the flap side-edge and accurate calculations of its effect on the noise level experienced by an observer near the aircraft during take-off and landing.
Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.
2015-01-01
The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.
Flap-edge aeroacoustic measurements and predictions
NASA Astrophysics Data System (ADS)
Brooks, Thomas F.; Humphreys, William M.
2003-03-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a small aperture directional array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by computational fluid dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that the prediction models capture much of the physics. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. The complexity of the directivity results demonstrate the strong role of edge source geometry and frequency in the noise radiation. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary-layer scaling methods developed herein.
NASA Technical Reports Server (NTRS)
Pao, J. L.; Mehrotra, S. C.; Lan, C. E.
1982-01-01
A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.
Reynolds-Averaged Navier-Stokes Simulations of Two Partial-Span Flap Wing Experiments
NASA Technical Reports Server (NTRS)
Takalluk, M. A.; Laflin, Kelly R.
1998-01-01
Structured Reynolds Averaged Navier-Stokes simulations of two partial-span flap wing experiments were performed. The high-lift aerodynamic and aeroacoustic wind-tunnel experiments were conducted at both the NASA Ames 7-by 10-Foot Wind Tunnel and at the NASA Langley Quiet Flow Facility. The purpose of these tests was to accurately document the acoustic and aerodynamic characteristics associated with the principle airframe noise sources, including flap side-edge noise. Specific measurements were taken that can be used to validate analytic and computational models of the noise sources and associated aerodynamic for configurations and conditions approximating flight for transport aircraft. The numerical results are used to both calibrate a widely used CFD code, CFL3D, and to obtain details of flap side-edge flow features not discernible from experimental observations. Both experimental set-ups were numerically modeled by using multiple block structured grids. Various turbulence models, grid block-interface interaction methods and grid topologies were implemented. Numerical results of both simulations are in excellent agreement with experimental measurements and flow visualization observations. The flow field in the flap-edge region was adequately resolved to discern some crucial information about the flow physics and to substantiate the merger of the two vortical structures. As a result of these investigations, airframe noise modelers have proposed various simplified models which use the results obtained from the steady-state computations as input.
A test of a vortex method for the computation of flap side edge noise
NASA Technical Reports Server (NTRS)
Martin, James E.
1995-01-01
Upon approach to landing, a major source location of airframe noise occurs at the side edges of the part span, trailing edge flaps. In the vicinity of these flaps, a complex arrangement of spanwise flow with primary and secondary tip vortices may form. Each of these vortices is observed to become fully three-dimensional. In the present study, a numerical model is developed to investigate the noise radiated from the side edge of a flap. The inherent three-dimensionality of this flow forces us to carefully consider a numerical scheme which will be both accurate in its prediction of the flow acoustics and also computationally efficient. Vortex methods have offered a fast and efficient means of simulating many two and three-dimensional, vortex dominated flows. In vortex methods, the time development of the flow is tracked by following exclusively the vorticity containing regions. Through the Biot-Savart law, knowledge of the vorticity field enables one to obtain flow quantities at any desired location during the flow evolution. In the present study, a numerical procedure has been developed which incorporates the Lagrangian approach of vortex methods into a calculation for the noise radiated by a flow-surface interaction. In particular, the noise generated by a vortex in the presence of a flat half plane is considered. This problem serves as a basic model of flap edge flow. It also permits the direct comparison between our computed results and previous acoustic analyses performed for this problem. In our numerical simulations, the mean flow is represented by the complex potential W(z) = Aiz(exp l/2), which is obtained through conformal mapping techniques. The magnitude of the mean flow is controlled by the parameter A. This mean flow has been used in the acoustic analysis by Hardin and is considered a reasonable model of the flow field in the vicinity of the edge and away from the leading and trailing edges of the flap. To represent the primary vortex which occurs near the flap, a point vortex is introduced just below the flat half plane. Using a technique from panel methods, boundary conditions on the flap surface are satisfied by the introduction of a row of stationary point vortices along the extent of the flap. At each time step in the calculation, the strength of these vortices is chosen to eliminate the normal velocity at intermediary collocation points. The time development of the overall flow field is then tracked using standard techniques from vortex methods. Vortex trajectories obtained through this computation are in good agreement with those predicted by the analytical solution given by Hardin, thus verifying the viability of this procedure for more complex flow arrangements. For the flow acoustics, the Ffowcs Williams-Hawkings equation is numerically integrated. This equation supplies the far field acoustic pressure based upon pressures occurring along the flap surface. With our vortex method solution, surface pressures may be obtained with exceptional resolution. The Ffowcs Williams-Hawkings equation is integrated using a spatially fourth order accurate Simpson's rule. Rational function interpolation is used to obtain the surface pressures at the appropriate retarded times. Comparisons between our numerical results for the acoustic pressure and those predicted by the Hardin analysis have been made. Preliminary results indicate the need for an improved integration technique. In the future, the numerical procedure developed in this study will be applied to the case of a rectangular flap of finite thickness and ultimately modified for application to the fully three-dimensional problem.
Factors Influencing the Accuracy of Aerodynamic Hinge-Moment Prediction
1978-08-01
condition on the aft lifting surfaces and flaps. A new modeling technique for trailing-edge wake analysis using a potential- flow program based on the...control surface as depicLed in figure 21.. Three different models are used to simulate the flow on the wing, the flap, and the gaps. In the first two panel...ized sense, similar to that implemented in the FLEXSTAB program. The modeling of the wake on the side-edge gaps differs in the first two panel models
NASA Astrophysics Data System (ADS)
Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.
2017-03-01
A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.
Flap Edge Noise Reduction Fins
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)
2015-01-01
A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.
NASA Technical Reports Server (NTRS)
Martin, Andrew; Hunter, Harlo A.
1949-01-01
An investigation was conducted to determine the longitudinal- and lateral-stability characteristics of a 0.5-scale moue1 of the Fairchild Lark missile, The model was tested with 0 deg and with 22.5 deg of roll. Three horizontal wings having NACA 16-009, 16-209, and 64A-209 sections were tested. Pressures were measured on both pointed and blunt noses. The wind-tunnel-test data indicate that rolling the missile 22.5 deg. had no serious effect on the static longitudinal stability. The desired maneuvering acceleration could not be attained with any of the horizontal wings tested, even with the horizontal wing flaps deflected 50 deg. The flaps on the 64A-209 wing (with small trailing-edge angles and flat sides) were effective at all flap deflections, while the flaps on the 16-series wings (with large trailing-edge angles) lost effectiveness at small flap deflections. The data showed that rolling moment existed when the vertical wing flaps were deflected with the model at other than zero angle of attack. A similar rolling moment probably would be found . with the horizontal wing flaps deflected and the model yawed.
Vortical flow management for improved configuration aerodynamics: Recent experiences
NASA Technical Reports Server (NTRS)
Rao, D. M.
1983-01-01
Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.
Jiang, Maohua; Yang, Xiaoliang; Wei, Bangmin; Li, Yinghao
2012-03-01
To investigate the method and effectiveness of repairing sacrococcygeal pressure sores with modified upper gluteal rhomboid fasciocutaneous flap. Between January 2004 and March 2011, 43 patients with sacrococcygeal pressure sores were treated. There were 25 males and 18 females with an average age of 63 years (range, 38-95 years). The disease duration was 3 months to 2 years and 6 months (mean, 8.5 months). The size of pressure sores ranged from 6 cm x 5 cm to 18 cm x 13 cm. According to the extent and lesion degree of pressure scores, 23 pressure sores were rated as degree III and 20 pressure sores as degree IV. The modified upper gluteal rhomboid flap was designed, one-side upper gluteal fasciocutaneous flaps were transplanted to repair sacrococcygeal pressure sores in 19 cases and two-side flaps in 24 cases. The size of one side flap ranged from 6.5 cm x 4.5 cm to 18.0 cm x 11.5 cm. Fluid under flap occurred in 1 case and edge necrosis of the flaps in 3 cases at 7 days after operation, which were cured after drainage and dressing change; the other flaps survived, and incisions healed by first intention. All patients were followed up 6 months to 3 years with an average of 11 months. Two patients relapsed at 5 months and 8 months, respectively; the other patients had no recurrence. The color of the flaps was normal, and the appearance and elasticity of the flaps were good. The modified upper gluteal rhomboid fasciocutaneous flap has the advantages of simple design and operation, less injury, and reliable effect in repairing sacrococcygeal pressure sores.
NASA Technical Reports Server (NTRS)
Maki, Ralph L.
1959-01-01
Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.
Rosti, Marco E; Kamps, Laura; Bruecker, Christoph; Omidyeganeh, Mohammad; Pinelli, Alfredo
2017-01-01
During the flight of birds, it is often possible to notice that some of the primaries and covert feathers on the upper side of the wing pop-up under critical flight conditions, such as the landing approach or when stalking their prey (see Fig. 1) . It is often conjectured that the feathers pop up plays an aerodynamic role by limiting the spread of flow separation . A combined experimental and numerical study was conducted to shed some light on the physical mechanism determining the feathers self actuation and their effective role in controlling the flow field in nominally stalled conditions. In particular, we have considered a NACA0020 aerofoil, equipped with a flexible flap at low chord Reynolds numbers. A parametric study has been conducted on the effects of the length, natural frequency, and position of the flap. A configuration with a single flap hinged on the suction side at 70 % of the chord size c (from the leading edge), with a length of [Formula: see text] matching the shedding frequency of vortices at stall condition has been found to be optimum in delivering maximum aerodynamic efficiency and lift gains. Flow evolution both during a ramp-up motion (incidence angle from [Formula: see text] to [Formula: see text] with a reduced frequency of [Formula: see text], [Formula: see text] being the free stream velocity magnitude), and at a static stalled condition ([Formula: see text]) were analysed with and without the flap. A significant increase of the mean lift after a ramp-up manoeuvre is observed in presence of the flap. Stall dynamics (i.e., lift overshoot and oscillations) are altered and the simulations reveal a periodic re-generation cycle composed of a leading edge vortex that lift the flap during his passage, and an ejection generated by the relaxing of the flap in its equilibrium position. The flap movement in turns avoid the interaction between leading and trailing edge vortices when lift up and push the trailing edge vortex downstream when relaxing back. This cyclic behaviour is clearly shown by the periodic variation of the lift about the average value, and also from the periodic motion of the flap. A comparison with the experiments shows a similar but somewhat higher non-dimensional frequency of the flap oscillation. By assuming that the cycle frequency scales inversely with the boundary layer thickness, one can explain the higher frequencies observed in the experiments which were run at a Reynolds number about one order of magnitude higher than in the simulations. In addition, in experiments the periodic re-generation cycle decays after 3-4 periods ultimately leading to the full stall of the aerofoil. In contrast, the 2D simulations show that the cycle can become self-sustained without any decay when the flap parameters are accurately tuned.
A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab
2015-01-01
The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.
Vortex leading edge flap assembly for supersonic airplanes
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C. (Inventor)
1997-01-01
A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.
Samsudin, Amir; Eames, Ian; Brocchini, Steve; Khaw, Peng Tee
2016-07-01
Intraocular pressure and aqueous humor flow direction determined by the scleral flap immediately after trabeculectomy are critical determinants of the surgical outcome. We used a large-scale model to objectively measure the influence of flap thickness and shape, and suture number and position on pressure difference across the flap and flow of fluid underneath it. The model exploits the principle of dynamic and geometric similarity, so while dimensions were up to 30× greater than actual, the flow had similar properties. Scleral flaps were represented by transparent 0.8- and 1.6-mm-thick silicone sheets on an acrylic plate. Dyed 98% glycerin, representing the aqueous humor was pumped between the sheet and plate, and the equilibrium pressure measured with a pressure transducer. Image analysis based on the principle of dye dilution was performed using MATLAB software. The pressure drop across the flap was larger with thinner flaps, due to reduced rigidity and resistance. Doubling the surface area of flaps and reducing the number of sutures from 5 to 3 or 2 also resulted in larger pressure drops. Flow direction was affected mainly by suture number and position, it was less toward the sutures and more toward the nearest free edge of the flap. Posterior flow of aqueous humor was promoted by placing sutures along the sides while leaving the posterior edge free. We demonstrate a new physical model which shows how changes in scleral flap thickness and shape, and suture number and position affect pressure and flow in a trabeculectomy.
Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Covell, Peter F.; Wood, Richard M.; Miller, David S.
1987-01-01
An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.
NASA Astrophysics Data System (ADS)
Saxena, Anand
The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor driven trailing edge flap concept. In conclusion, the concept of using brushless DC motors as on-blade actuators, actuating trailing edge flaps has the potential to replace the current mechanically complex swashplate with a hydraulic-free swashplateless system and thereby reduce overall weight and hub drag.
RETRACTED: Flap side edge noise modeling and prediction
NASA Astrophysics Data System (ADS)
Guo, Yueping
2013-08-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the first author because of the overlap with previously published papers. The first author takes full responsibility and sincerely apologizes for the error made.This article has been retracted at the request of the Editor-in-Chief.The article duplicates significant parts of an earlier paper by the same author, published in AIAA (Y.P. Guo, Aircraft flap side edge noise modeling and prediction. American Institute of Aeronautics and Astronautics, (2011), 10.2514/6.2011-2731). Prior to republication, conference papers should be comprehensively extended, and re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji
2014-01-01
Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.
Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil
NASA Technical Reports Server (NTRS)
Adair, Desmond; Horne, W. Clifton
1988-01-01
Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
NASA Technical Reports Server (NTRS)
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
2003-01-01
183 3.34 5/rev fixed system hub normal force with 4/rev open loop trailing-edge flap input...184 3.35 5/rev fixed system hub normal force with 5/rev open loop trailing-edge flap input...185 3.36 5/rev fixed system hub normal force with 6/rev open loop trailing-edge flap
High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.
2007-01-01
Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.
NASA Technical Reports Server (NTRS)
Hahne, David E.; Glaab, Louis J.
1999-01-01
An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.
NASA Technical Reports Server (NTRS)
Aiken, T. N.; Falarski, M. D.; Koenin, D. G.
1979-01-01
The aerodynamic characteristics of the augmentor wing concept with hypermixing primary nozzles were investigated. A large-scale semispan model in the Ames 40- by 80-Foot Wind Tunnel and Static Test Facility was used. The trailing edge, augmentor flap system occupied 65% of the span and consisted of two fixed pivot flaps. The nozzle system consisted of hypermixing, lobe primary nozzles, and BLC slot nozzles at the forward inlet, both sides and ends of the throat, and at the aft flap. The entire wing leading edge was fitted with a 10% chord slat and a blowing slot. Outboard of the flap was a blown aileron. The model was tested statically and at forward speed. Primary parameters and their ranges included angle of attack from -12 to 32 degrees, flap angles of 20, 30, 45, 60 and 70 degrees, and deflection and diffuser area ratios from 1.16 to 2.22. Thrust coefficients ranged from 0 to 2.73, while nozzle pressure ratios varied from 1.0 to 2.34. Reynolds number per foot varied from 0 to 1.4 million. Analysis of the data indicated a maximum static, gross augmentation of 1.53 at a flap angle of 45 degrees. Analysis also indicated that the configuration was an efficient powered lift device and that the net thrust was comparable with augmentor wings of similar static performance. Performance at forward speed was best at a diffuser area ratio of 1.37.
A study of high-lift airfoils at high Reynolds numbers in the Langley low-turbulence pressure tunnel
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.; Ferris, James C.; Mcghee, Robert J.
1987-01-01
An experimental study was conducted in the Langley Low Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of two supercritical type airfoils, one equipped with a conventional flap system and the other with an advanced high lift flap system. The conventional flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a small chord vane and a large chord aft flap. The advanced flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a large chord vane and a small chord aft flap. Both models were tested with all elements nested to form the cruise airfoil and with the leading edge slat and with a single or double slotted, trailing edge flap deflected to form the high lift airfoils. The experimental tests were conducted through a Reynolds number range from 2.8 to 20.9 x 1,000,000 and a Mach number range from 0.10 to 0.35. Lift and pitching moment data were obtained. Summaries of the test results obtained are presented and comparisons are made between the observed aerodynamic performance trends for both models. The results showing the effect of leading edge frost and glaze ice formation is given.
NASA Technical Reports Server (NTRS)
Koven, William; Graham, Robert R
1948-01-01
Results are presented of an investigation in the Langley 19-foot pressure tunnel of the longitudinal characteristics of a semispan model wing having 37 degrees sweepback of the leading edge, an aspect ratio of 6, and NACA 641-212 airfoil section perpendicular to the 27-percent-chord line. Several types of stall-control devices including extensible round-nose leading-edge flaps, a leading-edge slat, and a drooped leading edge were investigated; partial- and full-span trailing-edge split and double slotted flaps were also tested. In addition, various combinations of the aforementioned leading- and trailing-edge flaps were investigated. The tests covered a range of Reynolds numbers between 2.00 x 10(6) and 9.35 x 10(6). The wing with or without trailing-edge splity of double slotted flap was longitudinally unstable near maximum lift due to tip stalling. The addition of an outboard half-span leading-edge flap or a leading-edge slat to the plain wing or wing with inboard half-span split flaps eliminated tip stalling and resulted in stable moment variations at the stall. The drooped leading edge, on the other hand, was only effective when used in conjunction with an upper-surface fence. The combination of an outboard leading-edge device and inboard half-span double slotted flap resulted in an undesirable loop in the pitching-moment curve near maximum lift in spite of an inboard stall. The loop is attributed to the section characteristics of the double slotted flap. Air-flow surveys behind the wing indicated that a suitably placed horizontal tail would eliminate the loop in the moment curve.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.; Friend, E. L.
1973-01-01
Wind-up-turn maneuvers were performed to establish the values of airplane normal force coefficient for buffet onset, wing-rock onset, and buffet loads with various combinations of leading- and trailing-edge flap deflections. Data were gathered at both subsonic and transonic speeds covering a range from Mach 0.64 to Mach 0.92. Buffet onset and buffet loads were obtained from wingtip acceleration and wing-root bending-moment data, and wing-rock onset was obtained from airplane roll rate data. Buffet onset, wing-rock onset, and buffet loads were similarly affected by the various combinations of leading- and training-edge flaps. Subsonically, the 12 deg leading-edge-flap and trailing-edge-flap combination was most effective in delaying buffet onset, wing-rock onset, and equivalent values of buffet loads to a higher value of airplane normal force coefficient. This was the maximum flap deflection investigated. Transonically, however, the optimum leading-edge flap position was generally less than 12 deg.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi
2003-01-01
Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.
Assessment of fatigue load alleviation potential through blade trailing edge morphing
NASA Astrophysics Data System (ADS)
Tsiantas, Theofanis; Manolas, Dimitris I.; Machairas, Theodore; Karakalas, Anargyros; Riziotis, Vasilis A.; Saravanos, Dimitrios; Voutsinas, Spyros G.
2016-09-01
The possibility of alleviating wind turbine loads through blade trailing edge shape morphing is investigated in the present paper. Emphasis is put on analyzing the effect of the trailing edge flap geometry on load reduction levels. The choice of the shape deformation of the camber line as well as the chordwise and spanwise dimensions of the trailing edge flap are addressed. The analysis concerns the conceptual DTU 10 MW RWT. Aeroelastic control of loads is materialized through a standard individual flap controller. Furthermore, a comb ined individual pitch-flap controller is evaluated and found to present advantages compared to the flap only controller. Flapwise fatigue load reduction ranging from 10% to 20%, depending on wind velocity and configuration considered, is obtained. Better performance is achieved by the combined pitch-flap controller.
Upper-surface-blowing flow-turning performance
NASA Technical Reports Server (NTRS)
Sleeman, W. C., Jr.; Phelps, A. E., III
1976-01-01
Jet exhaust flow-turning characteristics were determined for systematic variations in upper-surface blowing exhaust nozzles and trailing-edge flap configuration variables from experimental wind-off (static) flow studies. For conditions with parallel flow exhausting from the nozzle, jet height (as indicated by nozzle exit height) and flap radius were found to be the most important parameters relating to flow turning. Nonparallel flow from the nozzle, as obtained from an internal roof angle and/or side spread angle, had a large favorable effect on flow turning. Comparisons made between static turning results and wind tunnel aerodynamic studies of identical configurations indicated that static flow-turning results can be indicative of wind-on powered lift performance for both good and poor nozzle-flap combinations but, for marginal designs, can lead to overly optimistic assessment of powered lift potential.
Effect of canard position and wing leading-edge flap deflection on wing buffet at transonic speeds
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Henderson, W. P.; Huffman, J. K.
1974-01-01
A generalized wind-tunnel model, with canard and wing planform typical of highly maneuverable aircraft, was tested. The addition of a canard above the wing chord plane, for the configuration with leading-edge flaps undeflected, produced substantially higher total configuration lift coefficients before buffet onset than the configuration with the canard off and leading-edge flaps undeflected. The wing buffet intensity was substantially lower for the canard-wing configuration than the wing-alone configuration. The low-canard configuration generally displayed the poorest buffet characteristics. Deflecting the wing leading-edge flaps substantially improved the wing buffet characteristics for canard-off configurations. The addition of the high canard did not appear to substantially improve the wing buffet characteristics of the wing with leading-edge flaps deflected.
NASA Technical Reports Server (NTRS)
Applin, Zachary T.; Gentry, Garl L., Jr.
1988-01-01
An unswept, semispan wing model equipped with full-span leading- and trailing-edge flaps was tested in the Langley 14- by 22-Foot Subsonic Tunnel to determine the effect of high-lift components on the aerodynamics of an advanced laminar-flow-control (LFC) airfoil section. Chordwise pressure distributions near the midsemispan were measured for four configurations: cruise, trailing-edge flap only, and trailing-edge flap with a leading-edge Krueger flap of either 0.10 or 0.12 chord. Part 1 of this report (under separate cover) presents a representative sample of the plotted pressure distribution data for each configuration tested. Part 2 presents the entire set of plotted and tabulated pressure distribution data. The data are presented without analysis.
HSCT Ref-H Transonic Flap Data Base: Wind-Tunnel Test and Comparison with Theory
NASA Technical Reports Server (NTRS)
Vijgen, Paul M.
1999-01-01
In cooperation with personnel from the Boeing ANP Laboratory and NASA Langley, a performance test was conducted using the Reference-H 1.675% model ("NASA Modular Model") without nacelles at the NASA Langley 16-Ft Transonic Tunnel. The main objective of the test was to determine the drag reduction achievable with leading-edge and trailing-edge flaps deflected along the outboard wing span at transonic Mach numbers (M = 0.9 to 1.2) for purpose of preliminary design and for comparison with computational predictions. The obtained drag data with flap deflections for Mach numbers of 1.07 to 1.20 are unique for the Reference H wing. Four leading-edge and two trailing-edge flap deflection angles were tested at a mean-wing chord-Reynolds number of about 5.7 million. An outboard-wing leading-edge flap deflection of 81 provides a 4.5 percent drag reduction at M = 1.2 A = 0.2), and much larger values at lower Mach numbers with larger flap deflections. The present results for the baseline (no flaps deflected) compare reasonably well with previous Boeing and NASA Ref-H tunnel tests, including high-Reynolds number NTF results. Viscous CFD simulations using the OVERFLOW thin-layer N.S. method properly predict the observed trend in drag reduction at M = 1.2 as function of leading-edge flap deflection. Modified linear theory properly predicts the flap effects on drag at subsonic conditions (Aero2S code), and properly predicts the absolute drag for the 40 and 80 leading-edge deflection at M = 1.2 (A389 code).
NASA Technical Reports Server (NTRS)
Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.
1999-01-01
A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.
Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds
NASA Technical Reports Server (NTRS)
Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.
1999-01-01
A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.
Blade-mounted trailing edge flap control for BVI noise reduction
NASA Technical Reports Server (NTRS)
Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.
1992-01-01
Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.
Preliminary Design and Evaluation of an Airfoil with Continuous Trailing-Edge Flap
NASA Technical Reports Server (NTRS)
Shen, Jinwei; Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Liu, Yi
2012-01-01
This paper presents the preliminary design and evaluation of an airfoil with active continuous trailing-edge flap (CTEF) as a potential rotorcraft active control device. The development of structural cross-section models of a continuous trailing-edge flap airfoil is described. The CTEF deformations with MFC actuation are predicted by NASTRAN and UM/VABS analyses. Good agreement is shown between the predictions from the two analyses. Approximately two degrees of CTEF deflection, defined as the rotation angle of the trailing edge, is achieved with the baseline MFC-PZT bender. The 2D aerodynamic characteristics of the continuous trailing-edge flap are evaluated using a CFD analysis. The aerodynamic efficiency of a continuous trailing-edge flap is compared to that of a conventional discrete trailing-edge flap (DTEF). It is found that the aerodynamic characteristics of a CTEF are equivalent to those of a conventional DTEF with the same deflection angle but with a smaller flap chord. A fluid structure interaction procedure is implemented to predict the deflection of the continuous trailingedge flap under aerodynamic pressure. The reductions in CTEF deflection are overall small when aerodynamic pressure is applied: 2.7% reduction is shown with a CTEF deflection angle of two degrees and at angle of attack of six degrees. In addition, newly developed MFC-PMN actuator is found to be a good supplement to MFC-PZT when applied as the bender outside layers. A mixed MFC-PZT and MFC-PMN bender generates 3% more CTEF deformation than an MFC-PZT only bender and 5% more than an MFC-PMN only bender under aerodynamic loads.
NASA Technical Reports Server (NTRS)
Kelley, Mark W; Tolhurst, William H JR
1955-01-01
A wind-tunnel investigation was made to determine the effects of ejecting high-velocity air near the leading edge of plain trailing-edge flaps on a 35 degree sweptback wing. The tests were made with flap deflections from 45 degrees to 85 degrees and with pressure ratios across the flap nozzles from sub-critical up to 2.9. A limited study of the effects of nozzle location and configuration on the efficiency of the flap was made. Measurements of the lift, drag, and pitching moment were made for Reynolds numbers from 5.8 to 10.1x10(6). Measurements were also made of the weight rate of flow, pressure, and temperature of the air supplied to the flap nozzles.The results show that blowing on the deflected flap produced large flap lift increments. The amount of air required to prevent flow separation on the flap was significantly less than that estimated from published two-dimensional data. When the amount of air ejected over the flap was just sufficient to prevent flow separation, the lift increment obtained agreed well with linear inviscid fluid theory up to flap deflections of 60 degrees. The flap lift increment at 85 degrees flap deflection was about 80 percent of that predicted theoretically.With larger amounts of air blown over the flap, these lift increments could be significantly increased. It was found that the performance of the flap was relatively insensitive to the location of the flap nozzle, to spacers in the nozzle, and to flow disturbances such as those caused by leading-edge slats or discontinuities on the wing or flap surfaces. Analysis of the results indicated that installation of this system on an F-86 airplane is feasible.
Mild Myopic Astigmatism Corrected by Accidental Flap Complication: A Case Report
Fahed, Daoud C; Fahed, Charbel D
2009-01-01
A 35-year-old female presented for laser in-situ keratomileusis (LASIK). Her preoperative eye exam was normal, with a preop refraction of OD −2.50 D Sph +1.25 D Cyl ×175 and OS −2.75 D Sph +1.50 D Cyl ×165 (cycloplegic and manifest), with 20/20 BCVA OU. The central pachymetry reading was 553 μm in the right eye. Preoperative topography was normal. At the start of the pendular microkeratome path, some resistance was felt, but the microkeratome continued along its path. Upon inspection of the flap, there was a central rectangle of intact epithelium with two mirror-image flaps on both sides. The flap was repositioned and LASIK was discontinued. The cornea healed with two faint thin linear vertical parallel scars at the edge of the pupil. Postoperative inspection of the blade revealed central blunting. One month postoperatively, the uncorrected visual acuity (UCVA) was 20/20. Manifest and cycloplegic refractions were plano. This is an interesting case of accidental flap complication resulting in the correction of mild myopic astigmatism. PMID:20404996
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Kemmerly, Guy T.; Kjerstad, Kevin J.; Lessard, Victor R.
1999-01-01
A wind tunnel investigation of two separate leading-edge flaps, designed for vortex and attached-flow, respectively, were conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.12 to 0.27, with corresponding chord Reynolds numbers of 2.50 x 10 (sup 6) to 5.50 x 10 (sup 6). Variations of the leading-edge flap deflection angle were tested with outboard leading-edge flaps deflected 0 deg. and 26.4 deg. Trailing-edge flaps were deflected 0 deg., 10 deg., 12.9 deg., and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein. The data associated with each deflected leading-edge flap indicate L/D improvements over the undeflected configuration. These improvements may be instrumental in providing the necessary lift augmentation required by an actual HSCT during the climb-out and landing phases of the flight envelope. However, further tests will have to be done to assess their full potential.
NASA Technical Reports Server (NTRS)
Dods, J. B., Jr.; Watson, E. C.
1976-01-01
The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems.
Lift-Enhancing Tabs on Multielement Airfoils
NASA Technical Reports Server (NTRS)
Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.
1995-01-01
The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.
Investigation of Full-Scale Split Trailing-Edge Wing Flaps with Various Chords and Hinge Locations
NASA Technical Reports Server (NTRS)
Wallace, Rudolf
1936-01-01
This report gives the results of an investigation conducted in the NACA full-scale wind tunnel on a small parasol monoplane equipped with three different split trailing-edge wing flaps. The object of the investigation was to determine and correlate data on the characteristics of the airplane and flaps as affected by variation in flap chord, flap deflection, and flap location along the wing chord. The results give the lift, the drag, and the pitching moment characteristics of the airplane, and the flap forces and moments, the pressure distribution over the flaps and wing at one section, and the downwash characteristics of the flap and wing combinations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... the flap control unit (FCU). This AD was prompted by a report of automatic retraction of the leading... takeoff. We are issuing this AD to prevent automatic retraction of the leading edge flaps during takeoff... automatic retraction of the leading edge flaps due to indications transmitted to the flap control unit (FCU...
Noise Reduction of Aircraft Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)
2009-01-01
A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1981-01-01
An investigation was conducted in the Langley 4 by 7 Meter Tunnel to determine the static longitudinal and lateral directional aerodynamic characteristics of an advanced aspect ratio 10 supercritical wing transport model equipped with a full span leading edge slat as well as part span and full span trailing edge flaps. This wide body transport model was also equipped with spoiler and aileron roll control surfaces, flow through nacelles, landing gear, and movable horizontal tails. Six basic wing configurations were tested: (1) cruise (slats and flaps nested), (2) climb (slats deflected and flaps nested), (3) part span flap, (4) full span flap, (5) full span flap with low speed ailerons, and (6) full span flap with high speed ailerons. Each of the four flapped wing configurations was tested with leading edge slat and trailing edge flaps deflected to settings representative of both take off and landing conditions. Tests were conducted at free stream conditions corresponding to Reynolds number of 0.97 to 1.63 x 10 to the 6th power and corresponding Mach numbers of 0.12 to 0.20, through an angle of attack range of 4 to 24, and a sideslip angle range of -10 deg to 5 deg. The part and full span wing configurations were also tested in ground proximity.
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.
2002-01-01
This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.
On the aerodynamic forces of flapping finite-wings in forward flight: a numerical study
NASA Astrophysics Data System (ADS)
Gonzalo, Alejandro; Uhlmann, Markus; Garcia-Villalba, Manuel; Flores, Oscar
2017-11-01
We study the flow around two flapping wings in forward flight at a low Reynolds number, Re = 500 , with 3D direct numerical simulations. The flow solver used is TUCAN, an in-house code which solves the Navier-Stokes equations for incompressible flow using an immersed boundary method to model the presence of the wings. The wings are rectangular with a NACA0012 airfoil of chord c as a cross-section. They are located side by side at a distance 0.5 c between their inboard tips. The wings flap with respect to an axis parallel to the streamwise velocity, without pitching. The angle of rotation is defined using a sinusoidal function with a reduced frequency k = 1 and an amplitude such that the maximum height of the outboard tips is c in all cases. We perform several simulations varying the aspect ratio of the wings (AR = 2 and 4) and the distance between the inboard tip of the wings and the axis of rotation (R = 0 , 2 and ∞), the latter case corresponding to wings in heaving motion. In this way we can study the variation of the fictitious forces on the wings and the induced spanwise flows, and their relation to the vortical structures on the wing (i.e. leading edge vortex, trailing edge votex, tip vortices) and the resulting aerodynamic forces. This work was funded by project TRA2013-41103-P (Mineco/Feder UE). The simulations were partially performed at the Steinbuch Centre for Computing, Karlsruhe, whose support is thankfully acknowledged.
A lining vomer flap for palate pushback in unilateral cleft palate repair.
Clavin, H D; Owsley, J Q
1978-01-01
A combinaation vomer mucoperiosteal flap and nasal floor mucoperiosteal flap is described which is used to achieve nasal coverage in unilateral cleft palate patients requiring pushbacks. A posteriorly based readily accessible vomer flap is raised on the cleft side and used as nasal lining for the palatal mucoperiosteal flap on the non-cleft side. On the cleft side, a symmetrically sized nasal floor flap is easily elevated under direct vision and used to cover the nasal aspect of the corresponding mucoperiosteal palatal flap.
NASA Technical Reports Server (NTRS)
Aoyagi, Kiyoshi; Hickey, David H.
1959-01-01
Previous investigations have shown that increased blowing at the hinge-line radius of a plain flap will give flap lift increases above that realized with boundary-layer control. Other experiments and theory have shown that blowing from a wing trailing edge, through the jet flap effect, produced lift increases. The present investigation was made to determine whether blowing simultaneously at the hinge-line radius and trailing edge would be more effective than blowing separately at either location. The tests were made at a Reynolds number of 4.5 x 10(exp 6) with a 35 deg sweptback-wing airplane. For this report, only the lift data are presented. Of the three flap blowing arrangements tested, blowing distributed between the trailing edge and the hinge-line radius of a plain flap was found to be superior to blowing at either location separately at the plain flap deflections of interest. Comparison of estimated and experimental jet flap effectiveness was fair.
Force and moment measurements on a 74 deg delta wing with an apex flap
NASA Technical Reports Server (NTRS)
Buter, T. A.; Rao, D. M.
1984-01-01
Results are presented of a subsonic experimental investigation of an apex flap concept on a 74 deg swept delta wing with trailing-edge flaps. The apex flap comprised approximately 6 percent of the wing area forward of a transverse hinge, allowing for upward and downward deflection angles from +40 deg to -20 deg. Upward deflection forces leading-edge vortex formation on the apex flap, resulting in an increased lift component on the apex area. The associated nose-up moment balances the nose-down moment due to trailing-edge flaps, resulting in sizeable increase in the trimmed lift coefficient particularly at low angles of attack. Nose-down apex deflection may be used to augment the pitch control for rapid recovery from high-alpha maneuvers. This report presents the balance data without analysis.
Theoretical characteristics of two-dimensional supersonic control surfaces
NASA Technical Reports Server (NTRS)
Morrissette, Robert R; Oborny, Lester F
1951-01-01
The "Busemann second-order-approximation theory" for the pressure distribution over a two-dimensional airfoil in supersonic flow was used to determine some of the aerodynamic characteristics of uncambered symmetrical parabolic and double-wedge airfoils with leading-edge and trailing-edge flaps. The characteristics presented and discussed in this paper are: flap effectiveness factor, rate of change of hinge-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient about the mid chord with flap deflection, and the location of the center of pressure of the airfoil-flap combination.
Vortex Flap Technology: a Stability and Control Assessment
NASA Technical Reports Server (NTRS)
Carey, K. M.; Erickson, G. E.
1984-01-01
A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.
NASA Technical Reports Server (NTRS)
Cook, Woodrow L; Anderson, Seth B; Cooper, George E
1958-01-01
A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying area-suction boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effect of boundary-layer control in the handling qualities and operation of the airplane, particularly during landing. The wind-tunnel and flight tests indicated that area suction applied to the trailing-edge flaps produced significant increases in flap lift increment. Although the flap boundary-layer control reduced the stall speed only slightly, a reduction in minimum comfortable approach speed of about 12 knots was obtained.
NASA Technical Reports Server (NTRS)
Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.
1995-01-01
A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.
An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps
NASA Technical Reports Server (NTRS)
Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.
1983-01-01
An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.
NASA Technical Reports Server (NTRS)
Rao, D. M.; Goglia, G. L.
1981-01-01
Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.
NASA Astrophysics Data System (ADS)
Viswamurthy, S. R.; Ganguli, Ranjan
2007-03-01
This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.
Pressure investigation of NASA leading edge vortex flaps on a 60 deg Delta wing
NASA Technical Reports Server (NTRS)
Marchman, J. F., III; Donatelli, D. A.; Terry, J. E.
1983-01-01
Pressure distributions on a 60 deg Delta Wing with NASA designed leading edge vortex flaps (LEVF) were found in order to provide more pressure data for LEVF and to help verify NASA computer codes used in designing these flaps. These flaps were intended to be optimized designs based on these computer codes. However, the pressure distributions show that the flaps wre not optimum for the size and deflection specified. A second drag-producing vortex forming over the wing indicated that the flap was too large for the specified deflection. Also, it became apparent that flap thickness has a possible effect on the reattachment location of the vortex. Research is continuing to determine proper flap size and deflection relationships that provide well-behaved flowfields and acceptable hinge-moment characteristics.
78 FR 52419 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... trailing edge flap area that qualify as structural significant items (SSIs). This AD requires revising the... detect and correct fatigue cracking of the wing trailing edge structure, which could result in... within the wing trailing edge flap area that qualify as structural significant items (SSI). We are...
NASA Technical Reports Server (NTRS)
Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.
1992-01-01
Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.
Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap
NASA Technical Reports Server (NTRS)
Buchholz, Mark D.; Tso, Jin
1993-01-01
Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
Wind-tunnel tests on model wing with Fowler flap and specially developed leading-edge slot
NASA Technical Reports Server (NTRS)
Weick, Fred E; Platt, Robert C
1933-01-01
An investigation was made in the NACA 7 by 10 foot wind tunnel to find the increase in maximum lift coefficient which could be obtained by providing a model wing with both a Fowler trailing-edge extension flap and a Handley Page type leading-edge slot. A conventional Handley page slot proportioned to operate on the plain wing without a flap gave but a slight increase with the flap; so a special form of slot was developed to work more effectively with the flap. With the best combined arrangement the maximum lift coefficient based on the original area was increased from 3.17, for the Fowler wing, to 3.62. The minimum drag coefficient with both devices retracted was increased in approximately the same proportion. Tests were also made with the special-type slot on the plain wing without the flap. The special slot, used either with or without the Fowler flap, gave definitely higher values of the maximum lift coefficient than the slots of conventional form, with an increase of the same order in the minimum drag coefficient.
78 FR 66859 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... airplanes. This proposed AD was prompted by reports of bearing damage at certain trailing edge (TE) flap... certain trailing edge (TE) flap support rib assemblies. We are issuing this AD to detect and correct...
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2017-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center 7- by 10-Foot High Speed Tunnel to determine the effects of passive surface porosity on the subsonic vortex flow interactions about a general research fighter configuration. Flow-through porosity was applied to the leading-edge extension, or LEX, and leading-edge flaps mounted to a 65deg cropped delta wing model as a potential vortex flow control technique at high angles of attack. All combinations of porous and nonporous LEX and flaps were investigated. Wing upper surface static pressure distributions and six-component forces and moments were obtained at a free-stream Mach number of 0.20 corresponding to a Reynolds number of 1.35(106) per foot, angles of attack up to 45deg, angles of sideslip of 0deg and +/-5deg, and leading-edge flap deflections of 0deg and 30deg.
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.
2015-09-01
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1987-01-01
Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.
Analytical observations on the aerodynamics of a delta wing with leading edge flaps
NASA Technical Reports Server (NTRS)
Oh, S.; Tavella, D.
1986-01-01
The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.
NASA Technical Reports Server (NTRS)
Hassan, Ahmed
1999-01-01
Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.
Near-Infrared Irradiation Increases Length of Axial Pattern Flap Survival in Rats.
Yasunaga, Yoshichika; Matsuo, Kiyoshi; Tanaka, Yohei; Yuzuriha, Shunsuke
2017-01-01
Objective: We previously reported that near-infrared irradiation nonthermally induces long-lasting vasodilation of the subdermal plexus by causing apoptosis of vascular smooth muscle cells. To clarify the possible application of near-infrared irradiation to prevent skin flap necrosis, we evaluated the length of axial pattern flap survival in rats by near-infrared irradiation. Methods: A bilaterally symmetric island skin flap was elevated under the panniculus carnosus on the rat dorsum. Half of the flap was subjected to near-infrared irradiation just before flap elevation with a device that simulates solar radiation, which has a specialized contact cooling apparatus to avoid thermal effects. The length of flap survival of the near-infrared irradiated side was measured 7 days after flap elevation and compared with the nonirradiated side. Results: The irradiated side showed elongation of flap survival compared with the nonirradiated side (73.3 ± 11.7 mm vs 67.3 ± 14.9 mm, respectively, P = .03). Conclusions: Near-infrared irradiation increases the survival length of axial pattern flaps in rats.
NASA Technical Reports Server (NTRS)
Smith, P. M.
1978-01-01
Tests have been conducted to extend the existing low speed aerodynamic data base of advanced supersonic-cruise arrow wing configurations. Principle configuration variables included wing leading-edge flap deflection, wing trailing-edge flap deflection, horizontal tail effectiveness, and fuselage forebody strakes. A limited investigation was also conducted to determine the low speed aerodynamic effects due to slotted training-edge flaps. Results of this investigation demonstrate that deflecting the wing leading-edge flaps downward to suppress the wing apex vortices provides improved static longitudinal stability; however, it also results in significantly reduced static directional stability. The use of a selected fuselage forebody strakes is found to be effective in increasing the level of positive static directional stability. Drooping the fuselage nose, which is required for low-speed pilot vision, significantly improves the later-directional trim characteristics.
Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis
NASA Technical Reports Server (NTRS)
Buchholz, Mark D.
1992-01-01
Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
NASA Technical Reports Server (NTRS)
Shen, Jin-Wei; Chopra, Inderjit
2003-01-01
The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.
Aerodynamic effects of flexibility in flapping wings.
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P
2010-03-06
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings.
Aerodynamic effects of flexibility in flapping wings
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.
2010-01-01
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings. PMID:19692394
NASA Technical Reports Server (NTRS)
Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.
1976-01-01
Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.
Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.
Atmospheric Probe Model: Construction and Wind Tunnel Tests
NASA Technical Reports Server (NTRS)
Vogel, Jerald M.
1998-01-01
The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.
Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept
NASA Technical Reports Server (NTRS)
Gerhardt, H. A.; Chen, W. S.
1978-01-01
The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.
Soap films burst like flapping flags.
Lhuissier, Henri; Villermaux, Emmanuel
2009-07-31
When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.
NASA Technical Reports Server (NTRS)
Stivers, Louis S., Jr.
1947-01-01
An analysis has been made of the lift control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flap on the NACA 65-210 airfoil section. The analysis indicates that the plain trailing-edge flap employed on the 10-percent-thick airfoil at Mach numbers as high as 0.875 retains at least 50-percent of its low-speed lift-control effectiveness, and is sufficiently effective in lateral control application, assuming a rigid wing, to provide adequate airplane rolling characteristics. The plain trailing-edge flap, as compared to the spoiler and the dive-recovery flap, appears to afford the most favorable characteristics as a device for controlling lift continuously throughout the range of Mach numbers from 0.3 to 0.875. At Mach numbers above those for lift divergence of the wing, either a plain flap or a dive-recovery flap may be used on a thin airplane wing to provide auxiliary wing lift when the airplane is to be controlled in flight, other than in dives, at these Mach numbers. The choice of a lift-control device for this use, however, should include the consideration of other factors such as the increments of drag and pitching moment accompanying the use of the device, and the structural and high-speed aerodynamic characteristics of the airplane which is to employ the device.
NASA Technical Reports Server (NTRS)
Hickey, David H.; Aoyagi, Kiyoshi
1960-01-01
A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis.
Wang, Biao; Geng, Qiuhua; Hu, Junling; Shao, Jianchuan; Ruan, Jing; Zheng, Jiansheng
2016-08-01
This study was conducted to evaluate the effects of platelet-rich plasma (PRP) on flap survival in an experimental rabbit model. Symmetrical rectangular dorsal cutaneous flaps (8 × 2 cm) were elevated in 15 rabbits. The rabbits were randomly divided into a 3-day group (n = 5), a 7-day group (n = 5), and a 14-day group (n = 5). Either side of the dorsum was selected for injection of PRP into the flap basal surface, while the other side received an equal volume of saline as a control. The flaps were immediately sutured back, after which the flap survival was measured and histology specimens were collected at 3, 7, and 14 days. Platelet-rich plasma significantly improved flap survival rates of the PRP side flaps relative to the control in the 3-day (74.4% ± 4.7% vs 65.8% ± 6.8%; p < 0.05), 7-day (72.4% ± 7.5% vs 58.5% ± 7.0%; p < 0.05), and 14-day (74.5% ± 5.0% vs 65.0% ± 5.4%; p < 0.05) groups. Histological analysis revealed significantly fewer inflammatory cells and an increased blood vessel density in the platelet-rich plasma side flap vs the blank control side flap. Platelet-rich plasma (PRP) promotes the survival of random rabbit flaps and, therefore, represents a promising treatment to prevent skin flap necrosis in reconstructive and plastic surgery.
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Hoffler, Keith D.
1988-01-01
A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation.
Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions
NASA Technical Reports Server (NTRS)
Fukushima, T.
1978-01-01
The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.
NASA Technical Reports Server (NTRS)
Weiberg, James A.; Holzhauser, Curt A.
1961-01-01
Tests were made of a large-scale tilt-wing deflected-slipstream VTOL airplane with blowing-type BLC trailing-edge flaps. The model was tested with flap deflections of 0 deg. without BLC, 50 deg. with and without BLC, and 80 deg. with BLC for wing-tilt angles of 0, 30, and 50 deg. Included are results of tests of the model equipped with a leading-edge flap and the results of tests of the model in the presence of a ground plane.
Turbulence Measurements on a Flap-Edge Model
NASA Technical Reports Server (NTRS)
Moriarty, Patrick; Bradshaw, Peter; Cantwell, Brian; Ross, James
1998-01-01
Turbulence measurements have been made on a flap-edge and leading-edge slat model using hot-wire anemometry, and, later, particle image velocimetry. The properties of hot-wire anemometry were studied using facilities at NASA Ames Research Center. Hot-film probes were used because of their durability, but cross-films were limited by non-linear end effects. As a warm-up exercise, hot-film probes were used to measure velocities in the farfield wake of a cylinder with an airfoil in the near-field wake. The airfoil reduced the drag coefficient of the system by 10%. A single-wire hot-film probe was used to measure velocity profiles over the top of a NACA 63(sub 2)-215 Mod. B wing with a Fowler flap and leading,-edge slat. Results showed the size of slat wake was dependent upon the slat deflection angle. Velocity increased through the slat gap with increased deflection. The acoustically modified slat decreased the chance of separation. Measurements were taken at the flap edge with a single hot-film. Trends in the data indicate velocity and turbulence levels increase at the flap edge. The acoustically modified flap modifies the mean flow near the flap edge. Correlations were made between the hot-film signal and the unsteady pressure transducers on the wing which were published in a NASA CDTM. The principles of Particle Image Velocimetry (PIV) were studied at Florida State University. Spectral PIV was used to measure the spectra of a subsonic jet. Measured frequencies were close to the predicted frequency of jet shedding. Spectral PIV will be used to measure the spectra of the slat flow in the second 7 x lO-ft. wind tunnel test. PIV has an advantage that it can measure velocity and spectra of the entire flowfield instantaneously. However, problems arise when trying, to store this massive amount of PIV data. Support for this research has continued through a NASA Graduate Student Program Fellowship which will end in June 1999. The thesis should be completed by this time.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.
2003-01-01
Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.
NASA Technical Reports Server (NTRS)
Larson, R. R.
1986-01-01
The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.
Reconstruction of pressure sores with perforator-based propeller flaps.
Jakubietz, Rafael G; Jakubietz, Danni F; Zahn, Robert; Schmidt, Karsten; Meffert, Rainer H; Jakubietz, Michael G
2011-03-01
Perforator flaps have been successfully used for reconstruction of pressure sores. Although V-Y advancement flaps approximate debrided wound edges, perforator-based propeller flaps allow rotation of healthy tissue into the defect. Perforator-based propeller flaps were planned in 13 patients. Seven pressure sores were over the sacrum, five over the ischial tuberosity, and one on the tip of the scapula. Three patients were paraplegic, six were bedridden, and five were ambulatory. In three patients, no perforators were found. In 10 patients, propeller flaps were transferred. In two patients, total flap necrosis occurred, which was reconstructed with local advancement flaps. In two cases, a wound dehiscence occurred and had to be revised. One hematoma required evacuation. No further complications were noted. No recurrence at the flap site occurred. Local perforator flaps allow closure of pressure sores without harvesting muscle. The propeller version has the added benefit of transferring tissue from a distant site, avoiding reapproximation of original wound edges. Twisting of the pedicle may cause torsion and venous obstruction. This can be avoided by dissecting a pedicle of at least 3 cm. Propeller flaps are a safe option for soft tissue reconstruction of pressure sores. © Thieme Medical Publishers.
Causes and Solutions of the Trampoline Effect.
Miwa, Masamiki; Ota, Noboru; Ando, Chiyono; Miyazaki, Yukio
2015-01-01
A trampoline effect may occur mainly when a buttonhole tract and the vessel flap fail to form a straight line. Certain findings, however, suggest another cause is when the vessel flap is too small. The frequency of the trampoline effect, for example, is lower when a buttonhole tract is created by multiple punctures of the arteriovenous fistula (AVF) vessel than when it is done by one-time puncture of the vessel. Lower frequency of the trampoline effect with multiple punctures of the AVF vessel may be due to enlargement of the initial puncture hole on the vessel every time the vessel is punctured with a sharp needle. Even if aiming at exactly the same point on the AVF vessel every time, the actual puncture point shifts slightly at every puncture, which potentially results in enlargement of the initial hole on the AVF vessel. Moreover, in some patients, continued use of a buttonhole tract for an extended period of time increases the frequency of the trampoline effect. In such cases, reduction of the incidence of the trampoline effect can be achieved by one buttonhole cannulation using a new dull needle with sharp side edges that is used to enlarge the vessel flap. Such single buttonhole cannulation may suggest that the increased frequency of the trampoline effect also potentially occurs in association with gradually diminishing flap size. As a final observation, dull needle insertion into a vessel flap in the reverse direction has been more smoothly achieved than insertion into a vessel flap in the conventional direction. A vessel flap in the reverse direction can be adopted clinically. © 2015 S. Karger AG, Basel.
Device for reducing vehicle aerodynamic resistance
Graham, Sean C.
2006-08-22
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.
Pressure Distribution Over a Symmetrical Airfoil Section with Trailing Edge Flap
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Pinkerton, Robert M
1931-01-01
Measurements were made to determine the distribution of pressure over one section of an R. A. F. 30 (symmetrical) airfoil with trailing edge flaps. In order to study the effect of scale measurements were made with air densities of approximately 1 and 20 atmospheres. Isometric diagrams of pressure distribution are given to show the effect of change in incidence, flap displacement, and scale upon the distribution. Plots of normal force coefficient versus angle of attack for different flap displacements are given to show the effect of a displaced flap. Plots are given of both the experimental and theoretical characteristic coefficients versus flap angle, in order to provide a comparison with the theory. It is concluded that for small flap displacements the agreement for the pitching and hinge moments is such that it warrants the use of the theoretical parameters. However, the agreement for the lift is not as good, particularly for the smaller flaps. In an appendix, an example is given of the calculation of the load and moments on an airfoil with hinged flap from these parameters.
NASA Technical Reports Server (NTRS)
Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.
1994-01-01
An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.
Active Flow Separation Control on a NACA 0015 Wing Using Fluidic Actuators
NASA Technical Reports Server (NTRS)
Melton, Latunia P.
2014-01-01
Results are presented from a recent set of wind tunnel experiments using sweeping jet actuators to control ow separation on the 30% chord trailing edge ap of a 30 deg. swept wing model with an aspect ratio (AR) of 4.35. Two sweeping jet actuator locations were examined, one on the flap shoulder and one on the trailing edge flap. The parameters that were varied included actuator momentum, freestream velocity, and trailing edge flap deflection (Delta f ) angle. The primary focus of this set of experiments was to determine the mass flow and momentum requirements for controlling separation on the flap, especially at large flap deflection angles which would be characteristic of a high lift system. Surface pressure data, force and moment data, and stereoscopic particle image velocimetry (PIV) data were acquired to evaluate the performance benefits due to applying active flow control. Improvements in lift over the majority of the wing span were obtained using sweeping jet actuator control. High momentum coefficient, Cu, levels were needed when using the actuators on the ap because they were located downstream of separation. Actuators on the flap shoulder performed slightly better but actuator size, orientation, and spacing still need to be optimized.
Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Montefort; Liou, William W.; Pantula, Srinivasa R.; Shams, Qamar A.
2007-01-01
A static extended trailing edge attached to a NACA0012 airfoil section is studied for achieving lift enhancement at a small drag penalty. It is indicated that the thin extended trailing edge can enhance the lift while the zero-lift drag is not significantly increased. Experiments and calculations are conducted to compare the aerodynamic characteristics of the extended trailing edge with those of Gurney flap and conventional flap. The extended trailing edge, as a simple mechanical device added on a wing without altering the basic configuration, has a good potential to improve the cruise flight efficiency.
Yin, Xinghong; Hu, Wei; Zhang, Xinhai; Sun, Min
2014-10-01
To explore curative effect with pedicle flap of nasal septum-basis nasi and temporal muscucofascial flap to repair nasal septal perforation. Dissecting mucoperichondrium and mucoperioseptum around the perforation and taking dowm and out xia-ward to the floor of nasal cavity to make a inferior extremity pedicle flap. Then,the flap was tumbled and sutured onto raw surface of contralateral side through perforation. Reapplicating autoallergic temporal musculofascial flap to repair another side perforation. Repairing perforation Sin twelve cases were sucessfully healed in endoscope. The pedicle flap of nasal septum-basis nasi and temporal muscucofascial flap is easy to acquire and no rejection. The flap has good blood supplying, high survival rate and provides adequate transplantating materail to repair comparatively large perforation.
NASA Technical Reports Server (NTRS)
Gainer, T. G.; Mann, M. J.; Huffman, J. K.
1984-01-01
An advanced fighter configuration with a forward-swept wing of aspect ratio 3.28 is tested in the Langley 7 by 10 Foot High Speed Tunnel at a Mach number of 0.3. The wing has 29.5 degrees of forward sweep of the quarter chord line and is equipped with 15 percent chord leading edge and 30 percent chord trailing edge flaps. The canard is sweptback 45 degrees. Tests were made through a range of angle of attack from about -2 degrees to 22 degrees. Deflecting the flaps significantly improves the lift drag characteristics at the higher angles of attack. The canard is able to trim the configurations with different flap deflections over most of the range of angle of attack. The penalty in maximum lift coefficient due to trimming is about 0.10.
Leading edge flap system for aircraft control augmentation
NASA Technical Reports Server (NTRS)
Rao, D. M. (Inventor)
1984-01-01
Traditional roll control systems such as ailerons, elevons or spoilers are least effective at high angles of attack due to boundary layer separation over the wing. This invention uses independently deployed leading edge flaps on the upper surfaces of vortex stabilized wings to shift the center of lift outboard. A rolling moment is created that is used to control roll in flight at high angles of attack. The effectiveness of the rolling moment increases linearly with angle of attack. No adverse yaw effects are induced. In an alternate mode of operation, both leading edge flaps are deployed together at cruise speeds to create a very effective airbrake without appreciable modification in pitching moment. Little trim change is required.
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.
2016-01-01
A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.
NASA Astrophysics Data System (ADS)
Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel
2017-11-01
A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.
A simple concept for covering pressure sores: wound edge-based propeller perforator flap.
Kelahmetoglu, Osman; Van Landuyt, Koenraad; Yagmur, Caglayan; Sommeling, Casper E; Keles, Musa K; Tayfur, Volkan; Simsek, Tekin; Demirtas, Yener; Guneren, Ethem
2017-12-01
We present a new surgical modification to allow propeller perforator flaps to cover pressure sores at various locations. We used a propeller perforator flap concept based on the detection of newly formed perforator vessels located 1 cm from the wound margin and stimulated by the chronic inflammation process. Between January 2009 and January 2017, 33 wound edge-based propeller perforator flaps were used to cover pressure sores at various locations in 28 patients. In four cases more than one flap was used on the same patient. The patients comprised 18 males and 10 females with a mean age of 41·25 (range, 16-70) years. All patients underwent follow-up for 0-12 months. The mean follow-up duration was 5·03 months. Venous congestion was observed in three flaps that were rotated by 180° (9·1%). However, there was a significant difference between flaps rotated by 90° and 180° according to the complication rate (P = 0·034). Out of 33 flaps, 29 flaps healed uneventfully. Patients were able to sit and lie on their flaps three weeks after surgery. In our study, we were able to obtain satisfying final results using these novel flaps. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
High-Lift Systems on Commercial Subsonic Airliners
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C.
1996-01-01
The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably peaked on the Boeing 747, which has a VC Krueger flap and triple-slotted, inboard and outboard trailing-edge flaps. Since then, the tendency in high-lift system development has been to achieve high levels of lift with simpler devices in order to reduce fleet acquisition and maintenance costs. The intent of this paper is to: (1) review available high-lift devices, their functions, and design criteria; (2) appraise high-lift systems presently in service on commercial air liners; (3) present personal study results on high-lift systems; (4) develop a weight and cost model for high-lift systems; and (5) discuss the development tendencies of future high-lift systems.
NASA Technical Reports Server (NTRS)
Ivey, Margaret F
1945-01-01
Flat-plate flaps with no wing cutouts and flaps having Clark Y sections with corresponding cutouts made in wing were tested for various flap deflections, chord-wise locations, and gaps between flaps and airfoil contour. The drag was slightly lower for wing with airfoil section flaps. Satisfactory aileron effectiveness was obtained with flap gap of 20% wing chord and flap-nose location of 80 percent wing chord behind leading edge. Airflow was smooth and buffeting negligible.
NASA Technical Reports Server (NTRS)
Kelly, Mark W; Anderson, Seth B; Innis, Robert C
1958-01-01
A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying blowing-type boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effects of boundary-layer control on the handling qualities and operation of the airplane, particularly during landing and take-off. The wind-tunnel and flight tests indicated that blowing over the flaps produced large increases in flap lift increment, and significant increases in maximum lift. The use of blowing permitted reductions in the landing approach speeds of as much as 12 knots.
NASA Technical Reports Server (NTRS)
Wallace, Rudolf, N
1933-01-01
This paper presents the results of tests conducted in the N.A.C.A. full-scale wind tunnel on a Fairchild F-22 airplane equipped with a special wing having split trailing-edge flaps. The flaps extended over the outer 90 percent of the wing span, and were of the fixed-hinge type having a width equal to 20 percent of the wing chord. The results show that with a flap setting of 59 degrees the maximum lift of the wing was increased 42 percent, and that the flaps increased the range of available gliding angles from 2.7 degrees to 7.0 degrees. Deflection of the split flaps did not increase the stalling angle or seriously affect the longitudinal balance of the airplane. With flaps down the landing speed of the airplane is decreased, but the calculated climb and level-flight performance is inferior to that with the normal wing. Calculations indicate that the take-off distance required to clear an obstacle 100 feet high is not affected by flap settings from 0 degrees to 20 degrees but is greatly increased by larger flap angles.
NASA Technical Reports Server (NTRS)
Stivers, Louis S., Jr.
1947-01-01
An analysis has been made of the lift-control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flag on the INCA 65-210 airfoil section.
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1978-01-01
An investigation was conducted to determine the effects of wing leading-edge flap deflections on the subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing. The tests were conducted at Mach numbers from 0.40 to 0.85, corresponding to Reynolds numbers (based on wing mean geometric chord) of 2.37 x 1,000,000 to 4.59 x 1,000,000 and at angles of attack from -3 deg to 22 deg. The configurations under study included a wing-fuselage configuration and a wing-fuselage-strake configuration. Each configuration had multisegmented, constant-chord leading-edge flaps which could be deflected independently or in various combinations.
Gurney flap—Lift enhancement, mechanisms and applications
NASA Astrophysics Data System (ADS)
Wang, J. J.; Li, Y. C.; Choi, K.-S.
2008-01-01
Since its invention by a race car driver Dan Gurney in 1960s, the Gurney flap has been used to enhance the aerodynamics performance of subsonic and supercritical airfoils, high-lift devices and delta wings. In order to take stock of recent research and development of Gurney flap, we have carried out a review of the characteristics and mechanisms of lift enhancement by the Gurney flap and its applications. Optimum design of the Gurney flap is also summarized in this paper. For the Gurney flap to be effective, it should be mounted at the trailing edge perpendicular to the chord line of airfoil or wing. The flap height must be of the order of local boundary layer thickness. For subsonic airfoils, an additional Gurney flap increases the pressure on the upstream surface of the Gurney flap, which increases the total pressure of the lower surface. At the same time, a long wake downstream of the flap containing a pair of counter-rotating vortices can delay or eliminate the flow separation near the trailing edge on the upper surface. Correspondingly, the total suction on the airfoil is increased. For supercritical airfoils, the lift enhancement of the Gurney flap mainly comes from its ability to shift the shock on the upper surface in the downstream. Applications of the Gurney flap to modern aircraft design are also discussed in this review.
The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid
NASA Astrophysics Data System (ADS)
Shinde, Sachin; Arakeri, Jaywant
2010-11-01
Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1988-01-01
Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi
2006-01-01
Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
A novel capsulorhexis technique using shearing forces with cystotome.
Karim, Shah M R; Ong, Chin T; Sleep, Tamsin J
2010-05-15
To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye. Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge. Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size. The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.
NASA Astrophysics Data System (ADS)
Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.
2016-09-01
The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Measurements of noise produced by flow past lifting surfaces
NASA Technical Reports Server (NTRS)
Kendall, J. M.
1978-01-01
Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.
Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV
NASA Astrophysics Data System (ADS)
Phan, Hoang Vu; Park, Hoon Cheol
2016-04-01
In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.
Numerical design of advanced multi-element airfoils
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Cummings, Russell M.
1994-01-01
The current study extends the application of computational fluid dynamics to three-dimensional high-lift systems. Structured, overset grids are used in conjunction with an incompressible Navier-Stokes flow solver to investigate flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth turbulence model. The geometry consisted of an unswept wing which spanned a wind tunnel test section. Flows over full and half-span Fowler flap configurations were computed. Grid resolution issues were investigated in two dimensional studies of the flapped airfoil. Results of the full-span flap wing agreed well with experimental data and verified the method. Flow over the wing with the half-span was computed to investigate the details of the flow at the free edge of the flap. The results illustrated changes in flow streamlines, separation locations, and surface pressures due to the vortex shed from the flap edge.
Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowberg, D.; Dana, S.; Hughes, S.
2014-09-01
A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axismore » testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.« less
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat
2016-01-01
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.
In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.
2003-01-01
The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.
Design & fabrication of two seated aircraft with an advanced rotating leading edge wing
NASA Astrophysics Data System (ADS)
Al Ahmari, Saeed Abdullah Saeed
The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.
NASA Technical Reports Server (NTRS)
Hunton, Lynn W.; Dew, Joseph K.
1948-01-01
Wind-tunnel tests of a full-scale model of the Republic XP-91 airplane were conducted to determine the longitudinal and lateral characteristics of the wing alone and the wing-fuselage combination, the characteristics of the aileron, and the damping in roll af the wing alone. Various high-lift devices were investigated including trailing-edge split flaps and partial- and full-span leading-edge slats and Krueger-type nose flaps. Results of this investigation showed that a very significant gain in maximum lift could be achieved through use of the proper leading-edge device, The maximum lift coefficient of the model with split flaps and the original partial-span straight slats was only 1.2; whereas a value of approximately 1.8 was obtained by drooping the slat and extending it full span, Improvement in maximum lift of approximately the same amount resulted when a full-span nose flap was substituted for the original partial-span slat.
NASA Technical Reports Server (NTRS)
Robinson, Ross B; Bernot, Peter T
1958-01-01
An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 deg the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 deg flared afterbody. The tests were made through an angle-of-attack range of -2 deg to 20 deg at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge -flap configuration. The flared -after body configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift drag ratio.
NASA Technical Reports Server (NTRS)
Bernot, P. T.; Robinson, R. B.
1958-01-01
An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 degrees; the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 degrees flared afterbody. The tests were made through an angle-of-attack range of -2 degrees to 20 degrees at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared-afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge-flap configuration. The flared-afterbody configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift-drag ratio.
Influence of two different flap designs on the sequelae of mandibular third molar surgery.
Erdogan, Ozgür; Tatlı, Ufuk; Ustün, Yakup; Damlar, Ibrahim
2011-09-01
The aim of this study was to compare the influence of triangular and envelope flaps on trismus, pain, and facial swelling after mandibular third molar surgery. Twenty healthy patients with bilateral, symmetrically impacted mandibular third molars were included in this double-blinded, prospective, cross-over, randomized study. The patients were operated with envelope flap on one side and triangular flap on the other side. Trismus was determined by measuring maximum interincisal opening, and facial swelling was evaluated using a tape measuring method. Pain was determined using visual analog scale (VAS) and recording the number of pain pills taken. The facial swelling measurements and VAS scores were lower in the envelope flap group compared to the triangular flap group. There was no significant difference between the two flap designs in operation time, maximum interincisal opening, and the number of analgesics taken. Envelope flap yields to less facial swelling and reduced VAS scores in comparison to triangular flap. There is no clinical difference in trismus between the two flap designs. Despite the higher VAS scores with triangular flap, no additional doses of analgesics were required in triangular flap.
An investigation of unsteady 3D effects on trailing edge flaps
NASA Astrophysics Data System (ADS)
Jost, E.; Fischer, A.; Lutz, T.; Krämer, E.
2016-09-01
The present study investigates the impact of unsteady and viscous three-dimensional aerodynamic effects on a wind turbine blade with trailing edge flap by means of CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a flap of 10% chord extent ranging from 70% to 80% blade radius. The deflection frequency is varied in the range between 1p and 6p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations. A significant influence of trailing and shed vortex structures has been found which leads to a reduction of the lift amplitude and hysteresis effects in the lift response with regard to the flap deflection. In the 3D rotor results greater amplitude reductions and less hystereses have been found compared to the 2D airfoil simulations.
Noise Reduction Through Circulation Control
NASA Technical Reports Server (NTRS)
Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.
2005-01-01
Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.
Peris-Celda, Maria; Pinheiro-Neto, Carlos Diogenes; Funaki, Takeshi; Fernandez-Miranda, Juan C.; Gardner, Paul; Snyderman, Carl; Rhoton, Albert L.
2013-01-01
Objective Reconstruction of large clival defects after an endoscopic endonasal procedure is challenging. The objective is to analyze the morphology, indications, and limitations of the extended nasoseptal flap, which adds the nasal floor and inferior meatus mucosa, compared with the standard nasoseptal flap, for clival reconstruction. Design Twenty-seven sides of formalin-fixed anatomical specimens and 13 computed tomography (CT) scans were used. Under 0-degree endoscopic visualization, a standard flap on one side and an extended flap on the other side were performed, as well as exposure of the sella, cavernous sinus, and clival dura mater. Coverage of both flaps was assessed, and they were incised and extracted for measurements. Results The extended flap has two parts: septal and inferior meatal. The extended flaps are 20 mm longer and add 774 mm2 of mucosal area. They cover a clival defect from tuberculum to foramen magnum in 66.6% cases and from below the sella in 91.6%. They cover both parasellar and paraclival segments of the internal carotid arteries. The lateral inferior limits are the medial aspect of the hypoglossal canals and Eustachian tubes. CT scans can predict the need or limitation of an extended nasoseptal flap. Conclusions The nasal floor and inferior meatus mucosa adds a significant area for reconstruction of the clivus. A defect laterally beyond the hypoglossal canals is not likely covered with this variation of the flap. Preoperative CT scans are useful to guide the reconstruction techniques. PMID:24436940
Kim, Sung Young; Rah, Dong Kyun; Chong, Yosep; Lee, Song Hyun; Park, Tae Hwan
2016-10-01
The use of bilirubin, a well-known and powerful antioxidant, has gained popularity in recent years because of its role in the prevention of ischaemic heart disease in patients with Gilbert's syndrome. We investigate the effects of bilirubin on ischaemia-reperfusion (I/R) injury using a rat perforator flap model. Forty-eight rats were randomly divided into two groups: experimental (bilirubin) group (n = 24) and control group (n = 24). In each group, elevated bilateral deep inferior epigastric perforator (DIEP) flaps were created. The right (no ischaemia side) and left (ischaemia side) DIEP flaps were separated according to the presence of ischaemia induction. Ischaemia was induced in anaesthetised rats by perforator clamping for 15 or 30 minutes. After surgery, the flap survival was assessed daily on postoperative days 0 to 5, and overall histological changes of DIEP flaps above the perforator were analysed at postoperative day 5. The flap survival rate in the bilirubin group was significantly higher than that in the control group at the ischaemia side following perforator clamping for 15 or 30 minutes (93·42 ± 4·48% versus 89·63 ± 3·98%, P = 0·002; and 83·96 ± 4·23% versus 36·46 ± 6·38%, P < 0·001, respectively). The difference in flap survival between the two groups was the most prominent on the ischaemic side following 30 minutes of perforator clamping. From a morphologic perspective, pre-treatment with bilirubin was found to alleviate perforator flap necrosis caused by I/R injury in this experimental rat model. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Whitcomb, Charles F.; Critzos, Chris C.; Brown, Philippa F.
1961-01-01
An investigation has been conducted in the Langley 16-foot transonic tunnel to determine the changes in wing loading characteristics due to deflections of a plain faired flap-type inboard aileron, a plain faired flap-type outboard aileron, and a slab-sided thickened trailing edge outboard aileron. The test wing was 4 percent thick and had 30 sweep of the quarter chord, an aspect ratio of 3.0, a taper ratio of 0.2, and NACA 65A004 airfoil sections. The loading characteristics of the deflected ailerons were also investigated. The model was a sting-mounted wing-body combination, and pressure measurements over one wing panel (exposed area) and the ailerons were obtained for angles of attack from 0 to 20 at deflections up to +/- 15 deg for Mach numbers between 0.80 and 1.03. The test Reynolds number based on the wing mean aerodynamic chord was about 7.4 x 10(exp 6). The results of the investigation indicated that positive deflection of the plain faired flap-type inboard aileron caused significant added loading over the wing sections outboard of the aileron at all Mach numbers for model angles of attack from 0 deg or 4 deg up to 12 deg. Positive deflection of the two outboard ailerons (plain faired and slab sided with thickened trailing edge) caused significant added loading over the wing sections inboard of the ailerons for different model angle-of-attack ranges at the several test Mach numbers. The loading shapes over the ailerons were irregular and would be difficult to predict from theoretical considerations in the transonic speed range. The longitudinal and lateral center-of-pressure locations for the ailerons varied only slightly with increasing angle of attack and/or Mach number. Generally, the negative slopes of the variations of aileron hinge-moment coefficient with aileron deflection for all three ailerons varied similarly with Mach number at the test angles of attack.
NASA Technical Reports Server (NTRS)
Gainer, Thomas G.
1959-01-01
An investigation to determine the aerodynamic characteristics of a rectangular wing equipped with a full-span and an inboard half-span jet-augmented flap has been made in the Langley 300 MPH 7- by 10-foot tunnel. The wing had an aspect ratio of 8.3 and a thickness-chord ratio of 0.167. A jet of air was blown backward through a small gap, tangentially to the upper surface of a round trailing edge, and was separated from the trailing edge by a very small flap at an angle of 55 deg with respect to the wing-chord plane. The results of the investigation showed that the ratio of total lift to jet-reaction lift for the wing was about 35 percent less for the half-span jet-augmented flap than for the full-span jet-augmented flap. The reduction of the span of the jet-augmented flap from full to half span reduced the maximum value of jet-circulation lift coefficient that could be produced from about 6.8 to a value of about 2.2. The half-span jet- augmented flap gave thrust recoveries considerably poorer than those obtained with the full-span jet-augmented flap. Large nose-down pitching- moment coefficients were produced by the half-span flap, with the greater part of these being the result of the larger jet reactions required to produce a given lift for the half-spin flap compared with that required for the full-span flap.
Full-scale semi-span tests of an advanced NLF business jet wing
NASA Technical Reports Server (NTRS)
Hahne, David E.; Jordan, Frank L., Jr.; Davis, Patrick J.; Muchmore, C. Byram
1987-01-01
An investigation has been conducted in the NASA Langley Research Center's 30- by 60-Foot Wind Tunnel on a full-scale semispan model to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing utilizing the HSNLF(1)-0213 airfoil section and a single slotted flap system. In addition to the high-lift studies, evaluations of boundary layer transition effects, the effectiveness of a segmented leading-edge droop for improved stall/spin resistance, and roll control effectiveness with and without flap deflection were made. The wind-tunnel investigation showed that deployment of a single-slotted trailing-edge flap provided substantial increments in lift. Fixed transition studies indicated no adverse effects on lift and pitching-moment characteristics for either the cruise or landing configuration. Subscale roll damping tests also indicated that stall/spin resistance could be enhanced through the use of a properly designed leading-edge droop.
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)
2014-01-01
A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.
Flapping modes of three filaments placed side by side in a free stream
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Lu, Xi-Yun
2010-11-01
Flexible filaments flapping in a surrounding flow are useful models for understanding the flow-induced vibration and mimicking the schooling behavior of fish. In the present work, the coupled modes of three identical filaments in a side-by- side arrangement are studied using the linear stability analysis and also an immersed boundary--lattice Boltzmann method for low Reynolds numbers (Re on order of 100). The numerical simulations show that the system dynamics exhibits several patterns that depend on the spacing between the filaments. Among these patterns, three can be predicted by the linear analysis and have been reported before. These modes are: (1) the three filaments all flap in phase; (2) the two outer filaments are out of phase while the middle one is stable; (3) the two outer filaments are in phase while the middle one is out of phase. The simulations also identified two additional modes: (1) the outer two filaments are out of phase while the middle one flaps at a frequency reduced by half; (2) the outer two filaments are out of phase while the middle one flaps at a slightly different frequency. In addition to the vibratory modes, the drag force and the flapping amplitude are also computed, and the implication of the result will be discussed.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete
2016-01-01
A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.
Wind tunnel investigation of a high lift system with pneumatic flow control
NASA Astrophysics Data System (ADS)
Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu
2016-06-01
Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.
USB noise reduction by nozzle and flap modifications
NASA Technical Reports Server (NTRS)
Hayden, R. E.
1976-01-01
The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular, recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems, and prospects for future improvements are discussed.
Improvement of maneuver aerodynamics by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
Spanwise blowing was used to test a generalized wind-tunnel model to investigate component concepts in order to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on performance, stability, and control at high angles of attack and subsonic speeds. Test data were obtained in the Langley high speed 7 by 10 foot tunnel at free stream Mach numbers up to 0.50 for a range of model angles of attack, jet momentum coefficients, and leading and trailing edge flap deflection angles. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack.
Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.
The calculated effect of trailing-edge flaps on the take-off of flying boats
NASA Technical Reports Server (NTRS)
Parkinson, J E; Bell, J W
1934-01-01
The results of take-off calculations are given for an application of simple trailing-edge flaps to two hypothetical flying boats, one having medium wing and power loading and consequently considerable excess of thrust over total resistance during the take-off run, the other having high wing and power loading and a very low excess thrust. For these seaplanes the effect of downward flap settings was: (1) to increase the total resistance below the stalling speed, (2) to decrease the get-away speed, (3) to improve the take-off performance of the seaplane having considerable excess thrust, and (4) to hinder the take-off of the seaplane having low excess thrust. It is indicated that flaps would allow a decrease in the high angles of wing setting necessary with most seaplanes, provided that the excess thrust is not too low.
NASA Technical Reports Server (NTRS)
Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.
1987-01-01
Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Kardas, G. E.
1974-01-01
The model tested was a general research model of a swept-wing, jet-powered STOL transport with externally blown flaps. The model was tested with four engine simulators mounted on pylons under the wing. Tests were conducted in the V/STOL tunnel over an angle of attack range of 0 deg to 16 deg and a thrust coefficient range from 0 to approximately 4 at a Reynolds number of 0.461 x 1 million based on the wing reference chord. The results of this investigation are presented primarily as plots of the individual velocity vectors obtained from the wake survey. These data are used to extend an earlier analysis to isolate the effects of the engine thrust on the behavior of the flow at the flap trailing edge. Results of a comparison with a jet-flap theory are also shown.
The Economy in Autologous Tissue Transfer: Part 1. The Kiss Flap Technique.
Zhang, Yi Xin; Hayakawa, Thomas J; Levin, L Scott; Hallock, Geoffrey G; Lazzeri, Davide
2016-03-01
All reconstructive microsurgeons realize the need to improve aesthetic and functional donor-site outcomes. A "kiss" flap design concept was developed to increase the surface area of skin flap coverage while minimizing donor-site morbidity. The main goal of the kiss flap technique is to harvest multiple skin paddles that are smaller than those raised with traditional techniques, to minimize donor-site morbidity. These smaller flap components are then sutured to each other, or said to kiss each other side-by-side, to create a large, wide flap. The skin paddles in the kiss technique can be linked to one another by a variety of native intrinsic vascular connections, by additional microanastomosis, or both. This technique can be widely applied to both free and pedicle flaps, and essentially allows for the reconstruction of a large defect while providing the easy primary closure of a smaller donor-site defect. According to their origin of blood supply, kiss flaps are classified into three styles and five types. All of the different types of kiss flaps are unique in both flap design and harvest technique. Most kiss flaps are based on common flaps already familiar to the reconstructive surgeon. The basis of the kiss flap design concept is to convert multiple narrow flaps into a single unified flap of the desired greater width. This maximizes the size of the resulting flap and minimizes donor-site morbidity, as a direct linear closure is usually possible. Therapeutic, V.
Implementation of a Trailing-Edge Flap Analysis Model in the NASA Langley CAMRAD.MOD1/Hires Program
NASA Technical Reports Server (NTRS)
Charles, Bruce
1999-01-01
Continual advances in rotorcraft performance, vibration and acoustic characteristics are being sought by rotary-wing vehicle manufacturers to improve efficiency, handling qualities and community noise acceptance of their products. The rotor system aerodynamic and dynamic behavior are among the key factors which must be addressed to meet the desired goals. Rotor aerodynamicists study how airload redistribution impacts performance and noise, and seek ways to achieve better airload distribution through changes in local aerodynamic response characteristics. One method currently receiving attention is the use of trailing-edge flaps mounted on the rotor blades to provide direct control of a portion of the spanwise lift characteristics. The following work describes the incorporation of a trailing-edge flap model in the CAMRAD.Mod1/FHUS comprehensive rotorcraft analysis code. The CAM-RAD.Mod1/HIRES analysis consists of three separate executable codes. These include the comprehensive trim analysis, CAMRAD.Mod1, the Indicial Post-Processor, IPP, for high resolution airloads, and AIRFOIL, which produces the rotor airfoil tables from input airfoil section characteristics. The modifications made to these components permitting analysis of flapped rotor configurations are documented herein along with user instructions detailing the new input variables and operational notes.
An autonomous sperm-like propulsor in a quiescent flow
NASA Astrophysics Data System (ADS)
Kim, Boyoung; Park, Sung Goon; Sung, Hyung Jin
2016-11-01
Flapping motions of flexible fins are widespread in nature. Birds, fish, and insects use their wings, fins, or bodies to stay afloat and to advance forward in the surrounding fluids. It is important to understand the physics of the flapping motions to utilize them for the biomimetic machines. In the present study, we introduce a sperm-like propulsor that consists of a rigid head containing genetic information and a flapping flexible tail for propulsion. The head gives a sinusoidal torque to the leading edge of the tail, and the flexible tail flaps along the leading edge. In other words, the sperm-like propulsor is moved by an oscillating relative angle between the head and the leading edge of the tail. Unlike self-propelled heaving and pitching fins, the 'autonomous' sperm-like propulsor has no prescribed motion or constraint referenced from outside coordinates. The penalty method and the immersed boundary method are used to solve the autonomous sperm-like propulsor in a quiescent flow. The cruising speed and the propulsive efficiency of the propulsor are explored as a function of the head size (D/ L) , the pitching angle (θ0) , the pitching frequency (f) , and the distance from the wall (G/ L) .
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.
1992-01-01
As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.
Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil
NASA Technical Reports Server (NTRS)
Ashby, Dale
1996-01-01
An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.
NASA Technical Reports Server (NTRS)
Lattanzi, Bernardino; Bellante, Erno
1949-01-01
The present report is concerned with a series of tests on a model airplane fitted with four types of dive flaps of various shapes, positions, and incidence located near the leading edge of the wing (from 5 to 20 percent of the wing chord). Tests were also made on a stub airfoil fitted with a ventral dive (located at 8 percent of the wing chord). The hinge moments of the dive flaps were measured.
Reducing flow-induced resonance in a cavity
NASA Technical Reports Server (NTRS)
Cattafesta, III, Louis N. (Inventor); Wlezien, Richard W. (Inventor); Won, Chin C. (Inventor); Garg, Sanjay (Inventor)
1998-01-01
A method and system are provided for reducing flow-induced resonance in a structure's cavity. A time-varying disturbance is introduced into the flow along a leading edge of the cavity. The time-varying disturbance can be periodic and can have the same or different frequency of the natural resonant frequency of the cavity. In one embodiment of the system, flaps are mounted flush with the surface of the structure along the cavity's leading edge. A piezoelectric actuator is coupled to each flap and causes a portion of each flap to oscillate into and out of the flow in accordance with the time-varying function. Resonance reduction can be achieved with both open-loop and closed-loop configurations of the system.
NASA Astrophysics Data System (ADS)
Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu
2012-06-01
This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.
Palatoplasty: suturing the mucoperiosteal flaps to the hard palate through hole.
Hwang, Kun; Lee, Ji Hun; Kim, Yu Jin; Le, Se Il
2009-05-01
We satisfactorily repaired a wide cleft palate using a method of V-Y pushback and anchoring the oral mucoperiosteal flap onto the bony ridge of the cleft. An 8-year-old Vietnamese girl had a wide incomplete bilateral posterior cleft palate associated with congenital cardiac malformations. The gap of the posterior cleft was 2.5 cm, which exceeded the total widths of the palatal shelves. We applied V-Y pushback and used a vomer flap to close the wide cleft palate. The posterior two thirds of the nasal mucosae from the cleft margins were sutured to the vomer flap. The nasal side of the anterior one third of the bony cleft was uncovered. The elevated bilateral mucoperiosteal flaps were brought together to the midline and sutured to the anterior triangular flap in a V-Y pushback fashion. Four holes were drilled 5 mm lateral to each bony cleft margin. The lateral sides of the mucoperiosteal flaps were fixed to the palate bone with 3-0 Vicryl through the hole. This method reduces the tension of the flap which might frequently cause oronasal fistula and also improve viability.
Bouki, Konstantina P; Sakkali, Eleni; Toutouzas, Konstantinos; Vlad, Delia; Barmperis, Dimitrios; Phychari, Stavroula; Riga, Maria; Apostolou, Thomas; Stefanadis, Christodoulos
2015-08-01
The purpose of the present study was to assess the incidence, predictors and long term prognosis of stent edge dissections identified by (OCT) after the implantation of bare metal (BMS) and drug eluting stents (DES). We studied 74 patients who underwent percutaneous coronary intervention (PCI) because of an acute coronary syndrome. Edge dissections were found in 29 of 74 patients (39.1%). Independent predictors of edge dissections were: the presence of ST-elevation myocardial infarction (STEMI) (P = 0.005, odds ratio 11.78; 95% Cl 2.06-67.10), the small reference lumen diameter (P = 0.009, odds ratio 0.11; 95% Cl 0.02-0.58) and the short stents implanted (P = 0.013, odds ratio 0.83; 95% Cl 0.72-0.96). During a follow-up period of 25.6 ± 9.4 months 11 patients presented with at least one major adverse cardiac event. Event free survival was significantly decreased in patients with edge dissection with a flap thickness >0.31 mm compared to patients with thinner flap or without any dissection (P < 0.001). OCT frequently detects edge dissections, usually related to STEMI presentation and to PCI technique. Deep vessel wall injury at stent edges with a dissection flap thickness more than 0.31mm carries an adverse clinical impact on long-term clinical outcome. © 2015 Wiley Periodicals, Inc.
Parasacral Perforator Flaps for Reconstruction of Sacral Pressure Sores.
Lin, Chin-Ta; Chen, Shih-Yi; Chen, Shyi-Gen; Tzeng, Yuan-Sheng; Chang, Shun-Cheng
2015-07-01
Despite advances in reconstruction techniques, pressure sores continue to present a challenge to the plastic surgeon. The parasacral perforator flap is a reliable flap that preserves the entire contralateral side as a future donor site. On the ipsilateral side, the gluteal muscle itself is preserved and all flaps based on the inferior gluteal artery are still possible. We present our experience of using parasacral perforator flaps in reconstructing sacral defects. Between August 2004 and January 2013, 19 patients with sacral defects were included in this study. All the patients had undergone surgical reconstruction of sacral defects with a parasacral perforator flap. The patients' sex, age, cause of sacral defect, flap size, flap type, numbers of perforators used, rotation angle, postoperative complications, and hospital stay were recorded. There were 19 parasacral perforator flaps in this series. All flaps survived uneventfully except for 1 parasacral perforator flap, which failed because of methicillin-resistant Staphylococcus aureus infection. The overall flap survival rate was 95% (18/19). The mean follow-up period was 17.3 months (range, 2-24 months). The average length of hospital stay was 20.7 days (range, 9-48 days). No flap surgery-related mortality was found. Also, there was no recurrence of sacral pressure sores or infected pilonidal cysts during the follow-up period. Perforator-based flaps have become popular in modern reconstructive surgery because of low donor-site morbidity and good preservation of muscle. Parasacral perforator flaps are durable and reliable in reconstructing sacral defects. We recommend the parasacral perforator flap as a good choice for reconstructing sacral defects.
Modeling and Prediction of Krueger Device Noise
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.; Coe, Paul L., Jr.; Owens, D. Bruce; Gile, Brenda E.; Parikh, Pradip G.; Smith, Don
1999-01-01
A wind tunnel investigation of a leading edge boundary layer control system was conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.08 to 0.27, with corresponding chord Reynolds numbers of 1.79 x 10(exp 6) to 5.76 x 10(exp 6). Variations in the amount of suction, as well as the size and location of the suction area, were tested with outboard leading edge flaps deflected 0 and 30 deg and trailing-edge flaps deflected 0 and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein.
Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.
Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram
2015-01-01
The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.
Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics
Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram
2015-01-01
The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty. PMID:27347517
Ademola, Samuel A; Michael, Afieharo I; Oladeji, Femi J; Mbaya, Kefas M; Oyewole, O
2015-01-01
Reverse sural artery fasciocutaneous flap has become a workhorse for the reconstruction of distal leg soft tissue defects. When its use is not feasible, perforator-based propeller flap offers a better, easier, faster, and cheaper alternative to free flap. We present our experience with two men both aged 34 years who sustained Gustilo 3B injuries from gunshot. The donor area for reversed sural artery flap was involved in the injuries. They had early debridement, external fixation, and wound coverage with perforator-based propeller flaps. The donor sites were covered with skin graft. All flaps survived. There were minor wound edge ulcers due to the pressure of positioning that did not affect flap survival and the ulcers healed with conservative management. Perforator-based propeller flap is a versatile armamentarium for reconstruction of soft tissue defects of the distal leg in resource-constrained settings, especially when the donor area for a reverse flow sural flap artery is involved in the injury.
Efficiency enhancement of a self-propelled pitching profile using non-sinusoidal trajectories
NASA Astrophysics Data System (ADS)
Mekadem, M.; Chihani, E.; Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.
2017-11-01
A symmetrical profile is subjected to non-sinusoidal pitching motion. The airfoil has a chord length c = 0.006 m and a semi-circular leading edge with a diameter of D = 0.001 m. The extrados and intrados are two straight lines that intersect at a tapered trailing edge, and the pitching pivot point is positioned at the leading edge. The pitching frequency is in the range of 1 <= f <= 190 Hz, while the tangential amplitude of the flapping trailing edge varies from 18% to 114% of the foil cord. To improve the airfoil propulsive performance, two-dimensional numerical simulations are implemented on FLUENT. The Reynolds number based upon the maximum profile thickness D varies in the range of 35 <= Re <= 210 , which matches insect's Reynolds numbers. The foil movement is executed using the dynamic mesh technique and a user defined function (UDF). The adopted mesh has 70,445 nodes with 5,1960 quadrilateral cells. The results are in good agreement with prior experiments, and, compared to sinusoidal oscillations, show that non-sinusoidal flapping trajectories lead to advancing velocity increase of 550%. Additionally, if improved propulsive efficiency is sought, non-sinusoidal flapping lead to better thrust.
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.
2002-01-01
This report describes the results of an experimental study conducted in the Langley Low-Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of the Langley Energy Efficient Transport (EET) High-Lift Airfoil. The high-lift airfoil was a supercritical-type airfoil with a thickness-to- chord ratio of 0.12 and was equipped with a leading-edge slat and a double-slotted trailing-edge flap. The leading-edge slat could be deflected -30 deg, -40 deg, -50 deg, and -60 deg, and the trailing-edge flaps could be deflected to 15 deg, 30 deg, 45 deg, and 60 deg. The gaps and overlaps for the slat and flaps were fixed at each deflection resulting in 16 different configurations. All 16 configurations were tested through a Reynolds number range of 2.5 to 18 million at a Mach number of 0.20. Selected configurations were also tested through a Mach number range of 0.10 to 0.35. The plotted and tabulated force, moment, and pressure data are available on the CD-ROM supplement L-18221.
NASA Technical Reports Server (NTRS)
Dadone, L.; Cowan, J.; Mchugh, F. J.
1982-01-01
Deployment of variable camber concepts on helicopter rotors was analytically assessed. It was determined that variable camber extended the operating range of helicopters provided that the correct compromise can be obtained between performance/loads gains and mechanical complexity. A number of variable camber concepts were reviewed on a two dimensional basis to determine the usefulness of leading edge, trailing edge and overall camber variation schemes. The most powerful method to vary camber was through the trailing edge flaps undergoing relatively small motions (-5 deg to +15 deg). The aerodynamic characteristics of the NASA/Ames A-1 airfoil with 35% and 50% plain trailing edge flaps were determined by means of current subcritical and transonic airfoil design methods and used by rotor performance and loads analysis codes. The most promising variable camber schedule reviewed was a configuration with a 35% plain flap deployment in an on/off mode near the tip of a blade. Preliminary results show approximately 11% reduction in power is possible at 192 knots and a rotor thrust coefficient of 0.09. The potential demonstrated indicates a significant potential for expanding the operating envelope of the helicopter. Further investigation into improving the power saving and defining the improvement in the operational envelope of the helicopter is recommended.
"All-laser" endothelial corneal transplant in human patients
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Menabuoni, Luca; Malandrini, Alex; Canovetti, Annalisa; Lenzetti, Ivo; Pini, Roberto
2012-03-01
Femtosecond laser sculpturing of corneal tissue is commonly used for the preparation of endothelial flaps. Diode laser welding of ocular tissues is a procedure that enables minimally invasive suturing of tissues. The combination of these laser based techniques results in a new approach to minimally invasive ophthalmic surgery, such as in endothelial corneal transplant (or endothelial keratoplasty - EK). In this work we present the "all laser" EK performed in human subjects. 24 pseudophakic patients with bullous keratopathy underwent EK: the femtosecond laser was used to prepare the 100 ìm thick and 8.5 mm diameter donor Descemet endothelial flap. After staining the stromal layer of the donor flap with a liquid ICG solution, the donor flap was inserted in the recipient eye by the use of the Busin injector. Then, the endothelial layer was laser-welded to the recipient eye (10 laser spots around the periphery of the flap), in order to reduce the risk of postoperative dislocation of the transplanted flap. A transplanted flap engraftment was observed in all the treated eyes. The staining procedure used to perform laser welding also enabled to evidence the stromal side of the donor flap, so as the flap was always placed in the right side position. The endothelial cells counts in both the laserwelded flaps and in a control group were in good agreement. The proposed technique is easy to perform and enables the reduction of postoperative endothelial flap dislocations.
NASA Technical Reports Server (NTRS)
Hahne, Daniel E.
1999-01-01
Using the F-16XL as a test-bed, two strategies for improving the low-speed flying characteristics that had minimal impact on high-speed performance were evaluated. In addition to the basic F-16XL configuration several modifications to the baseline configuration were tested in the Langley 30- X 60-Foot Tunnel: 1) the notched area at the wing leading edge and fuselage juncture was removed resulting in a continuous 70 deg leading-edge sweep on the inboard portion of the wing; 2) an integral attached-flow leading-edge flap concept was added to the continuous leading edge; and 3) a deployable vortex flap concept was added to the continuous leading edge. The purpose of this report is simply to document the test configurations, test conditions, and data obtained in this investigation for future reference and analysis. No analysis is presented herein and the data only appear in tabulated format.
Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration
NASA Technical Reports Server (NTRS)
Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.
1984-01-01
The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz-Olaf; Sesterhenn, Jörn
2018-02-01
High resolution direct numerical simulations of rotating and flapping bumblebee wings are presented and their aerodynamics is studied focusing on the role of leading edge vortices and the associated helicity production. We first study the flow generated by only one rotating bumblebee wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed generic motion. The inflow condition of the wind varies from laminar to strongly turbulent regimes. Massively parallel simulations show that inflow turbulence does not significantly alter the wings’ leading edge vortex, which enhances lift production. Finally, we focus on studying the helicity of the generated vortices and analyze their contribution at different scales using orthogonal wavelets.
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1982-01-01
A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.
NASA Technical Reports Server (NTRS)
Kjelgaard, S. O.; Morgan, H. L., Jr.
1983-01-01
A high-lift transport aircraft model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Ames 12-ft pressure tunnel to determine the low-speed performance characteristics of a representative high-aspect-ratio supercritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.
Flapping propulsion with side-by-side pitching foils
NASA Astrophysics Data System (ADS)
Huera-Huarte, Francisco
2016-11-01
Fish schools are one of the most common types of collective behaviour observed in nature. One of the reasons why fish swim in groups, is to reduce the cost of transport of the school. In this work we explore the propulsive performance of two foils flapping in a symmetric configuration, i.e. with an out-of-phase flapping motion. Direct thrust measurements and Particle Image Velocimetry (PIV) allowed a detailed examination of the forces and the wake generated by the system, for different kinematics (swept angles and frequencies) and shaft separations. For certain specific cases, volumetric PIV shows major differences on how the different structures in the wake of the system evolve, depending on the imposed kinematics and the side-by-side separation between the foils. Results obtained will be compared against data produced with isolated flapping foils with similar imposed kinematics, with the aim to better understand the interactions between both and the performance of the system as a whole. The author would like to acknowledge the financial support provided by the Spanish Ministerio de Economia y competitividad (MINECO) through Grant DPI2015-71645-P.
Jang, Hyo Seok; Lee, Young Ho; Kim, Min Bom; Chung, Joo Young; Seok, Hyun Sik; Baek, Goo Hyun
2018-03-01
A skin defect of the hand and wrist is a common manifestation in industrial crushing injuries, traffic accidents or after excision of tumors. We reconstructed a skin defect in the ulnar aspect of the hand and wrist with a perforator-based propeller flap from the ulnar artery. The aims of our study are to evaluate the utility and effectiveness of this flap and to discuss the advantages and disadvantages of the flap in hand and wrist reconstruction with a review of the literature. Between April 2011 and November 2016, five cases of skin defect were reconstructed with a perforator-based propeller flap from the ulnar artery. There were four males and one female. The age of patients ranged from 36 to 73 years. Skin defect sites were on the dorso-ulnar side of the hand in three cases and palmar-ulnar side of the wrist in two cases. The size of the skin defect ranged from 4 × 3 cm to 8 × 5 cm. We evaluated the viability of the flap, postoperative complication and patient's satisfaction. There was no failure of flap in all cases. The size of the flap ranged from 4 × 4 cm to 12 × 4 cm. One patient, who had a burn scar contracture, presented with limited active and passive motion of the wrist after the operation. The other patients had no complications postoperatively. Cosmetic results of the surgery were excellent in one patient, good in three patients, and fair in one patient. The fasciocutaneous propeller flap based on a perforating branch of the ulnar artery is a reliable treatment option for the ulnar side skin defect of the hand and wrist.
NASA Technical Reports Server (NTRS)
Streett, C. L.; Lockard, D. P.; Singer, B. A.; Khorrami, M. R.; Choudhari, M. M.
2003-01-01
The LaRC investigative process for airframe noise has proven to be a useful guide for elucidation of the physics of flow-induced noise generation over the last five years. This process, relying on a close interplay between experiment and computation, is described and demonstrated here on the archetypal problem of flap-edge noise. Some detailed results from both experiment and computation are shown to illustrate the process, and a description of the multi-source physics seen in this problem is conjectured.
Efficiency of a flapping propulsion system based on two side-by-side pitching foils
NASA Astrophysics Data System (ADS)
Huera-Huarte, Francisco
2017-11-01
We explore the propulsive performance of two foils flapping side-by-side in a wide variety of configurations, for different foil separations, pitching amplitudes and frequencies and phase differences. Direct force and torque measurements will be shown in each situation, after a thorough parametric study, that led to the identification of highly efficient modes of propulsion. The especially designed experimental rig allowed the computation of efficiencies globally and at each shaft in the system. Planar and volumetric Particle Image Velocimetry (PIV) allowed a detailed description of the wake generated by the system, for each different kinematics investigated. The investigation is part of an ambitious project with the aim of producing a high efficient and highly manoeuvrable flapping propulsion system for underwater vehicles. Funding from Spanish Ministry MINECO through Grant DPI2015-71645-P is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Griffin, Roy N., Jr.; Holzhauser, Curt A.; Weiberg, James A.
1958-01-01
An investigation was made to determine the lifting effectiveness and flow requirements of blowing over the trailing-edge flaps and ailerons on a large-scale model of a twin-engine, propeller-driven airplane having a high-aspect-ratio, thick, straight wing. With sufficient blowing jet momentum to prevent flow separation on the flap, the lift increment increased for flap deflections up to 80 deg (the maximum tested). This lift increment also increased with increasing propeller thrust coefficient. The blowing jet momentum coefficient required for attached flow on the flaps was not significantly affected by thrust coefficient, angle of attack, or blowing nozzle height.
NASA Technical Reports Server (NTRS)
Danforth, Richard A.
1991-01-01
Qualification of the full-scale process and design changes for elimination of redesigned solid rocket motor tang nitrile butadiene rubber insulation edge separations and voids was performed from 24 March to 3 December 1990. The objectives of this test were: to qualify design and process changes on flight hardware using a tie ply between the redesigned solid rocket motor steel case and the nitrile butadiene rubber insulation over the tang capture features; to qualify the use of methyl ethyl ketone in the tang flap region to reduce voids; and to determine if holes in the separator film reduce voids in the tang flap region. The tie ply is intended to aid insulation flow during the insulation cure process, and thus reduce or eliminate edge unbonds. Methyl ethyl ketone is intended to reduce voids in the tang flap area by providing better tacking characteristics. The perforated film was intended to provide possible vertical breathe paths to reduce voids in the tang area. Tang tie ply testing consisted of 270 deg of the tang circumference using a new layup method and 90 deg of the tang circumference using the current layup methods. Tie ply process success was defined as a reduction of insulation unbonds. Lack of any insulation edge unbonds on the tang area where the new process was used, and the presence of 17 unbonds with the current process, proves the test to be a success. Successful completion of this test has qualified the new processes.
Portable tomographic PIV measurements of swimming shelled Antarctic pteropods
NASA Astrophysics Data System (ADS)
Adhikari, Deepak; Webster, Donald R.; Yen, Jeannette
2016-12-01
A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods ( Limacina helicina antarctica)—a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or "wings") downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure-eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely swimming pteropod reveals the generation of an attached vortex ring connecting the leading-edge vortex to the trailing-edge vortex during power stroke and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, sawtooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.
Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Danny H.
2012-01-01
In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.
Advancements in adaptive aerodynamic technologies for airfoils and wings
NASA Astrophysics Data System (ADS)
Jepson, Jeffrey Keith
Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as required for the airfoil-aircraft matching. Examples are presented to illustrate the flapped-airfoil design approach for a general aviation aircraft and the results are validated by comparison with results from post-design aircraft performance computations. Once the airfoil is designed to incorporate a TE flap, it is important to determine the most suitable flap angles along the wing for different flight conditions. The second part of this dissertation presents a method for determining the optimum flap angles to minimize drag based on pressures measured at select locations on the wing. Computational flow simulations using a panel method are used "in the loop" for demonstrating closed-loop control of the flaps. Examples in the paper show that the control algorithm is successful in correctly adapting the wing to achieve the target lift distributions for minimizing induced drag while adjusting the wing angle of attack for operation of the wing in the drag bucket. It is shown that the "sense-and-adapt" approach developed is capable of handling varying and unpredictable inflow conditions. Such a capability could be useful in adapting long-span flexible wings that may experience significant and unknown atmospheric inflow variations along the span. To further develop the "sense-and-adapt" approach, the method was tested experimentally in the third part of the research. The goal of the testing was to see if the same results found computationally can be obtained experimentally. The North Carolina State University subsonic wind tunnel was used for the wind tunnel tests. Results from the testing showed that the "sense-and-adapt" approach has the same performance experimentally as it did computationally. The research presented in this dissertation is a stepping stone towards further development of the concept, which includes modeling the system in the Simulink environment and flight experiments using uninhabited aerial vehicles.
Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.
2016-01-01
The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the most...
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the most...
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the most...
NASA Technical Reports Server (NTRS)
Carlson, H. W.
1994-01-01
This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.
NASA Technical Reports Server (NTRS)
Darden, C. M.
1994-01-01
This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.
Analysis of a Multi-Flap Control System for a Swashplateless Rotor
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Wilbur, Matthew L.
2011-01-01
An analytical study was conducted examining the feasibility of a swashplateless rotor controlled through two trailing edge flaps (TEF), where the cyclic and collective controls were provided by separate TEFs. This analysis included a parametric study examining the impact of various design parameters on TEF deflections. Blade pitch bearing stiffness; blade pitch index; and flap chord, span, location, and control function of the inboard and outboard flaps were systematically varied on a utility-class rotorcraft trimmed in steady level flight. Gradient-based optimizations minimizing flap deflections were performed to identify single- and two-TEF swashplateless rotor designs. Steady, forward and turning flight analyses suggest that a two-TEF swashplateless rotor where the outboard flap provides cyclic control and inboard flap provides collective control can reduce TEF deflection requirements without a significant impact on power, compared to a single-TEF swashplateless rotor design.
Combined bilateral hatchet and nasolabial advancement flaps for a large defect of the lower lip.
Makiguchi, Takaya; Yokoo, Satoshi; Miyazaki, Hidetaka; Soda, Takashi; Terashi, Hiroto
2013-11-01
A large full-thickness defect of the lower lip is difficult to reconstruct. Preservation of eating and speaking functions based on maintenance of oral sphincter and muscle function, sensation, and the oral aperture are the basic aims. It is also important to achieve a good aesthetic appearance. Here, we describe a new procedure using combined bilateral hatchet and nasolabial advancement flaps for a large full-thickness defect of the lower lip. The aim of use of the hatchet flap is to make a natural curve from the mentolabial fold to the mental protuberance using the "dog ear" resulting from suturing medially advanced bilateral hatchet flaps and to preserve a more certain blood supply to the medial edge of the flap. Our results indicate that the procedure using combined bilateral hatchet flaps and nasolabial flaps is useful for a U-shaped large full-thickness defect, with good functional and aesthetic outcomes.
Vlahovic, Zoran; Markovic, Aleksa; Golubovic, Mileta; Scepanovic, Miodrag; Kalanovic, Milena; Djinic, Ana
2015-11-01
The aim of this study was comparing the effect of flapless vs. flap technique of implant placement on inflammation degree of peri-implant soft tissue, through histopathological analysis. The experiment was conducted on five domestic pigs. Nine weeks after tooth extraction, implants were installed. Each animal received six implants in mandible. According to split-mouth design, randomly one side was used for flapless technique using mini-incision, while on the other side, flap was raised. After 7, 14, 21, 28, and 90 days, the experimental animals were sacrificed. Samples for histopathological analyzes were taken from the buccal side of peri-implant mucosa next to the neck of implants, from three levels. The degree of inflammatory response in the peri-implant soft tissue was estimated through ordinal scores from 0 to 3. In the flap group Score 3 indicating high degree of inflammation was present from day 7 to day 21, in contrast to flapless group where Score 3 was not recorded during the entire follow-up. Three months after implantation, there were no signs of inflammation neither around flap nor around flapless implants. Flapless surgical implantation technique using mini-incision decreases peri-implant soft tissue inflammatory reaction compared with flap surgery. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Transonic Free-To-Roll Analysis of the F/A-18E and F-35 Configurations
NASA Technical Reports Server (NTRS)
Owens, D. Bruce; McConnell, Jeffrey K.; Brandon, Jay M.; Hall, Robert M.
2004-01-01
The free-to-roll technique is used as a tool for predicting areas of uncommanded lateral motions. Recently, the NASA/Navy/Air Force Abrupt Wing Stall Program extended the use of this technique to the transonic speed regime. Using this technique, this paper evaluates various wing configurations on the pre-production F/A-18E aircraft and the Joint Strike Fighter (F-35) aircraft. The configurations investigated include leading and trailing edge flap deflections, fences, leading edge flap gap seals, and vortex generators. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel. The analysis used a modification of a figure-of-merit developed during the Abrupt Wing Stall Program to discern configuration effects. The results showed how the figure-of-merit can be used to schedule wing flap deflections to avoid areas of uncommanded lateral motion. The analysis also used both static and dynamic wind tunnel data to provide insight into the uncommanded lateral behavior. The dynamic data was extracted from the time history data using parameter identification techniques. In general, modifications to the pre-production F/A-18E resulted in shifts in angle-of-attack where uncommanded lateral activity occurred. Sealing the gap between the inboard and outboard leading-edge flaps on the Navy version of the F-35 eliminated uncommanded lateral activity or delayed the activity to a higher angle-of-attack.
NASA Technical Reports Server (NTRS)
Horne, Clifton; Burnside, Nathan J.
2013-01-01
Aeroacoustic measurements of the 11 % scale full-span AMELIA CESTOL model with leading- and trailing-edge slot blowing circulation control (CCW) wing were obtained during a recent test in the Arnold Engineering Development Center 40- by 80-Ft. Wind Tunnel at NASA Ames Research Center, Sound levels and spectra were acquired with seven in-flow microphones and a 48-element phased microphone array for a variety of vehicle configurations, CCW slot flow rates, and forward speeds, Corrections to the measurements and processing are in progress, however the data from selected configurations presented in this report confirm good measurement quality and dynamic range over the test conditions, Array beamform maps at 40 kts tunnel speed show that the trailing edge flap source is dominant for most frequencies at flap angles of 0deg and 60deg, The overall sound level for the 60deg flap was similar to the 0deg flap for most slot blowing rates forward of 90deg incidence, but was louder by up to 6 dB for downstream angles, At 100 kts, the in-flow microphone levels were louder than the sensor self-noise for the higher blowing rates, while passive and active background noise suppression methods for the microphone array revealed source levels as much as 20 dB lower than observed with the in-flow microphones,
Flaperon Modification Effect on Jet-Flap Interaction Noise Reduction for Chevron Nozzles
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Mengle, Vinod G.; Stoker, Robert W.; Brusniak, Leon; Elkoby, Ronen
2007-01-01
Jet-flap interaction (JFI) noise can become an important component of far field noise when a flap is immersed in the engine propulsive stream or is in its entrained region, as in approach conditions for under-the-wing engine configurations. We experimentally study the effect of modifying the flaperon, which is a high speed aileron between the inboard and outboard flaps, at both approach and take-off conditions using scaled models in a free jet. The flaperon modifications were of two types: sawtooth trailing edge and mini vortex generators (vg s). Parametric variations of these two concepts were tested with a round coaxial nozzle and an advanced chevron nozzle, with azimuthally varying fan chevrons, using both far field microphone arrays and phased microphone arrays for source diagnostics purposes. In general, the phased array results corroborated the far field results in the upstream quadrant pointing to JFI near the flaperon trailing edge as the origin of the far field noise changes. Specific sawtooth trailing edges in conjunction with the round nozzle gave marginal reduction in JFI noise at approach, and parallel co-rotating mini-vg s were somewhat more beneficial over a wider range of angles, but both concepts were noisier at take-off conditions. These two concepts had generally an adverse JFI effect when used in conjunction with the advanced chevron nozzle at both approach and take-off conditions.
Smoothed Two-Dimensional Edges for Laminar Flow
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.
[Muscle-sparing latissimus dorsi flap. Vascular anatomy and indications in breast reconstruction].
Mojallal, A; Saint-Cyr, M; Wong, C; Veber, M; Braye, F; Rohrich, R
2010-04-01
The muscle-sparing latissimus dorsi flap pedicled on descending branch presents distinct advantages in breast reconstruction, specially when there is a transversely oriented skin paddle, including reduced donor site morbidity, sparing muscle function and greater freedom of orientation of the skin paddle. This study reports the anatomical basis, surgical technique, advantages and complications of this technique. Four clinical cases illustrate surgical indications in breast reconstructive surgery. An anatomical cadaveric study underwent to University of Texas Southwestern Medical Center, Dallas. The goal was performed to determine the location of the bifurcation of the thoracodorsal artery and the course of its descending branch compare to the anterior side of latissimus dorsi muscle. Four clinical cases illustrated indications of muscle-sparing latissimus dorsi flap pedicled on descending branch in breast reconstruction. These cases showed advantages and complications of the technique, and impact on donor site. Fifteen descending branch muscle-sparing latissimus dorsi flaps were harvested. All flaps had a bifurcation of the thoracodorsal artery. The average was located at 5,1cm from posterior axillary side (from 2,1 to 7,5 cm) and average of 2,2 cm from the anterior side of latissimus dorsi muscle (from 1,3 to 3,1cm). To 5, 10 and 15 cm from posterior axillary side, the descending branch was located at respectively an average of 2,0 cm (from 1,4 to 2,5), 2,4 cm (from 1,3 to 3,3), and 2,9 cm (from 2,0 to 3,8) behind the anterior side of latissimus dorsi muscle. The average length of descending branch was measured at 15,2 cm (from 13,2 to 19,0). None clinical cases paddle suffering was observed. Donor site morbidity was less than classical or extended adipomuscular technique. Latissimus dorsi muscle function is spared. The muscle-sparing latissimus dorsi flap, pedicled on descending branch, is versatile and reproducible. It results in minimal functional deficit of the donor site, absence of seroma, large freedom of orientation of the skin paddle, low rate of flap complications, and a cosmetically acceptable scar. There are a lot of indications in breast reconstruction. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Seele, Roman; Graff, Emilio; Lin, John; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.
Investigation of the Vortex Tab. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hoffler, K. D.
1985-01-01
An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.
NASA Technical Reports Server (NTRS)
Spreemann, Kenneth P; Kuhn, Richard E
1956-01-01
An investigation was conducted in order to determine the effectiveness of blowing a jet of air over the flaps of a wing equipped with a 50-percent-chord sliding flap and a 25-percent-chord plain flap in deflecting a propeller slipstream downward for vertical take-off and the results are presented herein. The effects of a leading-edge slat, ground proximity, end plate, and propeller position were also investigated. The tests were conducted in a static-thrust facility at the Langley Aeronautical Laboratory.
Incremental wind tunnel testing of high lift systems
NASA Astrophysics Data System (ADS)
Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu
2016-06-01
Efficiency of trailing edge high lift systems is essential for long range future transport aircrafts evolving in the direction of laminar wings, because they have to compensate for the low performance of the leading edge devices. Modern high lift systems are subject of high performance requirements and constrained to simple actuation, combined with a reduced number of aerodynamic elements. Passive or active flow control is thus required for the performance enhancement. An experimental investigation of reduced kinematics flap combined with passive flow control took place in a low speed wind tunnel. The most important features of the experimental setup are the relatively large size, corresponding to a Reynolds number of about 2 Million, the sweep angle of 30 degrees corresponding to long range airliners with high sweep angle wings and the large number of flap settings and mechanical vortex generators. The model description, flap settings, methodology and results are presented.
Experimental study of the effect on span loading on aircraft wakes
NASA Technical Reports Server (NTRS)
Corsiglia, V. R.; Rossow, V. J.; Ciffone, D. L.
1975-01-01
Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake.
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua
NASA Technical Reports Server (NTRS)
2002-01-01
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.
NASA Technical Reports Server (NTRS)
Renselaer, D. J.; Nishida, R. S.; Wilkin, C. A.
1975-01-01
The results and analyses of aerodynamic and acoustic studies conducted on the small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts are presented. Various types of nozzle flap concepts were tested. These are an upper surface blowing concept with a multiple slot arrangement with seven slots (seven slotted nozzle), an upper surface blowing type with a large nozzle exit at approximately mid-chord location in conjunction with a powered trailing edge flap with multiple slots (split flow or partially slotted nozzle). In addition, aerodynamic tests were continued on a similar multi-slotted nozzle flap, but with 14 slots. All three types of nozzle flap concepts tested appear to be about equal in overall aerodynamic performance but with the split flow nozzle somewhat better than the other two nozzle flaps in the landing approach mode. All nozzle flaps can be deflected to a large angle to increase drag without significant loss in lift. The nozzle flap concepts appear to be viable aerodynamic drag modulation devices for landing.
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved...) For airplanes with flaps or slats that are not subjected to slipstream conditions, the structure must...
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved...) For airplanes with flaps or slats that are not subjected to slipstream conditions, the structure must...
2004-03-12
KENNEDY SPACE CENTER, FLA. - The body flap is installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - The body flap is installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Leading-edge vortex research: Some nonplanar concepts and current challenges
NASA Technical Reports Server (NTRS)
Campbell, J. F.; Osborn, R. F.
1986-01-01
Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts.
NASA Technical Reports Server (NTRS)
Quigley, Hervey C.; Anderson, Seth B.; Innis, Robert C.
1960-01-01
A flight investigation has been conducted to study how pilots use the high lift available with blowing-type boundary-layer control applied to the leading- and trailing-edge flaps of a 45 deg. swept-wing airplane. The study includes documentation of the low-speed handling qualities as well as the pilots' evaluations of the landing-approach characteristics. All the pilots who flew the airplane considered it more comfortable to fly at low speeds than any other F-100 configuration they had flown. The major improvements noted were the reduced stall speed, the improved longitudinal stability at high lift, and the reduction in low-speed buffet. The study has shown the minimum comfortable landing-approach speeds are between 120.5 and 126.5 knots compared to 134 for the airplane with a slatted leading edge and the same trailing-edge flap. The limiting factors in the pilots' choices of landing-approach speeds were the limits of ability to control flight-path angle, lack of visibility, trim change with thrust, low static directional stability, and sluggish longitudinal control. Several of these factors were found to be associated with the high angles of attack, between 13 deg. and 15 deg., required for the low approach speeds. The angle of attack for maximum lift coefficient was 28 deg.
Xuan, Feng; Lee, Chun-Ui; Son, Jeong-Seog; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho
2014-09-01
Previous studies have shown that the subperiosteal tunneling procedure in vertical ridge augmentation accelerates healing after grafting and prevents graft exposure, with minor postoperative complications. It is conceivable that new bone formation would be greater with the tunneling procedure than with the flap procedure, because the former is minimally invasive. This hypothesis was tested in this study by comparing new bone formation between the flap and tunneling procedures after vertical ridge augmentation using xenogenous bone blocks in a canine mandible model. Two Bio-Oss blocks were placed on the edentulous ridge in each side of the mandibles of 6 mongrel dogs. The blocks in each side were randomly assigned to grafting with a flap procedure (flap group) or grafting with a tunneling procedure (tunneling group). The mean percentage of newly formed bone within the block was 15.3 ± 6.6% in the flap group and 46.6 ± 23.4% in the tunneling group. Based on data presented in this study, when a tunneling procedure is used to place xenogenous bone blocks for vertical ridge augmentation, bone formation in the graft sites is significantly greater than when a flap procedure is used. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Unit Advancement Flap for Lower Lip Reconstruction.
Ogino, Akihiro; Onishi, Kiyoshi; Okada, Emi; Nakamichi, Miho
2018-05-01
Lower lip reconstruction requires consideration of esthetic and functional outcome in selecting a surgical procedure, and reconstruction with local tissue is useful. The authors reconstructed full-thickness defects with a unit advancement flap. Reconstruction was performed using this method in 4 patients with lower lip squamous cell carcinoma in whom tumor resection with preservation of the mouth angle was possible. The lower lip resection width was 30 to 45 mm, accounting for 50% to 68% of the entire width of the lower lip. The flap was prepared by lateral extension from above the mental unit and matched with the potential wrinkle line of the lower lip in order to design a unit morphology surrounded by the anterior margin of the depressor labii inferioris muscle. It was elevated as a full-thickness flap composed of the orbicularis oris muscle, skin, and mucosa of the residual lower lip from the bilateral sides, and advanced to the defect. Flap transfer was adjusted by small triangular resection of the skin on the lateral side of the mental unit. The postoperative scar was inconspicuous in all patients and there was no impairment of the mouth opening-closing or articulation functions. This was a relatively simple surgical procedure. A blood supply of the flap was stable, and continuity of the orbicularis oris muscle was reconstructed by transferred the residual lower lip advancement flap from the bilateral sides. The postoperative mouth opening-closing function was sufficient, and dentures could be placed from an early phase in elderly patients. The postoperative scar was consistent with the lip unit morphology, being esthetically superior. This procedure may be applicable for reconstruction of defects approximately 1/3 to 2/3 the width of the lower lip where the mouth angle is preserved.
Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight-testing performed on the unconventional ACTE flaps.
SMART Rotor Development and Wind-Tunnel Test
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry
2009-01-01
Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.
Subsonic wind-tunnel measurements of a slender wing-body configuration employing a vortex flap
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1987-01-01
A wind tunnel study at Mach 0.4 was conducted for a slender wing-body configuration with a leading edge vortex flap of curved planform that is deflectable about a 74 degree swept hinge line. The basic data consist of a unique combination of longitudinal aerodynamic, surface pressure, and vortex flap hinge-moment measurements on a common model. The longitudinal aerodynamic, pressure and hinge-moment data are presented without analysis in tabular format. Plots of the tabulated pressure data are also given.
Flexible wings in flapping flight
NASA Astrophysics Data System (ADS)
Moret, Lionel; Thiria, Benjamin; Zhang, Jun
2007-11-01
We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.
A dynamic spar numerical model for passive shape change
NASA Astrophysics Data System (ADS)
Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.
2016-10-01
A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.
DETAIL OF UNDERSIDE OF RIGHT WING. AFTER DOCKING, THE FIRST ...
DETAIL OF UNDERSIDE OF RIGHT WING. AFTER DOCKING, THE FIRST STEP IN MAINTENANCE IS TO OPEN UP THOSE AREAS OF THE AIRCRAFT THAT REQUIRE SERVICING. IN THIS VIEW WING SLATS, KRUGER FLAPS, AND TRAILING EDGE FLAPS ARE ALL DOWN; THRUST REVERSERS ARE IN THE OPEN POSITION; ENGINE COWLING IS OPEN. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY
Reconstruction of soft tissue after complicated calcaneal fractures.
Koski, E Antti; Kuokkanen, Hannu O M; Koskinen, Seppo K; Tukiainen, Erkki J
2004-01-01
A total of 35 flap reconstructions were done to cover exposed calcaneal bones in 31 patients. All patients had calcaneal fractures, 19 of which were primarily open. Soft tissue reconstruction for the closed fractures was indicated by a postoperative wound complication. A microvascular flap was used for reconstruction in 21 operations (gracilis, n = 11; anterolateral thigh, n = 5; rectus abdominis, n = 3; and latissimus dorsi, n = 2). A suralis neurocutaneous flap was used in eight, local muscle flaps in three, and local skin flaps in three cases. The mean follow-up time was 14 months (range 3 months-4 years). One suralis flap failed and was replaced by a latissimus dorsi flap. Necrosis of the edges that required revision affected three flaps. Deep infection developed in two patients and delayed wound healing in another four. During the follow-up the soft tissues healed in all patients and there were no signs of calcaneal osteitis. Flaps were considered too bulky in five patients. Soft tissues heal most rapidly with microvascular flaps. In the long term, gracilis muscle covered with free skin grafts gives a good contour to the foot. The suralis flap is reliable and gives a good final aesthetic outcome. Local muscles can be transposed for reconstruction in small defects.
An analytical model and scaling of chordwise flexible flapping wings in forward flight.
Kodali, Deepa; Kang, Chang-Kwon
2016-12-13
Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.
Influence of Finite Span and Sweep on Active Flow Control Efficacy
NASA Technical Reports Server (NTRS)
Greenblatt, David; Washburn, Anthony E.
2008-01-01
Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.
NASA Technical Reports Server (NTRS)
Millott, T. A.; Friedmann, P. P.
1994-01-01
This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.
NASA Technical Reports Server (NTRS)
Cole, T. W.; Rathburn, E. A.
1974-01-01
A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.
Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.
Ribak, Gal
2017-01-01
Intraspecific variation in adult body mass can be particularly high in some insect species, mandating adjustment of the wing's structural properties to support the weight of the larger body mass in air. Insect wings elastically deform during flapping, dynamically changing the twist and camber of the relatively thin and flat aerofoil. We examined how wing deformations during free flight scale with body mass within a species of rose chafers (Coleoptera: Protaetia cuprea) in which individuals varied more than threefold in body mass (0.38–1.29 g). Beetles taking off voluntarily were filmed using three high-speed cameras and the instantaneous deformation of their wings during the flapping cycle was analysed. Flapping frequency decreased in larger beetles but, otherwise, flapping kinematics remained similar in both small and large beetles. Deflection of the wing chord-wise varied along the span, with average deflections at the proximal trailing edge higher by 0.2 and 0.197 wing lengths compared to the distal trailing edge in the downstroke and the upstroke, respectively. These deflections scaled with wing chord to the power of 1.0, implying a constant twist and camber despite the variations in wing and body size. This suggests that the allometric growth in wing size includes adjustment of the flexural stiffness of the wing structure to preserve wing twist and camber during flapping. PMID:29134103
Meresman, Yonatan; Ribak, Gal
2017-10-01
Intraspecific variation in adult body mass can be particularly high in some insect species, mandating adjustment of the wing's structural properties to support the weight of the larger body mass in air. Insect wings elastically deform during flapping, dynamically changing the twist and camber of the relatively thin and flat aerofoil. We examined how wing deformations during free flight scale with body mass within a species of rose chafers (Coleoptera: Protaetia cuprea ) in which individuals varied more than threefold in body mass (0.38-1.29 g). Beetles taking off voluntarily were filmed using three high-speed cameras and the instantaneous deformation of their wings during the flapping cycle was analysed. Flapping frequency decreased in larger beetles but, otherwise, flapping kinematics remained similar in both small and large beetles. Deflection of the wing chord-wise varied along the span, with average deflections at the proximal trailing edge higher by 0.2 and 0.197 wing lengths compared to the distal trailing edge in the downstroke and the upstroke, respectively. These deflections scaled with wing chord to the power of 1.0, implying a constant twist and camber despite the variations in wing and body size. This suggests that the allometric growth in wing size includes adjustment of the flexural stiffness of the wing structure to preserve wing twist and camber during flapping.
Chen, Jin; Wang, Zhaohui; Tang, Tao; Li, Chunhua; Cai, Yongcong
2015-12-01
To explore the value of free latissimus dorsimyocutaneous flap in repairing severe defect of head and neck after resection of tumor. Free latissimus dorsimyocutaneous flap was used to repair defect after resection of tumor in 12 patients (13 sides) with head and neck tumors. Of them 2 cases underwent radical radiotherapy before operation. and 3 cases received adjuvant radiotherapy postoperatively. Aside from one flap with necrosis, other 12 flaps survived after operation including 5 cases with radiotherapy. Free latissimus dorsimyocutaneous flap can afford large tissue, has reliable blood supply, is easy to survive, and resist to radiotherapy, which is fit for repairing severe defect of head and neck.
Lingual nerve damage after mandibular third molar surgery: a randomized clinical trial.
Gomes, Ana Cláudia Amorim; Vasconcelos, Belmiro Cavalcanti do Egito; de Oliveira e Silva, Emanuel Dias; da Silva, Luiz Carlos Ferreira
2005-10-01
The objective of this study was to clinically evaluate the frequency, type, and risk factors for lingual nerve damage after mandibular third molar surgery with reference to lingual flap retraction. A total of fifty-five patients referred for bilateral mandibular third molar removal were included in this study. Each patient was randomly allotted to have the procedure performed on 1 side (experimental group) with lingual flap retraction. On the opposite side (control group), the same procedure was performed without lingual flap retraction. Lingual nerve damage occurred in 9.1% in the experimental group in which lingual flap retraction was performed. In the control group, damage to the lingual nerve was not observed. The difference was statistically significant (P <.001) as measured by the Cochran test. Lingual nerve retraction represented a risk factor to temporary lingual nerve damage during mandibular third molar surgery.
The gust-mitigating potential of flapping wings.
Fisher, Alex; Ravi, Sridhar; Watkins, Simon; Watmuff, Jon; Wang, Chun; Liu, Hao; Petersen, Phred
2016-08-02
Nature's flapping-wing flyers are adept at negotiating highly turbulent flows across a wide range of scales. This is in part due to their ability to quickly detect and counterract disturbances to their flight path, but may also be assisted by an inherent aerodynamic property of flapping wings. In this study, we subject a mechanical flapping wing to replicated atmospheric turbulence across a range of flapping frequencies and turbulence intensities. By means of flow visualization and surface pressure measurements, we determine the salient effects of large-scale freestream turbulence on the flow field, and on the phase-average and fluctuating components of pressure and lift. It is shown that at lower flapping frequencies, turbulence dominates the instantaneous flow field, and the random fluctuating component of lift contributes significantly to the total lift. At higher flapping frequencies, kinematic forcing begins to dominate and the flow field becomes more consistent from cycle to cycle. Turbulence still modulates the flapping-induced flow field, as evidenced in particular by a variation in the timing and extent of leading edge vortex formation during the early downstroke. The random fluctuating component of lift contributes less to the total lift at these frequencies, providing evidence that flapping wings do indeed provide some inherent gust mitigation.
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.; Kjelgaard, S. O.
1983-01-01
The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.
Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal Flap—Conditions for Tissue Adhesion
Littlechild, Stacy L.; Brummer, Gage; Zhang, Yuntao; Conrad, Gary W.
2012-01-01
Purpose. Laser-assisted in situ keratomileus (LASIK) creates a permanent flap that remains non-attached to the underlying laser-modified stroma. This lack of permanent adhesion is a liability. To immobilize a corneal flap, a protocol using fibrinogen (FIB), riboflavin (RF), and ultraviolet (UVA) light (FIB+RF+UVA) was devised to re-adhere the flap to the stroma. Methods. A model flap was created using rabbit (Oryctolagus cuniculus) and shark (Squalus acanthias) corneas. Solutions containing FIB and RF were applied between corneal strips as glue. Experimental corneas were irradiated with long wavelength (365 nm) UVA. To quantify adhesive strength between corneal strips, the glue-tissue interface was subjected to a constant force while a digital force gauge recorded peak tension. Results. In the presence of FIB, substantive non-covalent interactions occurred between rabbit corneal strips. Adhesiveness was augmented if RF and UVA also were applied, suggesting formation of covalent bonds. Additionally, exposing both sides of rabbit corneas to UVA generated more adhesion than exposure from one side, suggesting that RF in the FIB solution catalyzes formation of covalent bonds at only the interface between stromal molecules and FIB closest to the UVA. In contrast, in the presence of FIB, shark corneal strips interacted non-covalently more substantively than those of rabbits, and adhesion was not augmented by applying RF+UVA, from either or both sides. Residual RF could be rinsed away within 1 hour. Conclusions. Glue solution containing FIB and RF, together with UVA treatment, may aid immobilization of a corneal flap, potentially reducing risk of flap dislodgement. PMID:22589434
NASA Technical Reports Server (NTRS)
Kuhn, Richard E
1957-01-01
Results are presented of an investigation of the effectiveness of a wing equipped with a 50-percent-chord sliding flap and a 30-percent-chord slotted flap in deflecting a propeller slipstream downward for vertical take-off. Tests were conducted at zero forward speed in a large room and included the effects of flap deflection, proximity to the ground, a leading-edge slat, and end plates. A turning angle of about 70 degrees and a resultant force of about 100 percent of the thrust were achieved near the ground. Out of the ground-effect region, the turning angle was also about 70 degrees but the resultant force was reduced to about 86 percent of the thrust.
NASA Astrophysics Data System (ADS)
Tongchitpakdee, Chanin
With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved. Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.
Radu, Maria D; Räber, Lorenz; Heo, Jungho; Gogas, Bill D; Jørgensen, Erik; Kelbæk, Henning; Muramatsu, Takashi; Farooq, Vasim; Helqvist, Steffen; Garcia-Garcia, Hector M; Windecker, Stephan; Saunamäki, Kari; Serruys, Patrick W
2014-01-22
Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections--particularly non-flow-limiting--compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.
Chordwise implementation of pneumatic artificial muscles to actuate a trailing edge flap
NASA Astrophysics Data System (ADS)
Vocke, R. D., III; Kothera, C. S.; Wereley, N. M.
2018-07-01
This work describes the theoretical design and experimental validation of a rotorcraft-specific trailing edge flap powered by pneumatic artificial muscle actuators. The actuators in this work are co-located outboard on the rotor blade with the flap and arranged with a chordwise orientation where diameter and length restrictions can severely limit the operating range of the system. Techniques for addressing this configuration, such as introducing a bias contraction and mechanism optimization, are discussed and a numerical optimization is performed for an actuation system sized for implementation on a medium utility helicopter rotor. The optimized design achieves ±10° of deflection at 1/rev, and maintains at least ±2° half peak-to-peak deflection out to 10/rev, indicating that the system has the actuation authority and bandwidth necessary for both primary control and vibration/noise reduction. Portions of this paper were presented at the AHS 70th Annual Forum, Montréal, Québec, Canada, May 20–22, 2014.
Sukhovatykh, B S; Valuyskaya, N M; Gerasimchuk, E V
2015-01-01
The results of complex clinical and ultrasonic investigation of abdominal wall and following surgical treatment in 60 women with umbilical and postoperative large ventral hernias combined with abdomen ptosis were analyzed. Patients were divided into 2 groups with 30 people per group. Endoprosthetic replacement of abdominal wall defect using standard polypropylene prosthesis was applied in the 1st group, endoprosthetic replacement with musculoaponeurotic tissues lifting in hypogastric area using original super lightweight polypropylenepolyvinylidenefluoride prosthesis--in the 2nd group. Polypropylene endoprosthesisconsist of main flap 15×15 cm with roundish edges and additional flap 5×40 cm in the form of wide stripe placed at the lower edge of main flap transversely to its direction. It was revealed increased physical health component in 1.8 times, psychic--in 2.5 times in the 2nd group. Thus number of excellent results increased on 33.3% and amount of satisfactory outcomes reduced on 30%.
The effects of gusts on the fluctuating airloads of airfoils in transonic flow
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1984-01-01
Unsteady interactions of distributed and sharp-edged gusts with a stationary airfoil have been analyzed in two-dimensional transonic flow.A simple method of introducing such disturbances has been numerically implemented within the framework of unsteady, transonic small-disturbance theory. Representative solutions for various airfoils subjected to chordwise and transverse gusts show that the strength and unsteady motion of the shock wave on the airfoil significantly affect the flowfield development and, consequently, the dynamic airloads. Also a study was made of the reductions in the unsteady airloads that can be achieved by the proper active control motion of a trailing-edge flap, and a simple gust-alleviation strategy was developed. However, the chordwise pressure distributions associated with gusts are very different from those produced by trailing-edge flap oscillations. Consequently, the fluctuating lift and the unsteady pitching moments cannot both be eliminated simultaneously.
Wind-tunnel tests of a Clark Y wing with 'Maxwell' leading-edge slots
NASA Technical Reports Server (NTRS)
Gauvain, William E
1937-01-01
Aerodynamic force tests of a Clark Y wing equipped with "Maxwell" type leading-edge slots were conducted in the N.A.C.A. 7- by 10-foot tunnel to ascertain the aerodynamic characteristics, which involved the determination of the best slot-gap opening, the effects of slat width, and the effect of a trailing-edge flap. The Maxwell wing with a wide-chord slat (0.30 c(sub w)) and with a 0.211 c(sub w) split flap deflected 60 degrees had a C(sub L sub max) of 2.53 or about twice that of the plain wing. The wing with the wide slat also had, in general, improved aerodynamic characteristics over those of the Maxwell wing with slat, and had about the same aerodynamic characteristics as a Handley Page slotted wing with approximately the same size of slat.
Full-scale semispan tests of a business-jet wing with a natural laminar flow airfoil
NASA Technical Reports Server (NTRS)
Hahne, David E.; Jordan, Frank L., Jr.
1991-01-01
A full-scale semispan model was investigated to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing that utilized the HSNLF(1)-0213 airfoil section and a single-slotted flap system. Also, boundary-layer transition effects were examined, a segmented leading-edge droop for improved stall/spin resistance was studied, and two roll-controlled devices were evaluated. The wind-tunnel investigation showed that deployment of single-slotted, trailing-edge flap was effective in providing substantial increments in lift required for takeoff and landing performance. Fixed-transition studies to investigate premature tripping of the boundary layer indicated no adverse effects in lift and pitching-moment characteristics for either the cruise or landing configuration. The full-scale results also suggested the need to further optimize the leading-edge droop design that was developed in the subscale tests.
Manela, A; Huang, L
2013-04-01
Acoustic signature of a rigid wing, equipped with a movable downstream flap and interacting with a line vortex, is studied in a two-dimensional low-Mach number flow. The flap is attached to the airfoil via a torsion spring, and the coupled fluid-structure interaction problem is analyzed using thin-airfoil methodology and application of the emended Brown and Michael equation. It is found that incident vortex passage above the airfoil excites flap motion at the system natural frequency, amplified above all other frequencies contained in the forcing vortex. Far-field radiation is analyzed using Powell-Howe analogy, yielding the leading order dipole-type signature of the system. It is shown that direct flap motion has a negligible effect on total sound radiation. The characteristic acoustic signature of the system is dominated by vortex sound, consisting of relatively strong leading and trailing edge interactions of the airfoil with the incident vortex, together with late-time wake sound resulting from induced flap motion. In comparison with the counterpart rigid (non-flapped) configuration, it is found that the flap may act as sound amplifier or absorber, depending on the value of flap-fluid natural frequency. The study complements existing analyses examining sound radiation in static- and detached-flap configurations.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility help move the body flap into position on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A worker on a ladder (lower left) observes installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers on ladders (left and right) check installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap for the orbiter Discovery is prepared for installation. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers on ladders (left and right) check installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Beustes-Stefanelli, Matthieu; O'Toole, Greg; Schertenleib, Pierre
2015-04-01
Nasolabial flaps based on the lateral side of the nose for the reconstruction of lateral nasal defects in a single-stage procedure have been described. Similarly, in midline defects, nasolabial flaps can be used but a 2-stage procedure is classically required. The Midline-based Nasolabial Transposition (MNT) flap is presented as a new single-stage procedure for nasal tip reconstruction. Between 2009 and 2011, an MNT flap was used as a single-stage procedure in 3 cases of large nasal defects of the tip where the forehead flap was either contraindicated or rejected as an option by the patient. There were no complications and a satisfactory aesthetic result was achieved in all cases. The MNT flap is a new single-stage procedure for large nasal tip defects and as such represents an interesting alternative to the classical 2-stage forehead and nasolabial flaps, especially in elderly patients.
NASA Astrophysics Data System (ADS)
Dougherty, Daniel A.
A wind tunnel tat of a tailless aircraft configuration that has been quipped with a belly-flap control surface, was conducted with the goal of improving the trimmed maximum-lift coefficient. Tailless aircraft have aerodynamic and structural efficiencies that are superior to those of a traditionally configured wing/body/tail aircraft. However, tailless aircraft have a low maximum-lift coefficient such that; when sized for equivalent takeoff performance, the tailless aircraft suffers a large reduction in aerodynamic and structural efficiencies. A Belly-Flap control surface used in combination with wing trailing edge flaps was tested in a wind tunnel with the goal of achieving a longitudinally trimmed solution at a higher maximum lift coefficient. It was determined that, though the Belly-Flap increases the trimmed lift of the tailless configuration at low angles of attack, the maximum lift coefficient is slightly reduced in relation to the controls neutral configuration.
Power performance optimization and loads alleviation with active flaps using individual flap control
NASA Astrophysics Data System (ADS)
Pettas, Vasilis; Barlas, Thanasis; Gertz, Drew; Madsen, Helge A.
2016-09-01
The present article investigates the potential of Active Trailing Edge Flaps (ATEF) in terms of increase in annual energy production (AEP) as well as reduction of fatigue loads. The basis for this study is the DTU 10 MW Reference Wind Turbine (RWT) simulated using the aeroelastic code HAWC2. In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple and applicable method that can be a technology enabler for rotor upscaling and lowering cost of energy.
NASA Technical Reports Server (NTRS)
Greenblatt, David
2005-01-01
A wind tunnel investigation was carried out on a semi-span wing model to assess the feasibility of controlling vortices emanating from outboard flaps and tip-flaps by actively varying the degree of boundary layer separation. Separation was varied by means of perturbations produced from segmented zero-efflux oscillatory blowing slots, while estimates of span loadings and vortex sheet strengths were obtained by integrating wing surface pressures. These estimates were used as input to inviscid rollup relations as a means of predicting changes to the vortex characteristics resulting from the perturbations. Surveys of flow in the wake of the outboard and tip-flaps were made using a seven-hole probe, from which the vortex characteristics were directly deduced. Varying the degree of separation had a marked effect on vortex location, strength, tangential velocity, axial velocity and size for both outboard and tip-flaps. Qualitative changes in vortex characteristics were well predicted by the inviscid rollup relations, while the failure to account for viscosity was presumed to be the main reason for observed discrepancies. Introducing perturbations near the outboard flap-edges or on the tip-flap exerted significant control over vortices while producing negligible lift excursions.
NASA Technical Reports Server (NTRS)
1979-01-01
Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Evaluation of two flap designs on the mandibular second molar after third molar extractions
Alqahtani, Nabeeh A; Khaleelahmed, S; Desai, Farheen
2017-01-01
Background: The extraction of third molars is associated with some clinical outcomes and periodontal problems. It is imperative to note that the type of incision used in the surgery for the removal of the impacted third molar is critical. The design of the flap influences the healing of the surgically created defect and damage to the distal periodontal area of the adjacent second molar. However, till date, there have been conflicting reports on the influence of different flap designs used for the surgical removal of impacted third molars. Aim: The present study aimed to comparatively evaluate the clinical outcomes and periodontal status of the adjacent second molar, when two different flap designs, namely, the envelope and the modified triangular flap designs were used. Materials and Methods: Sixty female patients with bilateral impacted third molars completed the study with envelope flap on one side and modified triangular flap design on the other side of the mandible for third molar removal. Clinical parameters including pain, dehiscence and swelling were assessed postoperatively and periodontal probing depth (PPD) on the distal aspect of adjacent second molar were assessed both pre- and post-operatively. Results: The results were assessed on 1, 3 and 8 days for pain using visual analog scale. The subjective perception of swelling was evaluated on 3, 7 and 15 days postoperatively in a similar manner. The results of the periodontal parameters were evaluated both preoperatively and 3 months postoperatively, with cautious exploration using a University of North Carolina (UNC)-15 periodontal probe. The statistically significant results for swelling and PPD were noted for the two flap groups using the Chi-square test (P < 0.05). Conclusion: The study revealed that the modified triangular flap had lesser postoperative PPDs and dehiscence. The envelope flap was better when swelling was analyzed. The pain scores, though slightly higher for the modified triangular flap group, were not statistically significant. PMID:28932049
Aerodynamic characteristics of a small-scale straight and swept-back wing with knee-blown jet flaps
NASA Technical Reports Server (NTRS)
Morehouse, G. G.; Eckert, W. T.; Boles, R. A.
1977-01-01
Two sting-mounted, 50.8 cm (20 in.) span, knee-blown, jet-flap models were tested in a large (2.1- by 2.5-m (7- by 10-ft) subsonic wind tunnel. A straight- and swept-wing model were tested with fixed flap deflection with various combinations of full-span leading-edge slats. The swept-wing model was also tested with wing tip extensions. Data were taken at angles-of-attack between 0 deg and 40 deg, at dynamic pressures between 143.6 N/sq m (3 lb/sq ft) and 239.4 N/sq m (5 lb/sq ft), and at Reynolds numbers (based on wing chord) ranging from 100,000 to 132,000. Jet flap momentum blowing coefficients up to 10 were used. Lift, drag, and pitching-moment coefficients, and exit flow profiles for the flap blowing are presented in graphical form without analysis.
Bendon, Charlotte L; Giele, Henk P
2016-07-01
Traditionally, in free flap cover of lower limb injuries, every attempt is made to perform anastomoses proximal to the zone of injury. We report on the success of anastomoses within the zone of trauma, at the level of the fracture, avoiding further dissection and exposure. The records of free flap reconstructions for fractures of the lower extremity at a tertiary trauma centre between 2004 and 2010 were retrospectively reviewed. A total of 48 lower limb fractures required free flap reconstruction, performed at 28 days post injury (0-275 days). Anastomoses were proximal (21), distal (5) or within the zone of trauma (22). There was no significant difference (p > 0.05) in return to theatre, revision of anastomosis or flap survival between groups. Of the 22 performed within the zone of injury, five returned to theatre but only two for revision of anastomosis and 20 (91%) of these flaps survived. Of the 48 free flaps, arterial anastomoses were end to end in 34 (71%) and end to side in 14 (30%). There was no significant difference (p > 0.05) in return to theatre, revision of anastomosis or flap survival between the end-to-end and end-to-side groups. There was a tendency for arterial anastomoses to be performed end to end outside the zone of trauma (23/26) compared to within the zone of trauma (11/22). Our data suggest that free flap anastomoses can be performed safely in the zone of trauma in lower limb injuries. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Horn, Nicholas R.
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.
AFTI/F-111 MAW flight control system and redundancy management description
NASA Technical Reports Server (NTRS)
Larson, Richard R.
1987-01-01
The wing on the NASA F-111 transonic aircraft technology (TACT) airplane was modified to provide flexible leading and trailing edge flaps; this modified wing is known as the mission adaptive wing (MAW). A dual digital primary fly-by-wire flight control system was developed with analog backup reversion for redundancy. This report discusses the functions, design, and redundancy management of the flight control system for these flaps.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility lean toward the body flap to be installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap is moved into position for installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A Hyster forklift in the Orbiter Processing Facility lifts the body flap to be installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility help prepare the body flap for lifting prior to installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap is moved into position for installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A Hyster forklift in the Orbiter Processing Facility moves the body flap toward the aft of the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, A Hyster forklift supports the body flap as workers secure it to the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Airfoil/Wing Flow Control Using Flexible Extended Trailing Edge
2009-02-27
and (b) Power spectrums of drag coefficient Figure 4. Mean velocity profiles O Baseline NACA0012. AoA 18 deg c Baseline NACA0012. AoA 20...dynamics, (a) fin amplitude and (b) power spectrum of fin amplitude Development of Computational Tools Simulations of the time-dependent deformation of...combination of experimental, computational and theoretical methods. Compared with Gurney flap and conventional flap, this device enhanced lift at a smaller
Management of Vortices Trailing Flapped Wings via Separation Control
NASA Technical Reports Server (NTRS)
Greenblatt, David
2005-01-01
A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.
Chen, Q Z; Sun, Y C; Chen, J; Kong, J; Gong, Y P; Mao, T
2015-11-01
This retrospective study was designed to compare functional and cosmetic outcomes of the reverse digital artery island flap and reverse dorsal homodigital island flap in fingertip repair. A total of 23 patients were followed for 24 to 30 months. The reverse digital artery island flap was used in 12 patients, and reverse dorsal homodigital island flap in another 11 patients. Flap sensibility was assessed using the Semmes-Weinstein monofilament test and static 2-point discrimination test. Patient satisfaction, active motion of the finger joints, complications and cold intolerance were evaluated. The static 2-point discrimination and Michigan Hand Outcomes Questionnaire (appearance) of the fingers treated with a reverse digital artery flap were significantly better than those with a reverse dorsal homodigital flap. The static 2-point discrimination of the skin-grafted donor sides after dorsal homodigital flap were poorer than that in the contralateral finger. No significant differences were found between the two flaps for pressure or touch sensibility, active ranges of digital motion, complications and cold intolerance. III. © The Author(s) 2015.
Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas
2008-01-01
The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.
NASA Astrophysics Data System (ADS)
Lin, Yung-Sheng; Tzeng, Yau-Ting; Chang, Chien-Cheng; Chu, Chin-Chou
2017-11-01
A numerical study is conducted to investigate the force mechanisms for a 3D heaving flexible plate from the perspective of a diagnostic force element analysis (Chang 1992). The problem is relevant to a simplified flapping fish-tail with the front edge held fixed in space. The flow is assumed to be laminar with the Reynolds numbers fixed at Re =200 or 500, and the Strouhal number St ranging from 0.1 to 0.6, and the flexure amplitude of the plate a0 for 0.1 to 0.25 (dimensionless). It is shown that heaving, whilst increasing thrust generation, also reduces the frictional drag, yet the flexibility promotes thrust generation at the expense of accruing more frictional drag. In the literature, the thrust exerted on the tail-mimicking plate is largely credited to the vortices in the wake. However, this study performs a regional force analysis to show that the vorticity in the wake region supplies approximately 20-30% of the total thrust, especially in the cases of strong thrust generation. Comparable contributions come also from the regions direct above and below the heaving plate (mainly including the attached vortices) as well as from the two side regions (mainly including the tip vortices) next to the flapping plate. In addition, the potential motion associated with the unsteady flapping and the contribution from the surface vorticity are non-negligible constituent force components. MOST, TAIWAN under Contacts NO. 105-2221-E-002-097-MY3 and NO. 105-2221-E-002 -105 -MY3.
Numerical and experimental investigations on unsteady aerodynamics of flapping wings
NASA Astrophysics Data System (ADS)
Yu, Meilin
The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.
Herr, Yeek; Kwon, Young-Hyuk; Kim, Seong-Hun; Kim, Eun-Cheol
2014-01-01
This prospective randomized split-mouth study was performed to examine the effects of absorbable collagen membrane (ACM) application in augmented corticotomy using deproteinized bovine bone mineral (DBBM), during orthodontic buccal tipping movement in the dog. After buccal circumscribing corticotomy and DBBM grafting into the decorticated area, flaps were repositioned and sutured on control sides. ACM was overlaid and secured with membrane tacks, on test sides only, and the flaps were repositioned and sutured. Closed coil springs were used to apply 200 g orthodontic force in the buccolingual direction on the second and third premolars, immediately after primary flap closure. The buccal tipping angles were 31.19 ± 14.60° and 28.12 ± 11.48° on the control and test sides, respectively. A mean of 79.5 ± 16.0% of the buccal bone wall was replaced by new bone on the control side, and on the test side 78.9 ± 19.5% was replaced. ACM application promoted an even bone surface. In conclusion, ACM application in augmented corticotomy using DBBM might stimulate periodontal tissue reestablishment, which is useful for rapid orthodontic treatment or guided bone regeneration. In particular, ACM could control the formation of mesenchymal matrix, facilitating an even bone surface. PMID:25276824
Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.
NASA Astrophysics Data System (ADS)
Hage, W.; Meyer, R.; Bechert, D. W.
1997-11-01
In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.
Refined AFC-Enabled High-Lift System Integration Study
NASA Technical Reports Server (NTRS)
Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram
2016-01-01
A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed, as are AFC architecture aspects such as AFC unit placement, number AFC units, operating pressures, mass flow rates, and steady versus unsteady AFC applications. These efforts led to the development of a novel traversing AFC actuation concept which is efficient in that it reduces the AFC mass flow requirements by as much as an order of magnitude compared to previous AFC technologies, and it is predicted to be effective in driving the aerodynamic performance of a mechanical simplified high-lift system close to that of the reference conventional high-lift system. Conceptual system integration studies were conducted for the AFC-enhanced high-lift concept applied to a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. The results from these design integration assessments identify overall system performance improvement opportunities over conventional high-lift systems that suggest the viability of further technology maturation efforts for AFC-enabled high lift flap systems. To that end, technical challenges are identified associated with the application of AFC-enabled high-lift systems to modern transonic commercial transports for future technology maturation efforts.
Presentation of the acoustic and aerodynamic results of the Aladin 2 concept qualification testing
NASA Technical Reports Server (NTRS)
Collard, M.; Doyotte, C.; Sagner, M.
1985-01-01
Wind tunnel tests were conducted of a scale model of the Aladin 2 aircraft. The propulsion system configuration is described and the air flow caused by jet ejection is analyzed. Three dimensional flow studies in the vicinity of the engine installation were made. Diagrams of the leading and trailing edge flaps are provided. Graphs are developed to show the aerodynamic performance under conditions of various airspeed and flap deflection.
Lift enhancing tabs for airfoils
NASA Technical Reports Server (NTRS)
Ross, James C. (Inventor)
1994-01-01
A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.
NASA Technical Reports Server (NTRS)
Sharon, A. D.
1975-01-01
The results and analysis of aerodynamic force data obtained from a small scale model of a V/STOL research vehicle in a low speed wind tunnel are presented. The analysis of the data includes the evaluation of aerodynamic-propulsive lift performance when operating twin ejector nozzles with thrust deflected. Three different types of thrust deflector systems were examined: 90 deg downward deflected nozzle, 90 deg slotted nozzle with boundary layer control, and an externally blown flap configuration. Several nozzle locations were tested, including over and underwing positions. The interference lift of the nacelle and model due to jet exhaust thrust is compared and results show that 90 deg turned nozzles located over the wing (near the trailing edge) produce the largest interference lift increment for an untrimmed aircraft, and that the slotted nozzle located under the wing near the trailing edge (in conjunction with a BLC flap) gives a comparable interference lift in the trimmed condition. The externally blown flap nozzle produced the least interference lift and significantly less total lift due to jet thrust effects.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.
1990-01-01
Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).
Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft
NASA Technical Reports Server (NTRS)
Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David
1993-01-01
Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps
NASA Technical Reports Server (NTRS)
Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.
2010-01-01
Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Goodwin, F. K.; Spangler, S. B.
1976-01-01
A vortex lattice lifting-surface method is used to model the wing and multiple flaps. Each lifting surface may be of arbitrary planform having camber and twist, and the multiple-slotted trailing-edge flap system may consist of up to ten flaps with different spans and deflection angles. The engine wakes model consists of a series of closely spaced vortex rings with circular or elliptic cross sections. The rings are normal to a wake centerline which is free to move vertically and laterally to accommodate the local flow field beneath the wing and flaps. The two potential flow models are used in an iterative fashion to calculate the wing-flap loading distribution including the influence of the waves from up to two turbofan engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The calculation procedure starts with arbitrarily positioned wake centerlines and the iterative calculation continues until the total configuration loading converges within a prescribed tolerance. Program results include total configuration forces and moments, individual lifting-surface load distributions, including pressure distributions, individual flap hinge moments, and flow field calculation at arbitrary field points.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
Turbine blades and systems with forward blowing slots
Zuteck, Michael D.; Zalusky, Leigh; Lees, Paul
2015-09-15
A blade for use in a wind turbine comprises a pressure side and suction side meeting at a trailing edge and leading edge. The pressure side and suction side provide lift to the turbine blade upon the flow of air from the leading edge to the trailing edge and over the pressure side and suction side. The blade includes one or more openings at the suction side, in some cases between the leading edge and the trailing edge. The one or more openings are configured to provide a pressurized fluid towards the leading edge of the blade, in some cases at an angle between about 0.degree. and 70.degree. with respect to an axis oriented from a centerline of the blade toward the leading edge.
Performance of flapping airfoil propulsion with LBM method and DMD analysis
NASA Astrophysics Data System (ADS)
Li, Bing-Hua; Huang, Xian-Wen; Zheng, Yao; Xie, Fang-Fang; Wang, Jing; Zou, Jian-Feng
2018-05-01
In this work, the performance of flapping airfoil propulsion at low Reynolds number of Re = 100-400 is studied numerically with the lattice Boltzmann method (LBM). Combined with immersed boundary method (IBM), the LBM has been widely used to simulate moving boundary problems. The influences of the reduced frequency on the plunging and pitching airfoil are explored. It is found that the leading-edge vertex separation and inverted wake structures are two main coherent structures, which dominate the flapping airfoil propulsion. However, the two structures play different roles in the flow and the combination effects on the propulsion need to be clarified. To do so, we adopt the dynamic mode decomposition (DMD) algorithm to reveal the underlying physics. The DMD has been proven to be very suitable for analyzing the complex transient systems like the vortex structure of flapping flight.
Wind-tunnel Tests of a Hall High-life Wing
NASA Technical Reports Server (NTRS)
Weick, Fred E; Sanders, Robert
1932-01-01
Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.
A Non-linear Lifting Line Model for Design and Analysis of Trochoidal Propulsors
NASA Astrophysics Data System (ADS)
Roesler, Bernard; Epps, Brenden
2014-11-01
Flapping wing propulsors may increase the propulsive efficiency of large shipping vessels. A comparison of the design of a notional propulsor for a large shipping vessel with (a) a conventional ducted propeller versus (b) a flapping wing propulsor is presented. Calculations for flapping wing propulsors are performed using an open-source MATLAB software suite developed by the authors, CyROD, implementing an unsteady lifting-line model with free vortex wake roll-up to study the non-linear effects of foil-wake, and foil-foil interactions. Improvements to the traditional lifting line theory are made using further discretization of the wake vortex ring spacing near the trailing edge. Considerations of packaging options for a flapping wing propulsor on a large shipping vessel are presented, and compared with those for a conventional ducted propeller.
NASA Technical Reports Server (NTRS)
Kjelgaard, S. O.; Paulson, J. W., Jr.
1981-01-01
A wind tunnel investigation was conducted in the Langley 4 by 7 meter tunnel to determine the effects of leading edge sweep, aspect ratio, flap deflection, and elevon deflection on the longitudinal aerodynamic characteristics of a span distributed load advanced cargo aircraft (spanloader). Model configurations consisted of leading edge sweeps of 0, 15, 30 and 45 deg and aspect ratios of approximately 2, 4, 6, and 8. Data were obtained for angles of attack of -8 to 18 deg out of ground effect and at angles of attack of -2, 0, and 2 deg in ground effect at Mach number equal 0.14. Flap and elevon deflections ranged from -20 to 20 deg. The data are represented in tabulated form.
Full Scale Span Load Distribution on a Tapered Wing with Split Flaps of Various Spans
NASA Technical Reports Server (NTRS)
Parsons, John F; Silverstein, Abe
1937-01-01
Pressure-distribution tests were conducted in the full-scale wind tunnel on a 2:1 tapered U.S.A. 45 airfoil equipped with 20 percent chord split trailing-edge flaps of various spans. A special installation was employed in the tests utilizing a half-span airfoil mounted vertically above a reflection plane. The airfoil has a constant chord center section and rounded tips and is tapered in thickness from 18 percent c at the root to 9 percent c at the tip. The aerodynamic characteristics, given by the usual dimension less coefficients, are presented graphically as functions of flap span and angle of attack as well as by semispan load diagrams. The results indicate, in general, that only a relatively small increase in the normal-force coefficient is to be expected by extending the flap span of an airfoil-flap combination, similar to the one tested, beyond 70 percent of the wing span.
Static, noise, and transition tests of a combined-surface-blowing V/STOL lift/propulsion system
NASA Technical Reports Server (NTRS)
Schoen, A. H.; Kolesar, C. E.; Schaeffer, E. G.
1977-01-01
Efficient thrust vectoring and high levels of circulatory lift were obtained in tests of a half model V/STOL airplane by using a type of externally blown jet flap in which the jet exhaust from wing-mounted cruise fans is directed over both upper and lower surfaces of a flapped wing. Approximately 90% thrust recovery with 87 deg of thrust vectoring was achieved under static conditions using 89 deg of trailing edge flap deflection. The approximately 10% loss appears to be associated primarily with pressure losses due to the flap brackets or slot entries. The jet induced lift was shown to be 55% of the theoretical value for a fullspan jet-flapped wing, even though only 27.5% of the wingspan was immersed in the jet. Steady rate of descent capability in excess of 1,000 feet per minute is predicted. The possibility of significant aerodynamic-noise cancelling when blowing over both surfaces at high velocities is indicated.
The investigation of a variable camber blade lift control for helicopter rotor systems
NASA Technical Reports Server (NTRS)
Awani, A. O.
1982-01-01
A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.
Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
Lu, Yuan; Shen, Gong Xin
2008-04-01
Following the identification and confirmation of the substructures of the leading-edge vortex (LEV) system on flapping wings, it is apparent that the actual LEV structures could be more complex than had been estimated in previous investigations. In this experimental study, we reveal for the first time the detailed three-dimensional (3-D) flow structures and evolution of the LEVs on a flapping wing in the hovering condition at high Reynolds number (Re=1624). This was accomplished by utilizing an electromechanical model dragonfly wing flapping in a water tank (mid-stroke angle of attack=60 degrees) and applying phase-lock based multi-slice digital stereoscopic particle image velocimetry (DSPIV) to measure the target flow fields at three typical stroke phases: at 0.125 T (T=stroke period), when the wing was accelerating; at 0.25 T, when the wing had maximum speed; and at 0.375 T, when the wing was decelerating. The result shows that the LEV system is a collection of four vortical elements: one primary vortex and three minor vortices, instead of a single conical or tube-like vortex as reported or hypothesized in previous studies. These vortical elements are highly time-dependent in structure and show distinct ;stay properties' at different spanwise sections. The spanwise flows are also time-dependent, not only in the velocity magnitude but also in direction.
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Berkowitz, Brian M.
1989-01-01
An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.
NASA Technical Reports Server (NTRS)
Weiberg, James A; Holzhauser, Curt A.
1961-01-01
A study is presented of the improvements in take-off and landing distances possible with a conventional propeller-driven transport-type airplane when the available lift is increased by propeller slipstream effects and by very effective trailing-edge flaps and ailerons. This study is based on wind-tunnel tests of a 45-foot span, powered model, with BLC on the trailing-edge flaps and controls. The data were applied to an assumed airplane with four propellers and a wing loading of 50 pounds per square foot. Also included is an examination of the stability and control problems that may result in the landing and take-off speed range of such a vehicle. The results indicated that the landing and take-off distances could be more than halved by the use of highly effective flaps in combination with large amounts of engine power to augment lift (STOL). At the lowest speeds considered (about 50 knots), adequate longitudinal stability was obtained but the lateral and directional stability were unsatisfactory. At these low speeds, the conventional aerodynamic control surfaces may not be able to cope with the forces and moments produced by symmetric, as well as asymmetric, engine operation. This problem was alleviated by BLC applied to the control surfaces.
Iida, Takuya; Yoshimatsu, Hidehiko; Yamamoto, Takumi; Koshima, Isao
2016-12-01
In head and neck reconstruction using free flaps, microvascular anastomosis is commonly performed in an end-to-end fashion to relatively sizable arteries including the superficial temporal, facial, and superior thyroid arteries. With the recent developments of less invasive perforator flaps such as the superficial circumflex iliac artery perforator flap, anastomosis of smaller vessels of less than 0.8 mm diameter has become necessary; however, appropriate recipient arteries for end-to-end anastomosis are often absent. We have introduced supermicrosurgical end-to-side anastomosis to such arteries in 12 cases of head and neck reconstruction. Double-needle, short-thread microsutures were used to facilitate this procedure, and indocyanine green intraoperative angiography was used to confirm patency. All patients, except one with partial necrosis, survived. We believe that our method is a safe and reliable option for cases in which there is a discrepancy between the flap pedicle and recipient arteries. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Sewall, William G.
1995-01-01
Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.
Reverse saphenous conduit flap in small animals: Clinical applications and outcomes.
Elliott, Ross C
2014-08-20
Due to the lack of skin elasticity defects of the distal hind limb can be a challenge to close. This article assesses a well-described, but completely under-used technique for closure of wounds on the distal tarsus. The technique was used with good success in six cases presenting to the Bryanston Veterinary Hospital with a wide range of underlying pathology ranging from trauma to neoplastic disease of the tarsus. All six cases were treated with a reverse saphenous conduit flap and two of them underwent radiation therapy with no adverse side effects. All cases showed excellent results with a very low degree of flap necrosis that never exceeded 15% of the total flap area. This skin flap provides an excellent treatment method that is reliable in closure of defects of the distal tarsus with few adverse effects. To the author's knowledge there has been only one previously published report on the clinical use of this type of skin flap, even though the flap is well described in most texts.
Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding
NASA Astrophysics Data System (ADS)
Michelin, Sebastien Honore Roland
The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.
Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey
2013-01-01
This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote vorticities which result in drag rises as well as noise sources. The variable camber trailing edge flap concept could provide a substantial drag reduction benefit over a conventional discrete flap system. Aerodynamic simulations show a drag reduction of over 50% could be achieved with the flap concept over a conventional discrete flap system.
Kaartinen, Ilkka S; Vuento, Maarit H; Hyöty, Marja K; Kallio, Jukka; Kuokkanen, Hannu O
2015-01-01
Total pelvic exenteration (TPE) is a rare operation in which the pelvic contents are removed entirely. Several options for pelvic floor and vaginal reconstruction have been described including transverse rectus abdominis musculocutaneous (TRAM) or deep inferior epigastric perforator (DIEP) flaps. The transverse musculocutaneous gracilis (TMG) flap has been introduced for breast reconstruction as a free flap. We adopted the pedicled TMG flap for reconstructions after TPE. To the best of our knowledge, this is the first report of this method in the literature. Between November 2011 and February 2014, 12 patients underwent TPE and reconstruction with unilateral (six patients) or bilateral (six patients) pedicled TMG flaps. Five patients underwent vaginal reconstruction with bilateral TMG flaps. We describe the operative procedure and the outcome of the operation in these patients. The total mean operative times for TPE with or without vaginal reconstruction were 467 ± 12 and 386 ± 59 min, respectively. The TMG flaps had enough vascular tissue and mobility for reconstructing the TPE defects. There was distal edge necrosis in one out of 18 flaps, while the rest survived completely. During the follow-up, complete wound healing with no signs of weakening of the pelvic floor was observed in all cases. Soft-tissue reconstructions are needed to reduce complications associated with TPE, to secure the pelvic floor and to reconstruct the vagina in select patients. The TMG flap is a logical flap choice that does not lead to functional deficits, complicate the abdominal ostomies or weaken the abdominal wall. It reduces the length of operation compared to that of abdominal flaps. IV, therapeutic. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Lower extremity soft tissue reconstruction with free flap based on subscapular artery.
Karşıdağ, Semra; Akçal, Arzu; Turgut, Gürsel; Uğurlu, Kemal; Baş, Lütfü
2011-01-01
The purpose of our study was to evaluate the results of the reconstruction of the lower extremity defects with free flaps based on the subscapular artery. Between January, 1998 and December, 2008, 51 patients (mean age 26 years; 16 female and 35 male) presenting with a lower extremity defect underwent a reconstructive surgery with flaps based on the subscapular vascular system. Thirty-seven percent of the defects were located in the crus, 19% in the sole, 16% in the heel, and 14% in the dorsum of the foot. Eighty and a half percent of the patients had traffic-accident-related and 13.5% had burn-related tissue defects. Fifty-three percent of the patients presenting with lower extremity defects underwent reconstruction with latissimus dorsi muscle flaps, 21% with free serratus muscle and/or fascia flaps, 14% with free parascapular fasciocutaneous flaps, and 12% with free combined latissimus muscle and serratus muscle and/or fascia flaps. Anastomoses of 80% of the patients were performed on their posterior tibial artery and accompanying veins and/or foot dorsal veins. End-to-end anastomosis was performed on 14 patients, while 35 patients received end-to-side anastomosis. Six patients were treated with cross free flaps, of which 4 received cross latissimus, 1 cross serratus, and 1 cross combined serratus and latissimus flaps. End-to-side anastomoses were performed on these patients on the cross-leg tibialis posterior artery. The cross-leg anastomosis was freed 4 weeks later. In the early period, venous occlusion was observed in 4 patients and arterial and venous occlusion was present in 1 patient. New anastomoses were performed in these patients. Partial necrosis was observed in 2 patients. The average follow-up period was 61 months. Pressure-related late ulcerative lesions developed in 4 patients. The lesions of these patients were repaired by debridement and primary suturing or partial thickness skin grafts. The subscapular vascular system based flaps have an optimal vascularity once they are prepared with adequate pedicles, causing minimal donor site morbidity. These flaps are a safe and effective alternative in lower extremity reconstruction. On the other hand, in the absence of appropriate recipient vessels, single or combined cross-leg free flaps may provide successful repair.
2013-11-13
are important and relevant to any vehicle configuration with either fixed, flapping, or rotary wings. Major Research Activities and Findings A...rotates about the leading edge spar. Analysis also shows that synchronization of normal acceleration and pitching angle is important for achieving...2.5, 2.6] found that twist and camber deformations play an important part in the motion of flapping wings and are attributed to elastic deformations of
NASA Technical Reports Server (NTRS)
Phelps, A. E., III; Letko, W.; Henderson, R. L.
1973-01-01
An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.
Chang, Chun-Kai; Wu, Chien-Ju; Chen, Chun-Yu; Wang, Chi-Yu; Chu, Tzi-Shiang; Hsu, Kuo-Feng; Chiu, Han-Ting; Liu, Hung-Hui; Chou, Chang-Yi; Wang, Chih-Hsin; Lin, Chin-Ta; Dai, Niann-Tzyy; Tzeng, Yuan-Sheng
2017-12-01
Pressure sores are often observed in patients who are bedridden. They can be a severe problem not only for patients and their caregivers but also for plastic surgeons. Here, we describe a new method of superior gluteal artery perforator flap harvesting and anchoring with the assistance of intraoperative indocyanine green fluorescent angiography. In this report, we describe the procedure and outcomes for 19 patients with grades III and IV sacral pressure sores who underwent the operation between September 2015 and November 2016. All flaps survived, and two experienced wound-edge partial dehiscence. With the assistance of this imaging device, we were able to acquire a reliable superior gluteal artery perforator flap and perform modified operations with it that are safe, easy to learn and associated with fewer complications than are traditional. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.
1976-01-01
An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.
Optimal pitching axis location of flapping wings for efficient hovering flight.
Wang, Q; Goosen, J F L; van Keulen, F
2017-09-01
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.
Chang, Y-M; Pan, Y-H; Shen, Y-F; Chen, J-K; ALDeek, N F; Wei, F-C
2016-12-01
We have evaluated the survival of dental implants placed in vascularised fibular flap onlay grafts placed over marginal mandibulectomies and the effects on marginal bone loss of different types of soft tissue around implants under functional loading. From 2001-2009 we studied a total of 11 patients (1 woman and10 men), three of whom had had ameloblastoma and eight who had had squamous cell carcinomas resected. A total of 38 dental implants were placed either at the time of transfer of the vascularised fibular ostoseptocutaneous flaps (nine patients with 30 implants) or secondarily (two patients with eight implants). Four patients were given palatal mucosal grafts to replace intraoral skin flaps around the dental implants (n=13), and the other seven had the skin flaps around the dental implants thinned (n=25) at the second stage of implantation of the osteointegrated teeth. All vascularised fibular osteoseptocutaneous flaps were successfully transferred, and all implants survived a mean (range) of 73 (33-113) months after occlusal functional loading. The mean (SD) marginal bone loss was 0.5 (0.3) mm on both mesial and distal sides in patients who had palatal mucosal grafts, but 1.8 (1.6) mm, and 1.7 (1.5) mm, respectively, on the mesial and distal sides in the patients who had had thinning of their skin flaps. This difference is significant (p=0.008) with less resorption of bone in the group who had palatal mucosal grafts. Palatal mucosa around the implants helps to reduce resorption of bone after functional loading of implants. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Hocaoğlu, Emre
2014-01-01
Prefabrication of supraclavicular skin provides a useful source for flaps congruent with the face skin. Among various vascular sources that have been used for this purpose, anterolateral thigh fascia seems to represent a greater value because of having a long and strong vascular pedicle and negligible donor-site morbidity. In this regard, we present a technical report on using the lateral circumflex femoral artery perforator flap harvest technique in preparing an anterolateral thigh fascia flap for the prefabrication of the supraclavicular skin. The technique proved successful in resurfacing the facial skin of a young female patient with a giant congenital melanocytic hairy nevus on the left side of her face.
Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate
NASA Astrophysics Data System (ADS)
Koffi, Moise
The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary layer. Therefore the cooling is enhanced using flexible models by 30 percent. However, the huge size of the elephant pinna combined with its large surface to volume ratio and blood perfusion plays a key role in the enhancement of the animal's heat dissipation.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.
Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1996-01-01
An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.
76 FR 77133 - Domestic Shipping Services Pricing and Mailing Standards Changes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... destination. When sealing a Flat Rate Envelope or Box, the container flaps must be able to close within the normal folds. Tape may be applied to the flaps and seams to reinforce the container provided the design of the container is not enlarged by opening the sides, and the container is not reconstructed in any...
Wind-Tunnel Investigation of the Horizontal Motion of a Wing Near the Ground
NASA Technical Reports Server (NTRS)
Serebrisky, Y. M.; Biachuev, S. A.
1946-01-01
By the method of images the horizontal steady motion of a wing at small heights above the ground was investigated in the wind tunnel, A rectangular wing with Clark Y-H profile was tested with and without flaps. The distance from the trailing edge of the wing to the ground was varied within the limits 0.75 less than or = s/c less than or = 0.25. Measurements were made of the lift, the drag, the pitching moment, and the pressure distribution at one section. For a wing without flaps and one with flaps a considereble decrease in the lift force and a,drop in the drag was obtained at angles of attack below stalling. The flow separation near the ground occurs at smaller angles of attack than is the case for a great height above the ground. At horizontal steady flight for practical values of the height above the ground the maximum lift coefficient for the wing without flaps changes little, but markedly decreases for the wing with flaps. Analysis of these phenomena involves the investigation of the pressure distribution. The pressure distribution curves showed that the changes occurring near the ground are not equivalent to a change in the angle of attack. At the lower surface of the section a very strong increase in the pressures is observed. The pressure changes on the upper surface at angles of attack below stalling are insignificant and lead mainly to an increase in the unfavorable pressure gradient, resulting in the earlier occurrence of separation. For a wing with flaps at large angles of attack for distances from the trailing edge of the flap to the ground less than 0.5 chord, the flow between the wing end the ground is retarded so greatly that the pressure coefficient at the lower surface of the section is very near its limiting value (P = 1), and any further possibility of increase in the pressure is very small. In the application an approximate computation procedure is given of the change of certain aerodynamic characteristics for horizontal steady flight near the ground.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Bhat, M. K.
1992-01-01
A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.
Oh, Jeongseok; Ahn, Hee Chang; Youn, Seungki; Tae, Kyung
2018-05-14
The pectoralis major musculocutaneous (PMMC) flap is a classic flap for head and neck reconstruction, relatively unpopular with the advancement of microsurgery and free flaps. The classic parasternal paddle design provided a thick flap with a small rotation arch leaving objectionable scarring. Our new symmetric midsternal design overcomes these problems. Chart review was done from the years 2000 to 2017. Flap skin paddle was placed symmetrically on both sides of the midsternal line. The pectoralis major (PM) muscle and aponeurosis were attached in the lateral half of the skin paddle. Most of PM muscle was elevated with the thoracoacromial vessel and dissected to the main trunk, where the PM muscle was cut and used for bulk. The flap was transferred to the neck and lower mandibular area. The flap was inset either supraclavicularly, covering the anterior neck, or subclavicularly, for intraoral/maxillary defects. Eight patients underwent head and neck reconstruction using the new design of PMMC flap between the years 2000 and 2017. The etiologies of the defect were radiation necrosis in 3 patients, repair of cutaneous fistulas in 3, recurrent hypopharyngeal cancer in 1, and recurrent tongue cancer in 1 patient. There were no flap losses or major complications. With the advancement of free-flap techniques, the classic flaps have become less popular. Our new design supplements the PMMC flap by providing a thin pliable flap with a long pedicle and rotation arc, allowing a combination of different types of flaps to cover composite head and neck defects, especially in cases that lack a reliable recipient vessel due to radiation.
Ismail, H.; Elshobaky, A.
2016-01-01
Summary Anterior cervical contractures of the neck represent a great challenge for plastic and reconstructive surgeons. Necks can be reconstructed with a wide range of surgical techniques, including chimeric flaps, supercharged flap, pre-expanded flaps, “superthin” flaps and perforator flaps. The supraclavicular flap is easy to harvest without the need for free tissue transfer. It provides a relatively large flap for neck resurfacing with tissue very similar to that of the neck. Between January 2013 and March 2015, 20 patients suffering from postburn neck contracture underwent reconstruction with 20 unilateral supraclavicular artery perforator flaps. Nineteen patients had post-burn neck contractures (9 cases type Іc, 10 cases type Пc) while only one had post-burn granulation tissue in the neck. We harvested fifteen flaps from the right side and five from the left. Size of the reconstructed defect ranged from 23x10 to14x6, and flap size varied from 25/11 to 16/7cm. Period of follow up ranged from 27-2months (average 12.3). Nineteen flaps survived well (95% survival rate): only one was lost due to iatrogenic extensive dissection over the pedicle. Five cases showed distal superficial epidermolysis, and 2 cases showed 2 cm complete distal necrosis. All patients were managed conservatively. Our results coincide with other literature results confirming the efficacy and rich vascularity of this flap. In all cases with distal partial necrosis, flaps were 23 cm or more. We recommend that supraclavicular flaps of more than 22 cm in length are not harvested immediately and that flaps are expanded before harvesting. Expanding the supraclavicular flap increases its surface area and decreases donor site morbidity. PMID:28149252
NASA Technical Reports Server (NTRS)
Tang, M. H.; Pearson, G. P. E.
1973-01-01
Control-surface hinge-moment measurements obtained in the X-24A lifting body flight-test program are compared with results from wind-tunnel tests. The effects of variations in angle of attack, angle of sideslip, rudder bias, rudder deflection, upper-flap deflection, lower-flap deflection, Mach number, and rocket-engine operation on the control-surface hinge moments are presented. In-flight motion pictures of tufts attached to the inboard side of the right fin and the rudder and upper-flap surfaces are discussed.
NASA Technical Reports Server (NTRS)
Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric
2013-01-01
Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.; Werth, J.
1979-01-01
The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided.
Knobloch, K; Herold, C; Vogt, P M
2012-04-01
Sustainable and durable soft tissue coverage at the lower extremity following trauma, tumor resections, sequelae of radiation therapy or osteomyelitis using free latissimus dorsi muscle transfer is provided by a free latissimus dorsi muscle flap. Soft tissue defects at the lower extremity following trauma, tumor resections, and sequelae of radiation therapy or osteomyelitis. Thoracotomy with incision of the latissimus dorsi muscle; a relative contraindication in wheelchair drivers as well as in overhead athletes due to potential diminished strength and shoulder proprioception following latissimus dorsi muscle transplantation. Under general anesthesia the patient is positioned laterally, and a substantial and meticulous debridement of the defect is performed, as is the identification and preparation of the target vessel, which is preferentially the posterior tibial artery at the calf, or more proximally the popliteal or femoral artery from the medial side as well as concomitant veins/the great saphenous vein. A tailored latissimus dorsi musculocutaneous flap is harvested with subsequent microsurgical anastomosis to the target vessel with preferential end-to-side anastomosis of the artery and end-to-end anastomosis of one or two veins. A 24-h intermediate care unit, clinical flap monitoring for at least 5-7 days, dangling of the flap using an elastic bandage for an initial 3 times 5 min starting on POD 7, compression stockings for at least 6 months subsequently. From 2001-2007 75 free latissimus dorsi flaps were performed (53 ± 17 years) for soft tissue coverage at the lower extremity. In 58% the target vessel was the posterior tibial artery, in 11% the femoral artery, in 8% the anterior tibial artery and in 8% the popliteal artery. In 15% an arteriovenous (AV) loop was applied. Overall free flap survival was 95%. We encountered four total flap losses, exclusively in complex reconstructions with AV-loop situations.
The use of a panel code on high lift configurations of a swept forward wing
NASA Technical Reports Server (NTRS)
Scheib, J. S.; Sandlin, D. R.
1985-01-01
A study was done on high lift configurations of a generic swept forward wing using a panel code prediction method. A survey was done of existing codes available at Ames, frow which the program VSAERO was chosen. The results of VSAERO were compared with data obtained from the Ames 7- by 10-foot wind tunnel. The results of the comparison in lift were good (within 3.5%). The comparison of the pressure coefficients was also good. The pitching moment coefficients obtained by VSAERO were not in good agreement with experiment. VSAERO's ability to predict drag is questionable and cannot be counted on for accurate trends. Further studies were done on the effects of a leading edge glove, canards, leading edge sweeps and various wing twists on spanwise loading and trim lift with encouraging results. An unsuccessful attempt was made to model spanwise blowing and boundary layer control on the trailing edge flap. The potential results of VSAERO were compared with experimental data of flap deflections with boundary layer control to check the first order effects.
Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
Hawkes, Elliot W; Lentink, David
2016-10-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).
Fruit fly scale robots can hover longer with flapping wings than with spinning wings
Lentink, David
2016-01-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. PMID:27707903
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia
2015-01-01
This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope, the lift prediction for the rigid wing is in good agreement with the estimated lift coefficients derived from the wind tunnel test data. Due to the movement of the VCCTEF during the wind tunnel test, uncertainty in the lift prediction due to the indicated variations of the VCCTEF deflection is studied. The results show a significant spread in the lift prediction which contradicts the consistency in the aerodynamic measurements, thus suggesting that the indicated variations as measured by the VICON system may not be reliable. The lift prediction of the flexible wing agrees very well with the measured lift curve for the baseline configuration. The computed bending deflection and wash-out twist of the flexible wing also match reasonably well with the aeroelastic deflection measurements. The results demonstrate the validity of the aerodynamic-structural tool for use to analyze aerodynamic performance of flexible wings.
Casey, William J; Rebecca, Alanna M; Smith, Anthony A; Craft, Randall O; Buchel, Edward W
2007-01-01
The internal mammary and thoracodorsal vessels are the standard recipient sites in microsurgical breast reconstruction. We review our series of venous outflow alternatives when these vessels are inadequate or unusable. A retrospective review of all free breast reconstructions was performed from July 2003 through December 2005. Outcomes were measured with regard to re-exploration, flap failure, and fat necrosis, with attention to the timing and side of reconstruction, as well as the presence or absence of radiation therapy. A total of 141 free breast reconstructions were performed during the study period. In seven cases (5%), alternative venous outflow vessels were selected (cephalic or external jugular vein). Nine anastamotic complications occurred, all of which involved the left internal mammary group (statistically significant for venous thrombosis, P = 0.0063) and three flaps failed. All cephalic and external jugular veins remained patent with no flap failures or fat necrosis within this group. The cephalic vein and external jugular vein are excellent alternatives for venous outflow in free breast reconstruction if neither the internal mammary nor thoracodorsal veins are sufficient, especially in left-sided reconstruction. 2007 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Fears, Scott P.; Ross, Holly M.; Moul, Thomas M.
1995-01-01
A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 50 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had trailing-edge flaps in three segments that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.
NASA Technical Reports Server (NTRS)
Ross, Holly M.; Fears, Scott P.; Moul, Thomas M.
1995-01-01
A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 70 deg, and all the trailing edges and control surface hinge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.
NASA Technical Reports Server (NTRS)
Moul, Thomas M.; Fears, Scott P.; Ross, Holly M.; Foster, John V.
1995-01-01
A wind tunnel investigation was conducted in the Langley 12-Foot Low-Speed Wind Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 60 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved pitching-moment characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Top bodies of three widths and twin vertical tails of various sizes and locations were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced radar cross section and good flight dynamic characteristics.
NASA Technical Reports Server (NTRS)
Mann, M. J.; Huffman, J. K.; Fox, C. H., Jr.; Campbell, R. L.
1983-01-01
Wind tunnel tests were conducted to examine the use of wing leading-edge devices for improved subsonic and transonic maneuver performance. These devices were tested on a fighter configuration which utilized supercritical-wing technology. The configuration had a leading-edge sweep of 45 deg and an aspect ratio of 3.28. The tests were conducted at Mach numbers of 0.60 and 0.85 with angles of attack from -0.5 deg to 22 deg. At both Mach numbers, sharp leading-edge flaps produced vortices which greatly altered the flow pattern on the wing and resulted in substantial reductions in drag at high lift. Underwing or pylon-type vortex generators also reduced drag at high lift. The vortex generators worked better at a Mach number of 0.60. The vortex generators gave the best overall results with zero toe-in angle and when mounted on either the outboard part of the wing or at both an outboard location and halfway out the semispan. Both the flaps and the vortex generators had a minor effect on the pitching moment. Fluorescent minitufts were found to be useful for flow visualization at transonic maneuver conditions.
NASA Technical Reports Server (NTRS)
Thornton, Stephen V.
1993-01-01
A transonic fighter-bomber aircraft, having a swept supercritical wing with smooth variable-camber flaps was fitted with a maneuver load control (MLC) system that implements a technique to reduce the inboard bending moments in the wing by shifting the spanwise load distribution inboard as load factor increases. The technique modifies the spanwise camber distribution by automatically commanding flap position as a function of flap position, true airspeed, Mach number, dynamic pressure, normal acceleration, and wing sweep position. Flight test structural loads data were obtained for loads in both the wing box and the wing root. Data from uniformly deflected flaps were compared with data from flaps in the MLC configuration where the outboard segment of three flap segments was deflected downward less than the two inboard segments. The changes in the shear loads in the forward wing spar and at the roots of the stabilators also are presented. The camber control system automatically reconfigures the flaps through varied flight conditions. Configurations having both moderate and full trailing-edge flap deflection were tested. Flight test data were collected at Mach numbers of 0.6, 0.7, 0.8, and 0.9 and dynamic pressures of 300, 450, 600, and 800 lb/sq ft. The Reynolds numbers for these flight conditions ranged from 26 x 10(exp 6) to 54 x 10(exp 6) at the mean aerodynamic chord. Load factor increases of up to 1.0 g achieved with no increase in wing root bending moment with the MLC flap configuration.
2002-11-15
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center.
Computational wing optimization and comparisons with experiment for a semi-span wing model
NASA Technical Reports Server (NTRS)
Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.
1978-01-01
A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.
Observations on Leading-Edge Vortex Development
NASA Astrophysics Data System (ADS)
Glenn, Michael; Lang, Amy; Wahidi, Redha; Wilroy, Jacob
2016-11-01
Most of an insect's lift comes from the leading edge vortex (LEV) that they produce when flapping their wings. There are many variables that make a LEV either stronger or weaker such as: roughness from the scales on their wings, angle of attack (AoA) of wing, size of the wing, and speed of the wing during flapping motion. Experiments were conducted to study LEV development to gain a better understanding of butterfly flight and the importance of LEV formation. The variables emphasized in this particular experiment were the chord length Reynolds numbers. Two smooth plates of 4 inches and 7 inches were compared in this experiment with Re of 1500 and 3000. Matlab was used to track the LEV location and calculate the vorticity and circulation magnitudes. Differences in LEV vortex strength as a function of chord length will be presented. Funding was provided by NSF REU site Grant EEC 1358991 and CBET Grant 1628600.
Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor
NASA Technical Reports Server (NTRS)
Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei
2014-01-01
The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.
NASA Astrophysics Data System (ADS)
Meyer, M.; Breitsamter, Ch.
2013-12-01
The influence of an oscillating aileron and trailing edge device on the unsteady aerodynamics of a blended wing body (BWB) aircraft configuration with high-fidelity time-accurate Euler simulations has been investigated. Steady results show an unequally-distributed lift distribution in spanwise direction with a particularly severe shock at cruise conditions on the outboard wing. Unsteady oscillations of the outboardlocated aileron are able to influence the local and global aerodynamics. The oscillation of the trailing edge device designed to be at trailing edge of the aileron does not show any great effect on neither local nor global aerodynamics.
NASA Technical Reports Server (NTRS)
Rao, D. M.; Tingas, S. A.
1981-01-01
The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.
Wake profile measurements of fixed and oscillating flaps
NASA Technical Reports Server (NTRS)
Owen, F. K.
1984-01-01
Although the potential of laser velocimetry for the non-intrusive measurement of complex shear flows has long been recognized, there have been few applications in other small, closely controlled laboratory situations. Measurements in large scale, high speed wind tunnels are still a complex task. To support a study of periodic flows produced by an oscillating edge flap in the Ames eleven foot wind tunnel, this study was done. The potential for laser velocimeter measurements in large scale production facilities are evaluated. The results with hot wire flow field measurements are compared.
1947-11-13
requests shall be referred to National Aeronautics and Space Administration, Washington, DC. NACA Res. Abstracts no. 57 dtd 29 Jan 1954; NASA TR...viscosity Telocity of sound MODEL A sketch of the vine and fuselage Is presented in figure 1 and a photograph of the wing is shorn in ficure 2. The...is presented in figure 3 and a photograph of the leading-edge flap installations is given in figure U- The flaps were of constant chord and extended
A Hairy Situation: Laser Hair Removal after Oral Reconstruction.
Shields, Bridget E; Moye, Molly S; Bayon, Rodrigo; Sperry, Steven M; Wanat, Karolyn A
2018-03-01
To present a case series of 4 patients who underwent postoperative hair removal using the long-pulsed Alexandrite or Nd:YAG laser following intraoral cutaneous flap reconstruction. Patients underwent epilation in dermatology clinic with long-pulsed Alexandrite or Nd:YAG lasers, spaced 8 weeks apart, until hair removal was achieved. All patients achieved improvement in hair removal regardless of initial flap donor site with significant improvement in quality of life and minimal side effects. The long-pulsed Alexandrite and Nd:YAG represent safe and effective treatment options to improve patient quality of life following intraoral flap repair following excision of malignancy.
Hai, Heng-lin; Shen, Chuan-an; Chai, Jia-ke; Li, Hua-tao
2012-02-01
To explore the clinical effect of transplantation of the long head of biceps femoris muscle flap in combination with semi-V posterior thigh fasciocutaneous flap for repair of pressure sores over ischial tuberosity. Eight patients with 10 deep pressure sores over ischial tuberosity were admitted to the First Affiliated Hospital to the PLA General Hospital and the 98th Hospital of PLA from April 2004 to June 2010. The wounds measured from 2 cm × 2 cm to 6 cm × 4 cm were covered with the long head of biceps femoris muscle flap and semi-V posterior thigh fasciocutaneous flap (ranged from 10 cm × 6 cm to 13 cm × 8 cm). The condition of flaps was observed and followed up for a long time. All flaps survived. Nine wounds healed by first intention. Subcutaneous accumulation of fluids occurred in one wound with formation of a sinus at drainage site, and it healed after dressing change for 25 days. Patients were followed up for 7 to 34 months. Sore recurred in one patient 9 months after surgery, and it was successfully repaired with the same flap for the second time. Flaps in the other 7 patients appeared satisfactory with soft texture and without ulceration. This combined flap is easy in formation and transfer, and it causes little side injury with good resistance against pressure. It is a new method for repair of pressure sore over sacral region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakumar, B J; Chavez - Alarcon, Ramiro; Shu, Fangjun
The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in themore » wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.« less
Blade vortex interaction noise reduction techniques for a rotorcraft
NASA Technical Reports Server (NTRS)
Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)
1996-01-01
An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).
Blade vortex interaction noise reduction techniques for a rotorcraft
NASA Technical Reports Server (NTRS)
Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)
1998-01-01
An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).
Breast-volume displacement using an extended glandular flap for small dense breasts.
Ogawa, Tomoko; Hanamura, Noriko; Yamashita, Masako; Kimura, Hiroko; Kashikura, Yumi
2011-01-01
We defined the glandular flap including fat in the subclavicular area as an extended glandular flap, which has been used for breast-conserving reconstruction in the upper portion of the breast. Indication. The excision volume was 20% to 40% of the breast volume, and the breast density was dense. Surgical Technique. The upper edge of the breast at the subclavicular area was drawn in the standing position before surgery. After partial mastectomy, an extended glandular flap was made by freeing the breast from both the skin and the pectoralis fascia up to the preoperative marking in the subclavicular area. It is important to keep the perforators of the internal mammary artery and/or the branches of the lateral thoracic artery intact while making the flap. Results. Seventeen patients underwent remodeling using an extended glandular flap. The cosmetic results at 1 year after the operation: excellent in 11, good in 1, fair in 3, and poor in 2. All cases of unacceptable outcome except one were cases with complications, and more than 30% resection of moderate or large size breasts did not obtain an excellent result for long-term followup. Conclusion. This technique is useful for performing the breast-conserving reconstruction of small dense breasts.
NASA Technical Reports Server (NTRS)
Whitaker, H. P.; Cheng, Y.
1975-01-01
The results are summarized of an analytical study of the use of active control systems for the purpose of reducing the root mean square response of wing vertical bending and rotor flapping to atmospheric turbulence for a tilt-rotor VTOL airplane. Only the wing/rotor assembly was considered so that results of a wind tunnel test program would be applicable in a subsequent phase of the research. The capabilities and limitations of simple single feedback configurations were identified, and the most promising multiloop feedback configurations were then investigated. Design parameters were selected so as to minimize either wing bending or rotor flapping response. Within the constraints imposed by practical levels of feedback gains and complexity and by considerations of safety, reduction in response due to turbulence of the order of 30 to 50 percent is predicted using the rotor longitudinal cyclic and a trailing edge wing flap as control effectors.
Aerodynamics of high frequency flapping wings
NASA Astrophysics Data System (ADS)
Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan
2010-11-01
We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.
Dai, Xiao-Ming; Liu, Hua; He, Jia; Tu, Min-Song; Yu, Li-Fu; Liu, Liu
2015-05-01
This study was performed to evaluate the effectiveness of overlapping the temporalis fascia flaps (TFFs) and the sternocleidomastoid muscle flaps (SCMFs) as physical barriers to treat established Frey syndrome and concavity after parotidectomy. We retrospectively reviewed 17 patients who underwent corrective procedures with simultaneous TFF and SCMF interposition for the treatment of Frey syndrome. The affected areas of the cheek skin were identified with starch-iodine tests. The facial contours of the patients were classified as bilaterally symmetric (BS), with a slightly shallow (SS) contour on the surgical side, or with a conspicuously shallow (CS) contour on the surgical side. The sample was followed up for a mean of 22 months. The average area of gustatory-sweating positive skin was reduced from 12.80 to 1.32 square centimeters postoperatively. The facial asymmetry secondary to parotidectomy was greatly improved. The authors concluded that this technique was efficacious in ameliorating Frey syndrome and facial concavity secondary to parotidectomy. Copyright © 2015 Elsevier Inc. All rights reserved.
One-stage thumb lengthening with use of an osteocutaneous 2nd metacarpal flap.
Givissis, Panagiotis; Stavridis, Stavros I; Ditsios, Konstantinos; Christodoulou, Anastasios
2009-12-01
Traumatic thumb amputation represents an extremely disabling entity, thus rendering its reconstruction a procedure of paramount importance. A case of a patient, who sustained a traumatic amputation of his left index finger at the metacarpophalangeal joint and of his left thumb in the middle of the proximal phalanx 4 months ago and was initially treated elsewhere, is described. For the thumb reconstruction, an osteocutaneous flap of the radial side of the 2nd metacarpal, which consisted of a 3, 5-cm bony segment with the overlying skin and its blood and nerve supply was used. The flap was transferred and fixed with a plate and screws to the palmar-medial side of the stump of the thumb, while the 1st web space was deepened by removing the rest of the second metacarpal, while a partial skin graft was used to cover a remaining gap. Thumb functionality was restored immediately postoperatively, and the overall result was satisfactory.
Eyjolfsdottir, H; Haraldsdottir, B; Ragnarsdottir, M; Asgeirsson, K S
2017-06-01
To prospectively assess the functional effect of using the extended latissimus dorsi flap in immediate breast reconstructions. A total of 15 consecutive patients undergoing breast reconstruction with extended latissimus dorsi flap participated. Shoulder range of motion, muscle strength, lateral flexion of the torso, and position of scapula were measured pre-operatively and 1, 6, and 12 months post-operatively, in addition to donor-site post-operative complications. At 12 months post-operatively, patients had achieved full range of shoulder movement, when compared to pre-operative values. Lateral flexion of the torso was, however, significantly reduced bilaterally at 1 and 6 months post-operatively (p = 0.001, p = 0.01) and to the not operated side at 12 months (p = 0.01). Muscle strength in flexion-extension-internal rotation was significantly (p = 0.01) reduced on the operated side 12 months post-operatively. All but one patient had numbness around the donor-site scar 12 months post-operatively, 33% had slight adhesions but all were pain free. Although invariably, patients having extended latissimus dorsi flap may expect to achieve full range of shoulder movement, they should be informed of possible functional consequences and the time and effort it takes to recover. Further research is needed to investigate the potential long-term functional implications that extended latissimus dorsi flap may have as a result of changes in the lateral flexion of the torso and scapula position.
Hubel, Tatjana Y; Tropea, Cameron
2010-06-01
Over the last decade, interest in animal flight has grown, in part due to the possible use of flapping propulsion for micro air vehicles. The importance of unsteady lift-enhancing mechanisms in insect flight has been recognized, but unsteady effects were generally thought to be absent for the flapping flight of larger animals. Only recently has the existence of LEVs (leading edge vortices) in small vertebrates such as swifts, small bats and hummingbirds been confirmed. To study the relevance of unsteady effects at the scale of large birds [reduced frequency k between 0.05 and 0.3, k=(pifc)/U(infinity); f is wingbeat frequency, U(infinity) is free-stream velocity, and c is the average wing chord], and the consequences of the lack of kinematic and morphological refinements, we have designed a simplified goose-sized flapping model for wind tunnel testing. The 2-D flow patterns along the wing span were quantitatively visualized using particle image velocimetry (PIV), and a three-component balance was used to measure the forces generated by the wings. The flow visualization on the wing showed the appearance of LEVs, which is typically associated with a delayed stall effect, and the transition into flow separation. Also, the influence of the delayed stall and flow separation was clearly visible in measurements of instantaneous net force over the wingbeat cycle. Here, we show that, even at reduced frequencies as low as those of large bird flight, unsteady effects are present and non-negligible and have to be addressed by kinematic and morphological adaptations.
Hanson, M; Patel, P M; Betz, C; Olson, S; Panizza, B; Wallwork, B
2015-07-01
To assess nasal morbidity resulting from nasoseptal flap use in the repair of skull base defects in endoscopic anterior skull base surgery. Thirty-six patients awaiting endoscopic anterior skull base surgery were prospectively recruited. A nasoseptal flap was used for reconstruction in all cases. Patients were assessed pre-operatively and 90 days post-operatively via the Sino-Nasal Outcome Test 20 questionnaire and visual analogue scales for nasal obstruction, pain, secretions and smell; endoscopic examination findings and mucociliary clearance times were also recorded. Sino-Nasal Outcome Test 20 questionnaire data and visual analogue scale scores for pain, smell and secretions showed no significant differences between pre- and post-operative outcomes, with visual analogue scale scores for nasal obstruction actually showing a significant improvement (p = 0.0007). A significant deterioration for both flap and non-flap sides was demonstrated post-operatively on endoscopic examination (p = 0.002 and p = 0.02 respectively). Whilst elevation of a nasoseptal flap in endoscopic surgery of the anterior skull base engendered significant clinical deterioration on examination post-operatively, quality of life outcomes showed that no such deterioration was subjectively experienced by the patient. In fact, there was significant nasal airway improvement following nasoseptal flap reconstruction.
Shan, Xiao-Feng; Li, Ru-Huang; Lu, Xu-Guang; Cai, Zhi-Gang; Zhang, Jie; Zhang, Jian-Guo
2015-03-01
Fibular osteoseptocutaneous flap has been widely used for unilateral mandibular reconstruction. However, reports about the effects of fibular osteoseptocutaneous flap for the reconstruction of bilateral mandibular defects are limited. In this study, we used free vascularized fibular flaps to successfully manage bilateral mandibular osteoradionecrosis(ORN) in 5 patients. Functional aspects were evaluated during the reconstruction process. All 5 patients had bilateral refractory ORN of the mandible and underwent radical resection between 2003 and 2011. The reconstruction surgery was performed in 2 stages using 2 free fibular flaps in 3 patients. In the other 2 patients, reconstruction was performed in a single stage using 2 separate flaps prepared from a single fibula. All patients had a healthy mandibular symphysis and meniscus of the temporomandibular joint, and these structures were preserved during the reconstruction.Of the 10 defects involving the mandible sides, 9 were successfully reconstructed. One microvascular composite flap failed because of radiation injury to the arterial endothelium at the recipient site. After the treatments, all patients had good esthetic and functional outcomes. Preoperative clinical features such as trismus and dysphagia were also markedly improved. Our surgical method may be an effective alternative for the clinical management of advanced bilateral mandibular ORN.
Sahin, Cihan; Aysal, Bilge Kagan; Ergun, Ozge
2016-08-01
Ergun et al previously demonstrated the efficacy of hydrostatic dilation in a TRAM flap model in an experimental study. We investigated the effect of hydrostatic dilation on a fasciocutaneous flap model. Eighteen female Wistar rats were equally divided into 3 groups, of which 1 served as a control. In the second, the abdominal fasciocutaneous flap surgical delay procedure was performed by division of the left superficial inferior epigastric (SIE) vessels. In the third, hydrostatic dilation was performed on the left SIE artery and vein, with a mean pressure of 300 mm Hg, while elevating the flap on the right-sided SIE pedicle. The groups were compared by microangiography and by the survival ratio of abdominal flaps 7 days after elevation. The mean (SD) flap necrosis rates were as follows: control group, 44.75% (4.31%); delay group, 33.32% (7.11%); and hydrostatic dilation group, 32.51% (5.03%). There was a significant difference between the control group and the other 2 groups (P < 0.05). There was no difference between the delay and hydrostatic dilation groups with respect to surface area necrosis. The microangiographies showed remarkable increased vascularity in the delay and hydrostatic dilation groups. Hydrostatic dilation is a new method of enhancing flap viability that could be used in clinical cases in place of surgical delay once further studies and clinical trials are completed.
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2015-01-01
Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L/D characteristics and minimum drag in cruise. In the present 3-D study, calculations show that for the same C(sub t), the 3-D circular arc camber wing segment produces the largest drag for a given lift, larger than either of the two 2-D configurations, as was also conjectured in the previous study. This study indicates a wing stall around 4.5 deg angle of attack.
FRONT DETAIL OF RIGHT ENGINE AND WING. MECHANICS CHECK METAL ...
FRONT DETAIL OF RIGHT ENGINE AND WING. MECHANICS CHECK METAL CHIP DETECTOR ON RIGHT ENGINE. THE LEADING EDGE FLAPS ON THE RIGHT WING ARE DOWN PRIOR TO LUBRICATION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY
Treatment of soft-tissue loss with nerve defect in the finger using the boomerang nerve flap.
Chen, Chao; Tang, Peifu; Zhang, Xu
2013-01-01
This study reports simultaneous repair of soft-tissue loss and proper digital nerve defect in the finger using a boomerang nerve flap including nerve graft from the dorsal branch of the proper digital nerve. From July of 2007 to May of 2010, the flap was used in 17 fingers in 17 patients. The injured fingers included five index, seven long, and five ring fingers. The mean soft-tissue loss was 2.5 × 1.9 cm. The mean flap size was 2.8 × 2.1 cm. Proper digital nerve defects were reconstructed using nerve graft harvested from the dorsal branch of the adjacent finger's proper digital nerve. The average nerve graft length was 2.5 cm. The comparison group included 32 patients treated using a cross-finger flap and a secondary free nerve graft. In the study group, 15 flaps survived completely. Partial necrosis at the distal edge of the flap occurred in two cases. At a mean follow-up of 22 months, the average static two-point discrimination and Semmes-Weinstein monofilament test results on the pulp of the reconstructed finger were 7.5 mm and 3.86, respectively. In the comparison group, the results were 9.3 mm and 3.91, respectively. The study group presented better discriminatory sensation on the pulp and milder pain and cold intolerance in the reconstructed finger. The boomerang nerve flap is useful and reliable for reconstructing complicated finger damage involving soft-tissue loss and nerve defect, especially in difficult anatomical regions. Therapeutic, II.
Passive mechanism of pitch recoil in flapping insect wings.
Ishihara, D; Horie, T
2016-12-20
The high torsional flexibility of insect wings allows for elastic recoil after the rotation of the wing during stroke reversal. However, the underlying mechanism of this recoil remains unclear because of the dynamic process of transitioning from the wing rotation during stroke reversal to the maintenance of a high angle of attack during the middle of each half-stroke, when the inertial, elastic, and aerodynamic effects all have a significant impact. Therefore, the interaction between the flapping wing and the surrounding air was directly simulated by simultaneously solving the incompressible Navier-Stokes equations, the equation of motion for an elastic body, and the fluid-structure interface conditions using the three-dimensional finite element method. This direct numerical simulation controlling the aerodynamic effect revealed that the recoil is the residual of the free pitch vibration induced by the flapping acceleration during stroke reversal in the transient response very close to critical damping due to the dynamic pressure resistance of the surrounding air. This understanding will enable the control of the leading-edge vortex and lift generation, the reduction of the work performed by flapping wings, and the interpretation of the underlying necessity for the kinematic characteristics of the flapping motion.
NASA Technical Reports Server (NTRS)
Carros, R. J.; Boissevain, A. G.; Aoyagi, K.
1975-01-01
Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.
Simple Skin-Stretching Device in Assisted Tension-Free Wound Closure.
Cheng, Li-Fu; Lee, Jiunn-Tat; Hsu, Honda; Wu, Meng-Si
2017-03-01
Numerous conventional wound reconstruction methods, such as wound undermining with direct suture, skin graft, and flap surgery, can be used to treat large wounds. The adequate undermining of the skin flaps of a wound is a commonly used technique for achieving the closure of large tension wounds; however, the use of tension to approximate and suture the skin flaps can cause ischemic marginal necrosis. The purpose of this study is to use elastic rubber bands to relieve the tension of direct wound closure for simultaneously minimizing the risks of wound dehiscence and wound edge ischemia that lead to necrosis. This retrospective study was conducted to evaluate our clinical experiences with 22 large wounds, which involved performing primary closures under a considerable amount of tension by using elastic rubber bands in a skin-stretching technique after a wide undermining procedure. Assessment of the results entailed complete wound healing and related complications. All 22 wounds in our study showed fair to good results except for one. The mean success rate was approximately 95.45%. The simple skin-stretching design enabled tension-free skin closure, which pulled the bilateral undermining skin flaps as bilateral fasciocutaneous advancement flaps. The skin-stretching technique was generally successful.
Numerical investigation of multi-element airfoils
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1993-01-01
The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.
Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise
2016-01-01
A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.
Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz
1995-01-01
This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.
Swimming micro-robot powered by stimuli-sensitive gel
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Alexeev, Alexander
2012-11-01
Using three-dimensional computer simulations, we design a simple maneuverable micro-swimmer that can self-propel and navigate in highly viscous (low Reynolds-number) environments. Our simple swimmer consists of a cubic gel body which periodically changes volume in response to external stimuli, two rigid rectangular flaps attached to the opposite sides of the gel body, and a flexible steering flap at the front end of the swimmer. The stimuli-sensitive body undergoes periodic expansions (swelling) and contractions (deswelling) leading to a time-irreversible beating motion of the propulsive flaps that propel the micro-swimmer. Thus, the responsive gel body acts as an ``engine'' actuating the motion of the swimmer. We examine how the swimming speed depends on the gel and flap properties. We also probe how the swimmer trajectory can be changed using a responsive steering flap whose curvature is controlled by an external stimulus. We show that the turning occurs due to steering flap bending and periodic beating. Furthermore, our simulations reveal that the turning direction can be regulated by changing the intensity of external stimulus.
Endoscopic partial medial maxillectomy with mucosal flap for maxillary sinus mucoceles.
Durr, Megan L; Goldberg, Andrew N
2014-01-01
To describe a technique of endoscopic medial maxillectomy with mucosal flap for postoperative maxillary sinus mucoceles and to present a case series of subjects who underwent this procedure. This case series includes four subjects with postoperative maxillary sinus mucoceles who underwent resection via endoscopic partial medial maxillectomy with a mucosal flap. We will discuss the clinical presentation, imaging characteristics, operative details, and outcomes. Four subjects are included in this study. The average age at the time of medial maxillectomy was 52 years (range 35-65 years). Three subjects (75%) were female. One subject (25%) had bilateral postoperative maxillary sinus mucoceles. Two subjects (50%) had unilateral right sided mucoceles, and the remaining subject had a unilateral left sided mucocele. All subjects had a history of multiple sinus procedures for chronic sinusitis including Caldwell-Luc procedures ipsilateral to the postoperative mucocele. All subjects underwent endoscopic medial maxillectomy without complication and were symptom free at the last follow up appointment, average 24 months (range 3-71 months) after medial maxillectomy. For postoperative maxillary sinus mucoceles in locations that are difficult to access via the middle meatus antrostomy, we recommend endoscopic medial maxillectomy with mucosal flap. Our preliminary experience with four subjects demonstrates complete resolution of symptoms after this procedure. Copyright © 2014 Elsevier Inc. All rights reserved.
Spin-Tunnel Investigation of a 1/20-Scale Model of the Northrop F-5E Airplane
NASA Technical Reports Server (NTRS)
Scher, Stanley H.; White, William L.
1977-01-01
An investigation has been conducted in the Langley spin tunnel to determine the spin and recovery characteristics of a 1/20-scale model of the Northrop F-5E airplane. The investigation included erect and inverted spins, a range of center-of- gravity locations and moments of inertia, symmetric and asymmetric store loadings, and a determination of the parachute size required for emergency spin recovery. The effects of increased elevator trailing-edge-up deflections, of leading-edge and trailing-edge flap deflections, and of simulating the geometry of large external stores were also determined.
Retention of a reconstructed nipple using a C-V flap with different layer thicknesses in the C-flap.
Sowa, Yoshihiro; Itsukage, Sizu; Sakaguchi, Kouichi; Taguchi, Tetsuya; Numajiri, Toshiaki
2018-04-01
The C-V flap for nipple reconstruction is now one of standard surgical techniques. But decreased projection is still a problem. In recent years, it has been suggested that projection can be more easily maintained when raising of the C-flap is performed with a split thickness dermis. In this study, we examined whether decrease of projection can be prevented by raising of a C-flap with a split dermis rather than with full dermis. A total of 49 consecutive patients who underwent reconstruction of a nipple using the C-V flap technique were enrolled. The patients included 22 who underwent surgery using a C-flap with a full thickness dermis (Group F), and 27 who underwent surgery with raising of a flap with a split thickness dermis (Group S). The size of the reconstructed nipple was measured at 2 weeks, 6 months and 1 year postoperatively for comparison between Groups F and S. Partial necrosis of the C-flap end occurred in 4 subjects in only Group S. The decrease in projection after 1 year postoperatively in Group S was significantly lower than that in Group F. In contrast, the teat base size in Group F tended to be greater than that in Group S, suggesting a tendency for an expanded base using a flap with a full dermis. Our results indicated that it is recommended to use a C-flap with a split dermis for cases with high projection of the nipple on the contralateral side.
Calculation of vortex lift effect for cambered wings by the suction analogy
NASA Technical Reports Server (NTRS)
Lan, C. E.; Chang, J. F.
1981-01-01
An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.
Gunnarsson, Gudjon L.; Børsen-Koch, Mikkel; Nielsen, Henrik T.; Salzberg, Andrew
2015-01-01
Summary: We present our experience of bilateral total breast reconstruction using a double-sided extended thoracodorsal artery perforator propeller flap in a case series of 10 patients. Reconstruction was successfully achieved in all cases with few complications. The median time for surgery was 275 minutes (200–330), and the average implant size used was 350 cm3 (195–650). We demonstrate how the extended thoracodorsal artery perforator propeller flap allows for a swift and reliable direct to implant bilateral total breast reconstruction in a simple setting and is a valuable adjunct to our armamentarium of techniques for single-stage bilateral breast reconstruction. PMID:26180736
NASA Technical Reports Server (NTRS)
Fisher, David F.; Lanser, Wendy R.
1994-01-01
Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.
Chen, Baoguo; Xu, Minghuo; Chai, Jiake; Song, Huifeng; Gao, Quanwen
2015-06-01
Axillary burn scar contracture is common and troublesome. With the aim of restoring the function of the upper extremities, a proper local flap with minor damage and preclusion from recurrence should be developed to guarantee satisfactory results. A minor webbed scar contracture was rectified by Z-plasty. However, severe or moderate contracture must be constructed by a local flap. An island scapular flap has been used in pediatric patients for repairing axillary contracture. However, no detailed description of the use of a transverse island scapular flap (TISF) was reported to correct the deformity. Moreover, an expanded transverse island scapular flap (ETISF) used for increasing the volume of skin for severe axillary contracture in adults and developing children was also not presented. From 2006 to 2013, TISFs were harvested for 12 pediatric patients (5-12 years of age) with 15 sides of severe or moderate axillary burn scar contractures. Four ETISFs were designed for two adult patients (38 and 32 years of age). The flap size was between 10 cm×5 cm and 20 cm×10 cm. In one pediatric patient, a cicatrix was observed on the surface of the flap's donor site. Handheld Doppler was applied to detect the pedicle. The patients were required to lift their upper arms regularly each day after the operation. All 19 flaps survived completely. Axillary burn scar contractures were corrected successfully in 11 patients with no expander implantation. The lifting angle was enhanced considerably with 1-3 years of follow-up in the 11 patients. Only one pediatric patient with cicatrix on the donor site displayed tight skin on the back and a little restraint on the shoulder. The patient's parents were told to intensify the chin-up movement on the horizontal bar. She was in the process of a 3-month follow-up. The lifting angle was also improved significantly in the latter three cases of expander implantation although they were followed up for a short duration of 3 months. Due to poor flap design, the donor site of one adult patient was not closed directly with the help of skin grafting on the left side of her back. Considering the flap's negligible level of later contracture and minimal trauma, local TISF based on the transverse branch of the circumflex scapular artery is a good choice for reconstruction of axillary burn scar contractures. If the TISF is not able to meet the demand, the expander implanted in advance can be more beneficial. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
The edge complex: implicit memory for figure assignment in shape perception.
Peterson, Mary A; Enns, James T
2005-05-01
Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.
Static and Dynamic Aeroelastic Tailoring With Variable Camber Control
NASA Technical Reports Server (NTRS)
Stanford, Bret K.
2016-01-01
This paper examines the use of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for aeroservoelastic optimization of a transport wingbox. The quasisteady and unsteady motions of the flap system are utilized as design variables, along with patch-level structural variables, towards minimizing wingbox weight via maneuver load alleviation and active flutter suppression. The resulting system is, in general, very successful at removing structural weight in a feasible manner. Limitations to this success are imposed by including load cases where the VCCTEF system is not active (open-loop) in the optimization process, and also by including actuator operating cost constraints.
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.
Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings
NASA Technical Reports Server (NTRS)
Tucker, Warren A; Nelson, Robert L
1949-01-01
Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.
VIEW OF LEFT WING AND FUSELAGE FROM TOP LEVEL OF ...
VIEW OF LEFT WING AND FUSELAGE FROM TOP LEVEL OF TAIL DOCK STAND. LEADING AND TRAILING EDGE FLAPS ARE DOWN; AIELERONS ARE IN NEUTRAL. ENGINE COWLING OFF FOR HEAVY INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY
Roy, Andrée-Anne; Efanov, Johnny I; Mercier-Couture, Geneviève; Chollet, André; Borsuk, Daniel E
2017-02-01
Craniomaxillofacial reconstruction using virtual surgical planning, computer-aided manufacturing, and new microsurgical techniques optimizes patient-specific and defect-directed reconstruction. A 3D customized free deep circumflex iliac artery (DCIA) flap with intraoral anastomoses was performed on a 23-year-old man with a posttraumatic right zygomatico-maxillary defect with failure of alloplastic implant reconstruction. An osseous iliac crest flap was sculpted based on a customized 3D model of the mirror image of the patient's unaffected side to allow for perfect fit to the zygomatico-maxillary defect. An intraoral dissection of the facial artery and vein was performed within the right cheek mucosa and allowed for end-to-end microvascular anastomoses. 3D preoperative planning and customized free DCIA osseous flap combined with an intraoral microsurgical technique provided restoration of facial esthetics and function without visible scars. In cases where zygomatico-malar reconstruction by alloplastic material fails, a customized free DCIA osseous flap can be designed by virtual surgical planning to restore facial appearance and function.
Hydrodynamics of a freely movable flexible fin near the ground
NASA Astrophysics Data System (ADS)
Jeong, Young Dal; Lee, Jae Hwa
2017-11-01
In the present study, a freely movable flexible fin is numerically modelled to investigate the flapping dynamics of the fin near the ground in a Poiseuille flow. A leading edge of the fin is fixed in the streamwise direction, whereas the lateral motion is spontaneously determined by hydrodynamic interaction between the fin and surrounding fluid. When the fin is initially positioned at yo, the fin passively migrates toward another wall-normal position for an equilibrium state by the interaction between passively flapping flexible body and ground. At the equilibrium position, the drag coefficient of the fin (CD) significantly decreases due to decaying of the flapping and low flow velocity and the fin can swim consistently without the time-averaged lateral force. Two distinctive behavior at the transient state (flapping and non-flapping migration modes) and three distinctive behaviors at the equilibrium state (deflected-straight, large- and small-amplitude flapping modes) are observed depending on the bending rigidity (γ) and mass ratio (μ) of the fin. The equilibrium position of the fin is investigated as a function of initial position (yo) , bending rigidity (γ) , mass ratio (μ) and the Reynolds number (Re). This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Prevertebral corridor: posterior pathway for reconstruction of the ventral skull base.
Durmaz, Abdullah; Fernandez-Miranda, Juan; Snyderman, Carl H; Rivera-Serrano, Carlos; Tosun, Fuat
2011-05-01
Regional vascularized flaps, such as the pericranial and temporoparietal fascia flaps, are currently used for reconstruction of skull base defects after endoscopic endonasal surgery whenever local vascularized flaps, such as the nasoseptal flap, are not available. Two different transposition pathways, infratemporal transpterygoid and subfrontal, have been proposed for regional flaps. The objective of this study was to describe and assess the feasibility of the transposition of a vascularized pedicled flap from the occipital galeopericranium via the prevertebral space corridor into the nasopharynx. Ten heads were injected with colored silicone. An endoscopic endonasal anterior craniofacial resection and panclival approach were performed in each specimen. The occipital flap was harvested using a previously described technique. The prevertebral corridor, extending from the neck to the nasopharynx, was dissected superficial to the paraspinal muscles. Computed tomography-based image guidance was used to assess the relationship between the corridor and adjacent neurovascular structures. Length of the corridor and pedicle and area of the donor flap were measured. The flap was harvested and successfully transposed into the nasopharynx using the proposed corridor in all studied specimens (10 heads, 20 sides). All flaps provided complete coverage of the skull base defects. The average length of the pedicle was 70.5 (SD, 6.5) mm, and the average length and width of the flap were 99.9 (SD, 14.6) mm and 59.3 (SD, 10.9) mm, respectively. The average length of the prevertebral corridor was 49.7 (SD, 4.8) mm. The occipital flap has favorable anatomic characteristics for use in skull base reconstruction. Transposition of the flap via the prevertebral corridor is a suitable option for vascularized reconstruction of expanded endonasal skull base defects when other local or regional flaps are not available. Additional clinical studies are necessary to define its role in endoscopic endonasal surgery.
Cordova, Adriana; Toia, Francesca; D'Arpa, Salvatore; Giunta, Gabriele; Moschella, Francesco
2015-03-01
Lingual flaps provide ideal mucosal coverage for intraoral defects but traditionally require two surgical stages. The authors present an axial mucosal propeller flap for single-stage intraoral reconstruction. The flap includes the mucosa of the lateral side of the tongue, islanded on the deep lingual vessels. Between 2011 and 2013, 23 patients underwent intraoral mucosal reconstruction with a deep lingual artery axial propeller flap after cancer resection in the cheek (n = 16), floor of the mouth (n = 2), retromolar trigone (n = 2), hard palate (n = 2), and soft palate (n = 1). Mean defect size was 19.5 cm. Preoperative and postoperative intraoral function was evaluated with the Functional Intraoral Glasgow Scale. The authors always achieved one-stage reconstruction with primary donor-site closure. The only complications were an infection treated conservatively and a late oronasal fistula caused by radiotherapy. All patients resumed an oral diet after 1 week and none required surgical revision. Mean 12-month postoperative Functional Intraoral Glasgow Scale score was better than the preoperative score (13.5 versus 12.8). The deep lingual artery axial propeller flap combines the advantages of the traditional lingual flap (i.e., reliable axial vascularization and like-with-like reconstruction) with those of a propeller flap (i.e., one-stage transfer of like tissue and extreme mobility) and has wider indications than a conventional lingual flap. The technique is fast and has low morbidity and good functional results, and the authors recommend it as a first-choice technique to reconstruct moderate to large intraoral defects. Therapeutic, IV.
System and Method for Modeling the Flow Performance Features of an Object
NASA Technical Reports Server (NTRS)
Jorgensen, Charles (Inventor); Ross, James (Inventor)
1997-01-01
The method and apparatus includes a neural network for generating a model of an object in a wind tunnel from performance data on the object. The network is trained from test input signals (e.g., leading edge flap position, trailing edge flap position, angle of attack, and other geometric configurations, and power settings) and test output signals (e.g., lift, drag, pitching moment, or other performance features). In one embodiment, the neural network training method employs a modified Levenberg-Marquardt optimization technique. The model can be generated 'real time' as wind tunnel testing proceeds. Once trained, the model is used to estimate performance features associated with the aircraft given geometric configuration and/or power setting input. The invention can also be applied in other similar static flow modeling applications in aerodynamics, hydrodynamics, fluid dynamics, and other such disciplines. For example, the static testing of cars, sails, and foils, propellers, keels, rudders, turbines, fins, and the like, in a wind tunnel, water trough, or other flowing medium.
Investigation of span-chordwise bending anisotropy of honeybee forewings
Ning, JianGuo; Ma, Yun; Zhang, PengFei
2017-01-01
ABSTRACT In this study, the spanwise and chordwise bending stiffness EI of honeybee forewings were measured by a cantilevered bending test. The test results indicate that the spanwise EI of the forewing is two orders of magnitude larger than the chordwise EI. Three structural aspects result in this span-chordwise bending anisotropy: the distribution of resilin patches, the corrugation along the span and the leading edge vein of the venation. It was found that flexion lines formed by resilin patches revealed through fluorescence microscopy promoted the chordwise bending of the forewing during flapping flight. Furthermore, the corrugation of the wing and leading edge veins of the venation, revealed by micro-computed tomography, determines the relatively greater spanwise EI of the forewing. The span-chordwise anisotropy exerts positive structural and aerodynamic influences on the wing. In summary, this study potentially assists researchers in understanding the bending characteristics of insect wings and might be an important reference for the design and manufacture of bio-inspired wings for flapping micro aerial vehicles. PMID:28396486
Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi
2002-01-01
Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.
NASA Technical Reports Server (NTRS)
Brown, Nelson
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.
Optimization of multi-element airfoils for maximum lift
NASA Technical Reports Server (NTRS)
Olsen, L. E.
1979-01-01
Two theoretical methods are presented for optimizing multi-element airfoils to obtain maximum lift. The analyses assume that the shapes of the various high lift elements are fixed. The objective of the design procedures is then to determine the optimum location and/or deflection of the leading and trailing edge devices. The first analysis determines the optimum horizontal and vertical location and the deflection of a leading edge slat. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This design procedure does not require that flow separation effects be modeled. The second analysis determines the slat and flap deflection required to maximize the lift of a three element airfoil. This approach requires that the effects of flow separation from one or more of the airfoil elements be taken into account. The theoretical results are in good agreement with results of a wind tunnel test used to corroborate the predicted optimum slat and flap positions.
Patient-based outcomes following surgical debridement and flap coverage of digital mucous cysts.
Hojo, Junya; Omokawa, Shohei; Shigematsu, Koji; Onishi, Tadanobu; Murata, Keiichi; Tanaka, Yasuhito
2016-01-01
The purpose of this prospective cohort study was to evaluate patient-based outcomes and complications following excision of mucous cysts, joint debridement, and closure with one of three types of local flaps. From 2000-2011, 35 consecutive patients with 37 digital mucous cysts were treated surgically. The surgical procedure included excision of the cyst together with the attenuated skin, joint debridement on the affected side including capsulectomy, and removal of osteophytes. Depending on the size and location of the cyst, the skin defect was covered by a transposition flap (31 cysts), an advancement flap (two cysts), or a rotation flap (four cysts). At an average follow-up time of 4 years, 4 months, there was no wound infection, flap necrosis, or joint stiffness. Preoperative nail ridging resolved in seven of nine fingers, and no nail deformities developed after surgery. One cyst, treated with a transposition flap, recurred 10 months after surgery. The average satisfaction score for the affected finger significantly improved from 4.3 to 6.8, and the average pain score decreased from 4.7 to 2.3. This treatment protocol provides reliable results. Patients were satisfied with the reduction of associated pain and the postoperative appearance of the treated finger, and postoperative complications were minimal.
NASA Technical Reports Server (NTRS)
Hunten, Lynn W.; Dew, Joseph K.
1949-01-01
Wind-tunnel tests of a full-scale model of the Republic XF-91 airplane having swept-back wings and a vee tail were conducted to determine both the stability and control characteristics of the model longitudinally, laterally, and directionally. Configurations of the model were investigated involving such variables as external fuel tanks, a landing gear, trailing-edge flaps, leading-edge slats, and a range of wing incidences and tail incidences.
USB flow characteristics related to noise generation
NASA Technical Reports Server (NTRS)
Brown, W. H.; Reddy, N. N.
1976-01-01
The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry, and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.
Polidocanol injection for chemical delay and its effect on the survival of rat dorsal skin flaps.
Menevşe, Gülsüm Tetik; TeomanTellioglu, Ali; Altuntas, Nurgül; Cömert, Ayhan; Tekdemir, Ibrahim
2014-06-01
Surgical delay is an invasive method requiring a two-stage surgical procedure. Hence, methods that may serve as an alternative to surgical delay have become the focus of interest of research studies. From a conceptual view, any technique that interrupts the blood flow along the edges of a proposed flap will render the flap ischemic and induce a delay phenomenon. Polidocanol (Aethoxysklerol(®)-Kreussler) was initially used as a local anesthetic. Nowadays, it has been used as a sclerosing agent to treat telangiectasias and varicose veins. The aim of this experimental study was to investigate the effects of polidocanol injected around the periphery of a random flap as a sclerosing agent on flap delay and survival in a random flap model. A preliminary histopathologic study was performed on two rats to evaluate the sclerosing effect and distribution of polidocanol injection. After the preliminary study, the main study was carried out with three groups: group 1: dorsal flap (n = 10); group 2: dorsal flap + surgical delay (n = 10), group 3: dorsal flap + chemical delay (n = 10). Tissue samples obtained from the flap and injection area revealed destruction of intradermal vessels. The area affected with sclerosis was limited to 0.1 cm beyond the injection site. Mean viable flap areas were 52.1 ± 4.38% (44.0-58.2) in group 1, 64.8 ± 8.92% (57.2-89.2) in group 2, and 71.8 ± 5.18% (64.0-84.0) in group 3. A statistically highly significant difference was found between the surgical delay and chemical delay groups versus the group without delay (p < 0.001 and p < 0.001, respectively). The difference between the mean viable flap areas was not statistically significant in the surgical and chemical delay groups (p = 0.056). In conclusion, this study has shown that polidocanol injection around the dorsal flap in the rat is a safe and easy method for nonsurgical delay. The results have shown a flap survival benefit that is superior to controls and equivalent to surgical delay. The clinical application of polidocanol, already in clinical practice for occlusal of telangiectasias, for surgical delay appears feasible. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
A bio-inspired study on tidal energy extraction with flexible flapping wings.
Liu, Wendi; Xiao, Qing; Cheng, Fai
2013-09-01
Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.
Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence
NASA Technical Reports Server (NTRS)
Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)
1994-01-01
A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.
The X-38 V-201 Flap Actuator Mechanism
NASA Technical Reports Server (NTRS)
Hagen, Jeff; Moore, Landon; Estes, Jay; Layer, Chris
2004-01-01
The X-38 Crew Rescue Vehicle V-201 space flight test article was designed to achieve an aerodynamically controlled re-entry from orbit in part through the use of two body mounted flaps on the lower rear side. These flaps are actuated by an electromechanical system that is partially exposed to the re-entry environment. These actuators are of a novel configuration and are unique in their requirement to function while exposed to re-entry conditions. The authors are not aware of any other vehicle in which a major actuator system was required to function throughout the complete re-entry profile while parts of the actuator were directly exposed to the ambient environment.
[The usage of inferior turbinate mucosal flap for repairing cleft lip].
Gao, Pu; Zhao, Min; Qi, Ke-ming; Zhao, Zhen-min; Xiong, Bin
2004-05-01
To evaluate a technique for decreasing the tension of the nasal floor during the procedures of repairing complete clef lip. With the designation of an inferior turbinate mucosal flap combined with an oral mucosal flap in the splitting side, the tension was effectively decreased and the nasal floor was closed easily. Eighteen patients was selected for the treatment with this technique since 2000. The follow-ups were 10 to 24 months. All of the patients showed wound healing well with the significant improvement in the donor site. The above mentioned technique may effectively decrease the tension and be used to close the nasal floor safely. It could also reduce the incidence of the complications.
Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project
NASA Technical Reports Server (NTRS)
Cruz, Josue; Miller, Eric J.
2016-01-01
The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.
Leckenby, Jonathan; Butler, Daniel; Grobbelaar, Adriaan
2015-01-01
The latissimus dorsi flap is popular due to the versatile nature of its applications. When used as a pedicled flap it provides a robust solution when soft tissue coverage is required following breast, thoracic and head and neck surgery. Its utilization as a free flap is extensive due to the muscle's size, constant anatomy, large caliber of the pedicle and the fact it can be used for functional muscle transfers. In facial palsy it provides the surgeon with a long neurovascular pedicle that is invaluable in situations where commonly used facial vessels are not available, in congenital cases or where previous free functional muscle transfers have been attempted, or patients where a one-stage procedure is indicated and a long nerve is required to reach the contra-lateral side. Although some facial palsy surgeons use the trans-axillary approach, an operative guide of raising the flap by this method has not been provided. A clear guide of raising the flap with the patient in the supine position is described in detail and offers the benefits of reducing the risk of potential brachial plexus injury and allows two surgical teams to work synchronously to reduce operative time.
Flight investigation of insect contamination and its alleviation
NASA Technical Reports Server (NTRS)
Peterson, J. B., Jr.; Fisher, D. F.
1978-01-01
An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.
Curet, Oscar M; Swartz, Sharon M; Breuer, Kenneth S
2013-03-06
The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid-structure interaction are not well understood. Here, we study passive flight (flight with no active wing actuation) and explore a physical mechanism that leads to the emergence of a natural flapping motion. We model a vertebrate wing with a compliant shoulder and the ability to camber with an idealized physical model consisting of a cantilevered flat plate with a hinged trailing flap. We find that at low wind speed the wing is stationary, but at a critical speed the wing spontaneously flaps. The lift coefficient is significantly enhanced once the wing starts to oscillate, although this increase in lift generation is accompanied by an increase in drag. Flow visualization suggests that a strong leading edge vortex attached to the wing during downstroke is the primary mechanism responsible for the enhanced lift. The flapping instability we observe suggests a possible scenario for an evolutionary transition from gliding to powered flapping flight in animals that possess compliant wings capable of passive camber. Although the flapping state is accompanied by a lower lift-to-drag ratio, the increased lifting capability it confers might have enabled increased body mass, improved foraging performance and/or flight at lower speeds, any of which might have been selectively advantageous.
Curet, Oscar M.; Swartz, Sharon M.; Breuer, Kenneth S.
2013-01-01
The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid–structure interaction are not well understood. Here, we study passive flight (flight with no active wing actuation) and explore a physical mechanism that leads to the emergence of a natural flapping motion. We model a vertebrate wing with a compliant shoulder and the ability to camber with an idealized physical model consisting of a cantilevered flat plate with a hinged trailing flap. We find that at low wind speed the wing is stationary, but at a critical speed the wing spontaneously flaps. The lift coefficient is significantly enhanced once the wing starts to oscillate, although this increase in lift generation is accompanied by an increase in drag. Flow visualization suggests that a strong leading edge vortex attached to the wing during downstroke is the primary mechanism responsible for the enhanced lift. The flapping instability we observe suggests a possible scenario for an evolutionary transition from gliding to powered flapping flight in animals that possess compliant wings capable of passive camber. Although the flapping state is accompanied by a lower lift-to-drag ratio, the increased lifting capability it confers might have enabled increased body mass, improved foraging performance and/or flight at lower speeds, any of which might have been selectively advantageous. PMID:23303221
van Zanten, Malou C; Mistry, Raakhi M; Suami, Hiroo; Campbell-Lloyd, Andrew; Finkemeyer, James P; Piller, Neil B; Caplash, Yugesh
2017-02-01
Severe compound tibial fractures are associated with extensive soft-tissue damage, resulting in disruption of lymphatic pathways that leave the patient at risk of developing chronic lymphedema. There are limited data on lymphatic response following lower limb trauma. Indocyanine green fluorescence lymphography is a novel, real-time imaging technique for superficial lymphatic mapping. The authors used this technique to image the superficial lymphatic vessels of the lower limbs in patients with severe compound tibial fracture. Baseline demographics and clinical and operative details were recorded in a prospective cohort of 17 patients who had undergone bone and soft-tissue reconstruction after severe compound tibial fracture between 2009 and 2014. Normal lymphatic images were obtained from the patients' noninjured limbs as a control. In this way, the authors investigated any changes to the normal anatomy of the lymphatic system in the affected limbs. Of the 17 patients, eight had free muscle flaps with split-thickness skin grafting, one had a free fasciocutaneous flap, one had a full-thickness skin graft, six had local fasciocutaneous flaps, and one had a pedicled gastrocnemius flap. None of the free flaps demonstrated any functional lymphatic vessels; the fasciocutaneous flaps and the skin graft demonstrated impaired lymphatic vessel function and dermal backflow pattern similar to that in lymphedema. Local flaps demonstrated lymphatic blockage at the scar edge. Severe compound fractures and the associated soft-tissue injury can result in significant lymphatic disruption and an increased risk for the development of chronic lymphedema.
NASA Technical Reports Server (NTRS)
Scott, S. J.; Nicks, O. W.; Imbrie, P. K.
1985-01-01
An investigation was conducted in the Texas A&M University 7 by 10 foot Low Speed Wind Tunnel to provide a direct comparison of the effect of several leading edge devices on the aerodynamic performance of a highly swept wing configuration. Analysis of the data indicates that for the configuration with undeflected leading edges, vortex separation first occurs on the outboard wing panel for angles of attack of approximately 2, and wing apex vorticies become apparent for alpha or = 4 deg. However, the occurrence of the leading edge vortex flow may be postponed with leading edge devices. Of the devices considered, the most promising were a simple leading edge deflection of 30 deg and a leading edge slat system. The trailing edge flap effectiveness was found to be essentially the same for the configuration employing either of these more promising leading edge devices. Analysis of the lateral directional data showed that for all of the concepts considered, deflecting leading edge downward in an attempt to postpone leading edge vortex flows, has the favorable effect of reducing the effective dihedral.
V/STOL model fan stage rig design report
NASA Technical Reports Server (NTRS)
Cheatham, J. G.; Creason, T. L.
1983-01-01
A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.
Experimental investigation of flow field around the elastic flag flapping in periodic state
NASA Astrophysics Data System (ADS)
Jia, Yongxia; Jia, Lichao; Su, Zhuang; Yuan, Huijing
2018-05-01
The flapping of a flag in the wind is a classical fluid-structure problem that concerns the interaction of elastic bodies with ambient fluid. We focus on the desirable experimental results of the flow around the flapping flag. By immersing the elastic yet self-supporting heavy flag into water flow, we use particle image velocimetry (PIV) techniques to obtain the whole flow field around the midspan of the flag interacting with a fluid in periodic state. A unique PIV image processing method is used to measure near-wall flow velocities around a moving elastic flag. There exists a thin flow circulation region on the suction side of the flag in periodic state. This observation suggests that viscous flow models may be needed to improve the theoretical predictions of the flapping flag in periodic state, especially in a large amplitude.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; James Urnes, Sr.
2012-01-01
Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be achieved. Moreover, some parts of the flap system can be made to have a high frequency response for roll control, gust load alleviation, and aeroservoelastic (ASE) modal suppression control. Abstract The aeroelastic model of the ESAC is based on one-dimensional structural dynamic theory that captures the aeroelastic deformation of a wing structure in a combined motion that involves flapwise bending, chordwise bending, and torsion. The model includes the effect of aircraft propulsion due to wing flexibility which causes the propulsive forces and moments to couple with the wing elastic motion. Engine mass is also accounted in the model. A fuel management model is developed to describe the wing mass change due to fuel usage in the main tank and wing tanks during cruise. Abstract The model computes both static and dynamic responses of the wing structures. The static aeroelastic deflections are used to estimate the effect of wing flexibility on induced drag and the potential drag reduction by the VCCTE flap system. A flutter analysis is conducted to estimate the flutter speed boundary. Gust load alleviation via adaptive control has been recently investigated to address flexibility of aircraft structures. A multi-objective flight control approach is presented for drag reduction control. The approach is based on an optimal control framework using a multi-objective cost function. Future studies will demonstrate the potential benefits of the approach.
Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.
Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André
2017-03-06
Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.
Simple skin-stretching device in assisted tension-free wound closure
Cheng, Li-Fu; Lee, Jiunn-Tat; Hsu, Honda; Wu, Meng-Si
2017-01-01
Background Numerous conventional wound reconstruction methods such as wound undermining with direct suture, skin graft, and flap surgery can be used to treat large wounds. The adequate undermining of the skin flaps of a wound is a commonly used technique for achieving the closure of large tension wounds; however, the use of tension to approximate and suture the skin flaps can cause ischemic marginal necrosis. The purpose of this study is to use elastic rubber bands to relieve the tension of direct wound closure for simultaneously minimizing the risks of wound dehiscence and wound edge ischemia that lead to necrosis. Materials and Methods This retrospective study was conducted to evaluate our clinical experiences with 22 large wounds, which involved performing primary closures under a considerable amount of tension by using elastic rubber bands in a skin-stretching technique following a wide undermining procedure. Assessment of the results entailed complete wound healing and related complications. Results All 22 wounds in our study showed fair to good results except for one. The mean success rate was approximately 95.45%. Conclusion The simple skin-stretching design enabled tension-free skin closure, which pulled the bilateral undermining skin flaps as bilateral fasciocutaneous advancement flaps. The skin-stretching technique was generally successful. PMID:28195891
McDonnell F4H Model in Ames 40X80 foot Wind Tunnel.
1956-10-19
Application of blowing type boundry-layer control to the leading and trailing edge flaps of a 52 deg swept wing. 3/4 view of Aspect Ratio 2.8, taper ratio .17, 45 deg swept back wing model -3/4 front view
NASA Technical Reports Server (NTRS)
1999-01-01
This document describes the design, fabrication, and installation of the suction panel and the required support structure, ducting, valving, and high-lift system (Krueger flaps) for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane.
Mastropasqua, Leonardo; Calienno, Roberta; Lanzini, Manuela; Salgari, Niccolò; De Vecchi, Sergio; Mastropasqua, Rodolfo; Nubile, Mario
2017-06-01
The purpose of this study was to evaluate the incidence of opaque bubble layer (OBL) in femtosecond laser-assisted in situ keratomileusis (LASIK) flaps created with the support of Visumax Carl Zeiss femtosecond laser, planned with different flap diameters (7.90, 8.0, and 8.20 mm) and the same laser energy and power settings. Incidence of intraoperative OBL in flaps of consecutive 108 patients (216 eyes) subjected to bilateral femtosecond-assisted LASIK was considered. Flap creation was performed with the same laser design parameters (spot distance and energy offset) and different presetting diameters of 7.90 mm (72 eyes, group 1), 8 mm (72 eyes, group 2), and 8.20 mm (72 eyes, group 3). The incidence of OBL was considered and its extension was reported measuring involvement of different four corneal flap quadrants in which was theoretically divided the entire flap area; based on these data, OBL presence was classified as none (no evidence of OBL), minimal (minimal presence in not more that one quadrants corneal flap), mild (OBL presence in almost two or three quadrants without tendency to invade central cornea), and moderate (OBL presence in almost three quadrants with tendency to invade central cornea). In group 1, the incidence of OBL was of 23.6 % (17 eyes) with a mild/moderate presence; in group 2, incidence was 20.8 % (15 eyes) with mild presence. Group 3 presented a reduced OBL incidence (4.1 %, 3 eye) with a minimal presence. No statistically significant difference was found between group 1 and 2 (p = 0.8414).We found statistically significant differences between group 1 and group 3 (p = 0.0012) and between groups 2 and 3 (p = 0.0044). A significant reduction and extension of OBL incidence were evident when LASIK flap settings diameter was increased, and flap edge was closer to the contact glass border; this is probably consequent to a more effective gas dispersion outside of corneal flap.
[Open window thoracostomy and muscle flap transposition for thoracic empyema].
Nakajima, Y
2010-07-01
Open window thoracostomy for thoracic empyema: Open window thoracostomy is a simple, certain and final drainage procedure for thoracic empyema. It is most useful to drain purulent effusion from empyema space, especially for cases with broncho-pleural fistulas, and to clean up purulent necrotic debris on surface of empyema sac. For changing of packing gauzes in empyema space through a window once or twice every day after this procedure, thoracostomy will have to be made on the suitable position to empyema space. Usually skin incision will be layed along the costal bone just at the most expanded position of empyema. Following muscle splitting to thoracic wall, a costal bone just under the incision will be removed as 8-10 cm as long, and opened the empyema space through a costal bed. After the extension of empyema space will be preliminarily examined through a primary window by a finger or a long forceps, it will be decided costal bones must be removed how many (usually 2 or 3 totally) and how long (6-8 cm) to make a window up to 5 cm in diameter. Thickened empyema wall will be cut out just according to a window size, and finally skin edge and empyema wall will be sutured roughly along circular edge. Muscle flap transposition for empyema space: Pediclued muscle flap transposition is one of space-reducing operations for (chronic) empyema Usually this will be co-performed with other several procedures as curettages on empyema surface, closure of bronchopleural fistula and thoracoplasty. This is radically curable for primarily non fistulous empyema or secondarily empyema after open window thoracostomy done for fistula. Furthermore this is less invasive than other radical operations as like pleuro-pneumonectomy, decortication or air-plombage for empyema. There are 2 important points to do this technique. One is a volume of muscle flap and another is good blood flow in flap. The former suitable muscle volume is need to impact empyema space or to close fistula, and the latter over-elongation and bending of pedicles should be avoided. Actually, after removing several costal bones on the empyema space, empyema wall will be incised for about 2/3 of total empyema length along costal beds. Then muscle flap will be introduced into cleaned up space and sutured on empyema surface at several points. It is better to lay small vacuum drain tubes along flap within empyema space.
Aeroelastic Wing Shaping Control Subject to Actuation Constraints.
NASA Technical Reports Server (NTRS)
Swei, Sean Shan-Min; Nguyen, Nhan
2014-01-01
This paper considers the control of coupled aeroelastic aircraft model which is configured with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative deflection between two adjacent flaps is constrained and this actuation constraint is accounted for when designing an effective control law for suppressing the wing vibration. A simple tuned-mass damper mechanism with two attached masses is used as an example to demonstrate the effectiveness of vibration suppression with confined motion of tuned masses. In this paper, a dynamic inversion based pseudo-control hedging (PCH) and bounded control approach is investigated, and for illustration, it is applied to the NASA Generic Transport Model (GTM) configured with VCCTEF system.
Side Flow Effect on Surface Generation in Nano Cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-05-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Wu, Liza C; Iteld, Lawrence; Song, David H
2008-06-01
Autologous breast reconstruction with the transverse rectus abdominis musculocutaneous (TRAM) flap is traditionally based on either the superior epigastric vessels (pedicled) or the deep inferior system (free). In the overweight and obese population, both techniques have been shown to have increased complications of the reconstructed breast. Another alternative is supercharging the flap by anastamosing the deep inferior epigastric vessels to either the internal mammary or thoracodorsal systems. We present a single surgeon's experience with unilateral TRAM reconstructions supercharged to either the thoracodorsal vessels, the internal mammary system, or in one case, perforator vessels in overweight and obese patients. Nineteen consecutive overweight or obese patients underwent delayed or immediate, unilateral autologous breast reconstruction with supercharged TRAM flaps between November 2000 and November 2004. The patients ranged in age from 28 to 66 years (average 49) and had an average body mass index (BMI) of 29.5 (24.9-38.3). Twelve patients had a BMI between 25 and 29.9 kg/m2; 7 patients had BMI > or =30 kg/m2. Left-sided reconstructions were 13; right-sided reconstructions were 6. Supercharging was performed by anastamosing the deep inferior epigastric artery and vein to the thoracodorsal vessels, internal mammary vessels, or perforator vessels. Follow-up ranged from 6 to 54 months. There was a qualitative increase in blood flow measured by audible Doppler signals in all patients after the arterial and venous anastamoses. There were no cases of partial or complete flap loss. One patient had a hematoma and subsequently developed minor fat necrosis. One patient had an infection of the reconstructed breast. There were no donor site complications. Supercharging the TRAM flap by means of microvascular augmentation of the deep inferior epigastric vessels provides a safe and effective breast reconstruction in the overweight and obese population with no additional morbidity.
Flow Structure on a Flapping Wing: Quasi-Steady Limit
NASA Astrophysics Data System (ADS)
Ozen, Cem; Rockwell, Donald
2011-11-01
The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.
NASA Technical Reports Server (NTRS)
Arbic, R. G.
1955-01-01
Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.
Grant, Michael D
2015-02-01
One of the most challenging procedures in breast surgery is the skin-sparing mastectomy (SSM). Various techniques and incisions have evolved that characterize this procedure; however, what is common in all of them is the smaller the incision, the more difficult it is to develop the skin flaps. A procedure was developed that incorporates the use of liposuction cannulas (without suction) to create the skin flaps. The technique and results are described in this manuscript. From October of 2012 to April 2014, 289 mastectomies (171 patients) were performed using the CAFE procedure on women of all shapes and sizes. Postoperatively, no problems were experienced with flap viability using this technique. The main difference in side effects between the CAFE technique and other standard techniques for developing flaps in SSMs was more bruising than normal, but this resolved rapidly. The results for use of this technique were consistently impressive. The learning curve for this procedure is very short, especially for those who perform SSMs using sharp technique (scissors). Residents and fellows became proficient with the CAFE technique in a relatively short amount of time. Plastic surgeons were pleased with the cosmetic outcomes of their reconstructions that follow this type of mastectomy. Patients were extremely satisfied with their reconstructions as well. Incorporating the use of liposuction cannulas (without suction) makes the creation of flaps for SSM a relatively simple and rapid method. It is especially useful to assist in developing skin flaps with even the smallest of skin incisions.
1961-10-31
Lockheed NC-130B STOL turboprop-powered aircraft with ailerons drooped 30 degrees. Note trailing-edge flaps deflected 90 degrees for increased lift. Two T-56 turboshaft engines, which drove wing-mounted load compressors for boundary-layer control, are mounted on outboard wing pods. Landing approach speed was reduced 30 knots with boundary-layer control
1975-05-01
ventilated, but never supercavitating , for speeds up to 80 knots. In particular, choking of the air flow to the foil vent was not con- sidered. If this...4Conolly, A.C., "Experimental Investigations of Supercavitating Hydrofoils with Flaps," General Dynamics/Convair Report GD/C-63-210 (Dec 1963). 10 THE SIX...Dec 1966). 4. Conolly, A.C., "Experimenta, Investigations of Supercavitating Hydro- foils with Flaps," General Dynamics/Convair Report GD/C-63-210 (Dec
[Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].
Taneri, S; Azar, D T
2007-02-01
The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser on the undersurface of a LASIK flap are feasible. Thus, the additional risk of iatrogenic keratectasia associated with stromal enhancement ablations is avoided.
Near wall cooling for a highly tapered turbine blade
Liang, George [Palm City, FL
2011-03-08
A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.
Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol
2016-12-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
Phan, Hoang Vu; Au, Thi Kim Loan
2016-01-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force. PMID:28083112
NASA Technical Reports Server (NTRS)
Huffman, J. K.; Fox, C. H., Jr.
1977-01-01
A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8.
Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
NASA Astrophysics Data System (ADS)
Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo
2018-05-01
Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.
Li, Zonghuan; Yu, Aixi; Qi, Baiwen; Pan, Zhenyu; Ding, Junhui
2017-08-01
The aim of this report was to present the use of flow-through free fibula osteocutaneous flap for the repair of complex tibial bone, soft tissue, and main artery segmental defects. Five patients with bone, soft tissue, and segmental anterior tibial artery defects were included. The lengths of injured tibial bones ranged from 4 to 7 cm. The sizes of impaired soft tissues were between 9 × 4 and 15 × 6 cm. The lengths of defect of anterior tibial artery segments ranged from 6 to 10 cm. Two patients had distal limb perfusion problems. Flow-through free fibula osteocutaneous flap was performed for all 5 patients. Patients were followed for 12 to 18 months. All wounds healed after 1-stage operation, and all flow-through flaps survived. The distal perfusion after vascular repair was normal in all patients. Superficial necrosis of flap edge was noted in 1 case. After the local debridement and partial thickness skin graft, the flap healed uneventfully, and the surgical operation did not increase injury to the donor site. Satisfactory bone union was achieved in all patients in 2 to 4 months postoperation. Enlargement of fibula graft was observed during follow-up from 12 to 18 months. The functions of adjacent joints were recovered, and all patients were able to walk normally. Flow-through free fibula osteocutaneous flap was shown to be an effective and efficient technique for repairing composite tibial bone, soft tissue, and main artery segmental defects. This 1-stage operation should be useful in clinical practice for the treatment of complex bone, soft tissue, and vessel defects.
NASA Technical Reports Server (NTRS)
Decker, J. P.; Jacobs, P. F.
1978-01-01
Tests on a 0.015 scale model of a supersonic transport were conducted at Mach numbers from 0.60 to 1.20. Tests of the complete model with three wing planforms, two different leading-edge radii, and various combinations of component parts, including both leading- and trailing-edge flaps, were made over an angle-of-attack range from about -6 deg to 13 deg and at sideslip angles of 0 deg and 2 deg.
Static seal for turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Santiago; Gisch, Andrew
2014-04-01
A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transversemore » to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.« less
Golbin, Denis A.; Lasunin, Nikolay V.; Cherekaev, Vasily A.; Polev, Georgiy A.
2016-01-01
Objectives To evaluate the efficacy and safety of using a buccal fat pad for endoscopic skull base defect reconstruction. Design Descriptive anatomical study with an illustrative case presentation. Setting Anatomical study was performed on 12 fresh human cadaver specimens with injected arteries (24 sides). Internal carotid artery was exposed in the coronal plane via the endoscopic transpterygoid approach. The pedicled buccal fat pad was used for reconstruction. Participants: 12 human cadaver head specimens; one patient operated using the proposed technique. Main outcome measures: Proximity of the buccal fat pad flap to the defect, compliance of the flap, comfort and safety of harvesting procedure, and compatibility with the Hadad–Bassagasteguy nasoseptal flap. Results: Harvesting procedure was performed using anterior transmaxillary corridor. The pedicled buccal fat pad flap can be used to pack the sphenoid sinus or cover the internal carotid artery from cavernous to upper parapharyngeal segment. Conclusion The buccal fat pad can be safely harvested through the same approach without external incisions and is compliant enough to conform to the skull base defect. The proposed pedicled flap can replace free abdominal fat in central skull base reconstruction. The volume of the buccal fat pad allows obliteration of the sphenoid sinus or upper parapharyngeal space. PMID:28180047
Butler, Daniel; Grobbelaar, Adriaan
2015-01-01
The latissimus dorsi flap is popular due to the versatile nature of its applications. When used as a pedicled flap it provides a robust solution when soft tissue coverage is required following breast, thoracic and head and neck surgery. Its utilization as a free flap is extensive due to the muscle's size, constant anatomy, large caliber of the pedicle and the fact it can be used for functional muscle transfers. In facial palsy it provides the surgeon with a long neurovascular pedicle that is invaluable in situations where commonly used facial vessels are not available, in congenital cases or where previous free functional muscle transfers have been attempted, or patients where a one-stage procedure is indicated and a long nerve is required to reach the contra-lateral side. Although some facial palsy surgeons use the trans-axillary approach, an operative guide of raising the flap by this method has not been provided. A clear guide of raising the flap with the patient in the supine position is described in detail and offers the benefits of reducing the risk of potential brachial plexus injury and allows two surgical teams to work synchronously to reduce operative time. PMID:25606493
The effects of leading edge modifications on the post-stall characteristics of wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.
1980-01-01
An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.
Liu, Hanqian; Yu, Huiming; Liu, Jiawu; Fang, Jin; Mao, Chi
2015-05-01
To evaluate the clinical outcomes of submental island pedicled flap (SIPF) combination with bio-membrane in reconstructing palate defects after maxillofacial or palatal neoplasm resection. There were 12 patients with squamous cell carcinoma and one patient with adenoid cystic carcinoma. The clinical stages of tumours were II in two patients, III in four patients, IV in six patients (UICC 2002), and one patient with adenoid cystic carcinoma no staged. SIPFs were designed and created, and the tissue sides of the SIPFs were covered with bio-membrane to reconstruct the oral and the nasal sides of the defects respectively. Speech and swallowing functions and opening mouth were evaluated 6 months postoperatively. All flaps survived and no serious complications occurred. Ten patients achieved normal speech, two had intelligible speech, and one was with slurred speech; Nine patients resumed a solid diet, three with a soft diet, and one on a liquid diet. Eight patients recovered normal mouth opening, four emerged minor limitation of mouth opening, and one had serious limitation of mouth opening. SIPF combined with bio-membrane is a safe, simple, and reliable method for reconstruction of piercing palate defect following neoplasm ablation, with satisfactory oral functions.
Unsteady bio-fluid dynamics in flying and swimming
NASA Astrophysics Data System (ADS)
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight
NASA Astrophysics Data System (ADS)
Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo
2016-11-01
Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.
Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome
2008-01-01
Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.
Flow separation on flapping and rotating profiles with spanwise gradients.
Wong, J G; laBastide, B P; Rival, D E
2017-02-15
The growth of leading-edge vortices (LEV) on analogous flapping and rotating profiles has been investigated experimentally. Three time-varying cases were considered: a two-dimensional reference case with a spanwise-uniform angle-of-attack variation α; a case with increasing α towards the profile tip (similar to flapping flyers); and a case with increasing α towards the profile root (similar to rotor blades experiencing an axial gust). It has been shown that the time-varying spanwise angle-of-attack gradient produces a vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the profile. Specifically, when replicating the angle-of-attack gradient characteristic of a rotor experiencing an axial gust, the spanwise-vorticity gradient is aligned such that circulation increases within the measurement domain. This in turn increases the local LEV growth rate, which is suggestive of force augmentation on the blade. Reversing the relative alignment of the spanwise-vorticity gradient and spanwise flow, thereby replicating that arrangement found in a flapping flyer, was found to reduce local circulation. From this, we can conclude that spanwise flow can be arranged to vary LEV growth to prolong lift augmentation and reduce the unsteadiness of cyclic loads.
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
NASA Technical Reports Server (NTRS)
Baber, Hal T , Jr; Moul, Martin T
1955-01-01
Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
NASA Technical Reports Server (NTRS)
Baber, H. T., Jr.; Moul, M. T.
1955-01-01
Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... installed, repetitive inspections for corrosion and indications of corrosion on affected carriage spindles... repetitive inspections. This AD results from reports of corrosion found on carriage spindles that are located on the outboard trailing edge flaps. We are issuing this AD to detect and correct corrosion of the...
Overview: Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Hashemi, Kelley
2017-01-01
An overview of recent aeroelasitc wing-shaping work at the NASA Ames Research Center is presented. The highlight focuses on activity related to the Performance Adaptive Aeroelastic Wing concept and related Variable Camber Continuous Trailing Edge Flap actuation system. Topics covered include drag-reducing configurations and online algorithms, gust and maneuver load techniques, and wind tunnel demonstrations.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Farge, Marie; Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Lehmann, Fritz; Sesterhenn, Jörn
2016-11-01
We analyze high resolution numerical simulation data of a bumblebee with fixed body and prescribed wing motion, flying in a numerical wind tunnel, presented in. The inflow condition of the tunnel varies from unperturbed laminar to strongly turbulent. The flow generated by the flapping wings indicates the important role of the leading edge vortex (LEV), responsible for elevated lift production and which is not significantly altered by the inflow turbulence. The LEV has a conical structure due to the three-dimensional motion of the wings. This flow configuration produces strong vorticity on the sharp leading edge and the outwards velocity (from the root to the tip of the wing) in the spanwise direction. Flow visualizations show that the generated vortical structures are characterized by a strong helicity. We study the evolution of the mean helicity for each wing and analyze the impact of turbulent inflow. We thankfully acknowledge financial support from the French-German AIFIT project funded by DFG and ANR (Grant 15-CE40-0019). DK gratefully acknowledges financial support from the JSPS postdoctoral fellowship.
Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson Andrew; Schaefer, Jacob Robert
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1999-01-01
The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).
Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson Andrew; Schaefer, Jacob Robert
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson
2012-01-01
The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Gloss, B. B.
1975-01-01
Because the potential flow suction along the leading and side edges of a planform can be used to determine both leading- and side-edge vortex lift, the present investigation was undertaken to apply the vortex-lattice method to computing side-edge suction force for isolated or interacting planforms. Although there is a small effect of bound vortex sweep on the computation of the side-edge suction force, the results obtained for a number of different isolated planforms produced acceptable agreement with results obtained from a method employing continuous induced-velocity distributions. By using the method outlined, better agreement between theory and experiment was noted for a wing in the presence of a canard than was previously obtained.
Zhong, Wanrun; Lu, Shengdi; Wang, Chunyang; Wen, Gen; Han, Pei; Chai, Yimin
2017-07-01
The lack of soft tissue that is available for medial leg and foot defect reconstructions presents a challenge for plastic surgeons. The saphenous neurofasciocutaneous perforator flap application presents an effective alternative to local flap transfers. However, the venous flow and pedicle twisting problems are still disputed. Here, we present our experiences with modified cutaneous pedicles with a single perforator pedicle, which improves the venous flow and the pedicle twisting problem. This study was conducted from June 2007 through September 2011, and a total of 15 patients with lower medial leg and foot defects were included. There were 11 men and four women. An asymmetric 'propeller' flap was planned around a perforator that was adjacent to the defects, which was preoperatively confirmed by Doppler. The perforator was sufficiently dissociated to allow for the flap to be turned towards the defects. We preserved some distal skin and subcutaneous tissue from the short side of the 'propeller' to cover some donor site regions, and other regions were covered with split thickness skin grafts. The follow-up period ranged from 3 to 12 months. An infection occurred in one case. Partial flap necrosis was noted in two cases. The other 12 flaps completely survived and matched the recipient sites with regard to colour, texture and thickness. The single perforator greater saphenous neuro-veno-fasciocutaneous propeller flap is an effective solution for medial leg and foot defects, and it has a large rotation arc and a satisfactory aesthetic result. © 2015 Royal Australasian College of Surgeons.
Chessin, David B; Hartley, John; Cohen, Alfred M; Mazumdar, Madhu; Cordeiro, Peter; Disa, Joseph; Mehrara, Babek; Minsky, Bruce D; Paty, Philip; Weiser, Martin; Wong, W Douglas; Guillem, Jose G
2005-02-01
A major source of morbidity after abdominoperineal resection (APR) after external beam pelvic radiation is perineal wound complications, seen in up to 66% of cases. Our purpose was to determine the effect of rectus abdominus myocutaneous (RAM) flap reconstruction on perineal wound morbidity in this population. The study group consisted of 19 patients with anorectal cancer treated with external beam pelvic radiation followed by APR and RAM flap reconstruction of the perineum. A prospectively collected database was queried to identify a control group (n = 59) with anorectal cancer treated with similar radiation doses that subsequently underwent an APR without a RAM flap during the same time period. Comparison of percentages was performed with a two-sided Fisher's exact test, and comparison of means was performed with Wilcoxon's test. Perineal wound complications occurred in 3 (15.8%) of the RAM flap patients and 26 (44.1%) of the control patients (P = .03). The incidence of other complications was not different between groups (42.1% vs. 42.4%; P = .8). Despite an increased number of anal squamous tumors, an increased vaginectomy rate, increased use of intraoperative radiotherapy, and an increased proportion of cases with recurrent disease, the flap group had a significantly lower rate of perineal wound complications relative to the control group. Perineal closure with a RAM flap significantly decreases the incidence of perineal wound complications in patients undergoing external beam pelvic radiation and APR for anorectal neoplasia. Because other complications are not increased, RAM flap closure of the perineal wound should be strongly considered in this patient population.
Selected topics on the active control of helicopter aeromechanical and vibration problems
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1994-01-01
This paper describes in a concise manner three selected topics on the active control of helicopter aeromechanical and vibration problems. The three topics are as follows: (1) the active control of helicopter air-resonance using an LQG/LTR approach; (2) simulation of higher harmonic control (HHC) applied to a four bladed hingeless helicopter rotor in forward flight; and (3) vibration suppression in forward flight on a hingeless helicopter rotor using an actively controlled, partial span, trailing edge flap, which is mounted on the blade. Only a few selected illustrative results are presented. The results obtained clearly indicate that the partial span, actively controlled flap has considerable potential for vibration reduction in helicopter rotors.
Assessment of PIV-based unsteady load determination of an airfoil with actuated flap
NASA Astrophysics Data System (ADS)
Sterenborg, J. J. H. M.; Lindeboom, R. C. J.; Simão Ferreira, C. J.; van Zuijlen, A. H.; Bijl, H.
2014-02-01
For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered.
Repair of a facial defect with an interpolation skin flap in a cat.
Allen, S W; Miller, M A; Haas, K M
1997-05-01
A 9-year-old domestic shorthair cat was referred for removal of a rostrally located fibrosarcoma on the face, which had previously recurred twice following excision. A wide excision was performed, using a neodymium:yttrium-aluminumgarnet (Nd:YAG) laser, resulting in a facial defect that could not be closed by primary suture. An interpolation skin flap was elevated, using skin from the side of the cat's face, and sutured in place over the defect. Recurrence of the tumor at the medial canthus of the left eye, which was observed 4 months after surgery, was treated by laser excision and cryotherapy. Other recurrences of the fibrosarcoma were not noticed for 2.5 years after referral, at which time the cat was euthanatized for other reasons. Necropsy revealed that the fibrosarcoma had not recurred. In this cat, an interpolation skin flap was useful in repairing a large rostral facial defect. Care should be taken when elevating this flap to preserve the palpebral nerve.
Mutational analysis of the active site flap (20s loop) of mandelate racemase.
Bourque, Jennifer R; Bearne, Stephen L
2008-01-15
Mandelate racemase from Pseudomonas putida catalyzes the Mg2+-dependent 1,1-proton transfer that interconverts the enantiomers of mandelate. Residues of the 20s and 50s loops determine, in part, the topology and polarity of the active site and hence the substrate specificity. Previously, we proposed that, during racemization, the phenyl ring of mandelate moves between an S-pocket comprised of residues from the 50s loop and an R-pocket comprised of residues from the 20s loop [Siddiqi, F., Bourque, J. R., Jiang, H., Gardner, M., St. Maurice, M., Blouin, C., and Bearne, S. L. (2005) Biochemistry 44, 9013-9021]. The 20s loop constitutes a mobile beta-meander flap that covers the active site cavity shielding it from solvent and controlling entry and egress of ligands. To understand the role of the 20s loop in catalysis and substrate specificity, we constructed a series of mutants (V22A, V22I, V22F, T24S, A25V, V26A, V26L, V26F, V29A, V29L, V29F, V26A/V29L, and V22I/V29L) in which the sizes of hydrophobic side chains of the loop residues were varied. Catalytic efficiencies (kcat/Km) for all mutants were reduced between 6- and 40-fold with the exception of those of V22I, V26A, V29L, and V22I/V29L which had near wild-type efficiencies with mandelate. Thr 24 and Ala 25, located at the tip of the 20s loop, were particularly sensitive to minor alterations in the size of their hydrophobic side chains; however, most mutations were tolerated quite well, suggesting that flap mobility could compensate for increases in the steric bulk of hydrophobic side chains. With the exception of V29L, with mandelate as the substrate, and V22F and V26A/V29L, with 2-naphthylglycolate (2-NG) as the substrate, the values of kcat and Km were not altered in a manner consistent with steric obstruction of the R-pocket, perhaps due to flap mobility compensating for the increased size of the hydrophobic side chains. Surprisingly, V22I and V29L catalyzed the racemization of the bulkier substrate 2-NG with kcat/Km values approximately 2-fold greater than those observed for wild-type mandelate racemase. Although minor changes in substrate specificity were achieved through alterations of the active site flap of mandelate racemase, our results suggest that hydrophobic residues that reside on a flexible flap and define the topology of an active site through their van der Waals contacts with the substrate are quite tolerant of a variety of steric substitutions.
Flexible flapping wings with self-organized microwrinkles.
Tanaka, Hiroto; Okada, Hiroyuki; Shimasue, Yosuke; Liu, Hao
2015-06-29
Bio-inspired flapping wings with a wrinkled wing membrane were designed and fabricated. The wings consist of carbon fibre-reinforced plastic frames and a polymer film with microscale wrinkles inspired by bird feathers and the corrugations of insect wings. The flexural and tensile stiffness of the wrinkled film can be controlled by modifying the orientations and waveforms of the wrinkles, thereby expanding the design space of flexible wings for micro flapping-wing aerial robots. A self-organization phenomenon was exploited in the fabrication of the microwrinkles such that microscale wrinkles spanning a broad wing area were spontaneously created. The wavy shape of these self-organized wrinkles was used as a mould, and a Parylene film was deposited onto the mould to form a wrinkled wing film. The effect of the waveforms of the wrinkles on the film stiffness was investigated theoretically, computationally and experimentally. Compared with a flat film, the flexural stiffness was increased by two orders of magnitude, and the tensile stiffness was reduced by two orders of magnitude. To demonstrate the effect of the wrinkles on the actual deformation of the flapping wings and the resulting aerodynamic forces, the fabricated wrinkled wings were tested using a tethered electric flapping mechanism. Chordwise unidirectional wrinkles were found to prevent fluttering near the trailing edge and to produce a greater aerodynamic lift compared with a flat wing or a wing with spanwise wrinkles. Our results suggest that the fine stiffness control of the wing film that can be achieved by tuning the microwrinkles can improve the aerodynamic performance of future flapping-wing aerial robots.
Shi, Pengju; Zhang, Wenlong; Zhao, Gang; Li, Zhigang; Zhao, Shaoping; Zhang, Tieshan
2015-07-01
To investigate the effectiveness of dorsalis pedis flap series-parallel big toe nail composite tissue flap in the repairment of hand skin of degloving injury with tumb defect. Between March 2009 and June 2013, 8 cases of hand degloving injury with thumb defect caused by machine twisting were treated. There were 7 males and 1 female with the mean age of 36 years (range, 26-48 years). Injury located at the left hand in 3 cases and at the right hand in 5 cases. The time from injury to hospitalization was 1.5-4.0 hours (mean, 2.5 hours). The defect area was 8 cm x 6 cm to 15 cm x 1 cm. The thumb defect was rated as degree I in 5 cases and as degree II in 3 cases. The contralateral dorsal skin flap (9 cm x 7 cm to 10 cm x 8 cm) combined with ipsilateral big toe nail composite tissue flap (2.5 cm x 1.8 cm to 3.0 cm x 2.0 cm) was used, including 3 parallel anastomosis flaps and 5 series anastomosis flaps. The donor site of the dorsal flap was repaired with thick skin grafts, the stumps wound was covered with tongue flap at the shank side of big toe. Vascular crisis occurred in 1 big toe nail composite tissue flap, margin necrosis occurred in 2 dorsalis pedis flap; the other flaps survived, and primary healing of wound was obtained. The grafted skin at dorsal donor site all survived, skin of hallux toe stump had no necrosis. Eight cases were followed up 4-20 months (mean, 15.5 months). All flaps had soft texture and satisfactory appearance; the cutaneous sensory recovery time was 4-7 months (mean, 5 months). At 4 months after operation, the two-point discrimination of the thumb pulp was 8-10 mm (mean, 9 mm), and the two-point discrimination of dorsal skin flap was 7-9 mm (mean, 8.5 mm). According to Society of Hand Surgery standard for the evaluation of upper part of the function, the results were excellent in 4 cases, good in 3 cases, and fair in 1 case. The donor foot had normal function. Dorsalis pedis flap series-parallel big toe nail composite tissue flap is an ideal way to repair hand skin defect, and reconstructs the thumb, which has many advantages, including simple surgical procedure, no limitation to recipient site, soft texture, satisfactory appearance and function of reconstructing thumb, and small donor foot loss.
AFC-Enabled Simplified High-Lift System Integration Study
NASA Technical Reports Server (NTRS)
Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin
2014-01-01
The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.
Aerodynamic sound generation of flapping wing.
Bae, Youngmin; Moon, Young J
2008-07-01
The unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for a two-dimensional model of Bombus terrestris bumblebee at hovering and forward flight conditions. The Reynolds number Re, based on the maximum translational velocity of the wing and the chord length, is 8800 and the Mach number M is 0.0485. The computational results show that the flapping wing sound is generated by two different sound generation mechanisms. A primary dipole tone is generated at wing beat frequency by the transverse motion of the wing, while other higher frequency dipole tones are produced via vortex edge scattering during a tangential motion. It is also found that the primary tone is directional because of the torsional angle in wing motion. These features are only distinct for hovering, while in forward flight condition, the wing-vortex interaction becomes more prominent due to the free stream effect. Thereby, the sound pressure level spectrum is more broadband at higher frequencies and the frequency compositions become similar in all directions.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-12-01
In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-01-01
Summary Mosquitoes exhibit unique wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz) and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report wing kinematics and solve the full Navier-Stokes equations using computational fluid dynamics with overset grids and validate our results with in vivo flow measurements. We show that, while familiar separated flow patterns are used by mosquitoes, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described flying animal. In total, there are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a novel form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half stroke, and are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well-suited to high-aspect ratio mosquito wings. PMID:28355184
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
NASA Astrophysics Data System (ADS)
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-03-01
Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
NASA Technical Reports Server (NTRS)
Laflin, Brenda E. Gile; Applin, Zachary T.; Jones, Kenneth M.
1997-01-01
A wind tunnel investigation was performed in the 14- by 22-Foot Subsonic Tunnel on a pressure instrumented 1/8-scale twin-engine subsonic transport to better understand the flow physics on a multi-element wing section. The wing consisted of a part-span, triple-slotted trailing edge flap, inboard leading-edge Krueger flap and an outboard leading-edge slat. The model was instrumented with flush pressure ports at the fuselage centerline and seven spanwise wing locations. The model was tested in cruise, take-off and landing configurations at dynamic pressures and Mach numbers from 10 lbf/ft(exp 2) to 50 lbf/ft(exp 2) and 0.08 to 0.17, respectively. This resulted in corresponding Reynolds numbers of 0.8 x 10(exp 5) to 1.8 x 10(exp 6). Pressure data were collected using electronically scanned pressure devices and force and moment data were collected with a six component strain gauge balance. Results are presented for various control surface deflections over an angle-of-attack range from -4 degrees to 16 degrees and sideslip angle range from -10 degrees to 10 degrees. Longitudinal and lateral directional aerodynamic data are presented as well as chordwise pressure distributions at the seven spanwise wing locations and the fuselage centerline.
Cutting thin glass by femtosecond laser ablation
NASA Astrophysics Data System (ADS)
Shin, Hyesung; Kim, Dongsik
2018-06-01
The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.
Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers
2016-02-26
though parameter variations were also performed. For the rotating cases, the wing was an aspect ratio 2 rectangular flat plate , and the root cutout (i.e...rectangular flat plate . 2 U (Side View) (a) 1A: Rectilinear pitch U (Side View) (b) 1B: Rectilinear surge (Top View) (Side View) (c) 2A: Rotational...0.5c φ (b) A=2 flat plate wing Figure 2: Schematic of the AVT-202 rotating wing kinematics and geometry, from Ref. 12. 3.2 Experimental Setup Rotating
Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.
Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan
2015-10-06
The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic properties of the flap in the Trp mutant, compared to the wild-type enzyme, manifest as a defect in interactions that facilitate the rate-limiting step. Consistent with this notion, the Trp mutant was able to cleave Lys48-linked and Lys11-linked diubiquitin better than the wild-type enzyme, indicating altered mobility and hence reduced selectivity.
[Breast reconstruction: autologous tissue versus implant].
Plogmeier, K; Handstein, S; Schneider, W
1998-01-01
Modified radical mastectomy remains the standard for treatment of breast cancer. Women faced with the diagnosis of breast cancer often find it difficult to cope with the arousing emotions. Fear of death or cancer recurrence and a perceived loss of femininity often coexists with the desire for a return to normality and wholeness. For women seeking breast reconstruction various techniques have been developed. Two different ways for breast reconstruction have become a standard. One way is the reconstruction by tissue expansion or transposing locally available tissue with the use of implants. The other way is the reconstruction of the breast without using any implants with the Latissimus dorsi flap or the TRAM flap. We performed 291 breast reconstructions. In 125 women available tissue and an implant was used. The Latissimus dorsi flap was used in 57 cases and 109 TRAM flaps either pedicled or as a microvascular flap were performed. Using expanders we found a perforation of the device in 2 cases. After using implants there were capsular contracture in 2 cases and in 1 case we had an infection. Using autologous tissue we had 2 partial flap necrosis, 4 hematomas, and 4 prolonged healings. There was no complete flap necrosis. Breast reconstruction using autologous tissue i.e. the TRAM flap is supposed to be a standard technique. Microsurgical transplantation of the TRAM flap shows almost no morbidity of the donor site area. Autologous tissue follows the changes of the body like weight gain or reduction to a certain extend and shows neither capsular contracture nor other implant associated side effects. Women get the impression that the TRAM flap is like soft tissue to the touch and not like a foreign body. The aesthetic results were in all cases superior sometimes needing minor secondary correction and mostly shaping of the nippel-areola complex. All patients were pleased with the result.
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J
2015-10-09
Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.
Topology optimization of pressure adaptive honeycomb for a morphing flap
NASA Astrophysics Data System (ADS)
Vos, Roelof; Scheepstra, Jan; Barrett, Ron
2011-03-01
The paper begins with a brief historical overview of pressure adaptive materials and structures. By examining avian anatomy, it is seen that pressure-adaptive structures have been used successfully in the Natural world to hold structural positions for extended periods of time and yet allow for dynamic shape changes from one flight state to the next. More modern pneumatic actuators, including FAA certified autopilot servoactuators are frequently used by aircraft around the world. Pneumatic artificial muscles (PAM) show good promise as aircraft actuators, but follow the traditional model of load concentration and distribution commonly found in aircraft. A new system is proposed which leaves distributed loads distributed and manipulates structures through a distributed actuator. By using Pressure Adaptive Honeycomb (PAH), it is shown that large structural deformations in excess of 50% strains can be achieved while maintaining full structural integrity and enabling secondary flight control mechanisms like flaps. The successful implementation of pressure-adaptive honeycomb in the trailing edge of a wing section sparked the motivation for subsequent research into the optimal topology of the pressure adaptive honeycomb within the trailing edge of a morphing flap. As an input for the optimization two known shapes are required: a desired shape in cruise configuration and a desired shape in landing configuration. In addition, the boundary conditions and load cases (including aerodynamic loads and internal pressure loads) should be specified for each condition. Finally, a set of six design variables is specified relating to the honeycomb and upper skin topology of the morphing flap. A finite-element model of the pressure-adaptive honeycomb structure is developed specifically tailored to generate fast but reliable results for a given combination of external loading, input variables, and boundary conditions. Based on two bench tests it is shown that this model correlates well to experimental results. The optimization process finds the skin and honeycomb topology that minimizes the error between the acquired shape and the desired shape in each configuration.
Flapping foil power generator performance enhanced with a spring-connected tail
NASA Astrophysics Data System (ADS)
Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.
2017-12-01
The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors
Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David
2014-01-01
Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868
Active Tailoring of Lift Distribution to Enhance Cruise Performance
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D. (Technical Monitor); Pfeiffer, Neal J.; Christians, Joel G.
2005-01-01
During Phase I of this project, Raytheon Aircraft Company (RAC) has analytically and experimentally evaluated key components of a system that could be implemented for active tailoring of wing lift distribution using low-drag, trailing-edge modifications. Simple systems such as those studied by RAC could be used to enhance the cruise performance of a business jet configuration over a range of typical flight conditions. The trailing-edge modifications focus on simple, deployable mechanisms comprised of extendable small flap panels over portions of the span that could be used to subtly but positively optimize the lift and drag characteristics. The report includes results from low speed wind tunnel testing of the trailing-edge devices, descriptions of potential mechanisms for automation, and an assessment of the technology.
NASA Astrophysics Data System (ADS)
Viswanath, Kamal
This dissertation broadly seeks to understand the effect different kinematic parameters, external forces, and dynamic wing conformation have on the fluid dynamics of flapping flight. The primary motivation is to better grasp the fundamental fluid phenomena driving efficient flapping flight in the Reynolds number regime of birds, bats, and man made fliers of similar scale. The CFD solver (GenIDLEST) used is a Navier-Stokes solver in a finite volume formulation on non-staggered structured multiblock meshes. It has the capability for both body-fitted moving grid simulations and Immersed Boundary Method (IBM) for simulating complex bodies moving within a fluid. To that purpose we investigate the response of a rigid flapping thin surface planar wing in forward flight, at Re=10,000, subjected to frontal gusts. Gusts are a common ecological hazard for flapping fliers, especially in crowded environments. Among the various temporal and spatial scales of gust possible, we look at the phasing and duration of very large spatial scale gusts and their impact on the unsteady fluid dynamics of flapping within a single flapping cycle. The gust is characterized by a step function with time scale much smaller than the flapping time period. Having the advantage of prescribing the motion, as well as the timing and duration of the gust, this allowed the observation of the effect of angle of attack (AOA) and wing rotation on the evolution of the Leading Edge Vortex (LEV) and, hence the instantaneous lift and thrust profiles, by varying the parameters. During the downstroke, frontal gusts accelerated the flow development resulting in early separation of existing LEVs and formation of new ones on the wing surface which influenced the force generation by increasing the lift and thrust. These phenomena underscored the importance of the unsteady vortex structures as the primary force generators in flapping flight. The effect of the gust is observed to be diminished when it occurs during rapid supination of the wing. Unlike the influence of the vortices during the downstroke, the upstroke primarily reacted to effective AOA changes. A key characteristic of the kinematics of fliers in nature is stroke deviation. We investigate this phenomenon using a similar framework as above on a rigid thin surface flat-plate flapping wing in forward flight. Stroke deviation happens due to a variety of factors including wing flexion, wing lateral translation, and wing area change and here we investigate the different stroke deviation trajectories. Various trajectories were analyzed to assess the different capabilities that such kinematics might offer. The instantaneous lift and thrust profiles were observed to be influenced by a combination of the Leading Edge Vortex (LEV) and the Trailing Edge Vortex (TEV) structures existing in the flow at any given time. As an index of the cost of performance across all cases, the power requirements for the different cases, based on the fluid torques, are analyzed. Anti-clockwise figure-of-eight-cycle deviation is shown to be very complex with high power costs while having better performance. The clockwise elliptic-cycle held promise in being utilized as a viable stroke deviation trajectory for forward flight over the base non stroke deviation case. Armed with insight gained from these simple flapping structures, we are able to conduct the analysis of the flapping flight data obtained on a fruit bat. Understanding the full complexity of bat flight and the ways in which bat flight differs from that of other vertebrate flight requires attention to the intricate functional mechanics and architecture of the wings and the resulting unsteady transient mechanisms of the flow around the wings. We extract the detailed kinematic motion of the bat wing from the recorded data and then simulate the bat wing motion in the CFD framework for a range of Reynolds numbers. The Strouhal number calculated from the data is high indicating that the flow physics is dominated by the oscillatory motion. From the data the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. This force output is modulated by the bat through varying wing camber and the wing area. Proper orthogonal decomposition of the wing kinematics is undertaken to compile a simpler set of kinematic modes that can approximate the original motion used by the fruit bat. These modes are then analyzed based on aerodynamic performance and power cost for more efficient flight. Understanding the physics of these modes will help us use them as prescribed kinematics for mechanical flappers as well as improve upon them from nature.
Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements
Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill
2015-05-26
A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.
Huang, Yixiong; Shen, Zunli; Wang, Yongchun; Zhang, Shimin
2009-10-01
To investigate the surgical methods and clinical results of repairing soft tissue defects in the thumb with distally-based dorsal thumb neurocutaneous vascular flap. From January 2006 to October 2007, 23 patients with soft tissue defect in the thumb were treated, including 20 males and 3 females aged 19-46 years old (average 27.5 years old). The defect was caused by crush injury in 1 case, electric planer accident in 6 cases, incised injury in 8 cases, and avulsion injury in 8 cases. The defect was located on the palmar aspect of the thumb distal phalanx in 3 cases, the dorsal-radial aspect of the thumb distal phalanx in 3 cases, and ulnar or dorsal aspect in 17 cases. The defect size ranged from 3.3 cm x 1.2 cm to 4.2 cm x 1.2 cm. Among them, 18 cases were complicated with distal 1/2 nail bed defect or injury. The time between injury and hospital admission was 1-72 hours (average 22 hours). During operation, the defect was repaired with distally-based dorsal-radial neurovenocutaneous vascular flap of the thumb in 3 cases and distally-based dorsal-ulnar neurovenocutaneous vascular flap of the thumb in 20 cases. The size of those flaps was 4.0 cm x 1.6 cm-5.0 cm x 3.0 cm. The donor site underwent direct suture or split thickness skin graft repair. At 10 days after operation, 3 cases suffered from the epidermal necrosis in the distal part of the flap, 2 of them experienced the exfoliation of dark scab 14 days later and the flap survived, and the flap of the rest one survived after dressing change. The other flaps and the skin graft at the donor site all survived uneventfully. The wounds healed by first intention. All the patients were followed up for 10-16 months (average 12.6 months). The flaps were soft in texture and full in appearance. The two-point discrimination value 6 months after operation was 8-10 mm. At 12 months after operation, the growth of the residual fingernail was evident in 18 cases, including 4 cases of curved or hook fingernail. Active flexion and extension of the thumb were normal. The abduction of the first web space reached or surpassed 80 percent of the normal side in 20 cases and was below 80 percent of the normal side in 3 cases. The clinical outcomes were satisfactory in 11 cases, approximately satisfactory in 8 cases, and unsatisfactory in 4 cases according to self-designed evaluation system. The operative method of repairing the soft tissue defects in the thumb with the distally-based dorsal thumb neurocutaneous vascular flap is simple, stable in anatomy, in line with the principle of proximity, and suitable for repairing thumb tip defect 3 cm in size. It can bring a good postoperative appearance of the thumb and little influence on the hand function.
van Aalst, V C; Werker, P M; Stremel, R W; Perez Abadia, G A; Petty, G D; Heilman, S J; Palacio, M M; Kon, M; Tobin, G R; Barker, J H
1998-07-01
In electrically stimulated (dynamic) graciloplasty for urinary incontinence, the gracilis muscle is transposed into the pelvis, and the distal part is used to reconstruct a neosphincter. Clinical outcomes using this technique have been disappointing due to stricture of the urethra caused by ischemia in the distal part of the gracilis and limited gracilis length available for neosphincter construction. Furthermore, the urethra is twisted by the contracting gracilis, rather than circumferentially squeezed. The purpose of the present study was to test the anatomical and functional feasibility of a new surgical approach to reconstruct a urinary sphincter, using the gracilis muscle as a free flap. In 12 human cadavers, the anatomical feasibility for creating a neosphincter by using the gracilis free flap was determined. In all cases, transfer of the gracilis muscle into the pelvis as a free flap (with the nerve intact) was feasible, and ample muscle was available to construct a neosphincter around the bladder neck. Gracilis neosphincter function was studied in seven dogs. The left gracilis muscle was subjected to transfer into the pelvis as an innervated free flap to create a neosphincter around the urethra. The right (control) gracilis muscle was lifted as a single pedicle flap, remained in situ, and was wrapped around a stent to mimic the urethra. Function (expressed as peak pressure generation and fatigue rate) and surface perfusion were determined for all gracilis muscles. In each dog, both sides were compared using the paired Student's t test for statistical analysis, and no significant difference was measured for the two groups. In conclusion, an innervated gracilis free flap can be used to create a neosphincter around the bladder neck. In an acute study in dogs, function and perfusion of the innervated gracilis free flap are not compromised.
Methods and systems to enhance flame holding in a gas turbine engine
Zuo, Baifang [Simpsonville, SC; Lacy, Benjamin Paul [Greer, SC; Stevenson, Christian Xavier [Inman, SC
2012-01-31
A fuel nozzle including a swirler assembly that includes a shroud, a hub, and a plurality of vanes extending between the shroud and the hub. Each vane includes a pressure sidewall and an opposite suction sidewall coupled to the pressure sidewall at a leading edge and at a trailing edge. At least one suction side fuel injection orifice is formed adjacent to the leading edge and extends from a first fuel supply passage to the suction sidewall. A fuel injection angle is oriented with respect to the suction sidewall. The suction side fuel injection orifice is configured to discharge fuel outward from the suction sidewall. At least one pressure side fuel injection orifice extends from a second fuel supply passage to the pressure sidewall and is substantially parallel to the trailing edge. The pressure side fuel injection orifice is configured to discharge fuel tangentially from the trailing edge.