Sample records for flash flood forecasting

  1. Medium range forecasting of Hurricane Harvey flash flooding using ECMWF and social vulnerability data

    NASA Astrophysics Data System (ADS)

    Pillosu, F. M.; Jurlina, T.; Baugh, C.; Tsonevsky, I.; Hewson, T.; Prates, F.; Pappenberger, F.; Prudhomme, C.

    2017-12-01

    During hurricane Harvey the greater east Texas area was affected by extensive flash flooding. Their localised nature meant they were too small for conventional large scale flood forecasting systems to capture. We are testing the use of two real time forecast products from the European Centre for Medium-range Weather Forecasts (ECMWF) in combination with local vulnerability information to provide flash flood forecasting tools at the medium range (up to 7 days ahead). Meteorological forecasts are the total precipitation extreme forecast index (EFI), a measure of how the ensemble forecast probability distribution differs from the model-climate distribution for the chosen location, time of year and forecast lead time; and the shift of tails (SOT) which complements the EFI by quantifying how extreme an event could potentially be. Both products give the likelihood of flash flood generating precipitation. For hurricane Harvey, 3-day EFI and SOT products for the period 26th - 29th August 2017 were used, generated from the twice daily, 18 km, 51 ensemble member ECMWF Integrated Forecast System. After regridding to 1 km resolution the forecasts were combined with vulnerable area data to produce a flash flood hazard risk area. The vulnerability data were floodplains (EU Joint Research Centre), road networks (Texas Department of Transport) and urban areas (Census Bureau geographic database), together reflecting the susceptibility to flash floods from the landscape. The flash flood hazard risk area forecasts were verified using a traditional approach against observed National Weather Service flash flood reports, a total of 153 reported flash floods have been detected in that period. Forecasts performed best for SOT = 5 (hit ratio = 65%, false alarm ratio = 44%) and EFI = 0.7 (hit ratio = 74%, false alarm ratio = 45%) at 72 h lead time. By including the vulnerable areas data, our verification results improved by 5-15%, demonstrating the value of vulnerability information within natural hazard forecasts. This research shows that flash flooding from hurricane Harvey was predictable up to 4 days ahead and that filtering the forecasts to vulnerable areas provides a more focused guidance to civil protection agencies planning their emergency response.

  2. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  3. Toward seamless high-resolution flash flood forecasting over Europe based on radar nowcasting and NWP: An evaluation with case studies

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul

    2017-04-01

    Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.

  4. Establishing a rainfall threshold for flash flood warnings based on the DFFG method in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.

    2017-12-01

    Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an appropriate threshold for flash flood warnings. Finally, the article highlights the importance of accurately simulating the hydrological processes and high-resolution satellite rainfall data on the accurate forecasting of rainfall triggered flash flood events.

  5. Towards a better knowledge of flash flood forecasting at the Three Gorges Region: Progress over the past decade and challenges ahead

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao

    2015-04-01

    The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.

  6. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo

    2017-11-01

    In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.

  7. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.

  8. All-season flash flood forecasting system for real-time operations

    USDA-ARS?s Scientific Manuscript database

    Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorologic observations and predictions, as well as calibrated hydrologic models in addition to extensive data handling. We have de...

  9. THE AGWA – KINEROS2 SUITE OF MODELING TOOLS

    USDA-ARS?s Scientific Manuscript database

    A suite of modeling tools ranging from the event-based KINEROS2 flash-flood forecasting tool to the continuous (K2-O2) KINEROS-OPUS biogeochemistry tool. The KINEROS2 flash flood forecasting tool is being tested with the National Weather Service (NEW) is described. Tne NWS version assimilates Dig...

  10. Development of a mobile app for flash flood alerting and data cataloging

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Nguyen, M.

    2016-12-01

    No matter how accurate and specific a forecast of flash flooding is made, there are local nuances with the communities related to the built environment that often dictate the locations and magnitudes of impacts. These are difficult, if not impossible, to identify, classify, and measure using remote sensing methods. This presentation presents a Thriving Earth Exchange project that is developing a mobile app that serves two purposes. First, it will provide detailed forecasts of flash flooding down to the 1-km pixel scale with 10-min updates using the state-of-the-science hydrologic forecasting system called FLASH. The display of model outputs on an app will greatly facilitate their use and can potentially increase first responders' reactions to the specific locations of impending disasters. Then, the first responders will have the capability of reporting the geotagged impacts they are witnessing, including those local "trouble spots". Over time, we will catalog the trouble spots for the community so that they can be flagged in future events. If proven effective, the app will then be advertised in other flood-prone communities and the database will be expanded accordingly. In summary, we are engaging local communities to provide information that can inform and improve future forecasts of flash flood, ultimately reducing their impacts and saving lives.

  11. Towards spatially distributed flood forecasts in flash flood prone areas: application to the supervision of a road network in the South of France

    NASA Astrophysics Data System (ADS)

    Naulin, Jean-Philippe; Payrastre, Olivier; Gaume, Eric; Delrieu, Guy

    2013-04-01

    Accurate flood forecasts are crucial for an efficient flood event management. Until now, hydro-meteorological forecasts have been mainly used for early-warnings in France (Meteorological and flood vigilance maps) or over the world (Flash-flood guidances). These forecasts are generally limited to the main streams covered by the flood forecasting services or to specific watersheds with particular assets like check dams which are in most cases well gauged river sections, leaving aside large parts of the territory. A distributed hydro-meteorological forecasting approach will be presented, able to take advantage of the high spatial and temporal resolution rainfall estimates that are now available to provide information at ungauged sites. The proposed system aiming at detecting road inundation risks had been initially developed and tested in areas of limited size. Its extension to a whole region (the Gard region in the South of France) will be presented, including over 2000 crossing points between rivers and roads and its validation against a large data set of actually reported road inundations observed during recent flash-flood events. These first validation results appear promising. Such a tool would provide the necessary information for flood event management services to identify the areas at risk and to take the appropriate safety and rescue measures: pre-positioning of rescue means, stopping of the traffic on exposed roads, determination of safe accesses or evacuation routes. Moreover, beyond the specific application to the supervision of a road network, this work provides also results concerning the performances of hydro-meteorological forecasts for ungauged headwaters.

  12. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463

  13. The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Moncoulon, David; Pons, Frédéric

    2017-11-01

    Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods - at selected river cross sections. The approach presented here goes one step further by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach, i.e. the number of inundated buildings versus discharge. These curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the south of France, where well-documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.

  14. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  15. Operational flash flood forecasting platform based on grid technology

    NASA Astrophysics Data System (ADS)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  16. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France

    NASA Astrophysics Data System (ADS)

    Naulin, J.-P.; Payrastre, O.; Gaume, E.

    2013-04-01

    SummaryAccurate flood forecasts are critical to an efficient flood event management strategy. Until now, hydro-meteorological forecasts have mainly been used to establish early-warnings in France (meteorological and flood vigilance maps) or over the world (flash-flood guidances). These forecasts are typically limited either to the main streams covered by the flood forecasting services or to watersheds with specific assets like check dams, which in most cases are well gauged river sections, thus leaving aside large parts of the territory. This paper presents a distributed hydro-meteorological forecasting approach, which makes use of the high spatial and temporal resolution rainfall estimates that are now available, to provide information at ungauged sites. The proposed system intended to detect road inundation risks had initially been developed and tested in areas of limited size. This paper presents the extension of such a system to an entire region (i.e. the Gard region in Southern France), including over 2000 crossing points between rivers and roads and its validation with respect to a large data set of actual reported road inundations observed during recent flash flood events. These initial validation results appear to be most promising. The eventual proposed tool would provide the necessary information for flood event management services to identify the areas at risk and adopt appropriate safety and rescue measures: i.e. pre-positioning of rescue equipment, interruption of the traffic on the exposed roads and determination of safe access or evacuation routes. Moreover, beyond the specific application to the supervision of a road network, the research undertaken herein also provides results for the performance of hydro-meteorological forecasts on ungauged headwaters.

  17. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.

  18. Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno

    2016-04-01

    Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463

  19. An Integrated Urban Flood Analysis System in South Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Min-Seok; Yoon, Tae-Hyung; Choi, Ji-Hyeok

    2017-04-01

    Due to climate change and the rapid growth of urbanization, the frequency of concentrated heavy rainfall has caused urban floods. As a result, we studied climate change in Korea and developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting in urban areas. This system supports synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information. As part of the measures to deal with the increase of inland flood damage, we have found it necessary to build a systematic city flood prevention system that systematizes technology to quantify flood risk as well as flood forecast, taking into consideration both inland and river water. This combined inland-river flood analysis system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area. In addition, flood forecasts should be accurate and immediate. Accurate flood forecasts signify that the prediction of the watch, warning time and water level is precise. Immediate flood forecasts represent the forecasts lead time which is the time needed to evacuate. Therefore, in this study, in order to apply rainfall-runoff method to medium and small urban stream for flood forecasts, short-term rainfall forecasting using radar is applied to improve immediacy. Finally, it supports synthetic decision-making for prevention of flood disaster through real-time monitoring. Keywords: Urban Flood, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This research was supported by a grant (16AWMP-B066744-04) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  20. Evaluation of flash-flood discharge forecasts in complex terrain using precipitation

    USGS Publications Warehouse

    Yates, D.; Warner, T.T.; Brandes, E.A.; Leavesley, G.H.; Sun, Jielun; Mueller, C.K.

    2001-01-01

    Operational prediction of flash floods produced by thunderstorm (convective) precipitation in mountainous areas requires accurate estimates or predictions of the precipitation distribution in space and time. The details of the spatial distribution are especially critical in complex terrain because the watersheds are generally small in size, and small position errors in the forecast or observed placement of the precipitation can distribute the rain over the wrong watershed. In addition to the need for good precipitation estimates and predictions, accurate flood prediction requires a surface-hydrologic model that is capable of predicting stream or river discharge based on the precipitation-rate input data. Different techniques for the estimation and prediction of convective precipitation will be applied to the Buffalo Creek, Colorado flash flood of July 1996, where over 75 mm of rain from a thunderstorm fell on the watershed in less than 1 h. The hydrologic impact of the precipitation was exacerbated by the fact that a significant fraction of the watershed experienced a wildfire approximately two months prior to the rain event. Precipitation estimates from the National Weather Service's operational Weather Surveillance Radar-Doppler 1988 and the National Center for Atmospheric Research S-band, research, dual-polarization radar, colocated to the east of Denver, are compared. In addition, very short range forecasts from a convection-resolving dynamic model, which is initialized variationally using the radar reflectivity and Doppler winds, are compared with forecasts from an automated-algorithmic forecast system that also employs the radar data. The radar estimates of rain rate, and the two forecasting systems that employ the radar data, have degraded accuracy by virtue of the fact that they are applied in complex terrain. Nevertheless, the radar data and forecasts from the dynamic model and the automated algorithm could be operationally useful for input to surface-hydrologic models employed for flood warning. Precipitation data provided by these various techniques at short time scales and at fine spatial resolutions are employed as detailed input to a distributed-parameter hydrologic model for flash-flood prediction and analysis. With the radar-based precipitation estimates employed as input, the simulated flood discharge was similar to that observed. The dynamic-model precipitation forecast showed the most promise in providing a significant discharge-forecast lead time. The algorithmic system's precipitation forecast did not demonstrate as much skill, but the associated discharge forecast would still have been sufficient to have provided an alert of impending flood danger.

  1. Flash floods in June and July 2009 in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Sercl, Petr; Danhelka, Jan; Tyl, Radovan

    2010-05-01

    Several flash floods occurred in the territory of the Czech Republic during the last decade of June and beginning of July 2009. These events caused vast economic damage and unfortunately there were also 15 fatalities. The complete evaluation of flash floods from the point of view of its meteorological cause, hydrological development and impacts was done under the responsibility of Ministry of Environment of the Czech Republic. Czech Hydrometeorological Institute (CHMI) coordinated this project. The results of the project contain several concrete proposals to reduce the threat of flash floods in the Czech Republic. The proposals were focused on possible future improvements of CHMI forecasting service activities including all other parts of Flood prevention and protection system in the Czech Republic. The synoptic cause of floods was the extraordinary long (12 days is longest in more than 60 years history) presence of eastern cyclonic situation over the Central Europe bringing warm, moist and unstable air masses from Mediterranean and Black Sea area. Very intensive thunderstorms accompanied by torrential rain occurred almost daily. Storm cells were organized in train effect and crossed repeatedly the same places within several hours. The extremity of the flood events was also influenced by soil saturation due to daily occurrence of rainstorms. The peak flows exceeded significantly 100-year of recurrence time in many sites. The observed and mainly unobserved catchments were affected. The detailed fields of rainfall amounts were gained from the adjusted meteorological radar observation. All of the available rainfall measurements at the climatological and rain gage stations were used for the adjustment. Hydraulic and rainfall-runoff models were used to evaluate the hydrological response. It was proved again, that the outputs from currently used meteorological forecasting models are not sufficient for a reliable local forecast of the strong convective storms and their possible consequences - flash floods. Within the frame of the research project SP/1c4/16/07 "Implementation of new techniques for stream flow forecasting tools" (project period 2007-2011, funded by Ministry of Environment) a forecasting system for the estimation of runoff response to torrential rainfall has been developed. CN value automatic update based on antecedent precipitation is used to estimate possible runoff from storm. Ten minutes radar rainfall estimates and COTREC based nowcasting serve as meteorological input. Results of 2009 events hindcast are presented. It proved the underestimation of rainfall by raw radar data and thus the need for real time adjustment of radar estimates based on rain gauge data. The main output from presented forecasting system is an estimation of flash flood risk. Risk estimation is based on exceeding 3 defined thresholds defined as ratios between the estimated peak flow and theoretical 100-year flood on particular basin. The procedures mentioned above were being developed during the period 2008-2009. Intensive testing is expected by CHMI forecasting offices during 2010-2011.

  2. Flash-flood early warning using weather radar data: from nowcasting to forecasting

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Panziera, Luca; Germann, Urs; Zappa, Massimiliano

    2013-04-01

    In our study we explore the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 hours between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic forcing.

  3. Flash-flood early warning using weather radar data: from nowcasting to forecasting

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-01-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  4. Remote sensing of rainfall for flash flood prediction in the United States

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Vergara, H. J.; Clark, R. A.; Kirstetter, P.; Terti, G.; Hong, Y.; Howard, K.

    2015-12-01

    This presentation will briefly describe the Multi-Radar Multi-Sensor (MRMS) system that ingests all NEXRAD and Canadian weather radar data and produces accurate rainfall estimates at 1-km resolution every 2 min. This real-time system, which was recently transitioned for operational use in the National Weather Service, provides forcing to a suite of flash flood prediction tools. The Flooded Locations and Simulated Hydrographs (FLASH) project provides 6-hr forecasts of impending flash flooding across the US at the same 1-km grid cell resolution as the MRMS rainfall forcing. This presentation will describe the ensemble hydrologic modeling framework, provide an evaluation at gauged basins over a 10-year period, and show the FLASH tools' performance during the record-setting floods in Oklahoma and Texas in May and June 2015.

  5. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  6. The framework of a UAS-aided flash flood modeling system for coastal regions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Xu, H.

    2016-02-01

    Flash floods cause severe economic damage and are one of the leading causes of fatalities connected with natural disasters in the Gulf Coast region. Current flash flood modeling systems rely on empirical hydrological models driven by precipitation estimates only. Although precipitation is the driving factor for flash floods, soil moisture, urban drainage system and impervious surface have been recognized to have significant impacts on the development of flash floods. We propose a new flash flooding modeling system that integrates 3-D hydrological simulation with satellite and multi-UAS observations. It will have three advantages over existing modeling systems. First, it will incorporate 1-km soil moisture data through integrating satellite images from European SMOS mission and NASA's SMAP mission. The utilization of high-resolution satellite images will provide essential information to determine antecedent soil moisture condition, which is an essential control on flood generation. Second, this system is able to adjust flood forecasting based on real-time inundation information collected by multi-UAS. A group of UAS will be deployed during storm events to capture the changing extent of flooded areas and water depth at multiple critical locations simultaneously. Such information will be transmitted to a hydrological model to validate and improve flood simulation. Third, the backbone of this system is a state-of-the-art 3-D hydrological model that assimilates the hydrological information from satellites and multi-UAS. The model is able to address surface water-groundwater interactions and reflect the effects of various infrastructures. Using Web-GIS technologies, the modeling results will be available online as interactive flood maps accessible to the public. To support the development and verification of this modeling system, surface and subsurface hydrological observations will be conducted in a number of small watersheds in the Coastal Bend region. We envision this system will provide an innovative means to benefit the forecasting, evaluation and mitigation of flash floods in costal regions.

  7. An early warning system for flash floods in Egypt

    NASA Astrophysics Data System (ADS)

    Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.

    2009-09-01

    This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A rainfall-runoff model transforms the (forecasted) rainfall into a runoff volume (m³) and consequently a time-dependent discharge (m³/s) for each of the subwadis which is then routed through the main channel. The flood model then converts the discharges into water stages and generates a spatially-distributed flood map. The rainfall-runoff model is developed in Matlab-Simulink. The latter two models are implemented in Infoworks and Floodworks (both Wallingford Software), which allows an automatic feed into the warning module. The ‘warning module’ has two tasks: 1) to generate specific flags when modelling results exceed pre-established thresholds for rainfall, discharge, water stage, volumes, etc… 2) to communicate the given flags as warning signals to operators and/or stakeholders. The ‘decision support module’ or DSS finally gives to the user the capability of performing alternative analysis in order to have a better idea of the reliability of the forecasts by means of the comparison of already made forecasts with new data and a sensitivity analysis. Although FlaFloM is now able to send out warnings, the forecasts of this first version are expected to be insufficiently accurate which may lead to false warnings and loss of trust with decision-makers if not communicated well. When new insights and data are available, the model will be updated which improves the forecast accuracy. At this moment, we see two major fields of improvement: 1) better rainfall forecasts and 2) better insights of the response of an arid area to storm events. Firstly, the rainfall maps provided better insights in the spatial and temporal extent of a rainfall event, though absolute rainfall values are not considered accurate. The major reason behind is the fact that both global systems are insufficiently parameterized for arid areas. New data from an improved rain gauge network is expected to add value. Secondly, better insights need to be gained on the response of the Wadi to rainfall. The calibration of the hydrological models is currently based on literature and a geological surface map from which we derived infiltration rates. Modelled discharges or flood volumes can only be assessed qualitatively based on the field knowledge of local Bedouins inhabitants. To reduce uncertainty on forecasts and to guide on new data to be collected, a sensitivity analysis with rainfall scenarios is performed.

  8. How do people perceive, understand, and anticipate responding to flash flood risks and warnings? Results from a public survey in Boulder, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Morss, Rebecca E.; Mulder, Kelsey J.; Lazo, Jeffrey K.; Demuth, Julie L.

    2016-10-01

    This study investigates flash flood forecast and warning communication, interpretation, and decision making, using data from a survey of 418 members of the public in Boulder, Colorado, USA. Respondents to the public survey varied in their perceptions and understandings of flash flood risks in Boulder, and some had misconceptions about flash flood risks, such as the safety of crossing fast-flowing water. About 6% of respondents indicated consistent reversals of US watch-warning alert terminology. However, more in-depth analysis illustrates the multi-dimensional, situationally dependent meanings of flash flood alerts, as well as the importance of evaluating interpretation and use of warning information along with alert terminology. Some public respondents estimated low likelihoods of flash flooding given a flash flood warning; these were associated with lower anticipated likelihood of taking protective action given a warning. Protective action intentions were also lower among respondents who had less trust in flash flood warnings, those who had not made prior preparations for flash flooding, and those who believed themselves to be safer from flash flooding. Additional analysis, using open-ended survey questions about responses to warnings, elucidates the complex, contextual nature of protective decision making during flash flood threats. These findings suggest that warnings can play an important role not only by notifying people that there is a threat and helping motivate people to take protective action, but also by helping people evaluate what actions to take given their situation.

  9. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-10-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  10. Progress and challenges with Warn-on-Forecast

    NASA Astrophysics Data System (ADS)

    Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.

    2013-04-01

    The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.

  11. Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Gaume, E.; Andrieu, H.

    2010-04-01

    This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.

  12. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  13. Comparative estimation and assessment of initial soil moisture conditions for Flash Flood warning in Saxony

    NASA Astrophysics Data System (ADS)

    Luong, Thanh Thi; Kronenberg, Rico; Bernhofer, Christian; Janabi, Firas Al; Schütze, Niels

    2017-04-01

    Flash Floods are known as highly destructive natural hazards due to their sudden appearance and severe consequences. In Saxony/Germany flash floods occur in small and medium catchments of low mountain ranges which are typically ungauged. Besides rainfall and orography, pre-event moisture is decisive, as it determines the available natural retention in the catchment. The Flash Flood Guidance concept according to WMO and Prof. Marco Borga (University of Padua) will be adapted to incorporate pre-event moisture in real-time flood forecast within the ESF EXTRUSO project (SAB-Nr. 100270097). To arrive at pre-event moisture for the complete area of the low mountain range with flash flood potential, a widely applicable, accurate but yet simple approach is needed. Here, we use radar precipitation as input time series, detailed orographic, land-use and soil information and a lumped parameter model to estimate the overall catchment soil moisture and potential retention. When combined with rainfall forecast and its intrinsic uncertainty, the approach allows to find the point in time when precipitation exceeds the retention potential of the catchment. Then, spatially distributed and complex hydrological modeling and additional measurements can be initiated. Assuming reasonable rainfall forecasts of 24 to 48hrs, this part can start up to two days in advance of the actual event. The lumped-parameter model BROOK90 is used and tested for well observed catchments. First, physical meaningful parameters (like albedo or soil porosity) a set according to standards and second, "free" parameters (like percentage of lateral flow) were calibrated objectively by PEST (Model-Independent Parameter Estimation and Uncertainty Analysis) with the target on evapotranspiration and soil moisture which both have been measured at the study site Anchor Station Tharandt in Saxony/Germany. Finally, first results are presented for the Wernersbach catchment in Tharandt forest for main flood events in the 50-year gauging period since 1968.

  14. A Bayesian Network approach for flash flood risk assessment

    NASA Astrophysics Data System (ADS)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes' theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation. Key words: Flash flood forecasting - Uncertainty modelling - flood risk management -Bayesian Networks.

  15. Prediflood: A French research project aiming at developing a road submersion warning system for flash flood prone areas

    NASA Astrophysics Data System (ADS)

    Naulin, J. P.; Payrastre, O.; Gaume, E.; Delrieu, G.; Arnaud, P.; Lutoff, C.; Vincendon, B.

    2010-09-01

    Accurate flood forecasts are crucial for an efficient flood event management. Until now, hydro-meteorological forecasts have been mainly used for early-warnings in France (Meteorological and flood vigilance maps) or over the world (Flash-flood guidances). Forecasts are also often limited to the main streams or to specific watersheds with particular assets like hydropower dams, leaving aside large parts of the territory. Distributed hydro-meteorological forecasting models, able to take advantage of the now available high spatial and temporal resolution rainfall measurements, are promising tools for anticipating and quantifying the short term consequences of storm events all over a region. They would be very useful, especially in regions frequently affected by severe storms with complex spatio-temporal patterns. They would provide the necessary information for flood event management services to identify the areas at risk and to take the appropriate safety and rescue measures: prepositioning of rescue means, stopping of the traffic on exposed roads, determination of safe accesses or evacuation routes. Some preliminary tests conducted by the LCPC within the European project FLOODsite have shown encouraging results of a distributed hydro-meteorological forecasting model. It seems possible, despite the limits of the available rainfall measurements and the shortcomings of the rainfall-runoff models, to deliver distributed forecasts of possible local flood consequences - road submersion risk rating at about 5000 different locations over the Gard department in the tested case - with an acceptable level of accuracy. The PreDiFlood project (http://heberge.lcpc.fr/prediflood/) aims at consolidating and extending these first results with the objective to conduct pre-operational tests with possible end-users at the end of the project. Such a tool will not replace, but complement existing flood forecasting approaches in time and space domains that have not been covered until now (short term forecasting at a regional scale). It will produce a completely new type of forecasts and the usefulness of such data for the emergency services for their real-time decision making will be assessed within the project. Beyond the direct operational objectives, this project aims at demonstrating, on a specific application (the now-casting of road submersions), the possibilities and also the limits and hence the needed improvements of tools that are still underused: radar quantitative precipitation estimates but also precipitation now-castings, distributed rainfall-runoff models, and the recent knowledge acquired on flash-floods consequence evaluation as well as event management.

  16. The development of a flash flood severity index

    NASA Astrophysics Data System (ADS)

    Schroeder, Amanda J.; Gourley, Jonathan J.; Hardy, Jill; Henderson, Jen J.; Parhi, Pradipta; Rahmani, Vahid; Reed, Kimberly A.; Schumacher, Russ S.; Smith, Brianne K.; Taraldsen, Matthew J.

    2016-10-01

    Flash flooding is a high impact weather event that requires clear communication regarding severity and potential hazards among forecasters, researchers, emergency managers, and the general public. Current standards used to communicate these characteristics include return periods and the United States (U.S.) National Weather Service (NWS) 4-tiered river flooding severity scale. Return periods are largely misunderstood, and the NWS scale is limited to flooding on gauged streams and rivers, often leaving out heavily populated urban corridors. To address these shortcomings, a student-led group of interdisciplinary researchers came together in a collaborative effort to develop an impact-based Flash Flood Severity Index (FFSI). The index was proposed as a damage-based, post-event assessment tool, and preliminary work toward the creation of this index has been completed and presented here. Numerous case studies were analyzed to develop the preliminary outline for the FFSI, and three examples of such cases are included in this paper. The scale includes five impact-based categories ranging from Category 1 very minor flooding to Category 5 catastrophic flooding. Along with the numerous case studies used to develop the initial outline of the scale, empirical data in the form of semi-structured interviews were conducted with multiple NWS forecasters across the country and their responses were analyzed to gain more perspective on the complicated nature of flash flood definitions and which tools were found to be most useful. The feedback from these interviews suggests the potential for acceptance of such an index if it can account for specific challenges.

  17. Forecasts, warnings and social response to flash floods: Is temporality a major problem? The case of the September 2005 flash flood in the Gard region (France)

    NASA Astrophysics Data System (ADS)

    Lutoff, C.; Anquetin, S.; Ruin, I.; Chassande, M.

    2009-09-01

    Flash floods are complex phenomena. The atmospheric and hydrological generating mechanisms of the phenomenon are not completely understood, leading to highly uncertain forecasts of and warnings for these events. On the other hand warning and crisis response to such violent and fast events is not a straightforward process. In both the social and physical aspect of the problem, space and time scales involved either in hydrometeorology, human behavior and social organizations sciences are of crucial importance. Forecasters, emergency managers, mayors, school superintendents, school transportation managers, first responders and road users, all have different time and space frameworks that they use to take emergency decision for themselves, their group or community. The integration of space and time scales of both the phenomenon and human activities is therefore a necessity to better deal with questions as forecasting lead-time and warning efficiency. The aim of this oral presentation is to focus on the spatio-temporal aspects of flash floods to improve our understanding of the event dynamic compared to the different scales of the social response. The authors propose a framework of analysis to compare the temporality of: i) the forecasts (from Méteo-France and from EFAS (Thielen et al., 2008)), ii) the meteorological and hydrological parameters, iii) the social response at different scales. The September 2005 event is particularly interesting for such analysis. The rainfall episode lasted nearly a week with two distinct phases separated by low intensity precipitations. Therefore the Méteo-France vigilance bulletin where somehow disconnected from the local flood’s impacts. Our analysis focuses on the timings of different types of local response, including the delicate issue of school transportation, in regard to the forecasts and the actual dynamic of the event.

  18. Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine

    2012-01-01

    SummaryImportant damages occur in small headwater catchments when they are hit by severe storms with complex spatio-temporal structure, sometimes resulting in flash floods. As these catchments are mostly not covered by sensor networks, it is difficult to forecast these floods. This is particularly true for road submersions, representing major concerns for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts (QPE/QPF) especially based on radar measurements could particularly be adequate to evaluate rainfall-induced risks. Although their characteristic time and space scales would make them suitable for flash flood modelling, the impact of their uncertainties remain uncertain and have to be evaluated. The Gard region (France) has been chosen as case study. This area is frequently affected by severe flash floods, and an application devoted to the road network has also been recently developed for the North part of this region. This warning system combines distributed hydro-meteorological modelling and susceptibility analysis to provide warnings of road inundations. The warning system has been tested on the specific storm of the 29-30 September 2007. During this event, around 200 mm dropped on the South part of the Gard and many roads were submerged. Radar-based QPE and QPF have been used to forecast the exact location of road submersions and the results have been compared to the effective road submersions actually occurred during the event as listed by the emergency services. Used on an area it has not been calibrated, the results confirm that the road submersion warning system represents a promising tool for anticipating and quantifying the consequences of storm events at ground. It rates the submersion risk with an acceptable level of accuracy and demonstrates also the quality of high spatial and temporal resolution radar rainfall data in real time, and the possibility to use them despite their uncertainties. However because of the quality of rainfall forecasts falls drastically with time, it is not often sufficient to provide valuable information for lead times exceeding 1 h.

  19. Flash Floods Simulation Using a Physical based hydrological Model at the Eastern Nile Basin: Case studies; Wadi Assiut, Egypt and Wadi Gumara, Lake Tana, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Saber, M.; Sefelnasr, A.; Yilmaz, K. K.

    2015-12-01

    Flash flood is a natural hydrological phenomenon which affects many regions of the world. The behavior and effect of this phenomenon is different from one region to the other regions depending on several issues such as climatology and hydrological and topographical conditions at the target regions. Wadi assiut, Egypt as arid environment, and Gumara catchment, Lake Tana, Ethiopia, as humid conditions have been selected for application. The main target of this work is to simulate flash floods at both catchments considering the difference between them on the flash flood behaviors based on the variability of both of them. In order to simulate the flash floods, remote sensing data and a physical-based distributed hydrological model, Hydro-BEAM-WaS (Hydrological River Basin Environmental Assessment Model incorporating Wadi System) have been integrated used in this work. Based on the simulation results of flash floods in these regions, it was found that the time to reach the maximum peak is very short and consequently the warning time is very short as well. It was found that the flash floods starts from zero flow in arid environment, but on the contrary in humid arid, it starts from Base flow which is changeable based on the simulated events. Distribution maps of flash floods showing the vulnerable regions of these selected areas have been developed. Consequently, some mitigation strategies relying on this study have been introduced. The proposed methodology can be applied effectively for flash flood forecasting at different climate regions, however the paucity of observational data.

  20. Establishing a rainfall threshold for flash flood warnings in China's mountainous areas based on a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Miao, Qinghua; Yang, Dawen; Yang, Hanbo; Li, Zhe

    2016-10-01

    Flash flooding is one of the most common natural hazards in China, particularly in mountainous areas, and usually causes heavy damage and casualties. However, the forecasting of flash flooding in mountainous regions remains challenging because of the short response time and limited monitoring capacity. This paper aims to establish a strategy for flash flood warnings in mountainous ungauged catchments across humid, semi-humid and semi-arid regions of China. First, we implement a geomorphology-based hydrological model (GBHM) in four mountainous catchments with drainage areas that ranges from 493 to 1601 km2. The results show that the GBHM can simulate flash floods appropriately in these four study catchments. We propose a method to determine the rainfall threshold for flood warning by using frequency analysis and binary classification based on long-term GBHM simulations that are forced by historical rainfall data to create a practically easy and straightforward approach for flash flood forecasting in ungauged mountainous catchments with drainage areas from tens to hundreds of square kilometers. The results show that the rainfall threshold value decreases significantly with increasing antecedent soil moisture in humid regions, while this value decreases slightly with increasing soil moisture in semi-humid and semi-arid regions. We also find that accumulative rainfall over a certain time span (or rainfall over a long time span) is an appropriate threshold for flash flood warnings in humid regions because the runoff is dominated by excess saturation. However, the rainfall intensity (or rainfall over a short time span) is more suitable in semi-humid and semi-arid regions because excess infiltration dominates the runoff in these regions. We conduct a comprehensive evaluation of the rainfall threshold and find that the proposed method produces reasonably accurate flash flood warnings in the study catchments. An evaluation of the performance at uncalibrated interior points in the four gauged catchments provides results that are indicative of the expected performance at ungauged locations. We also find that insufficient historical data lengths (13 years with a 5-year flood return period in this study) may introduce uncertainty in the estimation of the flood/rainfall threshold because of the small number of flood events that are used in binary classification. A data sample that contains enough flood events (10 events suggested in the present study) that exceed the threshold value is necessary to obtain acceptable results from binary classification.

  1. An experimental operative system for shallow landslide and flash flood warning based on rainfall thresholds and soil moisture modelling

    NASA Astrophysics Data System (ADS)

    Brigandı, G.; Aronica, G. T.; Basile, G.; Pasotti, L.; Panebianco, M.

    2012-04-01

    On November 2011 a thunderstorms became almost exceptional over the North-East part of the Sicily Region (Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The storm was concentrated on the Tyrrhenian sea coast near the city of Barcellona within the Longano catchment. Main focus of the paper is to present an experimental operative system for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds, soil moisture indexes and quantitative precipitation forecasting. As matter of fact, shallow landslide and flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. It is well known how the triggering of shallow landslides is strongly influenced by the initial soil moisture conditions of catchments. Therefore, the early warning system here applied is based on the combined use of rainfall thresholds, derived both for flash flood and for landslide, and soil moisture conditions; the system is composed of several basic component related to antecedent soil moisture conditions, real-time rainfall monitoring and antecedent rainfall. Soil moisture conditions were estimated using an Antecedent Precipitation Index (API), similar to this widely used for defining soil moisture conditions via Antecedent Moisture conditions index AMC. Rainfall threshold for landslides were derived using historical and statistical analysis. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. After the implementation and calibration of the model, a testing phase was carried out by using real data collected for the November 2001 event in the Longano catchment. Moreover, in order to test the capability of the system to forecast thise event, Quantitative Precipitation Forecasting provided by the SILAM (Sicily Limited Area Model), a meteorological model run by SIAS (Sicilian Agrometeorological Service) with a forecast horizon up to 144 hours, have been used to run the system.

  2. Toward a coupled Hazard-Vulnerability Tool for Flash Flood Impacts Prediction

    NASA Astrophysics Data System (ADS)

    Terti, Galateia; Ruin, Isabelle; Anquetin, Sandrine; Gourley, Jonathan J.

    2015-04-01

    Flash floods (FF) are high-impact, catastrophic events that result from the intersection of hydrometeorological extremes and society at small space-time scales, generally on the order of minutes to hours. Because FF events are generally localized in space and time, they are very difficult to forecast with precision and can subsequently leave people uninformed and subject to surprise in the midst of their daily activities (e.g., commuting to work). In Europe, FFs are the main source of natural hazard fatalities, although they affect smaller areas than riverine flooding. In the US, also, flash flooding is the leading cause of weather-related deaths most years, with some 200 annual fatalities. There were 954 fatalities and approximately 31 billion U.S. dollars of property damage due to floods and flash floods from 1995 to 2012 in the US. For forecasters and emergency managers the prediction of and subsequent response to impacts due to such a sudden onset and localized event remains a challenge. This research is motivated by the hypothesis that the intersection of the spatio-temporal context of the hazard with the distribution of people and their characteristics across space and time reveals different paths of vulnerability. We argue that vulnerability and the dominant impact type varies dynamically throughout the day and week according to the location under concern. Thus, indices are appropriate to develop and provide, for example, vehicle-related impacts on active population being focused on the road network during morning or evening rush hours. This study describes the methodological developments of our approach and applies our hypothesis to the case of the June 14th, 2010 flash flood event in the Oklahoma City area (Oklahoma, US). Social (i.e. population socio-economic profile), exposure (i.e. population distribution, land use), and physical (i.e. built and natural environment) data are used to compose different vulnerability products based on the forecast location and timing of the specific FF occurrence. Contingent index-based impact maps are then derived from the intersection of the hydro-meteorological indices with the exposure, sensitivity and/or coping capacity indices describing the infrastructure and people in the study area.

  3. Pilot project for a hybrid road-flooding forecasting system on Squaw Creek : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-10-01

    According to the National Weather Service, more than : half of the fatalities attributed to flash floods are : people swept away in vehicles when trying to cross an : intersection that is flooded. Efforts are underway to : improve prediction of the l...

  4. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  5. High Risk Flash Flood Rainstorm Mapping Based on Regional L-moments Approach

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Liao, Yifan; Lin, Bingzhang

    2017-04-01

    Difficulties and complexities in elaborating flash flood early-warning and forecasting system prompt hydrologists to develop some techniques to substantially reduce the disastrous outcome of a flash flood in advance. An ideal to specify those areas that are subject at high risk to flash flood in terms of rainfall intensity in a relatively large region is proposed in this paper. It is accomplished through design of the High Risk Flash Flood Rainstorm Area (HRFFRA) based on statistical analysis of historical rainfall data, synoptic analysis of prevailing storm rainfalls as well as the field survey of historical flash flood events in the region. A HRFFRA is defined as the area potentially under hitting by higher intense-precipitation for a given duration with certain return period that may cause a flash flood disaster in the area. This paper has presented in detail the development of the HRFFRA through the application of the end-to-end Regional L-moments Approach (RLMA) to precipitation frequency analysis in combination with the technique of spatial interpolation in Jiangxi Province, South China Mainland. Among others, the concept of hydrometeorologically homogenous region, the precision of frequency analysis in terms of parameter estimation, the accuracy of quantiles in terms of uncertainties and the consistency adjustments of quantiles over durations and space, etc., have been addressed. At the end of this paper, the mapping of the HRFFRA and an internet-based visualized user-friendly data-server of the HRFFRA are also introduced. Key words: HRFFRA; Flash Flood; RLMA; rainfall intensity; Hydrometeorological homogenous region.

  6. Flash floods, hydro-geomorphic response and risk management

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Borga, Marco; Gourley, Jonathan; Hürlimann, Marcel; Zappa, Massimilano; Gallart, Francesc

    2016-10-01

    Each year, natural disasters are responsible for fatalities and economic losses worldwide with 101 billion USD in economic losses and 7000 fatalities reported for 2014 (SwissRE, 2015). Even if earthquakes are responsible for most of these fatalities, flash floods and landslides are recognized as a significant source of threat to human lives (SwissRE, 2015). Jonkman (2005), in a global assessment of flood-related casualties, showed that flash floods lead to the highest mortality (number of fatalities divided by the number of affected people). They are also often associated with shallow landslides and geomorphic processes that can increase threat to human lives. Analysis of a global data set of fatalities from non-seismically triggered landslides (Petley, 2012) shows that 2620 fatal landslides were recorded worldwide in the period 2004-2010, causing a total of 32,322 recorded fatalities. In addition, heavy precipitation events, at the origin of flash floods and shallow landsliding are expected to increase in the future (e.g. Scoccimarro et al., 2016 for a recent study in Europe). Progress in flash floods and landslides understanding, forecasting and warning is therefore still needed to disentangle the complex interactions between hazards, exposure and vulnerability and to increase resilience (Borga et al., 2014).

  7. Operational tools to help stakeholders to protect and alert municipalities facing uncertainties and changes in karst flash floods

    NASA Astrophysics Data System (ADS)

    Borrell Estupina, V.; Raynaud, F.; Bourgeois, N.; Kong-A-Siou, L.; Collet, L.; Haziza, E.; Servat, E.

    2015-06-01

    Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).

  8. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    NASA Astrophysics Data System (ADS)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  9. Assessing various approaches for flash flood forecasting in the Yzeron periurban catchment (150 km2) south-east Lyon, France

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Breil, Pascal; Javelle, Pierre; Pejakovic, Nikola; Guérin, Stéphane

    2017-04-01

    The Yzeron periurban catchment (150 km2) is prone to flash floods leading to overflow in the downstream part of the catchment. A prevention and management plan has been approved and the set-up of a flood forecasting system is planned. The present study presents a comparison of several solutions for flood forecasting in the catchment. It is based on an extensive data collection (rain gauges, radar/rain gauge reanalyses, discharge and water level data) from this experimental catchment. A set of rainfall-runoff events leading to floods (problematic and non-problematic floods) was extracted and formed the basis for the definition of a first forecasting method. It is based on data analysis and the identification of explaining factors amongst the following: rainfall amount, intensity, antecedent rainfall, initial discharge. Several statistical methods including Factorial Analysis of Mixed Data and Classification and Regression Tree were used for this purpose. They showed that several classes of problematic floods can be identified. The first one is related to wet conditions characterized with high initial discharge and antecedent rainfall. The second class is driven by rainfall amount, initial discharge and rainfall intensity. Thresholds of these variables can be identified to provide a first warning. The second forecasting method assessed in the study is the system that will be operational in France in 2017, based on the AIGA method (Javelle et al., 2016). For this purpose, 18-year discharge simulation using the hydrological model of the AIGA method, forced using radar/rain gauges reanalysis were available at 44 locations within the catchment. The dates for which quantiles of a given return period were overtopped were identified and compared with the list of problematic events. The AIGA method was found relevant in identifying the most problematic events, but the lead time needs further investigation in order to assess the usefulness for population warning. References: Pierre Javelle, Didier Organde, Julie Demargne, Clotilde Saint-Martin, Céline de Saint-Aubin, Léa Garandeau and Bruno Janet (2016). Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method. E3S Web of Conferences 7, 18010 (2016), 3rd European Conference on Flood Risk Management (FLOODrisk 2016), http://dx.doi.org/10.1051/e3sconf/20160718010

  10. Radar-driven high-resolution hydro-meteorological forecasts of the 26 September 2007 Venice flash flood

    NASA Astrophysics Data System (ADS)

    Rossa, Andrea M.; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel

    2010-11-01

    SummaryThis study aims to assess the feasibility of assimilating carefully checked radar rainfall estimates into a numerical weather prediction (NWP) to extend the forecasting lead time for an extreme flash flood. The hydro-meteorological modeling chain includes the convection-permitting NWP model COSMO-2 and a coupled hydrological-hydraulic model. Radar rainfall estimates are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood which impacted the coastal area of North-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the 90 km2 Dese river basin draining to the Venice Lagoon. The radar rainfall observations are carefully checked for artifacts, including rain-induced signal attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar rainfall estimates in the assimilation cycle of the NWP model is very significant. The main individual organized convective systems are successfully introduced into the model state, both in terms of timing and localization. Also, high-intensity incorrectly localized precipitation is correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities computed after assimilation underestimate the observed values by 20% and 50% at a scale of 20 km and 5 km, respectively. The positive impact of assimilating radar rainfall estimates is carried over into the free forecast for about 2-5 h, depending on when the forecast was started. The positive impact is larger when the main mesoscale convective system is present in the initial conditions. The improvements in the precipitation forecasts are propagated to the river flow simulations, with an extension of the forecasting lead time up to 3 h.

  11. Evaluation of radar rainfall estimates and nowcasts to prevent flash flood in real time by using a road submersion warning tool

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Sempere-Torres, Daniel

    2010-05-01

    Important damages occur in small headwater catchments when they are hit by severe storms with complex spatio-temporal structure, sometimes resulting in flash floods. As these catchments are mostly not covered by sensor networks, it is difficult to forecast these floods. This is particularly true for road submersions. These are major concerns for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts (QPE/QPF) especially based on radar measurements could particularly be adequate to evaluate rainfall-induced risks. Although their characteristic time and space scales would make them suitable for flash flood modelling, the impact of their uncertainties remain uncertain and have to be evaluated. The Gard region (France) has been chosen as case study. This area is frequently affected by severe flash floods and different kinds of rainfall observations are available in real time: radar rainfall estimates and nowcasts from METEO FRANCE and the CALAMAR system from SPC (state authority in charge of flood forecasting). An application devoted to the road network, has also been recently developed for this region. It combines distributed hydro-meteorological very short range forecasts and vulnerability analysis to provide warnings of road submersions. The first results demonstrate that it is technically possible to provide distributed short-term forecasts for a large number of sites. The study also demonstrates that a reliable estimation of the spatial distribution of rainfall is essential. For this reason, the road submersion warning system can be used to evaluate the quality of rainfall estimates and nowcasts. The warning system has been tested on the specific storm of the 29-30 September 2007. During this event, more than 300mm dropped on the South part of the Gard and many roads were submerged. Each of the mentioned rainfall datasets (i.e. estimates and nowcasts) was available in real time. They have been used to forecast the exact location of road submersions and the results have been compared to the effective road submersions actually occurred during the event as listed by the emergency services. The results confirm that the road submersion warning system represents a promising tool for anticipating and quantifying the consequences of storm events at ground. It rates the submersion risk with an acceptable level of accuracy and a reasonable false alarm ratio. It demonstrates also the quality of high spatial and temporal resolution radar rainfall data in real time, and the possibility to use them despite their uncertainties. However because of the quality of rainfall nowcasts falls drastically with time, it is not often sufficient to provide valuable information for lead times exceeding one hour.

  12. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data

    NASA Astrophysics Data System (ADS)

    Pereira Filho, Augusto José; dos Santos, Cláudia Cristina

    2006-02-01

    Artificial neural networks (ANN) are widely used in a myriad of fields of research and development, including the predictability of time series. This work is concerned with one of such applications to simulate and to forecast stage level and streamflow at the Tamanduateí river watershed, one of the main tributaries of the Alto Tietê river watershed in São Paulo State, Brazil. This heavily urbanized watershed is within the Metropolitan Area of São Paulo (MASP) where recurrent flash floods affect a population of more than 17 million inhabitants. Flash floods events between 1991 and 1995 were selected and divided up into three groups for training, verification and forecasting purposes. Weather radar rainfall estimation and telemetric stage level and streamflow data were input to a three-layer feed forward ANN trained with the Linear Least Square Simplex training algorithm (LLSSIM) by Hsu et al. [Hsu, K.L., Gupta, H.V., Sorooshian, S., 1996. A superior training strategy for three-layer feed forward artificial neural networks. Tucson, University of Arizona. (Technique report, HWR no. 96-030, Department of Hydrology and Water Resources)]. The performance of the ANN is improved by 40% when either streamflow or stage level were input together with the rainfall. The ANN simulated flood waves tend to be dominated by phase errors. The ANN showed slightly better results then a multi-parameter auto-regression model and indicates its usefulness in flash flood forecasting.

  13. An entropy decision approach in flash flood warning: rainfall thresholds definition

    NASA Astrophysics Data System (ADS)

    Montesarchio, V.; Napolitano, F.; Ridolfi, E.

    2009-09-01

    Flash floods events are floods characterised by very rapid response of the basins to the storms, and often they involve loss of life and damage to common and private properties. Due to the specific space-time scale of this kind of flood, generally only a short lead time is available for triggering civil protection measures. Thresholds values specify the precipitation amount for a given duration that generates a critical discharge in a given cross section. The overcoming of these values could produce a critical situation in river sites exposed to alluvial risk, so it is possible to compare directly the observed or forecasted precipitation with critical reference values, without running on line real time forecasting systems. This study is focused on the Mignone River basin, located in Central Italy. The critical rainfall threshold values are evaluated minimising an utility function based on the informative entropy concept. The study concludes with a system performance analysis, in terms of correctly issued warning, false alarms and missed alarms.

  14. A hydro-meteorological ensemble prediction system for real-time flood forecasting purposes in the Milano area

    NASA Astrophysics Data System (ADS)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco

    2015-04-01

    Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and total amounts at the catchment scale, thus impacting heavily the deterministic QDFs. In contrast, early warnings would have been possible within a HEPS context for the Milano area, proving the suitability of such system for civil protection purposes.

  15. Better to Be Active (Rather Than Passive) When Considering How Soil Moisture Can Help Decision Makers

    NASA Astrophysics Data System (ADS)

    Mace, R.

    2016-12-01

    As recent events have shown, Texas is a land of drought and flood. Texas experienced the worst one-year drought of record in 2011; the second worst statewide drought of record between 2010 and 2015; and record-breaking floods in the spring of 2015, fall of 2015, and spring of 2016 (with flash droughts occurring during the summers of 2015 and 2016). Soil moisture is one factor that links drought and flood in addressing key policy and management questions: When will soil moisture be high enough to allow groundwater recharge and runoff into reservoirs? When will soil moisture be high enough to cause flash floods with excessive rainfall? After tragic floods in Wimberley in the spring of 2015, Texas is expanding its stream-flow monitoring capabilities and is starting a statewide mesonet called TexMesonet to provide more detailed weather information to flood forecasters but also to provide baseline information on soil moisture for flood, drought, and water conservation purposes. Our hope is that the TexMesonet will help ground-truth SMAP and other remote sensing systems, help improve the National Water Model (a next generation tool for flood forecasting), and spark research into sub-basin soil moisture predictors of runoff which break water-supply droughts or lead to major floods.

  16. Radar-driven High-resolution Hydrometeorological Forecasts of the 26 September 2007 Venice flash flood

    NASA Astrophysics Data System (ADS)

    Massimo Rossa, Andrea; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel

    2010-05-01

    Space and time scales of flash floods are such that flash flood forecasting and warning systems depend upon the accurate real-time provision of rainfall information, high-resolution numerical weather prediction (NWP) forecasts and the use of hydrological models. Currently available high-resolution NWP model models can potentially provide warning forecasters information on the future evolution of storms and their internal structure, thereby increasing convective-scale warning lead times. However, it is essential that the model be started with a very accurate representation of on-going convection, which calls for assimilation of high-resolution rainfall data. This study aims to assess the feasibility of using carefully checked radar-derived quantitative precipitation estimates (QPE) for assimilation into NWP and hydrological models. The hydrometeorological modeling chain includes the convection-permitting NWP model COSMO-2 and a hydrologic-hydraulic models built upon the concept of geomorphological transport. Radar rainfall observations are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood event which impacted the coastal area of north-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the Dese river, a 90 km2 catchment flowing to the Venice lagoon. The radar rainfall observations are carefully checked for artifacts, including beam attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar QPE in the assimilation cycle of the NWP model is very significant, in that the main individual organized convective systems were successfully introduced into the model state, both in terms of timing and localization. Also, incorrectly localized precipitation in the model reference run without rainfall assimilation was correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities were underestimated by 20% at a scale of 1000 km2, and the local peaks by 50%. The positive impact of the assimilated radar rainfall was carried over into the free forecast for about 2-5 hours, depending on when this forecast was started, and was larger, when the main mesoscale convective system was present in the initial conditions. The improvements of the meteorological model simulations were directly propagated to the river flow simulations, with an extension of the warning lead time up to three hours.

  17. Development of flood index by characterisation of flood hydrographs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA, Oc-gok Basin in Republic of Korea and the haor region of Bangladesh. Keywords: flood index, flood risk management, flood characteristics

  18. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.

  19. Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas

    NASA Astrophysics Data System (ADS)

    Rogelis, María Carolina; Werner, Micha

    2018-02-01

    Numerical weather prediction (NWP) models are fundamental to extend forecast lead times beyond the concentration time of a watershed. Particularly for flash flood forecasting in tropical mountainous watersheds, forecast precipitation is required to provide timely warnings. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that bias correction can provide, in a tropical mountainous area. The paper focuses on the comparison of streamflows obtained from the post-processed precipitation forecasts, particularly the comparison of ensemble forecasts and their potential in providing skilful flood forecasts. The Weather Research and Forecasting (WRF) model is used to produce precipitation forecasts that are post-processed and used to drive a hydrologic model. Discharge forecasts obtained from the hydrological model are used to assess the skill of the WRF model. The results show that post-processed WRF precipitation adds value to the flood early warning system when compared to zero-precipitation forecasts, although the precipitation forecast used in this analysis showed little added value when compared to climatology. However, the reduction of biases obtained from the post-processed ensembles show the potential of this method and model to provide usable precipitation forecasts in tropical mountainous watersheds. The need for more detailed evaluation of the WRF model in the study area is highlighted, particularly the identification of the most suitable parameterisation, due to the inability of the model to adequately represent the convective precipitation found in the study area.

  20. Evaluation of sub daily satellite rainfall estimates through flash flood modelling in the Lower Middle Zambezi Basin

    NASA Astrophysics Data System (ADS)

    Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson

    2018-05-01

    Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.

  1. Meteorological analysis of flash floods in Artvin (NE Turkey) on 24 August 2015

    NASA Astrophysics Data System (ADS)

    Baltaci, Hakki

    2017-07-01

    On 24 August 2015 intense rainfall episodes generated flash floods and landslides on the eastern Black Sea coast of Turkey. As a consequence of the heavy rainstorm activity over Artvin and its surroundings (NE Turkey), 11 people died and economic losses totaled a million dollars. Over the 6 h of the event (from 05:00 to 11:00 UTC), total accumulated rainfall amounts of 136, 64, and 109 mm were measured in the Hopa, Arhavi, and Borçka settlements of Artvin city, respectively. This study comprehensively investigates the meteorological characteristics of those flash floods. In terms of synoptic mechanisms, the cutoff surface low from the summer Asian monsoon settled over the eastern Black Sea. After two days of quasistationary conditions of this cyclone, sea surface temperatures (SSTs) reached 27.5 °C (1.5 °C higher than normal) and low-level moisture convergence developed. In addition, transfer of moisture by warm northerly flows from the Black Sea and relatively cool southerly flows from the land coasts of the Artvin district exacerbated the unstable conditions and thus played a significant role in the development of deep convective cells. Severe rainstorms as well as the slope instability of the region triggered landslides and worsened flood damages in the Artvin area. This study supports conventional weather analysis, satellite images, and forecast model output to alert forecasters to the potential for heavy rainfall.

  2. Implementing the national AIGA flash flood warning system in France

    NASA Astrophysics Data System (ADS)

    Organde, Didier; Javelle, Pierre; Demargne, Julie; Arnaud, Patrick; Caseri, Angelica; Fine, Jean-Alain; de Saint Aubin, Céline

    2015-04-01

    The French national hydro-meteorological and flood forecasting centre (SCHAPI) aims to implement a national flash flood warning system to improve flood alerts for small-to-medium (up to 1000 km2) ungauged basins. This system is based on the AIGA method, co-developed by IRSTEA these last 10 years. The method, initially set up for the Mediterranean area, is based on a simple event-based hourly hydrologic distributed model run every 15 minutes (Javelle et al. 2014). The hydrologic model ingests operational radar-gauge rainfall grids from Météo-France at a 1-km² resolution to produce discharges for successive outlets along the river network. Discharges are then compared to regionalized flood quantiles of given return periods and warnings (expressed as the range of the return period estimated in real-time) are provided on a river network map. The main interest of the method is to provide forecasters and emergency services with a synthetic view in real time of the ongoing flood situation, information that is especially critical in ungauged flood prone areas. In its enhanced national version, the hourly event-based distributed model is coupled to a continuous daily rainfall-runoff model which provides baseflow and a soil moisture index (for each 1-km² pixel) at the beginning of the hourly simulation. The rainfall-runoff models were calibrated on a selection of 700 French hydrometric stations with Météo-France radar-gauge reanalysis dataset for the 2002-2006 period. To estimate model parameters for ungauged basins, the 2 hydrologic models were regionalised by testing both regressions (using different catchment attributes, such as catchment area, soil type, and climate characteristic) and spatial proximity techniques (transposing parameters from neighbouring donor catchments), as well as different homogeneous hydrological areas. The most valuable regionalisation method was determined for each model through jack-knife cross-validation. The system performance was then evaluated with contingency criteria (e.g., Critical Success Index, Probability Of Detection, Success Ratio) using operational rainfall radar-gauge products from Météo-France for the 2009-2012 period. The regionalised parameters of the distributed model were finally adjusted for each homogeneous hydrological area to optimize the Heidke skill score (HSS) calculated with three levels of warnings (2-, 10- and 50-year flood quantiles). This work is currently being implemented by the SCHAPI to set up an automated national flash flood warning system by 2016. Planned improvements include developing a unique continuous model to be run at a sub-hourly timestep, discharge assimilation, as well as integrating precipitation forecasts while accounting for the main sources of forecast uncertainty. Javelle, P., Demargne, J., Defrance, D., and Arnaud, P. 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, DOI: 10.1080/02626667.2014.923970

  3. Flash floods in Europe: state of the art and research perspectives

    NASA Astrophysics Data System (ADS)

    Gaume, Eric

    2014-05-01

    Flash floods, i.e. floods induced by severe rainfall events generally affecting watersheds of limited area, are the most frequent, destructive and deadly kind of natural hazard known in Europe and throughout the world. Flash floods are especially intense across the Mediterranean zone, where rainfall accumulations exceeding 500 mm within a few hours may be observed. Despite this state of facts, the study of extremes in hydrology has essentially gone unexplored until the recent past, with the exception of some rare factual reports on individual flood events, with the sporadic inclusion of isolated estimated peak discharges. Floods of extraordinary magnitude are in fact hardly ever captured by existing standard measurement networks, either because they are too heavily concentrated in space and time or because their discharges greatly exceed the design and calibration ranges of the measurement devices employed (stream gauges). This situation has gradually evolved over the last decade for two main reasons. First, the expansion and densification of weather radar networks, combined with improved radar quantitative precipitation estimates, now provide ready access to rainfall measurements at spatial and temporal scales that, while not perfectly accurate, are compatible with the study of extreme events. Heavy rainfall events no longer fail to be recorded by existing rain gauge and radar networks. Second, pioneering research efforts on extreme floods, based on precise post-flood surveys, have helped overcome the limitations imposed by a small base of available direct measured data. This activity has already yielded significant progress in expanding the knowledge and understanding of extreme flash floods. This presentation will provide a review of the recent research progresses in the area of flash flood studies, mainly based on the outcomes of the European research projects FLOODsite, HYDRATE and Hymex. It will show how intensive collation of field data helped better define the possible magnitudes of flood volumes and discharges during flash floods, their spatial distribution and rates of occurrence, as well as the factors that control the hydrological response of watersheds to heavy rainfalls explaining the large spatial variability in flood hazard. Developments in the fields of flood frequency analyses and flood forecasting based on the recently acquired data or adapted for the valuation of this specific data will also be presented. The presentation will end suggesting some perspectives for future research activities on flash floods.

  4. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  5. Small-scale (flash) flood early warning in the light of operational requirements: opportunities and limits with regard to user demands, driving data, and hydrologic modeling techniques

    NASA Astrophysics Data System (ADS)

    Philipp, Andy; Kerl, Florian; Büttner, Uwe; Metzkes, Christine; Singer, Thomas; Wagner, Michael; Schütze, Niels

    2016-05-01

    In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving flash flood related early warning products are investigated. This is to clarify the feasibility and the limits of envisaged early warning procedures for small catchments, hit by flashy heavy rain events. Early warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required reaction-time needs of the stakeholders involved in flood risk management) needs to take into account not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction context. First, the user demands (with respect to desired/required warning products, preparation times, etc.) are investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative precipitation forecasts are verified. Third, considering the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies, employing deterministic, data-driven, and simple scoring methods.

  6. A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation

    NASA Astrophysics Data System (ADS)

    Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique

    2010-05-01

    Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.

  7. Flash flood forecasting using simplified hydrological models, radar rainfall forecasts and data assimilation

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.; Panziera, L.

    2012-04-01

    The issuing of timely flood alerts may be dependant upon the ability to predict future values of water level or discharge at locations where observations are available. Catchments at risk of flash flooding often have a rapid natural response time, typically less then the forecast lead time desired for issuing alerts. This work focuses on the provision of short-range (up to 6 hours lead time) predictions of discharge in small catchments based on utilising radar forecasts to drive a hydrological model. An example analysis based upon the Verzasca catchment (Ticino, Switzerland) is presented. Parsimonious time series models with a mechanistic interpretation (so called Data-Based Mechanistic model) have been shown to provide reliable accurate forecasts in many hydrological situations. In this study such a model is developed to predict the discharge at an observed location from observed precipitation data. The model is shown to capture the snow melt response at this site. Observed discharge data is assimilated to improve the forecasts, of up to two hours lead time, that can be generated from observed precipitation. To generate forecasts with greater lead time ensemble precipitation forecasts are utilised. In this study the Nowcasting ORographic precipitation in the Alps (NORA) product outlined in more detail elsewhere (Panziera et al. Q. J. R. Meteorol. Soc. 2011; DOI:10.1002/qj.878) is utilised. NORA precipitation forecasts are derived from historical analogues based on the radar field and upper atmospheric conditions. As such, they avoid the need to explicitly model the evolution of the rainfall field through for example Lagrangian diffusion. The uncertainty in the forecasts is represented by characterisation of the joint distribution of the observed discharge, the discharge forecast using the (in operational conditions unknown) future observed precipitation and that forecast utilising the NORA ensembles. Constructing the joint distribution in this way allows the full historic record of data at the site to inform the predictive distribution. It is shown that, in part due to the limited availability of forecasts, the uncertainty in the relationship between the NORA based forecasts and other variates dominated the resulting predictive uncertainty.

  8. Linking Science of Flood Forecasts to Humanitarian Actions for Improved Preparedness and Effective Response

    NASA Astrophysics Data System (ADS)

    Uprety, M.; Dugar, S.; Gautam, D.; Kanel, D.; Kshetri, M.; Kharbuja, R. G.; Acharya, S. H.

    2017-12-01

    Advances in flood forecasting have provided opportunities for humanitarian responders to employ a range of preparedness activities at different forecast time horizons. Yet, the science of prediction is less understood and realized across the humanitarian landscape, and often preparedness plans are based upon average level of flood risk. Working under the remit of Forecast Based Financing (FbF), we present a pilot from Nepal on how available flood and weather forecast products are informing specific pre-emptive actions in the local preparedness and response plans, thereby supporting government stakeholders and humanitarian agencies to take early actions before an impending flood event. In Nepal, forecasting capabilities are limited but in a state of positive flux. Whilst local flood forecasts based upon rainfall-runoff models are yet to be operationalized, streamflow predictions from Global Flood Awareness System (GLoFAS) can be utilized to plan and implement preparedness activities several days in advance. Likewise, 3-day rainfall forecasts from Nepal Department of Hydrology and Meteorology (DHM) can further inform specific set of early actions for potential flash floods due to heavy precipitation. Existing community based early warning systems in the major river basins of Nepal are utilizing real time monitoring of water levels and rainfall together with localised probabilistic flood forecasts which has increased warning lead time from 2-3 hours to 7-8 hours. Based on these available forecast products, thresholds and trigger levels have been determined for different flood scenarios. Matching these trigger levels and assigning responsibilities to relevant actors for early actions, a set of standard operating procedures (SOPs) are being developed, broadly covering general preparedness activities and science informed anticipatory actions for different forecast lead times followed by the immediate response activities. These SOPs are currently being rolled out and tested by the Ministry of Home Affairs (MoHA) through its district emergency operation centres in West Nepal. Potential scale up and successful implementation of this science based approach would be instrumental to take forward global commitments on disaster risk reduction, climate change adaptation and sustainable goals in Nepal.

  9. How vulnerable is Texas’ freight infrastructure to extreme weather events? Final report.

    DOT National Transportation Integrated Search

    2017-03-01

    The Texas Freight Mobility Plan forecasts significant increases in freight volumes across all transportation modes over the next three decades. An increased frequency of extreme weather events such as prolonged droughts and flash flooding is also exp...

  10. Regional hydrological models for distributed flash-floods forecasting: towards an estimation of potential impacts and damages

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Pons, Frederic; Moncoulon, David

    2016-04-01

    Hydrometeorological forecasting is an essential component of real-time flood management. The information it provides is of great help for crisis managers to anticipate the inundations and the associated risks. In the particular case of flash-floods, which may affect a large amount of small watersheds spread over the territory (up to 300 000 km of waterways considering a drained area of 5 km² minimum in France), appropriate flood forecasting systems are still under development. In France, highly distributed hydrological models have been implemented, enabling a real-time assessment of the potential intensity of flash-floods from the records of weather radars: AIGA-hydro system (Lavabre et al., 2005; Javelle et al., 2014), PreDiFlood project (Naulin et al., 2013). The approach presented here aims to go one step further by offering a direct assessment of the potential impacts of the simulated floods on inhabited areas. This approach is based on an a priori analysis of the study area in order (1) to evaluate with a simplified hydraulic approach (DTM treatment) the potentially flooded areas for different discharge levels, and (2) to identify the associated buildings and/or population at risk from geographic databases. This preliminary analysis enables to build an impact model (discharge-impact curve) on each river reach, which is then used to directly estimate the potentially affected assets based on a distributed rainfall runoff model. The overall principle of this approach was already presented at the 8th Hymex workshop. Therefore, the presentation will be here focused on the first validation results in terms of (1) accuracy of flooded areas simulated from DTM treatments, and (2) relevance of estimated impacts. The inundated areas simulated were compared to the European Directive cartography results (where available), showing an overall good correspondence in a large majority of cases, but also very significant errors for approximatively 10% of the river reaches incorporated in the model. The stage/discharge relations obtained at gauging stations were also compared to the real rating curves, showing a very different behavior of the method depending on the local configuration of the considered site. Some developments are now in progress in order to evaluate and validate, as far as possible, the results of the entire simulation chain at the event scale. This work relies on the comparison of simulation results (estimated flood impacts) with insurance losses data (provided by CCR) for several significant past flood events. The first results of this work will be presented.

  11. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  12. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).

  13. Combining empirical approaches and error modelling to enhance predictive uncertainty estimation in extrapolation for operational flood forecasting. Tests on flood events on the Loire basin, France.

    NASA Astrophysics Data System (ADS)

    Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles

    2017-04-01

    An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973

  14. Understanding Himalayan extreme rainfall to inform disaster governance

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Kumar, A.

    2017-12-01

    The hydrological aspects of the Himalayan flooding events were investigated with the coupled atmospheric and Hydrological (WRF-LIS) modeling tool. The Convective storms occurring at the steep edge of broad high topography, such as the Rocky Mountains and Himalayas, are notorious for producing surprising and lethal flash floods. We investigated two recent Himalayan flood events (a) 2010 Ladakh flood: A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5-6 August 2010 resulted in hundreds of deaths and great property damage. (b) 2013 Uttrakhand flood: Over a three-day period in June 2013, approximately 500-1000 mm of rain fell over Uttarakhand and its river valleys as well as neighboring Nepal. The extensive precipitation and runoff led to devastating floods and landslides throughout the region and resulted in much destruction and loss of life (over 4,000 villages were affected, and the death toll exceeded 5,000). The Uttarakhand flood had characteristics in common with major 2013 floods in the Rocky Mountains in Colorado and Alberta. Our study examines the land-atmosphere interactions & cloud structure and dynamics of these flooding events in more detail, identifying the synoptic, mesoscale, convective, orographic, and land-surface components of the storm. We include satellite observations, ground-based radar imagery, and convection-permitting model simulations down to 1 km grid resolution to show the three-dimensional character of the precipitating cloud systems in more detail than previous studies. Our Land Information System (LIS) calculations suggest that soil moisture preconditioning by prior storms in the area in a vulnerable watershed is a hydrologic ingredient that should be taken into account along with the meteorological ingredients. In this regard, our results will be seen to reinforce the position taken by Doswell et al. (1996) that local forecasting of flood situations is ideally based on identifying key meteorological and hydrologic "ingredients" for a variety of flash flood-producing storms provides lessons for understanding and predicting flash floods and leads to insights into flash flood-producing scenarios in various regions of the world.

  15. Probabilistic hydrological nowcasting using radar based nowcasting techniques and distributed hydrological models: application in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2017-04-01

    The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.

  16. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Rahman, Rosnani

    2016-02-01

    Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.

  17. Investigating NWP initialization sensitivities in heavy precipitation events

    NASA Astrophysics Data System (ADS)

    Frediani, M. E. B.; Anagnostou, E. N.; Papadopoulos, A.

    2010-09-01

    This study aims to investigate the effect of different types of model initialization applied to extreme storms simulations. Storms with extreme precipitation can usually produce flash floods that cause several damages to the society. Lives and property are destroyed from the landslides when they could be speared if forecasted a few hours in advance. The forecasts depend on several factors; among them the initialization fields play an important role. These fields are the starting point for the simulation and therefore it controls the quality of the forecast. This study evaluates the sensitivities of WRF to the initialization from two perspectives, (1) resolution and (2) initial atmospheric fields. Two storms that lead to flash flood are simulated. The first one happened in Northeast Italy in 04/09/2009 (NI), and the second in Germany, in 02/06/2008 (GE). These storms present contrasting characteristics, NI was a maritime originated storm enhanced by local orography while GE was a typical summer convection. Three different sources of atmospheric fields defining the initial conditions are applied: (a) ECMWF operational analysis at resolution of 0.25 deg, (b) GFS operational analysis at 0.5deg and (c) LAPS analysis at ~15km, produced operationally at HCMR. The rainfall forecasted is compared against in situ ground radar and surface rain gauges observations through a set of quantitative precipitation forecast scores.

  18. The development of flood map in Malaysia

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto

    2017-11-01

    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to undertake the necessary decisions, and the general public to be aware of the impending danger. However this paper will only discuss on the generations of Flood Hazard Maps and the use of Flood Risk Map and Flood Evacuation Map by using geospatial data.

  19. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of flood preparedness and crisis management for basins greater than 1.000 km2.

  20. Extending flood forecasting lead time in large basin by coupling bias-corrected WRF QPF with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    LI, J.; Chen, Y.; Wang, H. Y.

    2016-12-01

    In large basin flood forecasting, the forecasting lead time is very important. Advances in numerical weather forecasting in the past decades provides new input to extend flood forecasting lead time in large rivers. Challenges for fulfilling this goal currently is that the uncertainty of QPF with these kinds of NWP models are still high, so controlling the uncertainty of QPF is an emerging technique requirement.The Weather Research and Forecasting (WRF) model is one of these NWPs, and how to control the QPF uncertainty of WRF is the research topic of many researchers among the meteorological community. In this study, the QPF products in the Liujiang river basin, a big river with a drainage area of 56,000 km2, was compared with the ground observation precipitation from a rain gauge networks firstly, and the results show that the uncertainty of the WRF QPF is relatively high. So a post-processed algorithm by correlating the QPF with the observed precipitation is proposed to remove the systematical bias in QPF. With this algorithm, the post-processed WRF QPF is close to the ground observed precipitation in area-averaged precipitation. Then the precipitation is coupled with the Liuxihe model, a physically based distributed hydrological model that is widely used in small watershed flash flood forecasting. The Liuxihe Model has the advantage with gridded precipitation from NWP and could optimize model parameters when there are some observed hydrological data even there is only a few, it also has very high model resolution to improve model performance, and runs on high performance supercomputer with parallel algorithm if executed in large rivers. Two flood events in the Liujiang River were collected, one was used to optimize the model parameters and another is used to validate the model. The results show that the river flow simulation has been improved largely, and could be used for real-time flood forecasting trail in extending flood forecasting leading time.

  1. Characterizing Macro Scale Patterns Of Uncertainty For Improved Operational Flood Forecasting Over The Conterminous United States

    NASA Astrophysics Data System (ADS)

    Vergara, H. J.; Kirstetter, P.; Gourley, J. J.; Flamig, Z.; Hong, Y.

    2015-12-01

    The macro scale patterns of simulated streamflow errors are studied in order to characterize uncertainty in a hydrologic modeling system forced with the Multi-Radar/Multi-Sensor (MRMS; http://mrms.ou.edu) quantitative precipitation estimates for flood forecasting over the Conterminous United States (CONUS). The hydrologic model is centerpiece of the Flooded Locations And Simulated Hydrograph (FLASH; http://flash.ou.edu) real-time system. The hydrologic model is implemented at 1-km/5-min resolution to generate estimates of streamflow. Data from the CONUS-wide stream gauge network of the United States' Geological Survey (USGS) were used as a reference to evaluate the discrepancies with the hydrological model predictions. Streamflow errors were studied at the event scale with particular focus on the peak flow magnitude and timing. A total of 2,680 catchments over CONUS and 75,496 events from a 10-year period are used for the simulation diagnostic analysis. Associations between streamflow errors and geophysical factors were explored and modeled. It is found that hydro-climatic factors and radar coverage could explain significant underestimation of peak flow in regions of complex terrain. Furthermore, the statistical modeling of peak flow errors shows that other geophysical factors such as basin geomorphometry, pedology, and land cover/use could also provide explanatory information. Results from this research demonstrate the utility of uncertainty characterization in providing guidance to improve model adequacy, parameter estimates, and input quality control. Likewise, the characterization of uncertainty enables probabilistic flood forecasting that can be extended to ungauged locations.

  2. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  3. Catchment dynamics and social response during flash floods

    NASA Astrophysics Data System (ADS)

    Creutin, J. D.; Lutoff, C.; Ruin, I.; Scolobig, A.; Créton-Cazanave, L.

    2009-04-01

    The objective of this study is to examine how the current techniques for flash-flood monitoring and forecasting can meet the requirements of the population at risk to evaluate the severity of the flood and anticipate its danger. To this end, we identify the social response time for different social actions in the course of two well studied flash flood events which occurred in France and Italy. We introduce a broad characterization of the event management activities into three types according to their main objective (information, organisation and protection). The activities are also classified into three other types according to the scale and nature of the human group involved (individuals, communities and institutions). The conclusions reached relate to i) the characterisation of the social responses according to watershed scale and to the information available, and ii) to the appropriateness of the existing surveillance and forecasting tools to support the social responses. Our results suggest that representing the dynamics of the social response with just one number representing the average time for warning a population is an oversimplification. It appears that the social response time exhibits a parallel with the hydrological response time, by diminishing in time with decreasing size of the relevant watershed. A second result is that the human groups have different capabilities of anticipation apparently based on the nature of information they use. Comparing watershed response times and social response times shows clearly that at scales of less than 100 km2, a number of actions were taken with response times comparable to the catchment response time. The implications for adapting the warning processes to social scales (individual or organisational scales) are considerable. At small scales and for the implied anticipation times, the reliable and high-resolution description of the actual rainfall field becomes the major source of information for decision-making processes such as deciding between evacuations or advising to stay home. This points to the need to improve the accuracy and quality control of real time radar rainfall data, especially for extreme flash flood generating storms.

  4. Radar-based Quantitative Precipitation Forecasting using Spatial-scale Decomposition Method for Urban Flood Management

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Lee, B.; Nakakita, E.; Lee, G.

    2016-12-01

    Recent climate changes and abnormal weather phenomena have resulted in increased occurrences of localized torrential rainfall. Urban areas in Korea have suffered from localized heavy rainfall, including the notable Seoul flood disaster in 2010 and 2011. The urban hydrological environment has changed in relation to precipitation, such as reduced concentration time, a decreased storage rate, and increased peak discharge. These changes have altered and accelerated the severity of damage to urban areas. In order to prevent such urban flash flood damages, we have to secure the lead time for evacuation through the improvement of radar-based quantitative precipitation forecasting (QPF). The purpose of this research is to improve the QPF products using spatial-scale decomposition method for considering the life time of storm and to assess the accuracy between traditional QPF method and proposed method in terms of urban flood management. The layout of this research is as below. First, this research applies the image filtering to separate the spatial-scale of rainfall field. Second, the separated small and large-scale rainfall fields are extrapolated by each different forecasting method. Third, forecasted rainfall fields are combined at each lead time. Finally, results of this method are evaluated and compared with the results of uniform advection model for urban flood modeling. It is expected that urban flood information using improved QPF will help to reduce casualties and property damage caused by urban flooding through this research.

  5. Potentialities of ensemble strategies for flood forecasting over the Milano urban area

    NASA Astrophysics Data System (ADS)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco

    2016-08-01

    Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational cost of running such advanced HEPSs for operational purposes.

  6. Verification of Cloud Forecasts over the Eastern Pacific Using Passive Satellite Retrievals

    DTIC Science & Technology

    2009-10-01

    with increasing sample area. Ebert (2008) reviews a number of these methods, some examples include upscaling ( Zepeda -Arce et al. 2000), wavelet...evaluation of mesoscale simula- tions of the Algiers 2001 flash flood by the model-to-satellite approach. Adv. Geosci., 7, 247–250. Zepeda -Arce, J., E

  7. Coupling high-resolution hydraulic and hydrologic models for flash flood forecasting and inundation mapping in urban areas - A case study for the City of Fort Worth

    NASA Astrophysics Data System (ADS)

    Nazari, B.; Seo, D.; Cannon, A.

    2013-12-01

    With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.

  8. Preliminary Cost Benefit Assessment of Systems for Detection of Hazardous Weather. Volume I,

    DTIC Science & Technology

    1981-07-01

    not be sufficient for adequate stream flow forecasting , it has important potential for real - time flash flood warning. This was illustrated by the 1977...provide a finer spatial resolution of the gridded data. See Table 9. 42 The results of a demonstration of the real - time capabilities of a radar-man system ...detailed real time measurement capabilities and scope for quantitative forecasting is most likely to provide the degree of lead time required if maximum

  9. Improving Radar QPE's in Complex Terrain for Improved Flash Flood Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Streubel, D. P.; Reynolds, D.

    2010-12-01

    Quantitative Precipitation Estimation (QPE) is extremely challenging in regions of complex terrain due to a combination of issues related to sampling. In particular, radar beams are often blocked or scan above the liquid precipitation zone while rain gauge density is often too low to properly characterize the spatial distribution of precipitation. Due to poor radar coverage, rain gauge networks are used by the National Weather Service (NWS) River Forecast Centers as the principal source for QPE across the western U.S. The California Nevada River Forecast Center (CNRFC) uses point rainfall measurements and historical rainfall runoff relationships to derive river stage forecasts. The point measurements are interpolated to a 4 km grid using Parameter-elevation Regressions on Independent Slopes Model (PRISM) data to develop a gridded 6-hour QPE product (hereafter referred to as RFC QPE). Local forecast offices can utilize the Multi-sensor Precipitation Estimator (MPE) software to improve local QPE’s and thus local flash flood monitoring and prediction. MPE uses radar and rain gauge data to develop a combined QPE product at 1-hour intervals. The rain gauge information is used to bias correct the radar precipitation estimates so that, in situations where the rain gauge density and radar coverage are adequate, MPE can take advantage of the spatial coverage of the radar and the “ground truth” of the rain gauges to provide an accurate QPE. The MPE 1-hour QPE analysis should provide better spatial and temporal resolution for short duration hydrologic events as compared to 6-hour analyses. These hourly QPEs are then used to correct radar derived rain rates used by the Flash Flood Monitoring and Prediction (FFMP) software in forecast offices for issuance of flash flood warnings. Although widely used by forecasters across the eastern U.S., MPE is not used extensively by the NWS in the west. Part of the reason for the lack of use of MPE across the west is that there has been little quantitative evaluation of MPE performance in this region compared to simply using a gage only analysis. In this study, an evaluation of MPE and RFC QPE is performed in a portion of the CNRFC (including the Russian and American River basins) using an independent set of rain gauge data from the Hydrometeorology Testbed (HMT). Data from a precipitation event in January 2010 are used to establish the comparison methodology and for preliminary evaluation. For this multi-day event, it is shown that the RFC QPE shows generally better agreement with the HMT gauges compared to MPE in terms of storm total precipitation. However, the bias in RFC:MPE is shown to vary as a function of terrain and time. Moreover, for a subset of the HMT gauges in Sonoma county, the 1-hour MPE precipitation totals are found to be generally well correlated to the HMT gauge totals with correlation coefficients ranging from 0.6-0.9. For the Sonoma county gauges, the MPE product generally underestimates rainfall compared to HMT, probably as a consequence of low-level, orographically forced precipitation that was not well captured by the MPE radar analysis.

  10. Hydrological disposition of flash flood and debris flows events in an Alpine watershed in Austria

    NASA Astrophysics Data System (ADS)

    Prenner, David; Kaitna, Roland; Mostbauer, Karin; Hrachowitz, Markus

    2017-04-01

    Debris flows and flash floods including intensive bedload transport represent severe hazards in the Alpine environment of Austria. For neither of these processes, explicit rainfall thresholds - even for specific regions - are available. This may be due to insufficient data on the temporal and spatial variation of precipitation, but probably also due to variations of the geomorphic and hydrological disposition of a watershed to produce such processes in the course of a rainfall event. In this contribution we investigate the importance of the hydrological system state for triggering debris flows and flash floods in the Ill/Suggadin watershed (500 km2), Austria, by analyzing the effects of dynamics in system state variables such as soil moisture, snow pack, or ground water level. The analysis is based on a semi-distributed conceptual rainfall-runoff model, spatially discretizing the watershed according to the available precipitation observations, elevation, topographic considerations and land cover. Input data are available from six weather stations on a daily basis ranging back to 1947. A Thiessen polygon decomposition results in six individual precipitation zones with a maximum area of about 130 km2. Elevation specific behavior of the quantities temperature and precipitation is covered through an elevation-resolved computation every 200 m. Spatial heterogeneity is considered by distinct hydrological response units for bare rock, forest, grassland, and riparian zone. To reduce numerical smearing on the hydrological results, the Implicit Euler scheme was used to discretize the balance equations. For model calibration we utilized runoff hydrographs, snow cover data as well as prior parameter and process constraints. The obtained hydrological output variables are linked to documented observed flash flood and debris flow events by means of a multivariate logistic regression. We present a summary about the daily hydrological disposition of experiencing a flash flood or debris flow event in each precipitation zone of the Ill/Suggadin region over almost 65 years. Furthermore, we will provide an interpretation of the occurred hydrological trigger patterns and show a frequency ranking. The outcomes of this study shall lead to an improved forecasting and differentiation of trigger conditions leading to debris flows and flash floods.

  11. Synoptic-scale atmospheric conditions associated with flash flooding in watersheds of the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Teale, N. G.; Quiring, S. M.

    2015-12-01

    Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.

  12. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data.

    PubMed

    Furquim, Gustavo; Filho, Geraldo P R; Jalali, Roozbeh; Pessin, Gustavo; Pazzi, Richard W; Ueyama, Jó

    2018-03-19

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.

  13. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data

    PubMed Central

    Furquim, Gustavo; Filho, Geraldo P. R.; Pessin, Gustavo; Pazzi, Richard W.

    2018-01-01

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN. PMID:29562657

  14. Floods - Multiple Languages

    MedlinePlus

    ... Arabic (العربية) Expand Section Floods and Flash Flooding - English PDF Floods and Flash Flooding - العربية (Arabic) PDF ... Bosnian (bosanski) Expand Section Floods and Flash Flooding - English PDF Floods and Flash Flooding - bosanski (Bosnian) PDF ...

  15. Karst flash floods: an example from the Dinaric karst (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T.

    2006-03-01

    Flash floods constitute one of the deadliest and costliest natural disasters worldwide. This paper explains the karst flash flood phenomenon, which represents a special kind of flash flood. As the majority of flash floods karst flash floods are caused by intensive short-term precipitation in an area whose surface rarely exceeds a few square kilometres. The characteristics of all flash floods are their short duration, small areal extent, high flood peaks and rapid flows, and heavy loss of life and property. Karst flash floods have specific characteristics due to special conditions for water circulation, which exist in karst terrains. During karst flash floods a sudden rise of groundwater levels occurs, which causes the appearance of numerous, unexpected, abundant and temporary karst springs. This paper presents in detail an example of a karst flash flood in the Marina bay (Dinaric karst region of Croatia), which occurred in December 2004.

  16. PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments

    NASA Astrophysics Data System (ADS)

    Schmitz, G. H.; Cullmann, J.

    2008-10-01

    SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.

  17. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  18. A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events

    NASA Astrophysics Data System (ADS)

    Pallozzi, Kyle J.

    Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi-stationary fronts/outflow boundaries, a moist troposphere and front-paralleling 850-300 hPa mean winds. In this environment, individual convective cells can be advected downstream along the initiating boundary, resulting in flood-producing training echoes. A relatively moist troposphere leads to efficient precipitation production, limits cold-pool formation/off-boundary propagation, and further increases the likelihood of flash flooding.

  19. Flood frequency approach in a Mediterranean Flash Flood basin. A case study in the Besòs catchment

    NASA Astrophysics Data System (ADS)

    Velasco, D.; Zanon, F.; Corral, C.; Sempere-Torres, D.; Borga, M.

    2009-04-01

    Flash floods are one of the most devastating natural disasters in the Mediterranean areas. In particular, the region of Catalonia (North-East Spain) is one of the most affected by flash floods in the Iberian Peninsula. The high rainfall intensities generating these events, the specific terrain characteristics giving rise to very fast hydrological responses and the high variability in space and time of both rain and land surface, are the main features of FF and also the main cause of their extreme complexity. Distributed hydrological models have been developed to increase the flow forecast resolution in order to implement effective operational warning systems. Some studies have shown how the distributed-models accuracy is highly sensitive to reduced computational grid scale, so, hydrological model uncertainties must be studied. In these conditions, an estimation of the modeling uncertainty (whatever the accuracy is) becomes highly valuable information to enhance our ability to predict the occurrence of flash flooding. The statistical-distributed modeling approach (Reed, 2004) is proposed in the present study to simulate floods on a small basin and account for hydrologic modeling uncertainty. The Besòs catchment (1020 km2), near Barcelona, has been selected in this study to apply the proposed flood frequency methodology. Hydrometeorological data is available for 11 rain-gauges and 6 streamflow gauges in the last 12 years, and a total of 9 flood events have been identified and analyzed in this study. The DiCHiTop hydrological model (Corral, 2004) was developed to fit operational requirements in the Besòs catchment: distributed, robust and easy to implement. It is a grid-based model that works at a given resolution (here at 1 × 1 km2, the hydrological cell), defining a simplified drainage system at this scale. A loss function is applied at the hydrological cell resolution, provided by a coupled storage model between the SCS model (Mockus, 1957) in urban areas and Topmodel (Beven & Kirkby, 1979) in rural and forested areas. The distributed hydrological model is calibrated using observed streamflow information from the available events. Simulated peak discharges are then compared to observed discharges in these gauged cells, so the relative forecast errors are estimated for all the events. Flood frequency is introduced in the analysis in order to derive probability functions for relative flow error. The next step consists in the extension of the flood frequency error patterns to the corresponding subbasins so it is possible to characterize the accuracy of the simulation in the uncalibrated cells (typically ungaged basins). As a result, the operational flood simulation at every cell in the Besos catchment can be checked and validated (in a first approach) in terms of occurrence. Thus, the distributed warning system can take advantage of the modeling uncertainties for operational tasks.

  20. "Know What to Do If You Encounter a Flash Flood": Mental Models Analysis for Improving Flash Flood Risk Communication and Public Decision Making.

    PubMed

    Lazrus, Heather; Morss, Rebecca E; Demuth, Julie L; Lazo, Jeffrey K; Bostrom, Ann

    2016-02-01

    Understanding how people view flash flood risks can help improve risk communication, ultimately improving outcomes. This article analyzes data from 26 mental models interviews about flash floods with members of the public in Boulder, Colorado, to understand their perspectives on flash flood risks and mitigation. The analysis includes a comparison between public and professional perspectives by referencing a companion mental models study of Boulder-area professionals. A mental models approach can help to diagnose what people already know about flash flood risks and responses, as well as any critical gaps in their knowledge that might be addressed through improved risk communication. A few public interviewees mentioned most of the key concepts discussed by professionals as important for flash flood warning decision making. However, most interviewees exhibited some incomplete understandings and misconceptions about aspects of flash flood development and exposure, effects, or mitigation that may lead to ineffective warning decisions when a flash flood threatens. These include important misunderstandings about the rapid evolution of flash floods, the speed of water in flash floods, the locations and times that pose the greatest flash flood risk in Boulder, the value of situational awareness and environmental cues, and the most appropriate responses when a flash flood threatens. The findings point to recommendations for ways to improve risk communication, over the long term and when an event threatens, to help people quickly recognize and understand threats, obtain needed information, and make informed decisions in complex, rapidly evolving extreme weather events such as flash floods. © 2015 Society for Risk Analysis.

  1. Heavy rain prediction using deterministic and probabilistic models - the flash flood cases of 11-13 October 2005 in Catalonia (NE Spain)

    NASA Astrophysics Data System (ADS)

    Barrera, A.; Altava-Ortiz, V.; Llasat, M. C.; Barnolas, M.

    2007-09-01

    Between the 11 and 13 October 2005 several flash floods were produced along the coast of Catalonia (NE Spain) due to a significant heavy rainfall event. Maximum rainfall achieved values up to 250 mm in 24 h. The total amount recorded during the event in some places was close to 350 mm. Barcelona city was also in the affected area where high rainfall intensities were registered, but just a few small floods occurred, thanks to the efficient urban drainage system of the city. Two forecasting methods have been applied in order to evaluate their capability of prediction regarding extreme events: the deterministic MM5 model and a probabilistic model based on the analogous method. The MM5 simulation allows analysing accurately the main meteorological features with a high spatial resolution (2 km), like the formation of some convergence lines over the region that partially explains the maximum precipitation location during the event. On the other hand, the analogous technique shows a good agreement among highest probability values and real affected areas, although a larger pluviometric rainfall database would be needed to improve the results. The comparison between the observed precipitation and from both QPF (quantitative precipitation forecast) methods shows that the analogous technique tends to underestimate the rainfall values and the MM5 simulation tends to overestimate them.

  2. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006

    NASA Astrophysics Data System (ADS)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.

    2006-12-01

    Thirty years ago, over 300 mm of rain fell in about 4 to 6 hours in the middle reaches of the Big Thompson River Basin during the devastating flash flood on July 31, 1976. The rainstorm produced flood discharges that exceeded 40 m3/s/km2. A peak discharge of 883 m3/s was estimated at the Big Thompson River near Drake streamflow-gaging station. The raging waters left 144 people dead, 250 injured, and over 800 people were evacuated by helicopter. Four-hundred eighteen homes and businesses were destroyed, as well as 438 automobiles, and damage to infrastructure left the canyon reachable only via helicopter. Total damage was estimated in excess of $116 million (2006 dollars). Natural hazards similar to the Big Thompson flood are rare, but the probability of a similar event hitting the Front Range, other parts of Colorado, or other parts of the Nation is real. Although much smaller in scale than the Big Thompson flood, several flash floods have happened during the monsoon in early July 2006 in the Colorado foothills that reemphasized the hazards associated with flash flooding. The U.S. Geological Survey (USGS) conducts flood research to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson flood. A summary of hydrologic conditions of the 1976 flood, what the 1976 flood can teach us about flash floods, a description of some of the advances in USGS flood science as a consequence of this disaster, and lessons that we learned to help reduce loss of life from this extraordinary flash flood are discussed. In the 30 years since the Big Thompson flood, there have been important advances in streamflow monitoring and flood warning. The National Weather Service (NWS) NEXRAD radar allows real-time monitoring of precipitation in most places in the United States. The USGS currently (2006) operates about 7,250 real-time streamflow-gaging stations in the United States that are monitored by the USGS, the NWS, and emergency managers. When substantial flooding occurs, the USGS mobilizes personnel to collect streamflow data in affected areas. Streamflow data improve flood forecasting and provide data for flood-frequency analysis for floodplain management, design of structures located in floodplains, and related water studies. An important lesson learned is that nature provides environmental signs before and during floods that can help people avoid hazard areas. Important contributions to flood science as a result of the 1976 flood include development of paleoflood methods to interpret the preserved flood-plain stratigraphy to document the number, magnitude, and age of floods that occurred prior to streamflow monitoring. These methods and data on large floods can be used in many mountain-river systems to help us better understand flood hazards and plan for the future. For example, according to conventional flood-frequency analysis, the 1976 Big Thompson flood had a flood recurrence interval of about 100 years. However, paleoflood research indicated the 1976 flood was the largest in about the last 10,000 years in the basin and had a flood recurrence interval in excess of 1,000 years.

  3. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  4. Crossing borders between social and physical sciences in post-event investigations

    NASA Astrophysics Data System (ADS)

    Ruin, I.; Gruntfest, E.; Lutoff, C.; Anquetin, S.; Scolobig, A.; Creutin, J.-D.; Borga, M.

    2009-04-01

    In natural hazard research social and physical scientists tend to approach post-event investigations within their narrow disciplinary lenses. Efforts that are called trans-disciplinary often add social science but do not integrate it effectively. For example, an economist might be brought in to address a question of "value" without any understanding or interest in the context in which the value will be applied (e.g., Merrell et al. 2002, Simmons and Sutter 2005). At the same time, social scientists would benefit from some knowledge of geology, meteorology, hydrology, forecasting operations, and hazard detection systems in order, for instance, to understand the nature and types of uncertainty in the physical systems. Proactive partnership between social and physical scientists in post-event investigations needs a background knowledge and a preparation about several issues from both sides. Moreover neither physical nor social scientists necessarily understand and appreciate the contributions that they can reciprocally bring to their works. Post-event collaborations between social and physical science are rare. The few examples of multi-disciplinary work, when examined closely, are not integrated collaborative projects but patchwork quilts of a variety of specialists taking separate aspects of an issue. There are examples where social scientists and engineers are engaged in one project, but the efforts tend to include social scientists as an "add on" to an existing physical science investigation. In this way, true integration of information, data and knowledge from different fields is lacking and the result is that neither the physical nor the social science perspectives gain a comprehensive picture of the issue under scrutiny. Looking at the flash flood problem, the atmospheric and hydrological generating mechanisms of the phenomenon are poorly understood, leading to highly uncertain forecasts of and warnings for these events. On the other hand warning and crisis response to such violent and fast events is not a straightforward process. In both the social and physical aspect of the problem, space and time scales involved either in hydro-meteorology, human behavior and social organizations sciences are of crucial importance. Interdisciplinary collaboration is particularly important here because those involved with such events, including scholars, hydrologists, meteorologists, road users, emergency managers and civil security services, all have different time and space frameworks that they use for decision-making, forecasting, warnings and research. This presentation will show examples of original findings that emerged from a successful collaboration among different scientific disciplines. Working with geophysical scientists drives us to analyze social data from a different angle, integrating time and space scales as they are used to do in hydrometeorological research. This comprehensive, coupled natural—human system approach over time and space is rarely used but it has been shown to be especially pertinent to integrate social and physical components of the flash flood risk. (Ruin et al., 2008, Ruin et al., 2009, Creutin et al., 2009). Based on these examples we propose to develop a new network, DELUGE (Disasters Evolving Lessons Using Global Experience), to address trans-disciplinary efforts and capacity building related to post-disaster field techniques to change the post-event field experience enterprise and assure that practitioners, forecasters, researchers, students, and others learn from experience to reduce losses. DELUGE is an interdisciplinary, international network aimed at developing a sustainable community of meteorologists, hydrologists, geographers, anthropologists, engineers, planners, economists, and sociologists working together to create a set of guidelines for post-disaster investigations to reduce losses from short-fuse flood events, particularly flash floods, debris flows and landslides (hereafter termed flash floods). Flash-floods, debris flows, and landslides often develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge.

  5. Assessment of Vulnerability to Extreme Flash Floods in Design Storms

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2011-01-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165

  6. Assessment of vulnerability to extreme flash floods in design storms.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  7. Evaluation of Microphysics and Cumulus Schemes of WRF for Forecasting of Heavy Monsoon Rainfall over the Southeastern Hilly Region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Hasan, Md Alfi; Islam, A. K. M. Saiful

    2018-05-01

    Accurate forecasting of heavy rainfall is crucial for the improvement of flood warning to prevent loss of life and property damage due to flash-flood-related landslides in the hilly region of Bangladesh. Forecasting heavy rainfall events is challenging where microphysics and cumulus parameterization schemes of Weather Research and Forecast (WRF) model play an important role. In this study, a comparison was made between observed and simulated rainfall using 19 different combinations of microphysics and cumulus schemes available in WRF over Bangladesh. Two severe rainfall events during 11th June 2007 and 24-27th June 2012, over the eastern hilly region of Bangladesh, were selected for performance evaluation using a number of indicators. A combination of the Stony Brook University microphysics scheme with Tiedtke cumulus scheme is found as the most suitable scheme for reproducing those events. Another combination of the single-moment 6-class microphysics scheme with New Grell 3D cumulus schemes also showed reasonable performance in forecasting heavy rainfall over this region. The sensitivity analysis confirms that cumulus schemes play a greater role than microphysics schemes for reproducing the heavy rainfall events using WRF.

  8. Inclusion of potential vorticity uncertainties into a hydrometeorological forecasting chain: application to a medium size basin of Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Amengual, A.; Romero, R.; Vich, M.; Alonso, S.

    2009-06-01

    The improvement of the short- and mid-range numerical runoff forecasts over the flood-prone Spanish Mediterranean area is a challenging issue. This work analyses four intense precipitation events which produced floods of different magnitude over the Llobregat river basin, a medium size catchment located in Catalonia, north-eastern Spain. One of them was a devasting flash flood - known as the "Montserrat" event - which produced 5 fatalities and material losses estimated at about 65 million euros. The characterization of the Llobregat basin's hydrological response to these floods is first assessed by using rain-gauge data and the Hydrologic Engineering Center's Hydrological Modeling System (HEC-HMS) runoff model. In second place, the non-hydrostatic fifth-generation Pennsylvania State University/NCAR mesoscale model (MM5) is nested within the ECMWF large-scale forecast fields in a set of 54 h period simulations to provide quantitative precipitation forecasts (QPFs) for each hydrometeorological episode. The hydrological model is forced with these QPFs to evaluate the reliability of the resulting discharge forecasts, while an ensemble prediction system (EPS) based on perturbed atmospheric initial and boundary conditions has been designed to test the value of a probabilistic strategy versus the previous deterministic approach. Specifically, a Potential Vorticity (PV) Inversion technique has been used to perturb the MM5 model initial and boundary states (i.e. ECMWF forecast fields). For that purpose, a PV error climatology has been previously derived in order to introduce realistic PV perturbations in the EPS. Results show the benefits of using a probabilistic approach in those cases where the deterministic QPF presents significant deficiencies over the Llobregat river basin in terms of the rainfall amounts, timing and localization. These deficiences in precipitation fields have a major impact on flood forecasts. Our ensemble strategy has been found useful to reduce the biases at different hydrometric sections along the watershed. Therefore, in an operational context, the devised methodology could be useful to expand the lead times associated with the prediction of similar future floods, helping to alleviate their possible hazardous consequences.

  9. Inclusion of potential vorticity uncertainties into a hydrometeorological forecasting chain: application to a medium size basin of Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Amengual, A.; Romero, R.; Vich, M.; Alonso, S.

    2009-01-01

    The improvement of the short- and mid-range numerical runoff forecasts over the flood-prone Spanish Mediterranean area is a challenging issue. This work analyses four intense precipitation events which produced floods of different magnitude over the Llobregat river basin, a medium size catchment located in Catalonia, north-eastern Spain. One of them was a devasting flash flood - known as the "Montserrat" event - which produced 5 fatalities and material losses estimated at about 65 million euros. The characterization of the Llobregat basin's hydrological response to these floods is first assessed by using rain-gauge data and the Hydrologic Engineering Center's Hydrological Modeling System (HEC-HMS) runoff model. In second place, the non-hydrostatic fifth-generation Pennsylvania State University/NCAR mesoscale model (MM5) is nested within the ECMWF large-scale forecast fields in a set of 54 h period simulations to provide quantitative precipitation forecasts (QPFs) for each hydrometeorological episode. The hydrological model is forced with these QPFs to evaluate the reliability of the resulting discharge forecasts, while an ensemble prediction system (EPS) based on perturbed atmospheric initial and boundary conditions has been designed to test the value of a probabilistic strategy versus the previous deterministic approach. Specifically, a Potential Vorticity (PV) Inversion technique has been used to perturb the MM5 model initial and boundary states (i.e. ECMWF forecast fields). For that purpose, a PV error climatology has been previously derived in order to introduce realistic PV perturbations in the EPS. Results show the benefits of using a probabilistic approach in those cases where the deterministic QPF presents significant deficiencies over the Llobregat river basin in terms of the rainfall amounts, timing and localization. These deficiences in precipitation fields have a major impact on flood forecasts. Our ensemble strategy has been found useful to reduce the biases at different hydrometric sections along the watershed. Therefore, in an operational context, the devised methodology could be useful to expand the lead times associated with the prediction of similar future floods, helping to alleviate their possible hazardous consequences.

  10. Objective definition of rainfall intensity-duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon fire, Colorado, USA

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Kean, Jason W.

    2015-01-01

    We present an objectively defined rainfall intensity-duration (I-D) threshold for the initiation of flash floods and debris flows for basins recently burned in the 2012 Waldo Canyon fire near Colorado Springs, Colorado, USA. Our results are based on 453 rainfall records which include 8 instances of hazardous flooding and debris flow from 10 July 2012 to 14 August 2013. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow or flood occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. The equation I = 11.6D−0.7 represents the I-D threshold (I, in mm/h) for durations (D, in hours) ranging from 0.083 h (5 min) to 1 h for basins burned by the 2012 Waldo Canyon fire. As periods of high-intensity rainfall over short durations (less than 1 h) produced all of the debris flow and flood events, real-time monitoring of rainfall conditions will result in very short lead times for early-warning. Our results highlight the need for improved forecasting of the rainfall rates during short-duration, high-intensity convective rainfall events.

  11. HyMeX-SOP1, the field campaign dedicated to heavy precipitation and flash-flooding in Northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ducrocq, Véronique

    2013-04-01

    The Mediterranean region is frequently affected by heavy precipitation events associated with flash-floods, landslides and mudslides each year that cost several billions of dollars in damage and causing too often casualties. Within the framework of the 10-year international HyMeX program dedicated to the hydrological cycle and related processes in the Mediterranean (http://www.hymex.org), a major field campaign has been dedicated to heavy precipitation and flash-floods from September to November 2012. The 2-month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain. The observation strategy aimed at documenting four key components leading to heavy precipitation and flash-flooding in that region: (i) the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts; (ii) the Mediterranean Sea as a moisture and energy source; (iii) the dynamics and microphysics of the convective systems; (iv) the hydrological processes during flash-floods. During the field campaign about twenty precipitation events were monitored, including mesoscale convective systems, Mediterranean cyclogenesis, shallow-convection orographic precipitation. Three aircraft performed about 250 flight hours for a survey of the upstream flow, the air-sea fluxes and the convective systems. About 700 additional radiosoundings were launched either from HyMeX sites or from operational RS sites in Europe, as well as about 20 boundary layer balloons were launched to monitor the low-level flow over the Mediterranean Sea and the ambient atmospheric conditions. Gliders, Argo floats, drifting buoys and ocean soundings from vessels monitored the Mediterranean Sea during the field campaign. Atmospheric and hydrological instruments such as radars, LIDARS, radiometers, wind profilers, lightning sensors, were deployed over 5 regions in France, Italy and Spain. The presentation will present the general observation strategy and instrumentation deployed during the campaign, as well as the weather forecast component of the field operations coordination. An overview of the Intensive Observation Periods (IOP) will be then presented, together with first highlights on some observations and events.

  12. Flash flood disasters analysis and evaluation: a case study of Yiyang County in China

    NASA Astrophysics Data System (ADS)

    Li, Haichen; Zhang, Xiaolei; Li, Qing; Qin, Tao; Lei, Xiaohui

    2018-03-01

    Global climate change leads to the more extreme precipitation and more flash flood disasters, which is a serious threat to the mountain inhabitants. To prevent flash flood disasters, China started flash flood disaster control planning and other projects from 2006. Among those measures, non-engineering measures are effective and economical. This paper introduced the framework of flash flood disaster analysis and evaluation in China, followed by a case study of Yiyang County.

  13. Toward a space-time scale framework for the study of everyday life activity's adaptation to hazardous hydro-meteorological conditions: Learning from the June 15th, 2010 flash flood event in Draguignan (France)

    NASA Astrophysics Data System (ADS)

    Ruin, Isabelle; Boudevillain, Brice; Creutin, Jean-Dominique; Lutoff, Céline

    2013-04-01

    Western Mediterranean regions are favorable locations for heavy precipitating events. In recent years, many of them resulted in destructive flash floods with extended damage and loss of life: Nîmes 1988, Vaison-la-Romaine 1992, Aude 1999 and Gard 2002 and 2005. Because of the suddenness in the rise of water levels and the limited forecasting predictability, flash floods often surprise people in the midst of their daily activity and force them to react in a very limited amount of time. In such fast evolving events impacts depend not just on such compositional variables as the magnitude of the flood event and the vulnerability of those affected, but also on such contextual factors as its location and timing (night, rush hours, working hours...). Those contextual factors can alter the scale and social distribution of impacts and vulnerability to them. In the case of flooding fatalities, for instance, the elderly are often said to be the most vulnerable, but when fatalities are mapped against basin size and response time, it has been shown that in fact it is young adults who are most likely to be killed in flash flooding of small catchments, whereas the elderly are the most frequent victim of large scale fluvial flooding. Further investigations in the Gard region have shown that such tendency could be explained by a difference of attitude across ages with respect to mobility related to daily life routine and constraints. According to a survey of intentional behavior professionals appear to be less prone to adapting their daily activities and mobility to rapidly changing environmental conditions than non-professionals. Nevertheless, even if this appears as a tendency in both the analysis of limited data on death circumstances and intended behavior surveys, behavioral verification is very much needed. Understanding how many and why people decide to travel in hazardous weather conditions and how they adapt (or not) their activities and schedule in response to environmental perturbations requires an integrated approach, sensitive to the spatial and temporal dynamics of geophysical hazards and responses to them. Such integrated approaches of the Coupled Human and Natural System have been more common in the environmental change arena than in risk studies. Nevertheless, examining interactions between routine activity-travel patterns and hydro-meteorological dynamics in the context of flash flood event resulted in developing a space-time scale approach that brought new insights to vulnerability and risk studies. This scaling approach requires suitable data sets including information about the meteorological and local flooding dynamics, the perception of environmental cues, the changes in individuals' activity-travel patterns and the social interactions at the place and time where the actions were performed. Even if these types of data are commonly collected in various disciplinary research contexts, they are seldom collected all together and in the context of post-disaster studies. This paper describes the methodological developments of our approach and applies our data collection method to the case of the June 15th, 2010 flash flood events in the Draguignan area (Var, France). This flash flood event offers a typical example to study the relation between the flood dynamics and the social response in the context of a sudden degradation of the environment.

  14. Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions

    NASA Astrophysics Data System (ADS)

    Saber, Mohamed; Kamil Yilmaz, Koray

    2016-04-01

    Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.

  15. A place-based model for assessing the coherence of the flash floods and socio-economic vulnerability across the Contiguous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Moradkhani, H.

    2017-12-01

    Understanding socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and loss of life from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. Although the biophysical characteristics (e.g. climate, vegetation, and land use) are informative and useful for predicting spatial and temporal extent of flash floods, they have minimal bearing on predicting when and where flash floods are likely to influence people or damage valuable assets and resources. The socio-economic factors determine spatial and temporal scales of the regions affected by flash floods. In this study, we quantify the socio-economic vulnerability to flash floods across the Contiguous United States (CONUS). A socio-economic vulnerability index was developed, employing Bayesian principal components for each state in the CONUS. For this purpose, extensive sets of social and economic variables from US Census and the Bureau of Economic Analysis were used. We developed maps presenting the coincidence of socio-economic vulnerability and the flash floods records. This product can help inform flash flood prevention, mitigation and recovery planning, as well as reducing the flash flood hazards affecting vulnerable places and population.

  16. Operational Hydrological Forecasting During the Iphex-iop Campaign - Meet the Challenge

    NASA Technical Reports Server (NTRS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa D.; Barros, Ana P.

    2016-01-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basins outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  17. Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge

    NASA Astrophysics Data System (ADS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa; Barros, Ana P.

    2016-10-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  18. A Comparison of Multisensor Precipitation Estimation Methods in Complex Terrain for Flash Flood Warning and Mitigation

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Chen, H.; Chandrasekar, C. V.; Willie, D.; Reynolds, D.; Campbell, C.; Zhang, Y.; Sukovich, E.

    2012-12-01

    Investigating the uncertainties and improving the accuracy of quantitative precipitation estimation (QPE) is a critical mission of the National Oceanic and Atmospheric Administration (NOAA). QPE is extremely challenging in regions of complex terrain like the western U.S. because of the sparse coverage of ground-based radar, complex orographic precipitation processes, and the effects of beam blockages (e.g., Westrick et al. 1999). In addition, the rain gauge density in complex terrain is often inadequate to capture spatial variability in the precipitation patterns. The NOAA Hydrometeorology Testbed (HMT) conducts research on precipitation and weather conditions that can lead to flooding, and fosters transition of scientific advances and new tools into forecasting operations (see hmt.noaa.gov). The HMT program consists of a series of demonstration projects in different geographical regions to enhance understanding of region specific processes related to precipitation, including QPE. There are a number of QPE systems that are widely used across NOAA for precipitation estimation (e.g., Cifelli et al. 2011; Chandrasekar et al. 2012). Two of these systems have been installed at the NOAA Earth System Research Laboratory: Multisensor Precipitation Estimator (MPE) and National Mosaic and Multi-sensor QPE (NMQ) developed by NWS and NSSL, respectively. Both provide gridded QPE products that include radar-only, gauge-only and gauge-radar-merged, etc; however, these systems often provide large differences in QPE (in terms of amounts and spatial patterns) due to differences in Z-R selection, vertical profile of reflectivity correction, and gauge interpolation procedures. Determining the appropriate QPE product and quantification of QPE uncertainty is critical for operational applications, including water management decisions and flood warnings. For example, hourly QPE is used to correct radar based rain rates used by the Flash Flood Monitoring and Prediction (FFMP) package in the NWS forecast offices for issuance of flash flood warnings. This study will evaluate the performance of MPE and NMQ QPE products using independent gauges, object identification techniques for spatial verification and impact on surface runoff using a distributed hydrologic model. The effort will consist of baseline evaluations of these QPE systems to determine which combination of algorithm features is appropriate as well as investigate new methods for combining the gage and radar data. The Russian River Basin in California is used to demonstrate the comparison methodology with data collected from several rainfall events in March 2012.

  19. Rainfall threshold definition using an entropy decision approach and radar data

    NASA Astrophysics Data System (ADS)

    Montesarchio, V.; Ridolfi, E.; Russo, F.; Napolitano, F.

    2011-07-01

    Flash flood events are floods characterised by a very rapid response of basins to storms, often resulting in loss of life and property damage. Due to the specific space-time scale of this type of flood, the lead time available for triggering civil protection measures is typically short. Rainfall threshold values specify the amount of precipitation for a given duration that generates a critical discharge in a given river cross section. If the threshold values are exceeded, it can produce a critical situation in river sites exposed to alluvial risk. It is therefore possible to directly compare the observed or forecasted precipitation with critical reference values, without running online real-time forecasting systems. The focus of this study is the Mignone River basin, located in Central Italy. The critical rainfall threshold values are evaluated by minimising a utility function based on the informative entropy concept and by using a simulation approach based on radar data. The study concludes with a system performance analysis, in terms of correctly issued warnings, false alarms and missed alarms.

  20. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan; Erlingis, Jessica; Smith, Travis; Ortega, Kiel; Hong, Yang

    2010-05-01

    Typically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe Hazards Analysis and Verification Experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This talk describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  1. Differentiation of debris-flow and flash-flood deposits: implications for paleoflood investigations

    USGS Publications Warehouse

    Waythomas, Christopher F.; Jarrett, Robert D.; ,

    1993-01-01

    Debris flows and flash floods are common geomorphic processes in the Colorado Rocky Mountain Front Range and foothills. Usually, debris flows and flash floods are associated with excess summer rainfall or snowmelt, in areas were unconsolidated surficial deposits are relatively thick and slopes are steep. In the Front Range and foothills, flash flooding is limited to areas below about 2300m whereas, debris flow activity is common throughout the foothill and alpine zones and is not necessarily elevation limited. Because flash floods and debris flows transport large quantities of bouldery sediment, the resulting deposits appear somewhat similar even though such deposits were produced by different processes. Discharge estimates based on debris-flow deposits interpreted as flash-flood deposits have large errors because techniques for discharge retrodiction were developed for water floods with negligible sediment concentrations. Criteria for differentiating between debris-flow and flash-flood deposits are most useful for deposits that are fresh and well-exposed. However, with the passage of time, both debris-flow and flash-flood deposits become modified by the combined effects of weathering, colluviation, changes in surface morphology, and in some instances removal of interstitial sediment. As a result, some of the physical characteristics of the deposits become more alike. Criteria especially applicable to older deposits are needed. We differentiate flash-flood from debris-flow and other deposits using clast fabric measurements and other morphologic and sedimentologic techniques (e.g., deposit morphology, clast lithology, particle size and shape, geomorphic setting).

  2. Lessons learnt from past Flash Floods and Debris Flow events to propose future strategies on risk management

    NASA Astrophysics Data System (ADS)

    Cabello, Angels; Velasco, Marc; Escaler, Isabel

    2010-05-01

    Floods, including flash floods and debris flow events, are one of the most important hazards in Europe regarding both economic and life loss. Moreover, changes in precipitation patterns and intensity are very likely to increase due to the observed and predicted global warming, rising the risk in areas that are already vulnerable to floods. Therefore, it is very important to carry out new strategies to improve flood protection, but it is also crucial to take into account historical data to identify high risk areas. The main objective of this paper is to show a comparative analysis of the flood risk management information compiled in four test-bed basins (Llobregat, Guadalhorce, Gardon d'Anduze and Linth basins) from three different European countries (Spain, France and Switzerland) and to identify which are the lessons learnt from their past experiences in order to propose future strategies on risk management. This work is part of the EU 7th FP project IMPRINTS which aims at reducing loss of life and economic damage through the improvement of the preparedness and the operational risk management of flash flood and debris flow (FF & DF) events. The methodology followed includes the following steps: o Specific survey on the effectivity of the implemented emergency plans and risk management procedures sent to the test-bed basin authorities that participate in the project o Analysis of the answers from the questionnaire and further research on their methodologies for risk evaluation o Compilation of available follow-up studies carried out after major flood events in the four test-bed basins analyzed o Collection of the lessons learnt through a comparative analysis of the previous information o Recommendations for future strategies on risk management based on lessons learnt and management gaps detected through the process As the Floods Directive (FD) already states, the flood risks associated to FF & DF events should be assessed through the elaboration of Flood Risk Management Plans (FRMP) with tailored solutions for each basin, evaluating their flood mitigation potential, promoting environmental objectives and increasing the efficiency of the already adopted measures. The FRMP should focus on prevention (and protection), preparedness and response, and these have been the three main risk management phases of a flood crisis that have been assessed when extracting the lessons learnt from past events. Lessons learnt concerning dissemination through the three previously mentioned phases and also related to education initiatives have also been included. A common response to most of the events described in this paper was to upgrade the meteorological and hydrological forecasting systems, making the forecasting lead-time as large as possible. Another common recommendation from the test-beds was the need to implement and accomplish the land use regulations. All the basins also detected that structural measures are necessary to increase the population's protection level, but replacing the traditional safety mentality by a risk culture based on a comprehensive analysis of the flood risk. The four basins studied have also highlighted the importance of collecting information when FF & DF events occur and creating historic databases that will provide extremely useful information in the future.

  3. Sub-seasonal Predictability of Heavy Precipitation Events: Implication for Real-time Flood Management in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, H.; Shahbazi, A.; Zohrabi, N.; Robertson, A. W.; Mofidi, A.; Massah Bavani, A. R.

    2016-12-01

    Each year, a number of high impact weather events occur worldwide. Since any level of predictability at sub-seasonal to seasonal timescale is highly beneficial to society, international efforts is now on progress to promote reliable Ensemble Prediction Systems for monthly forecasts within the WWRP/WCRP initiative (S2S) project and North American Multi Model Ensemble (NMME). For water resources managers in the face of extreme events, not only can reliable forecasts of high impact weather events prevent catastrophic losses caused by floods but also contribute to benefits gained from hydropower generation and water markets. The aim of this paper is to analyze the predictability of recent severe weather events over Iran. Two recent heavy precipitations are considered as an illustration to examine whether S2S forecasts can be used for developing flood alert systems especially where large cascade of dams are in operation. Both events have caused major damages to cities and infrastructures. The first severe precipitation was is in the early November 2015 when heavy precipitation (more than 50 mm) occurred in 2 days. More recently, up to 300 mm of precipitation is observed within less than a week in April 2016 causing a consequent flash flood. Over some stations, the observed precipitation was even more than the total annual mean precipitation. To analyze the predictive capability, ensemble forecasts from several operational centers including (European Centre for Medium-Range Weather Forecasts (ECMWF) system, Climate Forecast System Version 2 (CFSv2) and Chinese Meteorological Center (CMA) are evaluated. It has been observed that significant changes in precipitation anomalies were likely to be predicted days in advance. The next step will be to conduct thorough analysis based on comparing multi-model outputs over the full hindcast dataset developing real-time high impact weather prediction systems.

  4. Somerset County Flood Information System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in the planning and execution of flood-preparation and emergency-evacuation procedures in the county. This fact sheet describes the SCFIS and identifies its benefits.

  5. Development of a national Flash flood warning system in France using the AIGA method: first results and main issues

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Organde, Didier; Demargne, Julie; de Saint-Aubin, Céline; Garandeau, Léa; Janet, Bruno; Saint-Martin, Clotilde; Fouchier, Catherine

    2016-04-01

    Developing a national flash flood (FF) warning system is an ambitious and difficult task. On one hand it rises huge expectations from exposed populations and authorities since induced damages are considerable (ie 20 casualties in the recent October 2015 flood at the French Riviera). But on the other hand, many practical and scientific issues have to be addressed and limitations should be clearly stated. The FF warning system to be implemented by 2016 in France by the SCHAPI (French national service in charge of flood forecasting) will be based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The AIGA method has been experimented in real time in the south of France in the RHYTMME project (http://rhytmme.irstea.fr). It consists in comparing discharges generated by a simple conceptual hourly hydrologic model run at a 1-km² resolution to reference flood quantiles of different return periods, at any point along the river network. The hydrologic model ingests operational rainfall radar-gauge products from Météo-France. Model calibration was based on ~700 hydrometric stations over the 2002-2015 period and then hourly discharges were computed at ~76 000 catchment outlets, with areas ranging from 10 to 3 500 km², over the last 19 years. This product makes it possible to calculate reference flood quantiles at each outlet. The on-going evaluation of the FF warnings is currently made at two levels: in a 'classical' way, using discharges available at the hydrometric stations, but also in a more 'exploratory' way, by comparing past flood reports and warnings issued by the system over the 76 000 catchment outlets. The interest of the last method is that it better fit the system objectives since it is designed to monitor small ungauged catchments. Javelle, P., Demargne, J., Defrance, D, .Pansu, J, .Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 59(7), 1390-1402. doi: 10.1080/02626667.2014.923970

  6. Improving Flash Flood Prediction in Multiple Environments

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Troch, P. A.; Schaffner, M.; Unkrich, C.; Goodrich, D.; Wagener, T.; Yatheendradas, S.

    2009-12-01

    Flash flooding is a major concern in many fast responding headwater catchments . There are many efforts to model and to predict these flood events, though it is not currently possible to adequately predict the nature of flash flood events with a single model, and furthermore, many of these efforts do not even consider snow, which can, by itself, or in combination with rainfall events, cause destructive floods. The current research is aimed at broadening the applicability of flash flood modeling. Specifically, we will take a state of the art flash flood model that is designed to work with warm season precipitation in arid environments, the KINematic runoff and EROSion model (KINEROS2), and combine it with a continuous subsurface flow model and an energy balance snow model. This should improve its predictive capacity in humid environments where lateral subsurface flow significantly contributes to streamflow, and it will make possible the prediction of flooding events that involve rain-on-snow or rapid snowmelt. By modeling changes in the hydrologic state of a catchment before a flood begins, we can also better understand the factors or combination of factors that are necessary to produce large floods. Broadening the applicability of an already state of the art flash flood model, such as KINEROS2, is logical because flash floods can occur in all types of environments, and it may lead to better predictions, which are necessary to preserve life and property.

  7. Extreme precipitation forecasting in the Chilean Andean region with complex topography using the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Gironás, J.; Yáñez Morroni, G.; Caneo, M.; Delgado, R.

    2017-12-01

    The Weather Research and Forecasting (WRF) model is broadly used for weather forecasting, hindcasting and researching due to its good performance. However, the atmospheric conditions for simulating are not always optimal when it includes complex topographies: affecting WRF mathematical stability and convergence, therefore, its performance. As Chile is a country strongly characterized by a complex topography and high gradients of elevation, WRF is ineffective resolving Chilean mountainous terrain and foothills. The need to own an effective weather forecasting tool relies on that Chile's main cities are located in these regions. Furthermore, the most intense rainfall events take place here, commonly caused by the presence of cutoff lows. This work analyzes a microphysics scheme ensemble to enhance initial forecasts made by the Chilean Weather Agency (DMC). These forecasts were made over the Santiago piedmont, in Quebrada de Ramón watershed, located upstream an urban area highly populated. In this region a non-existing planning increases the potential damage of a flash flood. An initial testing was made over different vertical levels resolution (39 and 50 levels), and subsequently testing with land use and surface models, and finally with the initial and boundary condition data (GFS/FNL). Our task made emphasis in analyzing microphysics and lead time (3 to 5 days before the storm peak) in the computational simulations over three extreme rainfall events between 2015 and 2017. WRF shortcoming are also related to the complex configuration of the synoptic events, even when the steep topography difficult the rainfall event peak amount, and to a lesser degree, the exact rainfall event beginning prediction. No evident trend was found in the lead time, but as expected, better results in rainfall and zero isotherm height are obtained with smaller anticipation. We found that WRF do predict properly the N-hours with the biggest amount of rainfall (5 hours corresponding to Quebrada de Ramón's time of concentration) and the temperatures during the event. This is a fundamental input to a hydrological model that could forecast flash floods. Finally, WSM-6Class microphysics was chosen as the one with best performance, but a geostatistical approach to countervail WRF forecasts' shortcomings over Andean piedmont is required.

  8. Mortality from flash floods: a review of national weather service reports, 1969-81.

    PubMed Central

    French, J; Ing, R; Von Allmen, S; Wood, R

    1983-01-01

    Of all weather-related disasters that occur in the United States, floods are the main cause of death, and most flood-related deaths are attributed to flash floods. Whenever a weather-related disaster involves 30 or more deaths or more than $100 million in property damage, the National Weather Service (NWS) forms a survey team to investigate the disaster and write a report of findings. All NWS survey reports on flash floods issued during 1969-81 were reviewed to determine the mortality resulting from such floods, the effect of warnings on mortality, and the circumstances contributing to death. A total of 1,185 deaths were associated with 32 flash floods, an average of 37 deaths per flash flood. The highest average number of deaths per event was associated with the four flash floods in which dams broke after heavy rains. Although there were 18 flash floods in 1977-81 and only 14 in 1969-76, the number of deaths was 2 1/2 times greater during the earlier period. More than twice as many deaths were associated with flash floods for which the survey team considered the warnings inadequate than with those with warnings considered adequate. Ninety-three percent of the deaths were due to drowning and 42 percent of these drownings were car related. The other drownings occurred in homes, at campsites, or when persons were crossing bridges and streams. The need for monitoring dams during periods of heavy rainfall is highlighted. PMID:6419273

  9. Integrated modeling of storm drain and natural channel networks for real-time flash flood forecasting in large urban areas

    NASA Astrophysics Data System (ADS)

    Habibi, H.; Norouzi, A.; Habib, A.; Seo, D. J.

    2016-12-01

    To produce accurate predictions of flooding in urban areas, it is necessary to model both natural channel and storm drain networks. While there exist many urban hydraulic models of varying sophistication, most of them are not practical for real-time application for large urban areas. On the other hand, most distributed hydrologic models developed for real-time applications lack the ability to explicitly simulate storm drains. In this work, we develop a storm drain model that can be coupled with distributed hydrologic models such as the National Weather Service Hydrology Laboratory's Distributed Hydrologic Model, for real-time flash flood prediction in large urban areas to improve prediction and to advance the understanding of integrated response of natural channels and storm drains to rainfall events of varying magnitude and spatiotemporal extent in urban catchments of varying sizes. The initial study area is the Johnson Creek Catchment (40.1 km2) in the City of Arlington, TX. For observed rainfall, the high-resolution (500 m, 1 min) precipitation data from the Dallas-Fort Worth Demonstration Network of the Collaborative Adaptive Sensing of the Atmosphere radars is used.

  10. Decision support system for road closures in flash flood emergencies.

    DOT National Transportation Integrated Search

    2013-06-01

    Among all the natural hazards, flash flood ranks as the No. 1 weather-related killer in U.S. More : than half of the deaths in flash flood are due to drowning victims in a traffic environment. So road : closure is critical to save lives from flash fl...

  11. Calibration of a rainfall-runoff hydrological model and flood simulation using data assimilation

    NASA Astrophysics Data System (ADS)

    Piacentini, A.; Ricci, S. M.; Thual, O.; Coustau, M.; Marchandise, A.

    2010-12-01

    Rainfall-runoff models are crucial tools for long-term assessment of flash floods or real-time forecasting. This work focuses on the calibration of a distributed parsimonious event-based rainfall-runoff model using data assimilation. The model combines a SCS-derived runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The SCS-derived runoff model is parametrized by the initial water deficit, the discharge coefficient for the soil reservoir and a lagged discharge coefficient. The Lag and Route routing model is parametrized by the velocity of travel and the lag parameter. These parameters are assumed to be constant for a given catchment except for the initial water deficit and the velocity travel that are event-dependent (landuse, soil type and moisture initial conditions). In the present work, a BLUE filtering technique was used to calibrate the initial water deficit and the velocity travel for each flood event assimilating the first available discharge measurements at the catchment outlet. The advantages of the BLUE algorithm are its low computational cost and its convenient implementation, especially in the context of the calibration of a reduced number of parameters. The assimilation algorithm was applied on two Mediterranean catchment areas of different size and dynamics: Gardon d'Anduze and Lez. The Lez catchment, of 114 km2 drainage area, is located upstream Montpellier. It is a karstic catchment mainly affected by floods in autumn during intense rainstorms with short Lag-times and high discharge peaks (up to 480 m3.s-1 in September 2005). The Gardon d'Anduze catchment, mostly granite and schistose, of 545 km2 drainage area, lies over the departements of Lozère and Gard. It is often affected by flash and devasting floods (up to 3000 m3.s-1 in September 2002). The discharge observations at the beginning of the flood event are assimilated so that the BLUE algorithm provides optimal values for the initial water deficit and the velocity travel before the flood peak. These optimal values are used for a new simulation of the event in forecast mode (under the assumption of perfect rain-fall). On both catchments, it was shown over a significant number of flood events, that the data assimilation procedure improves the flood peak forecast. The improvement is globally more important for the Gardon d'Anduze catchment where the flood events are stronger. The peak can be forecasted up to 36 hours head of time assimilating very few observations (up to 4) during the rise of the water level. For multiple peaks events, the assimilation of the observations from the first peak leads to a significant improvement of the second peak simulation. It was also shown that the flood rise is often faster in reality than it is represented by the model. In this case and when the flood peak is under estimated in the simulation, the use of the first observations can be misleading for the data assimilation algorithm. The careful estimation of the observation and background error variances enabled the satisfying use of the data assimilation in these complex cases even though it does not allow the model error correction.

  12. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Erlingis, J. M.; Smith, T. M.; Ortega, K. L.; Hong, Y.

    2010-11-01

    SummaryTypically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe hazards analysis and verification experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has also been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This paper describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies (i.e., US National Weather Service Storm Data reports) and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  13. Development of a precipitation-area curve for warning criteria of short-duration flash flood

    NASA Astrophysics Data System (ADS)

    Bae, Deg-Hyo; Lee, Moon-Hwan; Moon, Sung-Keun

    2018-01-01

    This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events. The quantitative criteria are calculated based on flash flood guidance (FFG), which is defined as the depth of rainfall of a given duration required to cause frequent flooding (1-2-year return period) at the outlet of a small stream basin and is estimated using threshold runoff (TR) and antecedent soil moisture conditions in all sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002-2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC (receiver operating characteristic) analysis was used to obtain optimum rainfall values and a generalized precipitation-area (P-A) curve was developed for flash flood warning thresholds. The threshold function was derived as a P-A curve because the precipitation threshold with a short duration is more closely related to basin area than any other variables. For a brief description of the P-A curve, generalized thresholds for flash flood warnings can be suggested for rainfall rates of 42, 32 and 20 mm h-1 in sub-basins with areas of 22-40, 40-100 and > 100 km2, respectively. The proposed P-A curve was validated based on observed flash flood events in different sub-basins. Flash flood occurrences were captured for 9 out of 12 events. This result can be used instead of FFG to identify brief flash flood (less than 1 h), and it can provide warning information to decision-makers or citizens that is relatively simple, clear and immediate.

  14. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties

    NASA Astrophysics Data System (ADS)

    Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique

    2018-05-01

    Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.

  15. Use of «MLCM3» software for flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Sokolova, Daria; Kuzmin, Vadim

    2017-04-01

    Accurate and timely flash floods forecasting, especially, in ungauged and poorly gauged basins, is one of the most important and challenging problems to be solved by the international hydrological community.In changing climate and variable anthropogenic impact on river basins, as well as due to low density of surface hydrometeorological network, flash flood forecasting based on "traditional" physically based, or conceptual, or statistical hydrological models often becomes inefficient. Unfortunately, most of river basins in Russia are poorly gauged or ungauged; besides, lack of hydrogeological data is quite typical, especially, in remote regions of Siberia. However, the developing economy and population safety make us to issue warnings based on reliable forecasts. For this purpose, a new hydrological model, MLCM3 (Multi-Layer Conceptual Model, 3rd generation) has been developed in the Russian State Hydrometeorological University. MLCM3 is a "rainfall-runoff"model with flexible structure and high level of"conceptualization".Model forcing includes precipitation and evaporation data basically coming from NWP model output. Water comes to the outlet through several layers; their number as well as two parameters (thickness and infiltration rate) for each of them, surface flow velocity (when the top layer is full of water) are optimized. The main advantage of the MLCM3, in comparison to the Sacramento Soil Moisture Accounting Model (SAC-SMA), Australian Water Balance Model (AWBM), Soil Moisture Accounting and Routing (SMAR) model and similar models, is that its automatic calibration is very fast and efficient with less volume of information. For instance, in comparison to SAC-SMA, which is calibrated using either Shuffled Complex Evolution algorithm (SCE-UA), or Stepwise Line Search (SLS), automatically calibrated MLCM3 gives better or comparable results without using any "a priori" data or essential processor resources. This advantage allows using the MLCM3 for very fast streamflow prediction in many basins. When assimilated NWP model output data used to force the model, the forecasts accuracy is quite acceptable and enough for automatic warning. Also please note that, in comparison to the 2nd generation of the model, a very useful new option has been added. Now it is possible to set upvariable infiltration rate of the top layer; this option is quite promising in terms of spring floods modeling. (At the moment it is necessary to perform more numerical experiments with snow melting; obtained results will be reported later). Recently new software for MLCM3 was developed. It contains quite usual and understandable options. Formation of the model "input" can be done in manual and automatic mode. Manual or automatic calibration of the model can be performed using either purposely developed for this model optimization algorithm, or Nelder-Mead's one, or SLS. For the model calibration, the multi-scale objective function (MSOF) proposed by Koren is used. It has shown its very high efficiency when model forcing data have high level of uncertainty. Other types of objective functions also can be used, such as mean square error and Nash-Sutcliff criterion. The model showed good results in more than 50 tested basins.

  16. Tangible Results and Progress in Flood Risks Management with the PACTES Initiative

    NASA Astrophysics Data System (ADS)

    Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane

    The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view are given. Costs of what an operational PACTES demonstrator could be, are discussed.

  17. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you live in ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  18. Towards a detailed knowledge about Mediterranean flash floods and extreme floods in the catchments of Spain, France and Italy

    NASA Astrophysics Data System (ADS)

    Duband, D.

    2009-09-01

    It is important to remember that scientific research programs of the European Commission and contributors had implemented a multidisciplinary (geography, history, meteorology, climatology, hydrology, geomorphology, geology, paleohydrology, sociology, economy......) better knowledge and more understanding of the physical risk assessment of disastrous floods (particularly flash floods) with rising factors of vulnerability and perhaps climate change at the end of the XX1 century, in the triangular geographical area Zaragosa (Spain)-Orléans (France)-Firenze (Italy). With reference to historical floods events observed from last two centuries in Spain (Catalonia), France (Languedoc Roussillon - Provence Alpes Cote d’Azur-Corse-Rhone Alpes -Auvergne- Bourgogne) and in Italy (Ligurie - Piemont - Lombardie) we lay particular stress on a detailed understanding of the spatial and temporal scales of the physical dynamic process being at the origin of locals or extensive flash floods. This study requires to be based on the meteorology (atmospheric circulation patterns ,on west Europe- Atlantic and Mediterranean sea) responsible, with relief and sea surface temperature, of high precipitations (amounts, intensities), air temperature, discharges of high floods, observed in the past ,on large and coastal rivers. We will take example of the Rhone river catchments, in connexion with Po-Ebre-Loire-Seine rivers, based on the studies of thirty high historical floods occurred from 1840 to 2005, and characteristics of Oceanic and Mediterranean weather situations, sometime alternated. Since recent years we have the daily mean sea level pressure dataset (EMSLP) reconstructions for European-North Atlantic Region for the period 1850-2006. So it is now possible to allow us the selection in the complete meteorological dataset during 1950- 2009 period by an analog method (like operational daily applications from 1969, at Electricity of France) to select weather situations similar to historical daily situations responsible of extreme floods with larges discharges, with the conditional precipitations associated on catchments with god and up to date observations of precipitations (daily, hourly). This kind of complete studies would be very useful for: -Statistical-physical studies of extreme rainfall-flood events (peak discharge, volume), frequency-probability-uncertainty (GRADEX and SHADEX methodology), -Better forecasting of meteorological (precipitations) and hydrological (floods) events, during crisis situations, -better understanding of the historical variability in the past 2 centuries (atmospheric features, precipitations, discharges high/low), -Better adjustment of modelling simulation, -Better identification and probabilistic approach of uncertainties.

  19. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  20. Flash floods in the Tatra Mountain streams: frequency and triggers.

    PubMed

    Ballesteros-Cánovas, J A; Czajka, B; Janecka, K; Lempa, M; Kaczka, R J; Stoffel, M

    2015-04-01

    Flash floods represent a frequently recurring natural phenomenon in the Tatra Mountains. On the northern slopes of the mountain chain, located in Poland, ongoing and expected future changes in climate are thought to further increase the adverse impacts of flash floods. Despite the repeat occurrence of major floods in the densely populated foothills of the Polish Tatras, the headwaters have been characterized by a surprising lack of data, such that any analysis of process variability or hydrometeorological triggers has been largely hampered so far. In this study, dendrogeomorphic techniques have been employed in four poorly-gauged torrential streams of the northern slope of the Tatra Mountains to reconstruct temporal and spatial patterns of past events. Using more than 1100 increment cores of trees injured by past flash floods, we reconstruct 47 events covering the last 148 years and discuss synoptic situations leading to the triggering of flash floods with the existing meteorological and flow gauge data. Tree-ring analyses have allowed highlighting the seasonality of events, providing new insights about potential hydrometeorological triggers as well as a differentiating flash flood activity between catchments. Results of this study could be useful to design future strategies to deal with flash flood risks at the foothills of the Polish Tatras and in the Vistula River catchment. Copyright © 2014. Published by Elsevier B.V.

  1. Enhancements to the WRF-Hydro Hydrologic Model Structure for Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Lahmers, T. M.; Gupta, H.; Hazenberg, P.; Castro, C. L.; Gochis, D.; Yates, D. N.; Dugger, A. L.; Goodrich, D. C.

    2017-12-01

    The NOAA National Water Center (NWC) implemented an operational National Water Model (NWM) in August 2016 to simulate and forecast streamflow and soil moisture throughout the Contiguous US (CONUS). The NWM is based on the WRF-Hydro hydrologic model architecture, with a 1-km resolution Noah-MP LSM grid and a 250m routing grid. The operational NWM does not currently resolve infiltration of water from the beds of ephemeral channels, which is an important component of the water balance in semi-arid environments common in many portions of the western US. This work demonstrates the benefit of a conceptual channel infiltration function in the WRF-Hydro model architecture following calibration. The updated model structure and parameters for the NWM architecture, when implemented operationally, will permit its use in flow simulation and forecasting in the southwest US, particularly for flash floods in basins with smaller drainage areas. Our channel infiltration function is based on that of the KINEROS2 semi-distributed hydrologic model, which has been tested throughout the southwest CONUS for flash flood forecasts. Model calibration utilizes the Dynamically Dimensioned Search (DDS) algorithm, and the model is calibrated using NLDAS-2 atmospheric forcing and NCEP Stage-IV precipitation. Our results show that adding channel infiltration to WRF-Hydro can produce a physically consistent hydrologic response with a high-resolution gauge based precipitation forcing dataset in the USDA-ARS Walnut Gulch Experimental Watershed. NWM WRF-Hydro is also tested for the Babocomari River, Beaver Creek, and Sycamore Creek catchments in southern and central Arizona. In these basins, model skill is degraded due to uncertainties in the NCEP Stage-IV precipitation forcing dataset.

  2. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  3. Nested hyper-resolution modeling of urban areas for the National Water Model - The Dallas-Fort Worth Testbed

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Kim, S.; Habibi, H.; Seo, D. J.; Welles, E.; Philips, B.; Adams, E.; Smith, M. B.; Wells, E.

    2017-12-01

    With the development of the National Water Model (NWM), the NWS has made a step-change advance in operational water forecasting by enabling high-resolution hydrologic modeling across the US. As a part of a separate initiative to enhance flash flood forecasting and inundation mapping capacity, the NWS has been mandated to provide forecasts at even finer spatiotemporal resolutions when and where such information is demanded. In this presentation, we describe implementation of the NWM at a hyper resolution over a nested domain. We use WRF-Hydro as the core model but at significantly higher resolutions with scale-commensurate model parameters. The demonstration domain is multiple urban catchments within the Cities of Arlington and Grand Prairie in the Dallas-Fort Worth Metroplex. This area is susceptible to urban flooding due to the hydroclimatology coupled with large impervious cover. The nested model is based on hyper-resolution terrain data to resolve significant land surface features such as streets and large man-made structures, and forced by the high-resolution radar-based quantitative precipitation information. In this presentation, we summarize progress and preliminary results and share issues and challenges.

  4. A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes

    NASA Astrophysics Data System (ADS)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe

    2015-04-01

    Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.

  5. Characterization of flash floods induced by tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.

    2015-12-01

    This study investigates the role of tropical cyclones (hurricanes, tropical storms and depressions) in the generation of flash floods in Mexico. For this, a severity assessment during several cyclonic events for selected catchments was estimated through the evaluation of a flash flood index recently proposed by Kim and Kim (2014). This classification is revised, considering the forcing and areal extent of torrential rainfall generated by the incidence of tropical cyclones on the studied catchments, enabling the further study of the flood regime in catchments located in tropical regions. The analysis incorporates characteristics of the flood hydrographs such as the hydrograph shape (rising curve gradient, magnitude of the peak discharge and flood response time) in order to identify flash-flood prone areas. Results show the Qp-A scaling relationship in catchments that were impacted by tropical cyclones, enabling their comparison against floods generated by other meteorological events (e.g. convective and orographic storms). Results will inform on how peak flows relationships are modified by cyclonic events and highlighting the contribution of cyclonic precipitation to flash-flooding susceptibility.

  6. Contribution of an exposure indicator to better anticipate damages with the AIGA flood warning method: a case study in the South of France

    NASA Astrophysics Data System (ADS)

    Saint-Martin, Clotilde; Fouchier, Catherine; Douvinet, Johnny; Javelle, Pierre; Vinet, Freddy

    2016-04-01

    On the 3rd October 2015, heavy localized precipitations have occurred in South Eastern France leading to major flash floods on the Mediterranean coast. The severity of those floods has caused 20 fatalities and important damage in almost 50 municipalities in the French administrative area of Alpes-Maritimes. The local recording rain gauges have shown how fast the event has happened: 156 mm of rain were recorded in Mandelieu-la-Napoule and 145 mm in Cannes within 2 hours. As the affected rivers are not monitored, no anticipation was possible from the authorities in charge of risk management. In this case, forecasting floods is indeed complex because of the small size of the watersheds which implies a reduced catchment response time. In order to cope with the need of issuing flood warnings on un-monitored small catchments, Irstea and Météo-France have developed an alternative warning system for ungauged basins called the AIGA method. AIGA is a flood warning system based on a simple distributed hydrological model run at a 1 km² resolution using real time radar rainfall information (Javelle, Demargne, Defrance, Pansu, & Arnaud, 2014). The flood warnings, produced every 15 minutes, result of the comparison of the real time runoff data produced by the model with statistical runoff values. AIGA is running in real time in the South of France, within the RHYTMME project (https://rhytmme.irstea.fr/). Work is on-going in order to offer a similar service for the whole French territory. More than 200 impacts of the 3rd October floods have been located using media, social networks and fieldwork. The first comparisons between these impacts and the AIGA warning levels computed for this event show several discrepancies. However, these latter discrepancies appear to be explained by the land-use. An indicator of the exposure of territories to flooding has thus been created to weight the levels of the AIGA hydrological warnings with the land-use of the area surrounding the streams for which the warnings are issued. This paper aims to explain how this indicator has been created and to assess its relevance with the example of the 3rd October 2015 flood. By completing this approach, the AIGA warnings may characterize not only the flood hazard but more inclusively the risk of flooding, allowing to forecast this type of event. Javelle, P., Demargne, J., Defrance, D., Pansu, J., & Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 59(7), 1390-1402. doi: 10.1080/02626667.2014.923970

  7. Studying the hydro-meteorological extremes. The benefits from the European Flash Flood research oriented HYDRATE project.

    NASA Astrophysics Data System (ADS)

    Tsanis, Ioannis K.; Koutroulis, Aristeidis G.; Daliakopoulos, Ioannis N.; Grillakis, Emmanouil G.

    2010-05-01

    The present paper summarizes the advances of flash flood research for the Greek case study, within the frame of HYDRATE EC funded project. As a first step, a collation of homogenous primary data on flash floods occurred in Greece based on various data sources resulted in 21 documented events, enriching the HYDRATE database. Specific major events were selected for further detailed data collation and analysis. A common intensive post event field survey was conducted by various researchers with different skills and experience, in order to document the 18th of September 2007, Western Slovenia flash flood event. The observation strategy and the lessons learned during this campaign were applied successfully for surveying an event in Crete. Two flash flood events occurred in Crete were selected for detailed analysis, the 13th of January 1994 event occurred in Giofiros basin and the 17th of October 2006 event occurred in Almirida basin. Several techniques, like distributed rainfall-runoff modelling, hydraulic modelling, indirect and empirical peak discharge estimation, were applied for the understanding of the dominant flash flood processes and the effect of initial conditions on peak discharge. In a more general framework, the seasonality of the hydrometeorologic characteristics of floods that occurred in Crete during the period 1990-2007 and the atmospheric circulation conditions during the flood events were examined. During the three and a half years research period, many lessons have learnt from a fruitful collaboration among the project partners. HYDRATE project improved the scientific basis of flash flood research and provided research knowledge on flood risk management.

  8. National Weather Service Warning Performance Based on the WSR-88D.

    NASA Astrophysics Data System (ADS)

    Polger, Paul D.; Goldsmith, Barry S.; Przywarty, Richard C.; Bocchieri, Joseph R.

    1994-02-01

    The National Weather Service (NWS) began operational use of the Weather Surveillance Radar-1988 Doppler (WSR-88D) system in March 1991 at Norman, Oklahoma. WSR-88D data have been available to forecasters at five additional offices: Melbourne, Florida, and sterling, Virginia (since January 1992); St. Louis, Missouri, and Dodge City, Kansas (since March 1992); and Houston, Texas (since April 1992). The performance of the severe local storm and flash flood warning programs at the six offices before and after the availability of the WSR-88D was measured quantitatively. The verification procedures and statistical measures used in the quantitative evaluation were those used operationally by the NWS.The statistics show that the warnings improved dramatically when the WSR-88D was in operation. Specifically, the probability of detection of severe weather events increased and the number of false alarms decreased. There was also a marked improvement in the lead time for all severe local storm and flash flood events. These improvements were evident throughout the effective range of the radar. Stratification of severe local storm data by severe thunderstorms versus tornadoes revealed an improvement in the NWS's ability to differentiate between tornadic and nontornadic storms when the WSR-88D was in operation. Four individual cases are examined to illustrate how forecasters used the WSR-88D to achieve the improved results. These cases focus on the unique features of the WSR-88D that provide an advantage over conventional NWS radars.

  9. Operational applications of a process-based runoff generation module on the Swiss Plateau and Prealps

    NASA Astrophysics Data System (ADS)

    Horat, Christoph; Antonetti, Manuel; Wernli, Heini; Zappa, Massimiliano

    2017-04-01

    Flash floods evolve rapidly during and after heavy precipitation events and represent a risk for society, especially in mountainous areas. Knowledge on meteorological variables and their temporal development is often not sufficient to predict their occurrence. Therefore, information about the state of the hydrological system derived from hydrological models is used. These models rely however on strong simplifying assumptions and need therefore to be calibrated. This prevents their application on catchments, where no runoff data is available. Here we present a flash-flood forecasting chain including: (i) a nowcasting product which combines radar and rain gauge rainfall data (CombiPrecip), (ii) meteorological data from numerical weather prediction models at currently finest available resolution (COSMO-1, COSMO-E), (iii) operationally available soil moisture estimations from the PREVAH hydrological model, and (iv) a process-based runoff generation module with no need for calibration (RGM-PRO). This last component uses information on the spatial distribution of dominant runoff processes (DRPs) which can be derived with different mapping approaches, and is parameterised a priori based on expert knowledge. First, we compared the performance of RGM-PRO with the one of a traditional conceptual runoff generation module for several events on Swiss Emme catchment, as well as on their nested catchments. Different DRP-maps are furthermore tested to evaluate the sensitivity of the forecasting chain to the mapping approaches. Then, we benchmarked the new forecasting chain with the traditional chain used on the Swiss Verzasca catchment. The results show that RGM-PRO performs similarly or even better than the traditional calibrated conceptual module on the investigated catchments. The use of strongly simplified DRP mapping approaches still leads to satisfying results, due mainly to the fact that the largest uncertainty source is represented by the meteorological input data. On the Verzasca catchment, RGM-PRO outperformed the traditional forecast chain in terms of mean absolute error, independently from the lead time and threshold quantile, whereas the Brier Skill Score did not show any clear preference. Probabilistic input data led generally to better results compared with those obtained with deterministic forecasts.

  10. Regional reconstruction of flash flood history in the Guadarrama range (Central System, Spain).

    PubMed

    Rodriguez-Morata, C; Ballesteros-Cánovas, J A; Trappmann, D; Beniston, M; Stoffel, M

    2016-04-15

    Flash floods are a common natural hazard in Mediterranean mountain environments and responsible for serious economic and human disasters. The study of flash flood dynamics and their triggers is a key issue; however, the retrieval of historical data is often limited in mountain regions as a result of short time series and the systematic lack of historical data. In this study, we attempt to overcome data deficiency by supplementing existing records with dendrogeomorphic techniques which were employed in seven mountain streams along the northern slopes of the Guadarrama Mountain range. Here we present results derived from the tree-ring analysis of 117 samples from 63 Pinus sylvestris L. trees injured by flash floods, to complement existing flash flood records covering the last ~200years and comment on their hydro-meteorological triggers. To understand the varying number of reconstructed flash flood events in each of the catchments, we also performed a comparative analysis of geomorphic catchment characteristics, land use evolution and forest management. Furthermore, we discuss the limitations of dendrogeomorphic techniques applied in managed forests. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Accounting for rainfall spatial variability in the prediction of flash floods

    NASA Astrophysics Data System (ADS)

    Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.

    2017-04-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  12. Looking for the best flash floods indicators in Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Llasat, Maria-Carmen; Llasat-Botija, Montserrat; Turco, Marco

    2010-05-01

    Flash floods are a recurrent hazard in Mediterranean Region. From a global point of view, a distinction between two kinds of floods can be made (Llasat, 2009): a) Short-lived and strongly convective events (<3 h) of very intense precipitation (peaks above 3 mm/min) and total rainfall <100 mm, that usually appear during summer and early autumn and produce local flash-floods in small catchments; b) Moderate convective events that last less than 24 hours and the maximum precipitation is usually recorded in less than 6 hours, with accumulated rainfall above 200 mm, although in some occasions they can be produced in the context of a longest event; they can produce catastrophic flash floods, and are usually recorded in autumn and end of summer. First ones are more frequent and have an important social impact, due to the great urbanization of some areas in which ephemeral channels are present; they can bring road traffic to a standstill, give rise to power cuts, and sweep away cars parked in the littoral water courses or in adjoining streets, but lose of lives are usually the result of the imprudent behaviour of people. The second type of flash-flood has produced the highest number of casualties when they have affected flood-prone areas with high concentrations of people, and catastrophic damages. However, there is not an agreement about the criteria of damages evaluation, in the same sense that there are notable discrepancies between authors in the criteria used to estimate the vulnerability. A number above 185 flood events have been recorded between 1990 and 2006 in Mediterranean region (Llasat et al, in press). A great part of them have been flash-floods, but, in order to make a good characterization of them, it is needed to recur to the most suitable indicators (Gruntfest, 1997, Messner and Meyer, 2006). The presentation is based on the research developed in the framework of the European Project FLASH (http://flash-eu.tau.ac.il/index.php), and particularly in the analysis in deep of 20 flash-flood cases recorded between 2005 and 2006. This sample has been increased with some selected cases of the European project HYDRATE. Information from all the flash-floods recorded in Catalonia (Spain) since 1982, completed with data about population density and so on, has also been considered.

  13. Study of the adaptive refinement on an open source 2D shallow-water flow solver using quadtree grid for flash flood simulations.

    NASA Astrophysics Data System (ADS)

    Kirstetter, G.; Popinet, S.; Fullana, J. M.; Lagrée, P. Y.; Josserand, C.

    2015-12-01

    The full resolution of shallow-water equations for modeling flash floods may have a high computational cost, so that majority of flood simulation softwares used for flood forecasting uses a simplification of this model : 1D approximations, diffusive or kinematic wave approximations or exotic models using non-physical free parameters. These kind of approximations permit to save a lot of computational time by sacrificing in an unquantified way the precision of simulations. To reduce drastically the cost of such 2D simulations by quantifying the lost of precision, we propose a 2D shallow-water flow solver built with the open source code Basilisk1, which is using adaptive refinement on a quadtree grid. This solver uses a well-balanced central-upwind scheme, which is at second order in time and space, and treats the friction and rain terms implicitly in finite volume approach. We demonstrate the validity of our simulation on the case of the flood of Tewkesbury (UK) occurred in July 2007, as shown on Fig. 1. On this case, a systematic study of the impact of the chosen criterium for adaptive refinement is performed. The criterium which has the best computational time / precision ratio is proposed. Finally, we present the power law giving the computational time in respect to the maximum resolution and we show that this law for our 2D simulation is close to the one of 1D simulation, thanks to the fractal dimension of the topography. [1] http://basilisk.fr/

  14. Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.

    2017-12-01

    Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.

  15. Flash floods warning technique based on wireless communication networks data

    NASA Astrophysics Data System (ADS)

    David, Noam; Alpert, Pinhas; Messer, Hagit

    2010-05-01

    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  16. A Unified Flash Flood Database across the United States

    USGS Publications Warehouse

    Gourley, Jonathan J.; Hong, Yang; Flamig, Zachary L.; Arthur, Ami; Clark, Robert; Calianno, Martin; Ruin, Isabelle; Ortel, Terry W.; Wieczorek, Michael; Kirstetter, Pierre-Emmanuel; Clark, Edward; Krajewski, Witold F.

    2013-01-01

    Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.

  17. Soil-water relations of shallow forested soils during flash floods in West Virginia

    Treesearch

    James H. Patric

    1981-01-01

    On May 24, 1978, heavy rain caused flash flooding on densely forested land near Parsons, in Tucker County, West Virginia. Poststorm evidences of soil and water behavior were examined in detail on soils related to the Dekalb and Leetonia series. Other flash floods struck seven forested sections of the state in August. Less detailed observation after these storms...

  18. floodX: urban flash flood experiments monitored with conventional and alternative sensors

    NASA Astrophysics Data System (ADS)

    Moy de Vitry, Matthew; Dicht, Simon; Leitão, João P.

    2017-09-01

    The data sets described in this paper provide a basis for developing and testing new methods for monitoring and modelling urban pluvial flash floods. Pluvial flash floods are a growing hazard to property and inhabitants' well-being in urban areas. However, the lack of appropriate data collection methods is often cited as an impediment for reliable flood modelling, thereby hindering the improvement of flood risk mapping and early warning systems. The potential of surveillance infrastructure and social media is starting to draw attention for this purpose. In the floodX project, 22 controlled urban flash floods were generated in a flood response training facility and monitored with state-of-the-art sensors as well as standard surveillance cameras. With these data, it is possible to explore the use of video data and computer vision for urban flood monitoring and modelling. The floodX project stands out as the largest documented flood experiment of its kind, providing both conventional measurements and video data in parallel and at high temporal resolution. The data set used in this paper is available at https://doi.org/10.5281/zenodo.830513.

  19. Probabilistic calibration of the distributed hydrological model RIBS applied to real-time flood forecasting: the Harod river basin case study (Israel)

    NASA Astrophysics Data System (ADS)

    Nesti, Alice; Mediero, Luis; Garrote, Luis; Caporali, Enrica

    2010-05-01

    An automatic probabilistic calibration method for distributed rainfall-runoff models is presented. The high number of parameters in hydrologic distributed models makes special demands on the optimization procedure to estimate model parameters. With the proposed technique it is possible to reduce the complexity of calibration while maintaining adequate model predictions. The first step of the calibration procedure of the main model parameters is done manually with the aim to identify their variation range. Afterwards a Monte-Carlo technique is applied, which consists on repetitive model simulations with randomly generated parameters. The Monte Carlo Analysis Toolbox (MCAT) includes a number of analysis methods to evaluate the results of these Monte Carlo parameter sampling experiments. The study investigates the use of a global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems, while maximizing the information extracted from hydrological response data. The method is applied to the calibration of the RIBS flood forecasting model in the Harod river basin, placed on Israel. The Harod basin has an extension of 180 km2. The catchment has a Mediterranean climate and it is mainly characterized by a desert landscape, with a soil that is able to absorb large quantities of rainfall and at the same time is capable to generate high peaks of discharge. Radar rainfall data with 6 minute temporal resolution are available as input to the model. The aim of the study is the validation of the model for real-time flood forecasting, in order to evaluate the benefits of improved precipitation forecasting within the FLASH European project.

  20. What can we learn from the deadly flash floods? Post Event Review Capability (PERC) analysis of the Bavaria and Baden-Wurttemberg flood events in Summer 2016

    NASA Astrophysics Data System (ADS)

    Szoenyi, Michael

    2017-04-01

    In May/June 2016, stationary low pressure systems brought intense rainfall with record-braking intensities of well above 100 mm rain in few hours locally in the southern states of Baden-Wurttemberg and Bavaria, Germany. In steep terrains, small channels and creeks became devastating torrents impacting, among others, the villages of Simbach/Inn, Schwäbisch-Gmünd and Braunsbach. Just few days prior, France had also seen devastating rainfall and flooding. Damage in Germany alone is estimated at 2.8 M USD, of which less than 50% are insured. The loss of life was significant, with 18 fatalities reported across the events. This new forensic event analysis as part of Zurich's Post Event Review Capability (PERC) investigates the flash flood events following these record rainfalls in Southern Germany and tries to answer the following questions holistically, across the five capitals (5C) and the full disaster risk management (DRM) cycle, which are key to understanding how to become more resilient to such flood events: - Why have these intense rainfall events led to such devastating consequences? The EU Floods directive and its implementation in the various member states, as well as the 2002 and 2013 Germany floods, have focused on larger rivers and the main asset concentration. The pathway and mechanism of the 2016 floods are very different and need to be better understood. Flash floods and surface flooding may need to become the new focus and be much better communicated to people at risk, as the awareness for such perils has been identified as low. - How can the prevalence for such flash floods be better identified and mapped? Research indicated that affected people and decision makers alike attribute the occurrence of such flash floods as arbitrary, but we argue that hotspots can and must be identified based on an overlay of rainfall intensity maps, topography leading to flash flood processes, and vulnerable assets. In Germany, there are currently no comprehensive hazard maps for flash and/or surface flooding. - What recommendations can be made from the investigation of the consequences? We highlight how additional processes that cause significant damage, such as log jams, backwater increase, temporary dam formation, etc., are currently insufficiently understood and incorporated into decision-making. - What are the social and human long-term effects of such flash flood events, and how can the insights from this review be incorporated into future decision-making to better protect people and assets as part of integrated flood risk management?

  1. Impact of Landslides Induced by Earthquake on Hydrologic Response in a Mountainous Catchment

    NASA Astrophysics Data System (ADS)

    Qian, Q.; Su, D.; Ran, Q.

    2013-12-01

    The changes of the underlying surface conditions (topography, vegetation cover rate, etc.), which were caused by the numerous landslides in the Wenchuan earthquake, may influence the hydrologic response and then change the flash flood or other kinds of the disaster risk in the affected areas. The Jianpinggou catchment, located in Sichuan China, is selected as the study area for this paper. It is a steep-slope mountainous catchment, flash flood is the main disaster, and sometimes causes the debris flow. The distribution of the landslides in this catchment is obtained from the remote sensing image data. The changes of topography are obtained from the comparisons among the different periods of digital elevation models (DEMs). A physical-based model, the Integrated Hydrology Model (InHM), is used to simulate the hydrologic response before and after the landslide, respectively. The influence of the underlying surface conditions is then discussed based on the output data, such as the hydrograph, distributed water depth and local runoff. The study leads to the following generalized conclusions: 1) the impact of the landslides on hydrologic response does exist, and the greater the proportion of surface flow in the total runoff is, the greater the impact will be; 2) the peak flow from the outlet increased after the landslide, but the shape of the hydrograph has little change; 3) the effect of the landslides on the local runoff is relatively obvious, and this elevates the local flash floods risk; 4) the difference of hydrologic responses between the two periods (before and after the landslide occurring) becomes larger with the increasing rainfall, with a threshold of rapid growth at the rainfall frequencies of once in every 50 years, but there is a limit. The improved understanding of the impact of landslides on the hydrologic response in Jianpinggou catchment provides valuable theoretical support for the storm flood forecast.

  2. Development of a flash flood warning system based on real-time radar data and process-based erosion modelling

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen

    2017-04-01

    Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.

  3. Operational Precipitation prediction in Support of Real-Time Flash Flood Prediction and Reservoir Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, K. P.

    2006-05-01

    The presentation will outline the implementation and performance evaluation of a number of national and international projects pertaining to operational precipitation estimation and prediction in the context of hydrologic warning systems and reservoir management support. In all cases, uncertainty measures of the estimates and predictions are an integral part of the precipitation models. Outstanding research issues whose resolution is likely to lead to improvements in the operational environment are presented. The presentation draws from the experience of the Hydrologic Research Center (http://www.hrc-lab.org) prototype implementation projects at the Panama Canal, Central America, Northern California, and South-Central US. References: Carpenter, T.M, and K.P. Georgakakos, "Discretization Scale Dependencies of the Ensemble Flow Range versus Catchment Area Relationship in Distributed Hydrologic Modeling," Journal of Hydrology, 2006, in press. Carpenter, T.M., and K.P. Georgakakos, "Impacts of Parametric and Radar Rainfall Uncertainty on the Ensemble Streamflow Simulations of a Distributed Hydrologic Model," Journal of Hydrology, 298, 202-221, 2004. Georgakakos, K.P., Graham, N.E., Carpenter, T.M., Georgakakos, A.P., and H. Yao, "Integrating Climate- Hydrology Forecasts and Multi-Objective Reservoir Management in Northern California," EOS, 86(12), 122,127, 2005. Georgakakos, K.P., and J.A. Sperfslage, "Operational Rainfall and Flow Forecasting for the Panama Canal Watershed," in The Rio Chagres: A Multidisciplinary Profile of a Tropical Watershed, R.S. Harmon, ed., Kluwer Academic Publishers, The Netherlands, Chapter 16, 323-334, 2005. Georgakakos, K. P., "Analytical results for operational flash flood guidance," Journal of Hydrology, doi:10.1016/j.jhydrol.2005.05.009, 2005.

  4. MobRISK: a model for assessing the exposure of road users to flash flood events

    NASA Astrophysics Data System (ADS)

    Shabou, Saif; Ruin, Isabelle; Lutoff, Céline; Debionne, Samuel; Anquetin, Sandrine; Creutin, Jean-Dominique; Beaufils, Xavier

    2017-09-01

    Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial-temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.

  5. Flash Flood Type Identification within Catchments in Beijing Mountainous Area

    NASA Astrophysics Data System (ADS)

    Nan, W.

    2017-12-01

    Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant coal gangues. The pure water flood process catchments were mainly distributed in the transitional mountain front.

  6. Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Bao, Hongjun; Zhao, Linna

    2012-02-01

    A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.

  7. Anatomy of a Flash Flood in the Amargosa Desert, U.S.A.

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Prudic, D. E.; Glancy, P. A.; Beck, D. A.

    2004-12-01

    In August 2004, intense convective rainstorms caused flash flooding throughout the Amargosa River drainage network, temporarily closing Death Valley National Park and causing two fatalities when runoff from Furnace Creek and other channels overtopped roadways in the Park. In 1998, we began installing streambed temperature loggers, pressure transducers, and scour chains in the normally dry channel and selected tributaries of the river in the Amargosa Desert and Oasis Valley. The primary objective of this work is to improve understanding of ground-water recharge from ephemeral streamflows under current climatic conditions. Two weeks after the flash flooding, we visited instrumented sites and estimated peak flows by surveying high-water marks and corresponding channel geometries. Time series of temperatures and stages, together with peak-flow estimates, reveal the routing and evolution of distinct flood pulses in the upper Amargosa River basin. The data also reveal previously undocumented details of individual flash-flood hydrographs, including initial and subsequent flood pulses at two sites. Arid environments are prone to flash flooding not only because vegetation is sparse, but also because the surface-water network is decoupled from underlying ground water by a thick unsaturated zone. Nonlinear interactions between runoff (with energy potentials on the order of a meter of head) and the unsaturated zone (with energy potentials on the order of negative hundreds of meters of head) keep advancing fronts of flood pulses sharp. Profiles of water content beneath the main channel before and after the passage of a flood pulse, together with down-channel attenuation of flow volume within individual pulses, show the leaky nature of dry alluvial channels and the efficiency at which flash floods become potential recharge.

  8. Emergency assessment of post-fire debris-flow hazards for the 2013 Powerhouse fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.

  9. Emergency assessment of post-fire debris-flow hazards for the 2013 Mountain fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  10. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés; Stoffel, Markus; Bollschweiler, Michelle; Bodoque, José M.; Ballesteros, Juan A.

    2010-06-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees ( Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash flood events was based on the number and intensity of GD observed in the tree-ring series and on the spatial distribution of affected trees along the torrent, thus allowing seven flash flood events during the last 50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  11. Dendrogeomorphic analysis of Flash Floods in a small ungauged mountain catchment (Central Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés.; Stoffel, Markus; Bollschweiler, Michelle; María Bodoque, José; Ballesteros, Juan Antonio

    2010-05-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees (Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash-flood events was based on the number and intensity of GD observed in the tree-ring series, and on the spatial distribution of affected trees along the torrent, thus allowing seven flash-flood events during the last ~50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  12. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Bouvier, Christophe; Martin, Claude; Didon-Lescot, Jean-François; Todorovik, Dragana; Domergue, Jean-Marc

    2010-06-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture, modelled soil moisture through the Interaction-Sol-Biosphère-Atmosphère (ISBA) component of the SIM model (Météo-France), antecedent precipitation and base flow. A modelling approach based on the Soil Conservation Service-Curve Number method (SCS-CN) is used to simulate the flood events in a small headwater catchment in the Cevennes region (France). The model involves two parameters: one for the runoff production, S, and one for the routing component, K. The S parameter can be interpreted as the maximal water retention capacity, and acts as the initial condition of the model, depending on the antecedent moisture conditions. The model was calibrated from a 20-flood sample, and led to a median Nash value of 0.9. The local TDR measurements in the deepest layers of soil (80-140 cm) were found to be the best predictors for the S parameter. TDR measurements averaged over the whole soil profile, outputs of the SIM model, and the logarithm of base flow also proved to be good predictors, whereas antecedent precipitations were found to be less efficient. The good correlations observed between the TDR predictors and the S calibrated values indicate that monitoring soil moisture could help setting the initial conditions for simplified event-based models in small basins.

  13. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  14. WRF model performance under flash-flood associated rainfall

    NASA Astrophysics Data System (ADS)

    Mejia-Estrada, Iskra; Bates, Paul; Ángel Rico-Ramírez, Miguel

    2017-04-01

    Understanding the natural processes that precede the occurrence of flash floods is crucial to improve the future flood projections in a changing climate. Using numerical weather prediction tools allows to determine one of the triggering conditions for these particularly dangerous events, difficult to forecast due to their short lead-time. However, simulating the spatial and temporal evolution of the rainfall that leads to a rapid rise in river levels requires determining the best model configuration without compromising the computational efficiency. The current research involves the results of the first part of a cascade modeling approach, where the Weather Research and Forecasting (WRF) model is used to simulate the heavy rainfall in the east of the UK in June 2012 when stationary thunderstorms caused 2-hour accumulated values to match those expected in the whole month of June over the city of Newcastle. The optimum model set-up was obtained after extensive testing regarding physics parameterizations, spin-up times, datasets used as initial conditions and model resolution and nesting, hence determining its sensitivity to reproduce localised events of short duration. The outputs were qualitatively and quantitatively assessed using information from the national weather radar network as well as interpolated rainfall values from gauges, respectively. Statistical and skill score values show that the model is able to produce reliable accumulated precipitation values while explicitly solving the atmospheric equations in high resolution domains as long as several hydrometeors are considered with a spin-up time that allows the model to assimilate the initial conditions without going too far back in time from the event of interest. The results from the WRF model will serve as input to run a semi-distributed hydrological model to determine the rainfall-runoff relationship within an uncertainty assessment framework that will allow evaluating the implications of assumptions at the top of the modeling process in the final outputs of the cascade.

  15. On the Solar Stimuli That Initiate Makkah Al Mukaramah, Al-Madinah Al-Munawarah And Jeddah Flash Floods

    NASA Astrophysics Data System (ADS)

    Elfaki, H.; Yousef, S.; Mawad, Ramy; Algafari, Y. H. O.; Amer, M.; Abdel-Sattar, W.

    2017-12-01

    Severe solar events manifested as highly energetic X-Ray events accompanied by coronal mass ejections ( CMEs) and proton flares caused flash floods in Makkah Al-Mukaramah, Al-Madinah Al-Munawarah and Jeddah. In the case of the 20 January 2005 CME that initiated severe flash on the 22 of January. it is shown that the CME lowered the pressure in the polar region and extended the low pressure regime to Saudi Arabia passing by the Mediterranean. Such passage accelerated evaporation and caused Cumulonimbus clouds to form and discharge flash floods over Makkah Al-Mukaramah. On the other hand, solar forcing due coronal holes have a different technique in initiating flash floods. The November 25 2009 and the 13-15 January 2011 Jeddah flash floods are attributed to prompt events due to fast solar streams emanated from two coronal holes that arrived the Earth on 24 November 2009 and 13 January 2011. We present evidences that those streams penetrated the Earth's magnetosphere and hit the troposphere at the western part of the Red Sea, dissipated their energy at 925mb geopotential height and left two hot spots. It follows that the air in the hot spots expanded and developed spots of low pressure air that spread over the Red Sea to its eastern coast. Accelerated evaporation due to reduced pressure caused quick formation of Cumulonimbus clouds that caused flash floods over Makkah Al-Mukaramah and Jeddah.

  16. Reconstruction of sa Cabana's creek flash flood(Manacor, Mallorca) from documentary sources, oral and graphic. Episodes from 1850, 1932 and 1961

    NASA Astrophysics Data System (ADS)

    Caldentey Brunet, J.; Grimalt Gelabert, M.; Sansó Vanrell, S.

    2009-09-01

    We have studied the different episodes of the flash floods on their way to Manacor, the second largest town in Mallorca. Floods are caused by the passing of an occasional short course in the middle of the city center. The town has been affected by three episodes of flooding during the nineteenth and twentieth centuries. The first one was in 1850, the second in 1932 and the third in the early 60s. The main sources used were different but emphasizing the oral ones, the newspaper and the documentary. Some detailed maps have been made reconstructing the flooded area in each episode, the level of water and several notes about the suffered destructions Keywords Flash flood, flooded city, Manacor

  17. The ARPAL operational high resolution Poor Man's Ensemble, description and validation

    NASA Astrophysics Data System (ADS)

    Corazza, Matteo; Sacchetti, Davide; Antonelli, Marta; Drofa, Oxana

    2018-05-01

    The Meteo Hydrological Functional Center for Civil Protection of the Environmental Protection Agency of the Liguria Region is responsible for issuing forecasts primarily aimed at the Civil Protection needs. Several deterministic high resolution models, run every 6 or 12 h, are regularly used in the Center to elaborate weather forecasts at short to medium range. The Region is frequently affected by severe flash floods over its very small basins, characterized by a steep orography close to the sea. These conditions led the Center in the past years to pay particular attention to the use and development of high resolution model chains for explicit simulation of convective phenomena. For years, the availability of several models has been used by the forecasters for subjective analyses of the potential evolution of the atmosphere and of its uncertainty. More recently, an Interactive Poor Man's Ensemble has been developed, aimed at providing statistical ensemble variables to help forecaster's evaluations. In this paper the structure of this system is described and results are validated using the regional dense ground observational network.

  18. Analysis of flash flood parameters and human impacts in the US from 2006 to 2012

    NASA Astrophysics Data System (ADS)

    Špitalar, Maruša; Gourley, Jonathan J.; Lutoff, Celine; Kirstetter, Pierre-Emmanuel; Brilly, Mitja; Carr, Nicholas

    2014-11-01

    Several different factors external to the natural hazard of flash flooding can contribute to the type and magnitude of their resulting damages. Human exposure, vulnerability, fatality and injury rates can be minimized by identifying and then mitigating the causative factors for human impacts. A database of flash flooding was used for statistical analysis of human impacts across the U.S. 21,549 flash flood events were analyzed during a 6-year period from October 2006 to 2012. Based on the information available in the database, physical parameters were introduced and then correlated to the reported human impacts. Probability density functions of the frequency of flash flood events and the PDF of occurrences weighted by the number of injuries and fatalities were used to describe the influence of each parameter. The factors that emerged as the most influential on human impacts are short flood durations, small catchment sizes in rural areas, vehicles, and nocturnal events with low visibility. Analyzing and correlating a diverse range of parameters to human impacts give us important insights into what contributes to fatalities and injuries and further raises questions on how to manage them.

  19. iSPUW: integrated sensing and prediction of urban water for sustainable cities

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Nazari, B.; Habibi, H.; Norouzi, A.; Nabatian, M.; Seo, D. J.; Bartos, M. D.; Kerkez, B.; Lakshman, L.; Zink, M.; Lee, J.

    2016-12-01

    Many cities face tremendous water-related challenges in this Century of the City. Urban areas are particularly susceptible not only to excesses and shortages of water but also to impaired water quality. To addresses these challenges, we synergistically integrate advances in computing and cyber-infrastructure, environmental modeling, geoscience, and information science to develop integrative solutions for urban water challenges. In this presentation, we describe the various efforts that are currently ongoing in the Dallas-Fort Worth Metroplex (DFW) area for iSPUW: real-time high-resolution flash flood forecasting, inundation mapping for large urban areas, crowdsourcing of water observations in urban areas, real-time assimilation of crowdsourced observations for street and river flooding, integrated control of lawn irrigation and rainwater harvesting for water conservation and stormwater management, feature mining with causal discovery for flood prediction, and development of the Arlington Urban Hydroinformatics Testbed. Analyzed is the initial data of sensor network for water level and lawn monitoring, and cellphone applications for crowdsourcing flood reports. New data assimilation approaches to deal with categorical and continuous observations are also evaluated via synthetic experiments.

  20. Understanding processes that generate flash floods in the arid Judean Desert to the Dead Sea - a measurement network

    NASA Astrophysics Data System (ADS)

    Hennig, Hanna; Rödiger, Tino; Laronne, Jonathan B.; Geyer, Stefan; Merz, Ralf

    2016-04-01

    Flash floods in (semi-) arid regions are fascinating in their suddenness and can be harmful for humans, infrastructure, industry and tourism. Generated within minutes, an early warning system is essential. A hydrological model is required to quantify flash floods. Current models to predict flash floods are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where flash floods occur require consideration. In this study we present a monitoring approach to decipher different flash flood generating processes in the ephemeral Wadi Arugot on the western side of the Dead Sea. To understand rainfall input a dense rain gauge network was installed. Locations of rain gauges were chosen based on land use, slope and soil cover. The spatiotemporal variation of rain intensity will also be available from radar backscatter. Level pressure sensors located at the outlet of major tributaries have been deployed to analyze in which part of the catchment water is generated. To identify the importance of soil moisture preconditions, two cosmic ray sensors have been deployed. At the outlet of the Arugot water is sampled and level is monitored. To more accurately determine water discharge, water velocity is measured using portable radar velocimetry. A first analysis of flash flood processes will be presented following the FLEX-Topo concept .(Savenije, 2010), where each landscape type is represented using an individual hydrological model according to the processes within the three hydrological response units: plateau, desert and outlet. References: Savenije, H. H. G.: HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)", Hydrol. Earth Syst. Sci., 14, 2681-2692, doi:10.5194/hess-14-2681-2010, 2010.

  1. Software Tools for Stochastic Simulations of Turbulence

    DTIC Science & Technology

    2015-08-28

    client interface to FTI. Specefic client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH...client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH; and two locally constructed fluid...45 4.4.2.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.2.3 WRF

  2. Flash Flood Trail near Parras, Coahuila, Mexico

    NASA Image and Video Library

    1991-12-01

    Evidence of a recent flash flood can be seen in the form of light brown sediment that flowed down gullies and mountain sides forming ponds of debris over agricultural areas in the broad valley near the town of Parras (26.5N, 102.5W). This part of Mexico has extensive vineyards, orchards and both dry land and irrigated agriculture. Based on the photo, it appears that flash flood waters damaged some 300 square miles of property in this area alone.

  3. Flash Flood Trail near Parras, Coahuila, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Evidence of a recent flash flood can be seen in the form of light brown sediment that flowed down gullies and mountain sides forming ponds of debris over agricultural areas in the broad valley near the town of Parras (26.5N, 102.5W). This part of Mexico has extensive vineyards, orchards and both dry land and irrigated agriculture. Based on the photo, it appears that flash flood waters damaged some 300 square miles of property in this area alone.

  4. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.

  5. Study of flash floods over some parts of Brazil using precipitation index

    NASA Astrophysics Data System (ADS)

    Souza, D.; de Souza, R. L. M.; Araujo, R.

    2016-12-01

    In Brazil, the main phenomena related to natural disasters are derived from the Earth's external dynamics such as floods and flash floods, landslides and storms, where the flash flood phenomenon causes the second highest number of victims, totaling more than 32% of deaths. Floods and flash floods are natural events often triggered by storms or long period of rains, usually associated with rising volume of rainfall on the watershed, leading the river to exceed its maximum. Whereas the occurrence of natural disasters in Brazil is increasing in recent years, the use of more accurate tools to aid in the monitoring of extreme hydrological events it becomes necessary, aiming to decrease the number of human and material losses. In this context, this paper aims to implement an early warning and monitoring system related to extreme precipitation values and hydrological processes. So, initially was studied flood events in the states of São Paulo and Paraná, aimed de determination of the characteristics of rainfall and atmosphere. Later it was used an indicator of precipitation based on the climatology, which indicates warning points on the drainage network related to extreme precipitation, which are obtained by remote sensing sources, for example, radar and satellite, and numerical weather prediction data of short and very short term. The results indicated that most of the flood events over the study area was related to rainfall of deep convection. The use of precipitation indicators also helped the monitoring and the early warning, showing this to be an excellent tool for applications related to flash floods.

  6. Analyzing Flash Flood Data in an Ultra-Urban Region

    NASA Astrophysics Data System (ADS)

    Smith, B. K.; Rodriguez, S.

    2016-12-01

    New York City is an ultra-urban region, with combined sewers and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but ultra-urban regions frequently lack the surface stream channels and gages necessary for this approach. In this study we aggregate multiple non-traditional data for detecting flash flood events. These data including phone call reports, city records, and, for one particular flood event, news reports and social media reports. These data are compared with high-resolution bias-corrected radar rainfall fields to study flash flood events in New York City. We seek to determine if these non-traditional data will allow for a comprehensive study of rainfall-runoff relationships in New York City. We also seek to map warm season rainfall heterogeneities in the city and to compare them to spatial distribution of reported flood occurrence.

  7. Range Atmospheric and Oceanic Environmental Support Capabilities

    DTIC Science & Technology

    2011-12-01

    Precipitation location/intensity, thunderstorm location/intensity, rainfall/flash flood warning, hydrometer characterization, wind warnings, and...intensity, lightning monitoring, rainfall and flash flood warning, hydrometer characterization, and wind warnings. b. Satellite: MTSAT, GOES-10

  8. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    PubMed

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-06-15

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    NASA Technical Reports Server (NTRS)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted rainfall amounts than when PW plumes occurred by themselves (i.e.. without the presence of 6.7 micron water vapor plumes). Satellite Analysis Branch (SAB) meteorologists use the 6.7 micron water and P\\V products for their QPE's (interactive Flash Flood Analyzer (IFFA) and Auto-Estimator precipitation estimates), Outlooks, and heavy precipitation briefings with the Hydrometeorological Prediction Center/National Center for Environmental Prediction.

  10. Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.

    2017-12-01

    Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar vulnerability and with the same gauging conditions, the use of low-cost modelling strategy could represent a good risk management tool in these regions with low planning capabilities.

  11. Urban flood early warning systems: approaches to hydrometeorological forecasting and communicating risk

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter

    2015-04-01

    One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B., Cranston, M., Tavendale, A., Ghimire, S., and Dhondia, J. (2015) Developing surface water flood forecasting capabilities in Scotland: an operational pilot for the 2014 Commonwealth Games in Glasgow. Journal of Flood Risk Management, In Press.

  12. Flash floods and debris flow in the city area of Messina, North-East part of Sicily, Italy in October 2009: the case of the Giampilieri catchment

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Brigandi, G.; Morey, N.

    2010-09-01

    Flash floods are phenomena in which the important hydrologic processes are occurring on the same spatial and temporal scales as the intense precipitation. Most of the catchment in the North-East part of Sicily (Italy) are small, with a steep slope, and characterized by short concentration times. These characteristics make those catchment prone to flash flood formation, as demonstrated by events that occurred in the area around Messina in the North-East part of Sicily, Italy in the last recent years. The events occurred on 25th October 2007 in the Mastroguglielmo torrent on the ionic sea coast, on 11th December 2008 in the Elicona catchment on the Tyrrhenian sea coast and on 1st October 2009 in Racinazzi and Giampilieri torrents on the ionic sea coast are an example of flash floods and debris flow events that caused not only significant economic damages to property, buildings, roads and bridges but also, for this that concern the 1st October 2009 flash flood event, loss of human life. This work is aimed by the 1st October 2009 flash flood and debris flow event where a devastating flooding was caused by a very intense rainfall concentrated over the Messina area. The storm caused severe flash floods in many villages around the city of Messina, such as Giampilieri, Scaletta Zanclea, Altolia Superiore and Molino with forty casualties and significant damage to property, buildings, roads and bridges estimated close to 200 million Euro. Main focus of this work is to perform a post event analysis of the 2009 flash flood event, putting together available meteorological and hydrological data in order to get better insight into temporal and spatial variability of the rain storm, the soil moisture condition and the consequent flash floods in the catchment of the Giampilieri catchment. Starting from these information another objective has been, then, to document the post-failure stage of event concerning slid materials. With the help of GIS technology and particularly spatial analysis, volume of debris gone down for the Giampilieri catchment has been calculated. The event was investigated using observed data from a raingauge network and hydraulic evidences. Statistical analysis using GEV distribution was performed and rainfall return period (storm severity) was estimated. Further, measured rainfall data and rainfall-runoff modeling were used to analyze the hydrological behaviour and to reconstruct flood and debris hydrographs. The study confirmed that post-flood investigation should focus on discharges and hydrological response of the catchment rather than simply analyzing statistical characteristics of rainfall. Thanks to LIDAR data produced immediately after the event, issued one meter precision DEM has been compared with a two meter precision one provided two years before. GIS maps with landslide and material deposit areas have been produced and analyzed.

  13. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia

    NASA Astrophysics Data System (ADS)

    White, C. J.; Franks, S. W.; McEvoy, D.

    2015-06-01

    Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  14. Meteorological contribution to the mitigation and adaptation of the 'extreme water events' of Hungarian Great Plain

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Vincze, E.; Moring, A.

    2012-04-01

    The lack of water is a traditional problem of Hungarian agriculture. Two big rivers cross the territory of Hungary and times to times they produce huge floods. In the Carpathian basin a flood and a drought can occur in the same year. The general problem of Hungarian agriculture is the 'water' in two contexts, in lack of water and in surplus. Not only of the next year but of the next decades the basic question of the Hungarian planning is how the national economy can handle the increasing numbers of unexpected negative events of climate change because the growing numbers of sometimes catastrophic floods and droughts seems to be connected with global warming. Beside the 'normal floods' in the last few years the numbers of so called flash floods show increasing tendency too. The presentation summarises the 'extreme water events' of Hungarian Great Plain, and the forecast problems of Hungarian meteorology together with the National strategy in mitigation and adaptation in connection with climate change. From meteorological point of view the handling of flood and drought problem is totally different. In case of flood the stress is on the forecast, in case of drought mainly of the evaluation of the historical data mainly the short and long term evaluation of drought indices. Drought indices seem to be the simplest tools in drought analysis. The more or less well known and popular indices have been collected and compared not only with the well known simple but more complicated water balance and so called 'recursive' indices beside few ones use remotely sensed data, mainly satellite born information. The indices are classified into five groups, namely 'precipitation', 'water balance', 'soil moisture', 'recursive' and 'remote sensing' indices. For every group typical expressions are given and the possible use in the decision making and hazard risk evaluation and compensation of the farmers after the events. The meteorological elements of new Hungarian agricultural risk strategy will be shown.

  15. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia

    NASA Astrophysics Data System (ADS)

    Llasat, Maria Carmen; Marcos, Raul; Turco, Marco; Gilabert, Joan; Llasat-Botija, Montserrat

    2016-10-01

    The aim of this paper is to analyse the potential relationship between flash flood events and convective precipitation in Catalonia, as well as any related trends. The paper starts with an overview of flash floods and their trends in the Mediterranean region, along with their associated factors, followed by the definition of, identification of, and trends in convective precipitation. After this introduction the paper focuses on the north-eastern Iberian Peninsula, for which there is a long-term precipitation series (since 1928) of 1-min precipitation from the Fabra Observatory, as well as a shorter (1996-2011) but more extensive precipitation series (43 rain gauges) of 5-min precipitation. Both series have been used to characterise the degree of convective contribution to rainfall, introducing the β parameter as the ratio between convective precipitation versus total precipitation in any period. Information about flood events was obtained from the INUNGAMA database (a flood database created by the GAMA team), with the aim of finding any potential links to convective precipitation. These flood data were gathered using information on damage where flood is treated as a multifactorial risk, and where any trend or anomaly might have been caused by one or more factors affecting hazard, vulnerability or exposure. Trend analysis has shown an increase in flash flood events. The fact that no trends were detected in terms of extreme values of precipitation on a daily scale, nor on the associated ETCCDI (Expert Team on Climate Change Detection and Indices) extreme index, could point to an increase in vulnerability, an increase in exposure, or changes in land use. However, the summer increase in convective precipitation was concentrated in less torrential events, which could partially explain this positive trend in flash flood events. The β parameter has been also used to characterise the type of flood event according to the features of the precipitation. The highest values correspond to short and local events, usually with daily β values above 0.5, while the minimum threshold of daily β for catastrophic flash floods is 0.31.

  16. Emergency assessment of post-fire debris-flow hazards for the 2013 Springs Fire, Ventura County, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2014-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Springs fire in Ventura County, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 9 of the 99 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 28 of the 99 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings, and that residents adhere to any evacuation orders.

  17. A New Method for Near Real Time Precipitation Estimates Using a Derived Statistical Relationship between Precipitable Water Vapor and Precipitation

    NASA Astrophysics Data System (ADS)

    Roman, J.

    2015-12-01

    The IPCC 5th Assessment found that the predicted warming of 1oC would increase the risk of extreme events such as heat waves, droughts, and floods. Weather extremes, like floods, have shown the vulnerability and susceptibility society has to these extreme weather events, through impacts such as disruption of food production, water supply, health, and damage of infrastructure. This paper examines a new way of near-real time forecasting of precipitation. A 10-year statistical climatological relationship was derived between precipitable water vapor (PWV) and precipitation by using the NASA Atmospheric Infrared Sounder daily gridded PWV product and the NASA Tropical Rainfall Measuring Mission daily gridded precipitation total. Forecasting precipitation estimates in real time is dire for flood monitoring and disaster management. Near real time PWV observations from AIRS on Aqua are available through the Goddard Earth Sciences Data and Information Service Center. In addition, PWV observations are available through direct broadcast from the NASA Suomi-NPP ATMS/CrIS instrument, the operational follow on to AIRS. The derived climatological relationship can be applied to create precipitation estimates in near real time by utilizing the direct broadcasting capabilities currently available in the CONUS region. The application of this relationship will be characterized through case-studies by using near real-time NASA AIRS Science Team v6 PWV products and ground-based SuomiNet GPS to estimate the current precipitation potential; the max amount of precipitation that can occur based on the moisture availability. Furthermore, the potential contribution of using the direct broadcasting of the NUCAPS ATMS/CrIS PWV products will be demonstrated. The analysis will highlight the advantages of applying this relationship in near-real time for flash flood monitoring and risk management. Relevance to the NWS River Forecast Centers will be discussed.

  18. Highlights of advances in the field of hydrometeorological research brought about by the DRIHM project

    NASA Astrophysics Data System (ADS)

    Caumont, Olivier; Hally, Alan; Garrote, Luis; Richard, Évelyne; Weerts, Albrecht; Delogu, Fabio; Fiori, Elisabetta; Rebora, Nicola; Parodi, Antonio; Mihalović, Ana; Ivković, Marija; Dekić, Ljiljana; van Verseveld, Willem; Nuissier, Olivier; Ducrocq, Véronique; D'Agostino, Daniele; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea

    2015-04-01

    The FP7 DRIHM (Distributed Research Infrastructure for Hydro-Meteorology, http://www.drihm.eu, 2011-2015) project intends to develop a prototype e-Science environment to facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in Hydro-Meteorology Research (HMR). As the project comes to its end, this presentation will summarize the HMR results that have been obtained in the framework of DRIHM. The vision shaped and implemented in the framework of the DRIHM project enables the production and interpretation of numerous, complex compositions of hydrometeorological simulations of flood events from rainfall, either simulated or modelled, down to discharge. Each element of a composition is drawn from a set of various state-of-the-art models. Atmospheric simulations providing high-resolution rainfall forecasts involve different global and limited-area convection-resolving models, the former being used as boundary conditions for the latter. Some of these models can be run as ensembles, i.e. with perturbed boundary conditions, initial conditions and/or physics, thus sampling the probability density function of rainfall forecasts. In addition, a stochastic downscaling algorithm can be used to create high-resolution rainfall ensemble forecasts from deterministic lower-resolution forecasts. All these rainfall forecasts may be used as input to various rainfall-discharge hydrological models that compute the resulting stream flows for catchments of interest. In some hydrological simulations, physical parameters are perturbed to take into account model errors. As a result, six different kinds of rainfall data (either deterministic or probabilistic) can currently be compared with each other and combined with three different hydrological model engines running either in deterministic or probabilistic mode. HMR topics which are allowed or facilitated by such unprecedented sets of hydrometerological forecasts include: physical process studies, intercomparison of models and ensembles, sensitivity studies to a particular component of the forecasting chain, and design of flash-flood early-warning systems. These benefits will be illustrated with the different key cases that have been under investigation in the course of the project. These are four catastrophic cases of flooding, namely the case of 4 November 2011 in Genoa, Italy, 6 November 2011 in Catalonia, Spain, 13-16 May 2014 in eastern Europe, and 9 October 2014, again in Genoa, Italy.

  19. Local community perception and awareness of flash floods vulnerability at a small catchment scale in the Bend Subcarpathians, Romania

    NASA Astrophysics Data System (ADS)

    Micu, Dana; Balteanu, Dan; Sima, Mihaela; Dumitrascu, Monica; Chendes, Viorel; Grigorescu, Ines; Dragota, Carmen; Dogaru, Diana; Costache, Andra

    2015-04-01

    The study aims to identify local communities perception and awareness in terms of hydro-meteorological extreme events in order to better understand the local context of vulnerability and communities resilience to flash floods as well as the mitigation measures undertaken by local authorities to cope with these phenomena. The study-area is located in the Bend Subcarpathians, Romania, a region well known for high tectonic mobility and dynamics of hydro-geomorphic processes (e.g. floods and flash floods, landslides). The study was conducted in the framework of VULMIN project (PN-II-PT-PCCA-2011-3.1-1587), funded by the Ministry of National Education for the period 2012-2016 (http://www.igar-vulmin.ro). The previous analyses conducted in the project showed a high exposure to flash floods of small river catchments (generally below 200 km2 ) located in the study-area (Teleajen-Buzau hydrographic area). Some of the most recent events (2005, 2008, 2010 and 2014) had a high impact on local communities in terms of important losses to their assets and psychological effects. Thus, in the summer 2014, a questionnaire-based survey was addressed to over 50 households (from 5 villages), significantly affected by flash floods and structured interviews were held with local authorities (local municipalities, county Civil Protection Inspectorates). The questionnaire was focused on the perception of human vulnerability to environmental change and extreme events, mainly floods, aiming to outline the personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding. The flash flood events are of major concern for local community, due to their high return period (1-5 years) and magnitude in the recent years. This influences also the population response and adaptive capacity to these events, which is limited to individual measures (e.g. buildings consolidations and relocations). The survey showed a discrepancy between the people's perception on the local authorities reaction during and post-event and the local authorities' perception on their response and preparedness measures. It was noticed a high interest of local authorities to access scientific data (flash flood hazard and risk maps, climate change projections) to support the development of adequate mitigation measures. However, the lack of funds is still limiting their implementation as well as the development of a long-term strategy.

  20. Modeling the Colorado Front Range Flood of 2013 with Coupled WRF and WRF-Hydro System

    NASA Astrophysics Data System (ADS)

    Unal, E.; Ramirez, J. A.

    2015-12-01

    Abstract. Flash floods are one of the most damaging natural disasters producing large socio-economic losses. Projected impacts of climate change include increases in the magnitude and the frequency of flash floods all around the world. Therefore, it is important to understand the physical processes of flash flooding to enhance our capacity for prediction, prevention, risk management, and recovery. However, understanding these processes is ambitious because of small spatial scale and sudden nature of flash floods, interactions with complex topography and land use, difficulty in defining initial soil moisture conditions, non-linearity of catchment response, and high space-time variability of storm characteristics. Thus, detailed regional case studies are needed, especially with respect to the interactions between the land surface and the atmosphere. One such flash flood event occurred recently in the Front Range of the Rocky Mountains of Colorado during September 9-15, 2013 causing 10 fatalities and $3B cost in damages. An unexpected persistent and moist weather pattern located over the mountains and produced seven-day extreme rainfall fed by moisture input from the Gulf of Mexico. We used a coupled WRF-WRF-Hydro modeling system to simulate this event for better understanding of the physical process and of the sensitivity of the hydrologic response to storm characteristics, initial soil moisture conditions, and watershed characteristics.

  1. Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.

    2014-03-01

    Heavy rainstorms often induce flash flooding, one of the natural disasters most responsible for damage to man-made infrastructure and loss of lives, adversely affecting also the opportunities for socio-economic development of Mediterranean Countries. The frequently dramatic damage of flash floods are often detected with sufficient accuracy by post-event surveys, but rainfall causing them are still only roughly characterized. With the aim of improving the understanding of the temporal structure and spatial distribution of heavy rainstorms in the Mediterranean context, a statistical analysis was carried out in Calabria (southern Italy) concerning rainstorms that mainly induced flash floods, but also shallow landslides and debris-flows. Thus a method is proposed - based on the overcoming of heuristically predetermined threshold values of cumulated rainfall, maximum intensity, and kinetic energy of the rainfall event - to select and characterize the rainstorms able to induce flash floods in the Mediterranean-climate Countries. Therefore the obtained (heavy) rainstorms were automatically classified and studied according to their structure in time, localization and extension. Rainfall-runoff watershed models can consequently benefit from the enhanced identification of design storms, with a realistic time structure integrated with the results of the spatial analysis. A survey of flash flood events recorded in the last decades provides a preliminary validation of the method proposed to identify the heavy rainstorms and synthetically describe their characteristics. The notable size of the employed sample, including data with a very detailed resolution in time, that relate to several rain gauges well-distributed throughout the region, give robustness to the obtained results.

  2. Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.

    2014-09-01

    Heavy rainstorms often induce flash flooding, one of the natural disasters most responsible for damage to man-made infrastructures and loss of lives, also adversely affecting the opportunities for socio-economic development of Mediterranean countries. The frequently dramatic damage of flash floods are often detected, with sufficient accuracy, by post-event surveys, but rainfall causing them are still only roughly characterized. With the aim of improving the understanding of the temporal structure and spatial distribution of heavy rainstorms in the Mediterranean context, a statistical analysis was carried out in Calabria (southern Italy) concerning rainstorms that mainly induced flash floods, but also shallow landslides and debris flows. Thus, a method is proposed - based on the overcoming of heuristically predetermined threshold values of cumulated rainfall, maximum intensity, and kinetic energy of the rainfall event - to select and characterize the rainstorms able to induce flash floods in the Mediterranean-climate countries. Therefore, the obtained (heavy) rainstorms were automatically classified and studied according to their structure in time, localization, and extension. Rainfall-runoff watershed models can consequently benefit from the enhanced identification of design storms, with a realistic time structure integrated with the results of the spatial analysis. A survey of flash flood events recorded in the last decades provides a preliminary validation of the method proposed to identify the heavy rainstorms and synthetically describe their characteristics. The notable size of the employed sample, including data with a very detailed resolution in time that relate to several rain gauges well-distributed throughout the region, gives robustness to the obtained results.

  3. Improving flash flood frequency analyses by using non-systematic dendrogeomorphic data

    NASA Astrophysics Data System (ADS)

    Mediero, Luis; María Bodoque, Jose; Garrote, Julio; Ballesteros-Cánovas, Juan Antonio; Aroca-Jimenez, Estefania

    2017-04-01

    Flash floods have a rapid hydrological response in catchments with short lag times, characterized by ''peaky'' hydrographs. The peak flows are reached within a few hours, thus giving little or no advance warning to prevent and mitigate flood damage. As a result, flash floods may result in a high social risk, as shown for instance by the 1997 Biescas disaster in Spain. The analysis and management of flood risk are clearly conditioned by data availability, especially in mountain areas where usually flash-floods occur. Nevertheless, in mountain basins there is often short data series available that are not accurate in terms of statistical significance. In addition, when flow data is ready for use maximum annual values are generally not as reliable as average flow values, since conventional stream gauge stations may not record the extreme floods, leading to gaps in the time series. Dendrogeomorphology has been shown to be especially useful for improving flood frequency analyses in catchments where short flood series limit the use of conventional hydrological methods. This study presents pros and cons of using a given probability distribution function, such as the Generalized Extreme Value (GEV), and Bayesian Markov Chain Monte Carlo (MCMC) methods to account for non-systematic data provided by dendrogeomorphic techniques, in order to asses flood quantile estimates accuracy. To this end, we have considered a set of locations in Central Spain, where systematic flow available at a gauging site can be extended with non-systematic data obtained from implementation of dendrogeomorphic techniques.

  4. Extreme rainfall events in the Sinai Peninsula

    NASA Astrophysics Data System (ADS)

    Baldi, Marina; Amin, Doaa; Zayed, Islam Sabry Al; Dalu, Giovanni A.

    2017-04-01

    In the present paper Authors discuss results from the first phase of a project carried out in the framework of the Agreement on Scientific Cooperation between the Academy of Scientific Research and Technology of Egypt (ASRT) and the National Research Council of Italy (CNR). As in ancient times, today heavy rainfall, often resulting in flash floods, affects Egypt, not only in the coastal areas along the Mediterranean Sea and the Red Sea, but also in arid and semi-arid areas such as Upper Egypt (Luxor, Aswan, and Assiut) and in the Sinai Peninsula, and their distribution has been modified due to the current climate variability. These episodes, although rare, can be catastrophic in regions characterized by a very low annual total amount of precipitation, with large impacts on lives, infrastructures, properties and last but not least, to the great cultural heritage of the Country. Flash flood episodes in the Sinai Peninsula result from heavy, sudden, and short duration rainfall, influenced also by the peculiar orography and soil conditions of the Region, and represent a risk for the population, infrastructures, properties, and sectors like industry and agriculture. On the other hand, flash floods in Sinai and southern/southeastern Egypt represent a potential source for non-conventional fresh water resources. In particular flash flood water, which usually drains into the Gulf of Suez and the Gulf of Aqaba, can fulfill a non-negligible amount of water demand, and/or recharge shallow groundwater aquifers, and the harvested rainfall can represent a source of water for rain-fed agriculture in the region. A general overview of the Sinai current climate is presented, including a climatology of extreme rainfalls events in the last decades. In addition, few selected heavy rainfall episodes which occurred in the Sinai in recent years have been analyzed and their characteristics and links to larger scale circulation will be discussed. Results of the study provide a better understanding of the climate variability and change over Sinai, including a description of extreme rainfalls events in the recent past, the driving mechanisms, generation and evolution of these short-lived and patchy storms and their future evolution under future climate change scenarios, also offering the background for the next step of the project. In fact, the final goal of the ASRT-CNR joint project is on one side to improve the knowledge about the impact of future climate change on the sequence and severity of flash floods in Sinai, on the other side to give some indications for an improvement of the forecast systems over the region at different temporal scale from weekly to sub-seasonal and seasonal. The final results are also intended to provide some basic information about future water harvesting possibilities, and to help decision makers to decide between future protection works and/or water harvesting structures in the Region.

  5. Flash floods in Catalonia: a recurrent situation

    NASA Astrophysics Data System (ADS)

    Llasat, M. C.; Lindbergh, S.; Llasat-Botija, M.; Rodríguez, A.; Zaragoza, A.

    2009-09-01

    A database with information about the social impact produced by all the flood events recorded in Catalonia between 1982 and 2007 has been built. Original information comes from the INUNGAMA database (1900-2000) presented by Barnolas and Llasat (2007), the PRESSGAMA database (1982-2007) (Llasat et al., in rev.) and information from different published works (Barriendos et al, 2003; Barriendos and Pomés, 1993). Social impact has been obtained systematically in basis to news press data and, occasionally, in basis to insurance data. Flood events have been classified in ordinary floods, extraordinary floods and catastrophic ones, following the proposal of Llasat et al (2005). However, having in mind the flash floods effects, some new categories concerning casualties and car damages have also been introduced. The spatial and temporal distribution of these flood events has been analysed. Results have been compared with those obtained for the period 1900-2000 (Barnolas and Llasat, 2007) and 1350-2000 (Barrera et al, 2006). In order to better estimate the social impact and vulnerability some indicators have been defined and analyzed for some specific cases and a specific region. Besides the indicators applied in the INUNCAT Plan to obtain a cartography of flood risk in Catalonia, other ones like the number of cars affected or the number of request received by the meteorological service, has been also taken into account. These indicators allow analyzing global and temporal trends as well as characterizing the events. The selected region has been the Maresme, which is a flood prone region with a great density of population and that experiences every year one or more flash floods. The annual number of floods shows a positive trend that cannot be justified by the rainfall trend. Both vulnerability and hazard components have been considered and a discussion about the flood prevention measures is presented. The third part of this work has been centred in the analysis and characterization of flash flood events. With this aim, the eleven cases selected in the framework of the FLASH European project have been analysed in depth. The relationship between the rainfall recorded above 60, 100 and 150 mm and the municipalities affected by floods have been analysed.

  6. Forecasting Flood Hazard on Real Time: Implementation of a New Surrogate Model for Hydrometeorological Events in an Andean Watershed.

    NASA Astrophysics Data System (ADS)

    Contreras Vargas, M. T.; Escauriaza, C. R.; Westerink, J. J.

    2017-12-01

    In recent years, the occurrence of flash floods and landslides produced by hydrometeorological events in Andean watersheds has had devastating consequences in urban and rural areas near the mountains. Two factors have hindered the hazard forecast in the region: 1) The spatial and temporal variability of climate conditions, which reduce the time range that the storm features can be predicted; and 2) The complexity of the basin morphology that characterizes the Andean region, and increases the velocity and the sediment transport capacity of flows that reach urbanized areas. Hydrodynamic models have become key tools to assess potential flood risks. Two-dimensional (2D) models based on the shallow-water equations are widely used to determine with high accuracy and resolution, the evolution of flow depths and velocities during floods. However, the high-computational requirements and long computational times have encouraged research to develop more efficient methodologies for predicting the flood propagation on real time. Our objective is to develop new surrogate models (i.e. metamodeling) to quasi-instantaneously evaluate floods propagation in the Andes foothills. By means a small set of parameters, we define storms for a wide range of meteorological conditions. Using a 2D hydrodynamic model coupled in mass and momentum with the sediment concentration, we compute on high-fidelity the propagation of a flood set. Results are used as a database to perform sophisticated interpolation/regression, and approximate efficiently the flow depth and velocities in critical points during real storms. This is the first application of surrogate models to evaluate flood propagation in the Andes foothills, improving the efficiency of flood hazard prediction. The model also opens new opportunities to improve early warning systems, helping decision makers to inform citizens, enhancing the reslience of cities near mountain regions. This work has been supported by CONICYT/FONDAP grant 15110017, and by the Vice Chancellor of Research of the Pontificia Universidad Catolica de Chile, through the Research Internationalization Grant, PUC1566 funded by MINEDUC.

  7. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  8. The Ischia island flash flood of November 2009 (Italy): Phenomenon analysis and flood hazard

    NASA Astrophysics Data System (ADS)

    Santo, A.; Di Crescenzo, G.; Del Prete, S.; Di Iorio, L.

    The island of Ischia is particularly susceptible to landslides and flash floods due to its particular geological and geomorphological context. Urbanization in recent decades coupled with the development of tourism has increased the risk. After the November 10, 2009 event occurring in the northern sector of the island (the town of Casamicciola), a detailed geo-morphological survey was conducted to ascertain the evolution of the phenomenon. In the watersheds upstream of Casamicciola, many landslides were mapped and the volume of material involved during detachment and sliding was estimated. In the lower course area, near the town and towards the sea, flow pathways were reconstructed with the aid of extensive video footage taken during the event. Rainfall data were also analyzed and a relationship was established between the hourly rainfall rate and the flash flood. The phenomenon was found to be quite complex, with many upstream landslides stopping before reaching the urban area. In the lower course the alluvial event occurred as a flood with a very small sediment discharge, which left a very thin layer of sediment. Reconstruction of the flash flood phenomenon suggested possible action for future risk mitigation, early warning and civil protection plans.

  9. Flood Simulation Using WMS Model in Small Watershed after Strong Earthquake -A Case Study of Longxihe Watershed, Sichuan province, China

    NASA Astrophysics Data System (ADS)

    Guo, B.

    2017-12-01

    Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.

  10. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  11. Rainfall Threshold for Flash Flood Early Warning Based on Rational Equation: A Case Study of Zuojiao Watershed in Yunnan Province

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wang, Y. L.; Li, H. C.; Zhang, M.; Li, C. Z.; Chen, X.

    2017-12-01

    Rainfall threshold plays an important role in flash flood warning. A simple and easy method, using Rational Equation to calculate rainfall threshold, was proposed in this study. The critical rainfall equation was deduced from the Rational Equation. On the basis of the Manning equation and the results of Chinese Flash Flood Survey and Evaluation (CFFSE) Project, the critical flow was obtained, and the net rainfall was calculated. Three aspects of the rainfall losses, i.e. depression storage, vegetation interception, and soil infiltration were considered. The critical rainfall was the sum of the net rainfall and the rainfall losses. Rainfall threshold was estimated after considering the watershed soil moisture using the critical rainfall. In order to demonstrate this method, Zuojiao watershed in Yunnan Province was chosen as study area. The results showed the rainfall thresholds calculated by the Rational Equation method were approximated to the rainfall thresholds obtained from CFFSE, and were in accordance with the observed rainfall during flash flood events. Thus the calculated results are reasonable and the method is effective. This study provided a quick and convenient way to calculated rainfall threshold of flash flood warning for the grass root staffs and offered technical support for estimating rainfall threshold.

  12. Traditional ecological knowledge and flood risk management: A preliminary case study of the Rwenzori

    PubMed Central

    2018-01-01

    The shift from flood protection to flood risk management, together with recent arguments on incorporating culture in managing risk, underscores the application of traditional ecological knowledge (TEK) in managing disasters from flood hazards. Yet, documentation and incorporation of TEK into practice remains a challenge. This article contributes to addressing this challenge by exploring the existence of TEK to flooding in the Rwenzori Mountains, Uganda. Using semi-structured interviews, data were collected from residents of the Nyamwamba watershed where intense flash floods caused deadly impacts in May 2013. Collected data were analysed using content, thematic and interpretive analysis techniques. Results indicate that TEK is exhibited through various traditional ecological approaches (TEAs). Although endangered, TEAs (conducted through collective action for a communally accepted end) are framed in three main activities: (1) assessment and prediction of rainfall and flood by the traditional hydro-meteorologist (diviner) and the traditional rain forecaster (rainmaker); (2) the mountain cleansing ritual (which act as flood risk awareness platform); and (3) immunising riverine communities through planting certain indigenous plants, which improve hydrological systems through their high conservation value for native ecological diversity. As most TEAs are conducted through collective action, they represent a platform to understand local capacities and enhance adoption of measures, and/or a source of knowledge for new measures to address flood risk. Therefore, full-scale investigations of these TEAs, determining how relevant TEAs are fine-tuned, and (scientific) measures enculturated based on fine-tuned TEAs could result in effective flood risk management in various flood hotspots where TEAs influence action.

  13. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  14. Research on classified real-time flood forecasting framework based on K-means cluster and rough set.

    PubMed

    Xu, Wei; Peng, Yong

    2015-01-01

    This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.

  15. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  16. A retrospective analysis of the flash flood in Braunsbach on May 29th, 2016

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Öztürk, Ugur; Sieg, Tobias; Wendi, Dadiyorto; Riemer, Adrian; Agarwal, Ankit; Rözer, Viktor; Korup, Oliver; Thieken, Annegret; Vogel, Kristin

    2017-04-01

    At the end of May and early June 2016 several rainstorms caused severe surface water flooding and flash floods, partly accompanied by mud and debris flows, in Central Europe, and especially in southern Germany. On the evening of May 29, 2016, a flood outburst with massive amounts of rubble and muddy sediments hit the town of Braunsbach, Baden-Württemberg, damaging numerous buildings, cars, and town facilities. The DFG Graduate School "Natural hazards and risks in a changing world" (NatRiskChange) at the University of Potsdam investigated the Braunsbach "flash flood" as an exemplary catastrophic event triggered by severe weather. Bringing together scientists from the fields of meteorology, hydrology, geomorphology, flood risk, natural hazards, and mathematics the research team was especially interested in the interplay of causes and triggers leading to the event. Accordingly, the team focused on the entire process chain from heavy precipitation to runoff and flood generation and the geomorphic aftermath. The steep slopes in the catchment area promote the episodic supply of gravel, debris and organic material, which remains stored for decades to millennia, only to be remobilized during rare and extreme runoff events such as in 2016. Field mapping revealed at least 48 landslides as sources of high sediment loads. Nonetheless, numerous scars of river erosion along the tributary creeks into Braunsbach indicate that most of the material carried by the flash flood was due to bank undercutting. The flow also entrained more rubble, trees, cars, and other anthropogenic sediments further downstream. This enhanced solids load increased the physical impact, and hence damage, to buildings. Local effects of flow depth, flow velocity, and exposition of buildings into the advancing non-steady and non-uniform flow caused the damage to exceed that of a clearwater flood with comparable return period. We conclude that, to meaningfully inform the implementation of precautionary measures, a quantitative hazard assessment of similarly extreme flash floods may include more explicitly the effects of high sediment loads and flow-roughness elements.

  17. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.

  18. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events, has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.

  19. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Jacoby, Yael; Navon, Shilo; Bet-Halachmi, Erez

    2009-07-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Validation was performed for a subsequent 5-year period for the same catchment and then for an entire 10-year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.

  20. Towards flash flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, E.; Jacoby, Y.; Navon, S.; Bet-Halachmi, E.

    2009-04-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model utilizing radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on five years of data for one of the catchments. Validation was performed for a subsequent five-year period for the same catchment and then for an entire ten year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood-warning model is feasible for catchments in the area studied.

  1. Hydrometeorological Analysis of Tropical Storm Hermine and Central Texas Flash Flooding, September 2010.

    NASA Astrophysics Data System (ADS)

    Furl, Chad; Sharif, Hatim; ElHassan, Almoutaz; Mazari, Newfel; Burtch, Daniel; Mullendore, Gretchen

    2015-04-01

    Heavy rainfall and flooding associated with Tropical Storm Hermine occurred 7-8 September 2010 across central Texas resulting in several fatalities and extensive property damage. The largest rainfall totals were received near Austin, TX and immediately north where twenty four hour accumulations reached a 500 year recurrence interval. Among the most heavily impacted drainage basins was the Bull Creek watershed (58 km2) in Austin, TX where peak flows exceeded 500 m3 s-1. The large flows were produced from a narrow band of intense storm cells training over the small watershed for approximately six hours. Meteorological analysis along with Weather Research and Forecasting (WRF) model simulations indicate a quasi-stationary synoptic feature slowing the storm, orographic enhancement from the Balcones Escarpment, and moist air from the Gulf of Mexico were important features producing the locally heavy rainfall. The effect from the Balcones Escarpment was explicitly tested by conducting simulations with and without the escarpment terrain. High resolution, gauge adjusted radar collected as part of a flash flood warning system was used to describe spatiotemporal rainfall patterns and force the Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model. The radar dataset indicated the basin received nearly 300 mm of precipitation with maximum sustained intensities of 50 mm hr-1. Roughly 60 percent of storm totals fell during two periods lasting a combined five hours. Stream flow showed a highly non-linear response to two periods of intense rainfall. GSSHA simulations indicate this can be partially explained by the spatial organization of rainfall coupled with landscape retention.

  2. Landslides, floods and sinkholes in a karst environment: the 1-6 September 2014 Gargano event, southern Italy

    NASA Astrophysics Data System (ADS)

    Martinotti, Maria Elena; Pisano, Luca; Marchesini, Ivan; Rossi, Mauro; Peruccacci, Silvia; Brunetti, Maria Teresa; Melillo, Massimo; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Trabace, Maria; Parise, Mario; Guzzetti, Fausto

    2017-03-01

    In karst environments, heavy rainfall is known to cause multiple geohydrological hazards, including inundations, flash floods, landslides and sinkholes. We studied a period of intense rainfall from 1 to 6 September 2014 in the Gargano Promontory, a karst area in Puglia, southern Italy. In the period, a sequence of torrential rainfall events caused severe damage and claimed two fatalities. The amount and accuracy of the geographical and temporal information varied for the different hazards. The temporal information was most accurate for the inundation caused by a major river, less accurate for flash floods caused by minor torrents and even less accurate for landslides. For sinkholes, only generic information on the period of occurrence of the failures was available. Our analysis revealed that in the promontory, rainfall-driven hazards occurred in response to extreme meteorological conditions and that the karst landscape responded to the torrential rainfall with a threshold behaviour. We exploited the rainfall and the landslide information to design the new ensemble-non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the possible occurrence of rainfall-induced landslides and of related geohydrological hazards. The ensemble of the metrics produced by the E-NEP algorithm provided better diagnostics than the single metrics often used for landslide forecasting, including rainfall duration, cumulated rainfall and rainfall intensity. We expect that the E-NEP algorithm will be useful for landslide early warning in karst areas and in other similar environments. We acknowledge that further tests are needed to evaluate the algorithm in different meteorological, geological and physiographical settings.

  3. Analysis of economic vulnerability to flash floods in urban areas of Castilla y León (Spain)

    NASA Astrophysics Data System (ADS)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; García, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    The growth of exposed population to floods, the expansion in allocation of economical activities to flood-prone areas and the rise of extraordinary event frequency over the last few decades, have resulted in an increase of flash flood-related casualties and economic losses. The increase in these losses at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Vulnerability is defined as the conditions determined by physical, social, economic and environmental factors or processes which increase the susceptibility of a community to the impact of hazards such as floods, being flash floods one of the natural hazards with the greatest capacity to generate risk. In recent years, numerous papers have deal with the assessment of the social dimension of vulnerability. However, economic factors are often a neglected aspect in traditional risk assessments which mainly focus on structural measures and flood damage models. In this context, the aim of this research is to identify those economic characteristics which render people vulnerable to flash flood hazard, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is an Economic Vulnerability Index (EVI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Cluster Analysis of economic information provided by different public institutional databases. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2), placed in Central-Northern Spain. Townships included in this study meet two requirements: i) urban areas are potentially affected by flash floods (i.e. villages are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1); ii) urban areas are affected by an area with low or exceptional probability of flooding (as provided by Directive 2007/60/EC of 23 October 2007 on the assessment and management of flood risks) according with the preliminary assessment of flood risk made by water authorities.

  4. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.

  5. Comparative hazard analysis of processes leading to remarkable flash floods (France, 1930-1999)

    NASA Astrophysics Data System (ADS)

    Boudou, M.; Lang, M.; Vinet, F.; Cœur, D.

    2016-10-01

    Flash flood events are responsible for large economic losses and lead to fatalities every year in France. This is especially the case in the Mediterranean and oversea territories/departments of France, characterized by extreme hydro-climatological features and with a large part of the population exposed to flood risks. The recurrence of remarkable flash flood events, associated with high hazard intensity, significant damage and socio-political consequences, therefore raises several issues for authorities and risk management policies. This study aims to improve our understanding of the hazard analysis process in the case of four remarkable flood events: March 1930, October 1940, January 1980 and November 1999. Firstly, we present the methodology used to define the remarkability score of a flood event. Then, to identify the factors leading to a remarkable flood event, we explore the main parameters of the hazard analysis process, such as the meteorological triggering conditions, the return period of the rainfall and peak discharge, as well as some additional factors (initial catchment state, flood chronology, cascade effects, etc.). The results contribute to understanding the complexity of the processes leading to flood hazard and highlight the importance for risk managers of taking additional factors into account.

  6. Flash flood warning based on fully dynamic hydrology modelling

    NASA Astrophysics Data System (ADS)

    Pejanovic, Goran; Petkovic, Slavko; Cvetkovic, Bojan; Nickovic, Slobodan

    2016-04-01

    Numerical hydrologic modeling has achieved limited success in the past due to, inter alia, lack of adequate input data. Over the last decade, data availability has improved substantially. For modelling purposes, high-resolution data on topography, river routing, and land cover and soil features have meanwhile become available, as well as the observations such as radar precipitation information. In our study, we have implemented the HYPROM model (Hydrology Prognostic Model) to predict a flash flood event at a smaller-scale basin in Southern Serbia. HYPROM is based on the full set of governing equations for surface hydrological dynamics, in which momentum components, along with the equation of mass continuity, are used as full prognostic equations. HYPROM also includes a river routing module serving as a collector for the extra surface water. Such approach permits appropriate representation of different hydrology scales ranging from flash floods to flows of large and slow river basins. The use of full governing equations, if not appropriately parameterized, may lead to numerical instability systems when the surface water in a model is vanishing. To resolve these modelling problems, an unconditionally stable numerical scheme and a method for height redistribution avoiding shortwave height noise have been developed in HYPROM, which achieve numerical convergence of u, v and h when surface water disappears. We have applied HYPROM, driven by radar-estimated precipitation, to predict flash flooding occurred over smaller and medium-size river basins. Two torrential rainfall cases have been simulated to check the accuracy of the model: the exceptional flooding of May 2014 in Western Serbia, and the convective flash flood of January 2015 in Southern Serbia. The second episode has been successfully predicted by HYPROM in terms of timing and intensity six hours before the event occurred. Such flash flood warning system is in preparation to be operationally implemented in the Republic Hydrometeorological Service of Serbia.

  7. Simulating a Lowland Flash Flood in a Long-term Experimental Watershed with 7 Standard Hydrological Models

    NASA Astrophysics Data System (ADS)

    Torfs, P.; Brauer, C.; Teuling, R.; Kloosterman, P.; Willems, G.; Verkooijen, B.; Uijlenhoet, R.

    2012-12-01

    On 26 August 2010 the 6.5 km2 Hupsel Brook catchment in The Netherlands, which has been the experimental watershed employed by Wageningen University since the 1960s, was struck by an exceptionally heavy rainfall event (return period > 1000 years). We investigated the unprecedented flash flood triggered by this event and this study improved our understanding of the dynamics of such lowland flash floods (Brauer et al., 2011). During this extreme event some thresholds became apparent that do not play a role during average conditions and are not incorporated in most rainfall-runoff models. This may lead to errors when these models are used to forecast runoff responses to rainfall events that are extreme today, but likely to become less extreme when climate changes. The aim of this research project was to find out to what extent different types of rainfall-runoff models are able to simulate this extreme event, and, if not, which processes, thresholds or parameters are lacking to describe the event accurately. Five of the 7 employed models treat the catchment as a lumped system. This group includes the well-known HBV and Sacramento models. The Wageningen Model, which has been developed in our group, has a structure similar to HBV and the Sacramento Model. The SWAP (Soil, Water, Atmosphere, Plant) Model represents a physically-based model of a single soil column, but has been used here as a representation for the whole catchment. The LGSI (Lowland Groundwater Surface water Interaction) Model uses probability distributions to account for spatial variability in groundwater depth and resulting flow routes in the catchment. We did not only analyze how accurately each model simulated the discharge, but also whether groundwater and soil moisture dynamics and resulting flow processes were captured adequately. The 6th model is a spatially distributed model called SIMGRO. It is based on a MODFLOW groundwater model, extended with an unsaturated zone based on the previously mentioned SWAP model and a surface water network. This model has a very detailed groundwater-surface water interface and should therefore be particularly suitable to study the effect of backwater feedbacks we observed during the flood. In addition, the effect of spatially varying soil characteristics on the runoff response has been studied. The final model is SOBEK, which was originally developed as a hydraulic model consisting of a surface water network with nodes and links. To some of the nodes, upstream areas with associated rainfall-runoff models have been assigned. This model is especially useful to study the effect of hydraulic structures, such as culverts, and stream bed vegetation on dampening the flood peak. Brauer, C. C., Teuling, A.J., Overeem, A., van der Velde, Y., Hazenberg, P., Warmerdam, P. M. M. and Uijlenhoet, R.: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrol. Earth Syst. Sci., 15, 1991-2005, 2011.

  8. Consensus Seasonal Flood Forecasts and Warning Response System (FFWRS): an alternate for nonstructural flood management in Bangladesh.

    PubMed

    Chowdhury, Rashed

    2005-06-01

    Despite advances in short-range flood forecasting and information dissemination systems in Bangladesh, the present system is less than satisfactory. This is because of short lead-time products, outdated dissemination networks, and lack of direct feedback from the end-user. One viable solution is to produce long-lead seasonal forecasts--the demand for which is significantly increasing in Bangladesh--and disseminate these products through the appropriate channels. As observed in other regions, the success of seasonal forecasts, in contrast to short-term forecast, depends on consensus among the participating institutions. The Flood Forecasting and Warning Response System (henceforth, FFWRS) has been found to be an important component in a comprehensive and participatory approach to seasonal flood management. A general consensus in producing seasonal forecasts can thus be achieved by enhancing the existing FFWRS. Therefore, the primary objective of this paper is to revisit and modify the framework of an ideal warning response system for issuance of consensus seasonal flood forecasts in Bangladesh. The five-stage FFWRS-i) Flood forecasting, ii) Forecast interpretation and message formulation, iii) Warning preparation and dissemination, iv) Responses, and v) Review and analysis-has been modified. To apply the concept of consensus forecast, a framework similar to that of the Southern African Regional Climate Outlook Forum (SARCOF) has been discussed. Finally, the need for a climate Outlook Fora has been emphasized for a comprehensive and participatory approach to seasonal flood hazard management in Bangladesh.

  9. Utility of flood warning systems for emergency management

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Ballio, Francesco; Menoni, Scira

    2010-05-01

    The presentation is focused on a simple and crucial question for warning systems: are flood and hydrological modelling and forecasting helpful to manage flood events? Indeed, it is well known that a warning process can be invalidated by inadequate forecasts so that the accuracy and robustness of the previsional model is a key issue for any flood warning procedure. However, one problem still arises at this perspective: when forecasts can be considered to be adequate? According to Murphy (1993, Wea. Forecasting 8, 281-293), forecasts hold no intrinsic value but they acquire it through their ability to influence the decisions made by their users. Moreover, we can add that forecasts value depends on the particular problem at stake showing, this way, a multifaceted nature. As a result, forecasts verification should not be seen as a universal process, instead it should be tailored to the particular context in which forecasts are implemented. This presentation focuses on warning problems in mountain regions, whereas the short time which is distinctive of flood events makes the provision of adequate forecasts particularly significant. In this context, the quality of a forecast is linked to its capability to reduce the impact of a flood by improving the correctness of the decision about issuing (or not) a warning as well as of the implementation of a proper set of actions aimed at lowering potential flood damages. The present study evaluates the performance of a real flood forecasting system from this perspective. In detail, a back analysis of past flood events and available verification tools have been implemented. The final objective was to evaluate the system ability to support appropriate decisions with respect not only to the flood characteristics but also to the peculiarities of the area at risk as well as to the uncertainty of forecasts. This meant to consider also flood damages and forecasting uncertainty among the decision variables. Last but not least, the presentation explains how the procedure implemented in the case study could support the definition of a proper warning rule.

  10. Integration of social vulnerability into emergency management plans: designing of evacuation routes against flood disasters

    NASA Astrophysics Data System (ADS)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    Flash floods are highly spatio-temporal localized flood events characterized by reaching a high peak flow in a very short period of time, i.e., generally with times of concentration lower than six hours. Its short duration, which limits or even voids any warning time, means that flash floods are considered to be one of the most destructive natural hazards with the greatest capacity to generate risk, either in terms of the number of people affected globally or the proportion of individual fatalities. The above highlights the importance of a realistic and appropriate design of evacuation strategies in order to reduce flood-related losses, being evacuation planning considered of critical importance for disaster management. Traditionally, evacuation maps have been based on flood-prone areas, shelters or emergency residences location and evacuation routes information. However, evacuation plans rarely consider the spatial distribution of vulnerable population (i.e., people with special needs, mobility constraints or economic difficulties), which usually require assistance from emergency responders. The goal of this research is to elaborate an evacuation map against the occurrence of flash floods by combining geographic information (e.g. roads, health facilities location, sanitary helicopters) and social vulnerability patterns, which are previously obtained from socioeconomic variables (e.g. population, unemployment, dwelling characteristics). To do this, ArcGis Network Analyst tool is used, which allows to calculate the optimal evacuation routes. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2). Urban areas prone to flash flooding are identified taking into account the following requirements: i) city centers are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1; ii) city centers are potentially affected by flash floods; and iii) city centers are affected by an area with low or exceptional probability of flooding (i.e., 500-year flood). A total of 3 evacuation routes were designed and automatically traced for each of the 39 urban areas identified as interest, considering the nearest: i) health facility, ii) hospital; and iii) evacuation area (i.e. sports halls or any other). The suitable elaboration of evacuation plans is really important in small mountainous areas prone to flash flooding as they are managed by local organisms where available economic resources are often limited. Furthermore, the short response time obliges emergency responders to act efficiently, which requires the design of evacuation plans taking into account certain social characteristics for evacuation routes designing.

  11. Estimation of extremely high runoff of the Sel\\vska Sora River after the storm of 18 September 2007

    NASA Astrophysics Data System (ADS)

    Kobold, M.; Brilly, M.

    2009-04-01

    Extremely high runoff occurred on 18 September 2007 on the Sel\\vska Sora catchment with drainage area of 104 km2 due to the heavy and intense rainfall which fell in just a few hours. The catchment lies in the north-western hilly part of Slovenia where precipitation started early in the morning. Meteorological forecast predicted precipitation for the September 18, but not in the quantity and intensity as it happened. More than 300 mm of the daily sum of the rainfall was recorded on some rain gauging stations, but the amount of precipitation fell mainly within six hours. The precipitation rates reached up to 70 mm/h and 100 mm in 2 hours on the most affected area along Sel\\vska Sora river upstream the town of Železniki. High differences in the amount of precipitation were detected at small distances. Under the influence of the very intense precipitation streams from the catchments of northwest Slovenia started to rise very quickly. Flash floods caused destruction and enormous material damage, the most in villages Davča and Železniki where three people lost their lives. Unfortunately the equipment on the water gauging station at Železniki stopped working during the flood and the flood wave was not recorded entirely. The highest water level 551 cm was determined after the flood according to the flood trace. The peak discharge was estimated to approximately 300 m3/s by extrapolation of rating curve and it exceeded the highest discharge from the period of observation 1991-2006 two times. The WMS system and HEC-1 hydrological model was used for the simulation of the hydrograph. According to the modelling results the peak of flood wave is estimated to 278 m3/s, what means 2670 l/s/km2 of maximum specific runoff. The results of analysis give the cumulative areal precipitation for the Sel\\vska Sora catchment to Železniki 219 mm, while the effective precipitation which caused direct runoff is only 57 mm. The runoff coefficient is rather low considering the high rainfall intensities for the short periods of few hours. However, the spatial distribution of the rainfall in the area was highly variable and spatial positioning of rain gauges is obviously inadequate for proper representation of the actual spatial amount of rainfall. Regarding to small antecedent soil moisture and consequently low flows before flood event, the infiltration into the soil was very high. The geological structure of the catchment is not uniform; the northern part of the catchment is more permeable whereas the southern part is much less permeable leading to non-uniform hydrological response of the catchment. According to the meteorological and hydrological situation, the flash flood event in Železniki has typical characteristics which make the analysis of the flash flood events difficult, not even mentioning the possibilities to make a prediction of the occurrence of such event in advance.

  12. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco

    2018-03-01

    The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.

  13. Geomorphological and sedimentological analysis of flash-flood deposits: The case of the 1997 Rivillas flood (Spain)

    NASA Astrophysics Data System (ADS)

    Ortega, Jose A.; Garzón Heydt, Guillermina

    2009-11-01

    On the basis of the description of the 1997 Rivillas flood deposits, a morphosedimentary feature classification is proposed. Mapping of the main morphosedimentary deposits in seven reaches along the basin has provided abundant data for each defined typology and for a better adjustment of their stability fields. Because of their unstable preservation environment, immediate post-flood field surveys with descriptions of erosive and depositional features were undertaken. Up to 18 features were classified as either sedimentary or erosive and mapped according to their genetic environments. Anthropic interference such as land use changes produce modification of sediment supply and in channel and floodplain erosive processes causing flash-floods to be more catastrophic. Erosive features are dominant over sedimentary ones, as the sedimentary budget in the river is negative. By means of HEC-RAS (Hydrologic Engineering Center) modelling, we were able to obtain mean values of the main variables limiting feature stability (velocity, depth, stream powers and shear stress). These provide information regarding maximum stability threshold and peak flood discharge. The ephemeral nature of riverine flash-flood deposits in this type of setting does not mean that they are not significant, and their interpretation after recent floods can significantly improve interpretation of the event dynamics and its flood hydrology and also be useful for flood risk mapping.

  14. Emergency assessment of post-fire debris-flow hazards for the 2013 Rim Fire, Stanislaus National Forest and Yosemite National Park, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2013-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Rim fire in Yosemite National Park and the Stanislaus National Forest, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 28 of the 1,238 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 901 of the 1,238 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  15. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.

  16. Preparing for floods: flood forecasting and early warning

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2016-04-01

    Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.

  17. Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Deweese, M. M.

    2017-12-01

    Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.

  18. Post-processing of global model output to forecast point rainfall

    NASA Astrophysics Data System (ADS)

    Hewson, Tim; Pillosu, Fatima

    2016-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts) has recently embarked upon a new project to post-process gridbox rainfall forecasts from its ensemble prediction system, to provide probabilistic forecasts of point rainfall. The new post-processing strategy relies on understanding how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. We use a number of simple global model parameters, such as the convective rainfall fraction, to anticipate the sub-grid variability, and then post-process each ensemble forecast into a pdf (probability density function) for a point-rainfall total. The final forecast will comprise the sum of the different pdfs from all ensemble members. The post-processing is essentially a re-calibration exercise, which needs only rainfall totals from standard global reporting stations (and forecasts) to train it. High density observations are not needed. This presentation will describe results from the initial 'proof of concept' study, which has been remarkably successful. Reference will also be made to other useful outcomes of the work, such as gaining insights into systematic model biases in different synoptic settings. The special case of orographic rainfall will also be discussed. Work ongoing this year will also be described. This involves further investigations of which model parameters can provide predictive skill, and will then move on to development of an operational system for predicting point rainfall across the globe. The main practical benefit of this system will be a greatly improved capacity to predict extreme point rainfall, and thereby provide early warnings, for the whole world, of flash flood potential for lead times that extend beyond day 5. This will be incorporated into the suite of products output by GLOFAS (the GLObal Flood Awareness System) which is hosted at ECMWF. As such this work offers a very cost-effective approach to satisfying user needs right around the world. This field has hitherto relied on using very expensive high-resolution ensembles; by their very nature these can only run over small regions, and only for lead times up to about 2 days.

  19. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Yu, Dapeng; Yin, Zhane; Liu, Min; He, Qing

    2016-06-01

    Urban pluvial flood are attracting growing public concern due to rising intense precipitation and increasing consequences. Accurate risk assessment is critical to an efficient urban pluvial flood management, particularly in transportation sector. This paper describes an integrated methodology, which initially makes use of high resolution 2D inundation modeling and flood depth-dependent measure to evaluate the potential impact and risk of pluvial flash flood on road network in the city center of Shanghai, China. Intensity-Duration-Frequency relationships of Shanghai rainstorm and Chicago Design Storm are combined to generate ensemble rainfall scenarios. A hydrodynamic model (FloodMap-HydroInundation2D) is used to simulate overland flow and flood inundation for each scenario. Furthermore, road impact and risk assessment are respectively conducted by a new proposed algorithm and proxy. Results suggest that the flood response is a function of spatio-temporal distribution of precipitation and local characteristics (i.e. drainage and topography), and pluvial flash flood is found to lead to proportionate but nonlinear impact on intra-urban road inundation risk. The approach tested here would provide more detailed flood information for smart management of urban street network and may be applied to other big cities where road flood risk is evolving in the context of climate change and urbanization.

  20. Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., jr.; Goodman, S. J.

    2008-01-01

    Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.

  1. Improving flood risk management through risk communication strategies

    NASA Astrophysics Data System (ADS)

    Bodoque, Jose Maria; Diez Herrero, Andres; Amerigo, Maria; Garcia, Juan Antonio; Olcina, Jorge; Cortes, Beatriz

    2016-04-01

    A suitable level of social perception about flood risk and awareness of Civil Protection Plans are critical to minimize disasters and damages due to flash floods. In order to improve risk perception, awareness and, as a result, the effectiveness of Civil Protection Plans, it is often required the implementation of communication plans. This research proposes a guide recommendation framework to enhance local population preparedness, prevention and response when a flash flood occurs. The research setting was a village (Navaluenga) located in Central Spain with 2,027 inhabitants. It is crossed by the Alberche river and Chorreron stream (both tributaries of the Tagus river), which are prone to flash floods. In a first phase, we assessed citizens' flash-flood risk perception and level of awareness regarding some key variables of the Civil Protection Plan. To this end, a questionnaire survey was designed and 254 adults, a sample representing roughly 12% of the population census, were interviewed. Responses were analysed, comparing awareness regarding preparedness and response actions with those previously defined in the Civil Protection Plan. In addition, we carried out a latent class cluster analysis aimed at identifying the different groups present among the respondents. Next, a risk communication plan was designed and implemented. It aimed to improve the understanding of flood risk among local people; and it comprises briefings, quiz-answers, contests of stories and flood images and intergenerational workshops. Finally, participants in the first phase were reached again and a new survey was performed. The results derived from these second questionnaires were statistically treated using the same approach of the first phase. Additionally, a t-test for paired samples and Pearson Chi-Square test was implemented in order to detect possible improvements in the perception and awareness. Preliminary results indicate that in Navaluenga there is a low social perception of flood risk and a low level of awareness regarding the Civil Protection Plan. In the social context of the Iberian Peninsula, where climate change models indicate an increase in extreme weather events and, consequently, high exposure and vulnerability to flash floods, the implementation of appropriately designed communication strategies is critical to improve the resilience of urban areas in order to cope with this risk.

  2. Impact of agricultural management on pluvial flash floods - Case study of an extreme event observed in Austria in 2016

    NASA Astrophysics Data System (ADS)

    Lumassegger, Simon; Achleitner, Stefan; Kohl, Bernhard

    2017-04-01

    Central Europe was affected by extreme flash floods in summer 2016 triggered by short, high-intensity storm cells. Besides fluvial runoff, local pluvial floods appear to increase recently. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) surface runoff and pluvial flooding is assessed using a coupled hydrological/2D hydrodynamic model for the severely affected municipality of Schwertberg, Upper Austria. In this small catchment several flooding events occurred in the last years, where the most severe event occurred during summer 2016. Several areas could only be reached after the flood wave subsided with observed flood marks up to one meter. The modeled catchment is intensively cultivated with maize, sugar beets, winter wheat and soy on the hillside and hence highly vulnerable to water erosion. The average inclination is relatively steep with 15 % leading to high flow velocities of surface runoff associated with large amounts of transported sediments. To assess the influence of land use and soil conservation on flash floods, field experiments with a portable irrigation spray installation were carried out at different locations. The test plots were subjected to rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour lasting, rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h. Surface runoff was collected and measured in a tank and water samples were taken to determine the suspended material load. Large differences of runoff coefficients were determined depending on the agricultural management. The largest discharge was measured in a maize field, where surface runoff occurred immediately after start of irrigation. The determined runoff coefficients ranged from 0.22 for soy up to 0.65 for maize for the same soil type and inclination. The conclusion that runoff is heavily influenced by land use matches well with the observed flow patterns during the storm event in summer 2016. The results clearly indicate the ability to reduce pluvial flash flood impacts by changing agricultural management practices.

  3. Lessons learned from Khartoum flash flood impacts: An integrated assessment.

    PubMed

    Mahmood, Mohamad Ibrahim; Elagib, Nadir Ahmed; Horn, Finlay; Saad, Suhair A G

    2017-12-01

    This study aims at enabling the compilation of key lessons for decision makers and urban planners in rapidly urbanizing cities regarding the identification of representative, chief causal natural and human factors for the increased level of flash flood risk. To achieve this, the impacts of flash flood events of 2013 and 2014 in the capital of Sudan, Khartoum, were assessed using seven integrated approaches, i.e. rainfall data analysis, document analysis of affected people and houses, observational fieldwork in the worst flood affected areas, people's perception of causes and mitigation measures through household interviews, reported drinking water quality, reported water-related diseases and social risk assessment. Several lessons have been developed as follows. Urban planners must recognize the devastating risks of building within natural pathways of ephemeral watercourses. They must also ensure effective drainage infrastructures and physio-geographical investigations prior to developing urban areas. The existing urban drainage systems become ineffective due to blockage by urban waste. Building of unauthorized drainage and embankment structures by locals often cause greater flood problems than normal. The urban runoff is especially problematic for residential areas built within low-lying areas having naturally low infiltration capacity, as surface water can rapidly collect within hollows and depressions, or beside elevated roads that preclude the free flow of floodwater. Weak housing and infrastructure quality are especially vulnerable to flash flooding and even to rainfall directly. Establishment of services infrastructure is imperative for flash flood disaster risk reduction. Water supply should be from lower aquifers to avoid contaminant groundwater. Regular monitoring of water quality and archiving of its indicators help identify water-related diseases and sources of water contamination in the event of environmental disasters such as floods. Though the understanding of risk perception by the locals is an important aspect of the decision making and planning processes, it should be advanced enough for proper awareness. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The 9 September 2010 torrential rain and flash flood in the Dragone catchment, Atrani, Amalfi Coast (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Violante, C.; Braca, G.; Esposito, E.; Tranfaglia, G.

    2015-08-01

    In this paper we use a multi-hazard approach to analyse the 9 September 2010 flash-flood occurred in the Dragone basin, a 9 km2 catchment located along the Amalfi rocky coastal range, Southern Italy. In this area, alluvial-fan-flooding is the most frequent and destructive geologic hazards since Roman time. Sudden torrent of waters (flash flood) are caused by high-intensity and very localized cloudbursts of short duration inducing slope erosion and sediment delivery from slope-to-stream. The elevated bed load transport produces fast-moving hyperconcentrated flows with significant catastrophic implications for communities living at stream mouth. The 9 September 2010 rainstorm event lasted 1 h with an intensity rainfall peak nearly to 120 mm h-1. High topographic relief of the Amalfi coastal range and positive anomalies of the coastal waters conditioned the character of the convective system. Based on geological data and post-event field evidence and surveys, as well as homemade-videos, and eyewitness accounts the consequent flash-flood mobilized some 25 000 m3 of materials with a total (water and sediment) peak flow of 80 m3 s-1. The estimated peak discharge of only clear water was about 65 m3 s-1. This leads to a sediment bulking factor of 1.2 that corresponds to a flow with velocities similar to those of water during a flood.

  5. Quantifying Uncertainty in Flood Inundation Mapping Using Streamflow Ensembles and Multiple Hydraulic Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Hosseiny, S. M. H.; Zarzar, C.; Gomez, M.; Siddique, R.; Smith, V.; Mejia, A.; Demir, I.

    2016-12-01

    The National Water Model (NWM) provides a platform for operationalize nationwide flood inundation forecasting and mapping. The ability to model flood inundation on a national scale will provide invaluable information to decision makers and local emergency officials. Often, forecast products use deterministic model output to provide a visual representation of a single inundation scenario, which is subject to uncertainty from various sources. While this provides a straightforward representation of the potential inundation, the inherent uncertainty associated with the model output should be considered to optimize this tool for decision making support. The goal of this study is to produce ensembles of future flood inundation conditions (i.e. extent, depth, and velocity) to spatially quantify and visually assess uncertainties associated with the predicted flood inundation maps. The setting for this study is located in a highly urbanized watershed along the Darby Creek in Pennsylvania. A forecasting framework coupling the NWM with multiple hydraulic models was developed to produce a suite ensembles of future flood inundation predictions. Time lagged ensembles from the NWM short range forecasts were used to account for uncertainty associated with the hydrologic forecasts. The forecasts from the NWM were input to iRIC and HEC-RAS two-dimensional software packages, from which water extent, depth, and flow velocity were output. Quantifying the agreement between output ensembles for each forecast grid provided the uncertainty metrics for predicted flood water inundation extent, depth, and flow velocity. For visualization, a series of flood maps that display flood extent, water depth, and flow velocity along with the underlying uncertainty associated with each of the forecasted variables were produced. The results from this study demonstrate the potential to incorporate and visualize model uncertainties in flood inundation maps in order to identify the high flood risk zones.

  6. NASA Global Flood Mapping System

    NASA Technical Reports Server (NTRS)

    Policelli, Fritz; Slayback, Dan; Brakenridge, Bob; Nigro, Joe; Hubbard, Alfred

    2017-01-01

    Product utility key factors: Near real time, automated production; Flood spatial extent Cloudiness Pixel resolution: 250m; Flood temporal extent; Flash floods short duration on ground?; Landcover--Water under vegetation cover vs open water

  7. A Cascading Storm-Flood-Landslide Guidance System: Development and Application in China

    NASA Astrophysics Data System (ADS)

    Zeng, Ziyue; Tang, Guoqiang; Long, Di; Ma, Meihong; Hong, Yang

    2016-04-01

    Flash floods and landslides, triggered by storms, often interact and cause cascading effects on human lives and property. Satellite remote sensing data has significant potential use in analysis of these natural hazards. As one of the regions continuously affected by severe flash floods and landslides, Yunnan Province, located in Southwest China, has a complex mountainous hydrometeorology and suffers from frequent heavy rainfalls from May through to late September. Taking Yunnan as a test-bed, this study proposed a Cascading Storm-Flood-Landslide Guidance System to progressively analysis and evaluate the risk of the multi-hazards based on multisource satellite remote sensing data. First, three standardized rainfall amounts (average daily amount in flood seasons, maximum 1h and maximum 6h amount) from the products of Topical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) were used as rainfall indicators to derive the StorM Hazard Index (SMHI). In this process, an integrated approach of the Analytic Hierarchy Process (AHP) and the Information-Entropy theory was adopted to determine the weight of each indicator. Then, land cover and vegetation cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS) products, soil type from the Harmonized World Soil Database (HWSD) soil map, and slope from the Shuttle Radar Topography Mission (SRTM) data were add as semi-static geo-topographical indicators to derive the Flash Flood Hazard Index (FFHI). Furthermore, three more relevant landslide-controlling indicators, including elevation, slope angle and soil text were involved to derive the LandSlide Hazard Index (LSHI). Further inclusion of GDP, population and prevention measures as vulnerability indicators enabled to consecutively predict the risk of storm to flash flood and landslide, respectively. Consequently, the spatial patterns of the hazard indices show that the southeast of Yunnan has more possibility to encounter with storms than other parts, while the northeast of Yunnan are most susceptible to floods and landslides, which agrees with the distribution of observed flood and landslide events. Moreover, risks for the multi-hazards were classified into four categories. Results show a strong correlation between the distributions of flash flood prone and landslide-prone regions and also highlight the counties with high risk of storms (e.g., Funing and Malipo), flash floods (e.g., Gongshan and Yanjing) and landslides (e.g., Zhaotong and Luxi). Compared to other approaches, the Cascading Storm-Flood-Landslide Guidance System uses a straightforward yet useful indicator-based weighted linear combination method and could be a useful prototype in mapping characteristics of storm-triggered hazards for users at different administrative levels (e.g., catchment, town, county, province and even nation) in China.

  8. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    NASA Astrophysics Data System (ADS)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and response actions, such as designing optimal evacuation routes during flood emergencies. Geostatistical tools also provide a set of interpolation techniques for the prediction of the variable value at unstudied similar locations, basing on the sample point values and other variables related with the measured variable. We attempt different geostatistical interpolation methods to obtain continuous surfaces of the risk perception and level of awareness in the study area. The use of these maps for future extensions and actualizations of the Civil Protection Plan is evaluated. References Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management.Journal of Hydrology.

  9. NOAA/National Weather Service Support in Response to the Threat of Debris Flows from the 2009 Station Fire in Los Angeles County: Lessons Learned in Hazard Communications and Public Response

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Laber, J. L.; Boldt, E.

    2010-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS) and the United States Geological Survey (USGS) have developed a prototype debris flow early warning system for Southern California. The system uses USGS-defined rainfall rate thresholds for debris flows and burn area hazard maps to protect interests in and near burn areas of damaging and potentially deadly debris flows. Although common throughout Southern California, as witnessed by the December 25, 2003 storm in which sixteen people were swept to their deaths by debris flows generated from a recent burn area near Devore, debris flows are commonly misunderstood by the public. They are often perceived as rare events, are difficult to warn for with sufficient lead time, and present unique challenges when communicating proper calls to action to best save lives and property. Many improvements to the system have been realized since the project’s inception in 2005, including using more refined rainfall rate thresholds, use of burn area hazard maps, and the establishment of a tiered system to categorize the potential severity of flash floods and debris flows. These efforts have collectively resulted in a reduction of warning false alarms. However, the massive 400,000 hectare 2009 Station burn area in the Angeles National Forest of Los Angeles County has created numerous challenges to the early warning system. The geology of the area burned is highly susceptible to debris flows, due in part to the burn severity, soil types and steep slopes. Most importantly, the burn area is adjacent to and uphill of the highly populated lower foothills of the San Fernando Valley. NOAA/NWS and the USGS have thus worked closely with local response and preparedness agencies to analyze and communicate the threat and assist in developing a unified command response plan in preparation for flash flood and debris flows from this burn area. The early warning system was put to the ultimate test on February 6, 2010 when intense rainfall over the burn area produced very damaging but fortunately nonfatal flash flooding and debris flows. Unfortunately public and local agency response to NWS forecasts, watches, and warnings issued for this event was minimal. Possible causes of, and actions needed to improve upon, this minimal response are examined, including 1) complacency due to previous watch and warning false alarms, 2) underestimating the hazard threat due to local residents having not personally experienced a severe debris flow event in recent history if ever, 3) misinterpretation of NWS point precipitation forecasts and current limits of predictability related to forecasting specific locations and amounts of intense rainfall beyond 12-24 hours, 4) the challenges of ensuring NWS information is consistently received and interpreted among the multiple agencies and jurisdictions of the unified command, and 5) the likelihood that most people did not hear NWS warnings due to the event taking place late at night. Also examined are proper calls to action to protect life and property at a time when evacuations may put people in harm's way.

  10. A multi-source data assimilation framework for flood forecasting: Accounting for runoff routing lags

    NASA Astrophysics Data System (ADS)

    Meng, S.; Xie, X.

    2015-12-01

    In the flood forecasting practice, model performance is usually degraded due to various sources of uncertainties, including the uncertainties from input data, model parameters, model structures and output observations. Data assimilation is a useful methodology to reduce uncertainties in flood forecasting. For the short-term flood forecasting, an accurate estimation of initial soil moisture condition will improve the forecasting performance. Considering the time delay of runoff routing is another important effect for the forecasting performance. Moreover, the observation data of hydrological variables (including ground observations and satellite observations) are becoming easily available. The reliability of the short-term flood forecasting could be improved by assimilating multi-source data. The objective of this study is to develop a multi-source data assimilation framework for real-time flood forecasting. In this data assimilation framework, the first step is assimilating the up-layer soil moisture observations to update model state and generated runoff based on the ensemble Kalman filter (EnKF) method, and the second step is assimilating discharge observations to update model state and runoff within a fixed time window based on the ensemble Kalman smoother (EnKS) method. This smoothing technique is adopted to account for the runoff routing lag. Using such assimilation framework of the soil moisture and discharge observations is expected to improve the flood forecasting. In order to distinguish the effectiveness of this dual-step assimilation framework, we designed a dual-EnKF algorithm in which the observed soil moisture and discharge are assimilated separately without accounting for the runoff routing lag. The results show that the multi-source data assimilation framework can effectively improve flood forecasting, especially when the runoff routing has a distinct time lag. Thus, this new data assimilation framework holds a great potential in operational flood forecasting by merging observations from ground measurement and remote sensing retrivals.

  11. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  12. Cascading disaster models in postburn flash flood

    Treesearch

    Fred May

    2007-01-01

    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  13. On the effects of improved cross-section representation in one dimensional flow routing models applied to ephemeral rivers

    USDA-ARS?s Scientific Manuscript database

    Flash floods are an important component of the semi-arid hydrological cycle, and provide the potential for groundwater recharge as well as posing a dangerous natural hazard. A number of catchment models have been applied to flash flood prediction; however, in general they perform poorly. This study ...

  14. Precipitation and floodiness: forecasts of flood hazard at the regional scale

    NASA Astrophysics Data System (ADS)

    Stephens, Liz; Day, Jonny; Pappenberger, Florian; Cloke, Hannah

    2016-04-01

    In 2008, a seasonal forecast of an increased likelihood of above-normal rainfall in West Africa led the Red Cross to take early humanitarian action (such as prepositioning of relief items) on the basis that this forecast implied heightened flood risk. However, there are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard, so in this presentation we use a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010) to quantify this non-linearity. Using these data, we introduce the concept of floodiness to measure the incidence of floods over a large area, and quantify the link between monthly precipitation, river discharge and floodiness anomalies. Our analysis shows that floodiness is not well correlated with precipitation, demonstrating the problem of using seasonal precipitation forecasts as a proxy for forecasting flood hazard. This analysis demonstrates the value of developing hydrometeorological forecasts of floodiness for decision-makers. As a result, we are now working with the European Centre for Medium-Range Weather Forecasts and the Joint Research Centre, as partners of the operational Global Flood Awareness System (GloFAS), to implement floodiness forecasts in real-time.

  15. Collaborative Initiative toward Developing River Forecasting in South America

    NASA Astrophysics Data System (ADS)

    Cabrera, R.

    2015-12-01

    In the United States, river floods have been discussed as early as 1884. Following a disastrous flooding in 1903, Congress passed legislation and river and flood services became a separate division within the U.S. Weather Bureau. The first River Forecast Center started in 1946 and today the whole country is served by thirteen River Forecast Centers. News from Latin American and Caribbean Countries often report of devastating flooding. However, river forecast services are not fully developed yet. This presentation suggests the utilization of a multinational collaborative approach toward the development of river forecasts in order to mitigate flooding in South America. The benefit of an international strategy resides in the strength created by a team of professionals with different capabilities and expertise.

  16. Some learnings from post-event field investigations after the june 2013 floods in the Pyrenees region in France.

    NASA Astrophysics Data System (ADS)

    Payrastre, Olivier; Bonnifait, Laurent; Gaume, Eric; Le Boursicaut, Raphael

    2014-05-01

    In June 2013 catastrophic floods occurred in south of France in the Pyrenees mountainous area. These floods were due to the combination of a high initial discharge due to snowmelt with a significant rainfall event (up to 200mm rainfall), which effects may have been enhanced by an increase of snowmelt. Although the dynamics of this flood are not really similar, some of its features clearly remind what may be observed in the case of flash floods: significant contribution of relatively small watersheds, high solid transport, very limited information on the reality of flood magnitudes due to the small size of catchments contributing to the flood and the destruction of a significant part of the gauging network. This contribution presents the results of a post event field survey conducted in July 2013 in order to document this flood in terms of intensities of hydrologic reactions. The methods used are those described in Gaume et al. [2008, 2009], with a specific focus on the exploitation of videos from weatnesses. The dataset builded includes 31 peak discharge estimates, illustrating the relatively limited intensity of hydrologic reactions if compared to flash floods, but also providing some interesting complements for the consolidation of the methodology used for post-event field investigations: - several opportunities of comparison of the peak discharge estimates obtained from post event field investigations and from the gauging network, showing an overall good coherence - possibility of very significant flow velocities (up to 6 m/s-2) in the specific context observed here (slopes reaching up to 5%). - possibility to get information on flow surface velocities fields from videos provided by weatnesses. - significant influence of space-time rainfall distribution on the features of the flood, stressing the importance of a detailed information on the contribution of the sub-catchments. Gaume E., Borga M., 2008. Post flood field investigations after major flash floods: proposal of a methodology and illustrations. J. Flood Risk Manag., doi:10.1111/j.1753-318X.2008.00023.x. Gaume E., et al. 2009. A compilation of data on European flash floods. Journal of Hydrology. 367, 70-78, doi:10.1016/j.jhydrol.2008.12.028.

  17. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an objective measure of the likelihood of flooding impacts to help with risk based emergency communication.

  18. How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!

    NASA Astrophysics Data System (ADS)

    Hassan Saddagh, Mohammad; Javad Abedini, Mohammad

    2010-05-01

    Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.

  19. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  20. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  1. Flood alert system based on bayesian techniques

    NASA Astrophysics Data System (ADS)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also analyzed, where the water level, with time lags of 12 hours related to the concentration time, was found to be most significant. In short, the fits to the different distribution functions of extremes were unsatisfactory, as the data were of poor quality and scant. This problem with data is not unusual in small and medium sized Mediterranean basins and becomes the real challenge to any prediction system based only on statistical methods. The aim of the resulting tool is to develop and maintain a numerical short-range weather forecasting system for operational use by the regional water management entities. The development of this tool is also corroborated by recent survey results, which identify the need to develop site specific models for water management in these Mediterranean regions, so prone to flash flood events (NOVIWAM, 2011 Novel Integrated Water Management systems for Southern European Regions, Seventh Framework Programme, EC, 2010-2013).

  2. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  3. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted scenarios, is essential. We believe that the efficient communication of uncertainty in hydro-meteorological forecasts is not a mission impossible. Questions remaining unanswered in probabilistic hydrological forecasting should not neutralize the goal of such a mission, and the suspense kept should instead act as a catalyst for overcoming the remaining challenges.

  4. Floods

    MedlinePlus

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  5. Medium Range Flood Forecasting for Agriculture Damage Reduction

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2014-12-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  6. Balancing Flood Risk and Water Supply in California: Policy Search Combining Short-Term Forecast Ensembles and Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Steinschneider, S.; Nayak, M. A.

    2017-12-01

    Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.

  7. NWS - Watch, Warning, Advisory Display

    Science.gov Websites

    Coastal Waters from Schoodic Point ME to Stonington ME Coastal Waters from Schoodic Point ME to Stonington Watch Flash Flood Warning* Coastal/Flood Watch Coastal/Flood Warning Small Stream Flood Advisory

  8. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood forecasting systems. In a cooperation between HR Wallingford and Deltares, the extended workflows are being integrated into the Delft-FEWS software system. Delft-FEWS provides modules for managing the data handling and forecasting process. Results of a pilot study that demonstrates the new tools are presented. The value of the newly generated information for decision support during a flood event is discussed.

  9. The 9 September 2010 torrential rain and flash flood in the Dragone catchment, Atrani, Amalfi Coast (southern Italy)

    NASA Astrophysics Data System (ADS)

    Violante, C.; Braca, G.; Esposito, E.; Tranfaglia, G.

    2016-02-01

    In this paper we use a multi-hazard approach to analyse the 9 September 2010 flash flood in the Dragone basin, a 9 km2 catchment located along the Amalfi rocky coastal range, southern Italy. In this area, alluvial fan flooding has been the most frequent and destructive geologic hazard since Roman times. Sudden torrents of water (flash floods) are caused by high-intensity and very localized cloudbursts of short duration, inducing slope erosion and sediment delivery from slope to stream. The elevated bed load transport produces fast-moving hyperconcentrated flows with significant catastrophic implications for communities living at the stream mouth. The 9 September 2010 rainstorm event lasted 1 h with an intensity rainfall peak of nearly 120 mm h-1. High topographic relief of the Amalfi coastal range and positive anomalies of the coastal waters conditioned the character of the convective system. Based on geological data and post-event field evidence and surveys, as well as homemade videos and eyewitness accounts, it is reported that the flash flood mobilized some 25 000 m3 of materials with a total (water and sediment) peak flow of 80 m3 s-1. The estimated peak discharge of only clear water was about 65 m3 s-1. This leads to a sediment bulking factor of 1.2 that corresponds to a flow with velocities similar to those of water during a flood.

  10. From Forecasters to the General Public: A Communication Tool to Understand Decision-making Challenges in Weather-related Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Terti, G.; Ruin, I.; Kalas, M.; Lorini, V.; Sabbatini, T.; i Alonso, A. C.

    2017-12-01

    New technologies are currently adopted worldwide to improve weather forecasts and communication of the corresponding warnings to the end-users. "EnhANcing emergency management and response to extreme WeatHER and climate Events" (ANYWHERE) project is an innovating action that aims at developing and implementing a European decision-support platform for weather-related risks integrating cutting-edge forecasting technology. The initiative is built in a collaborative manner where researchers, developers, potential users and other stakeholders meet frequently to define needs, capabilities and challenges. In this study, we propose a role-playing game to test the added value of the ANYWHERE platform on i) the decision-making process and the choice of warning levels under uncertainty, ii) the management of the official emergency response and iii) the crisis communication and triggering of protective actions at different levels of the warning system (from hazard detection to citizen response). The designed game serves as an interactive communication tool. Here, flood and flash flood focused simulations seek to enhance participant's understanding of the complexities and challenges embedded in various levels of the decision-making process under the threat of weather disasters (e.g., forecasting/warnings, official emergency actions, self-protection). Also, we facilitate collaboration and coordination between the participants who belong to different national or local agencies/authorities across Europe. The game is first applied and tested in ANYWHERE's workshop in Helsinki (September, 2017) where about 30-50 people, including researchers, forecasters, civil protection and representatives of related companies, are anticipated to play the simulation. The main idea is to provide to the players a virtual case study that well represents realistic uncertainties and dilemmas embedded in the real-time forecasting-warning processes. At the final debriefing step the participants are encouraged to exchange knowledge, thoughts and insights on their capability or difficulty to decide and communicate their action based on the available information and given constrains. Such feedback will be analyzed and presented and future potentialities for the application of the game will be discussed.

  11. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  12. Regional early flood warning system: design and implementation

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.

    2017-12-01

    This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.

  13. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    USGS Publications Warehouse

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  14. Looking for Similarities Between Lowland (Flash) Floods

    NASA Astrophysics Data System (ADS)

    Brauer, C.; Teuling, R.; Torfs, P.; Hobbelt, L.; Jansen, F.; Melsen, L.; Uijlenhoet, R.

    2012-12-01

    On 26 August 2010 the eastern part of The Netherlands and the bordering part of Germany were struck by a series of rainfall events. Over an area of 740 km2 more than 120 mm of rainfall were observed in 24 h. We investigated the unprecedented flash flood triggered by this exceptionally heavy rainfall event (return period > 1000 years) in the 6.5 km2 Hupsel Brook catchment, which has been the experimental watershed employed by Wageningen University since the 1960s. This study improved our understanding of the dynamics of such lowland flash floods (Brauer et al., 2011). These observations, however, only show how our experimental catchment behaved and the results cannot be extrapolated directly to different floods in other (neighboring) lowland catchments. Therefore, it is necessary to use the information collected in one well-monitored catchment in combination with data from other, less well monitored catchments to find common signatures which could describe the runoff response during a lowland flood as a function of catchment characteristics. Because of the large spatial extent of the rainfall event in August 2010, many brooks and rivers in the Netherlands and Germany flooded. With data from several catchments we investigated the influence of rainfall and catchment characteristics (such as slope, size and land use) on the reaction of discharge to rainfall. We also investigated the runoff response in these catchments during previous floods by analyzing the relation between storage and discharge and the recession curve. In addition to the flood in August 2010, two other floods occurred in The Netherlands in recently. The three floods occurred in different parts of the country, after different types of rainfall events and with different initial conditions. We selected several catchments during each flood to compare their response and find out if these cases are fundamentally different or that they were produced by the same underlying processes and can be treated in a similar manner. Brauer, C. C., Teuling, A.J., Overeem, A., van der Velde, Y., Hazenberg, P., Warmerdam, P. M. M. and Uijlenhoet, R.: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrol. Earth Syst. Sci., 15, 1991-2005, 2011.

  15. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.

  16. Does a more skilful meteorological input lead to a more skilful flood forecast at seasonal timescales?

    NASA Astrophysics Data System (ADS)

    Neumann, Jessica; Arnal, Louise; Magnusson, Linus; Cloke, Hannah

    2017-04-01

    Seasonal river flow forecasts are important for many aspects of the water sector including flood forecasting, water supply, hydropower generation and navigation. In addition to short term predictions, seasonal forecasts have the potential to realise higher benefits through more optimal and consistent decisions. Their operational use however, remains a challenge due to uncertainties posed by the initial hydrologic conditions (e.g. soil moisture, groundwater levels) and seasonal climate forcings (mainly forecasts of precipitation and temperature), leading to a decrease in skill with increasing lead times. Here we present a stakeholder-led case study for the Thames catchment (UK), currently being undertaken as part of the H2020 IMPREX project. The winter of 2013-14 was the wettest on record in the UK; driven by 12 major Atlantic depressions, the Thames catchment was subject to compound (concurrent) flooding from fluvial and groundwater sources. Focusing on the 2013-14 floods, this study aims to see whether increased skill in meteorological input translates through to more accurate forecasting of compound flood events at seasonal timescales in the Thames catchment. An earlier analysis of the ECMWF System 4 (S4) seasonal meteorological forecasts revealed that it did not skilfully forecast the extreme event of winter 2013-14. This motivated the implementation of an atmospheric experiment by the ECMWF to force the S4 to more accurately represent the low-pressure weather conditions prevailing in winter 2013-14 [1]. Here, we used both the standard and the "improved" S4 seasonal meteorological forecasts to force the EFAS (European Flood Awareness System) LISFLOOD hydrological model. Both hydrological forecasts were started on the 1st of November 2013 and run for 4 months of lead time to capture the peak of the 2013-14 flood event. Comparing the seasonal hydrological forecasts produced with both meteorological forcing data will enable us to assess how the improved meteorology translates into skill in the hydrological forecast for this extreme compound event. As primary stakeholders involved in the study, the Environment Agency and Flood Forecasting Centre are responsible for managing flood risk in the UK. For them, the detection of a potential flood signal weeks or months in advance could be of great value in terms of operational practice, decision-making and early warning. [1] Rodwell, M.J., Ferranti, L., Magnusson, L., Weisheimer, A., Rabier, F. & Richardson, D. (2015) Diagnosis of northern hemispheric regime behaviour during winter 2013/14. ECMWF Technical Memoranda 769.

  17. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    NASA Astrophysics Data System (ADS)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  18. An evaluation of the potential of Sentinel 1 for improving flash flood predictions via soil moisture-data assimilation

    NASA Astrophysics Data System (ADS)

    Cenci, Luca; Pulvirenti, Luca; Boni, Giorgio; Chini, Marco; Matgen, Patrick; Gabellani, Simone; Squicciarino, Giuseppe; Pierdicca, Nazzareno

    2017-11-01

    The assimilation of satellite-derived soil moisture estimates (soil moisture-data assimilation, SM-DA) into hydrological models has the potential to reduce the uncertainty of streamflow simulations. The improved capacity to monitor the closeness to saturation of small catchments, such as those characterizing the Mediterranean region, can be exploited to enhance flash flood predictions. When compared to other microwave sensors that have been exploited for SM-DA in recent years (e.g. the Advanced SCATterometer - ASCAT), characterized by low spatial/high temporal resolution, the Sentinel 1 (S1) mission provides an excellent opportunity to monitor systematically soil moisture (SM) at high spatial resolution and moderate temporal resolution. The aim of this research was thus to evaluate the impact of S1-based SM-DA for enhancing flash flood predictions of a hydrological model (Continuum) that is currently exploited for civil protection applications in Italy. The analysis was carried out in a representative Mediterranean catchment prone to flash floods, located in north-western Italy, during the time period October 2014-February 2015. It provided some important findings: (i) revealing the potential provided by S1-based SM-DA for improving discharge predictions, especially for higher flows; (ii) suggesting a more appropriate pre-processing technique to be applied to S1 data before the assimilation; and (iii) highlighting that even though high spatial resolution does provide an important contribution in a SM-DA system, the temporal resolution has the most crucial role. S1-derived SM maps are still a relatively new product and, to our knowledge, this is the first work published in an international journal dealing with their assimilation within a hydrological model to improve continuous streamflow simulations and flash flood predictions. Even though the reported results were obtained by analysing a relatively short time period, and thus should be supported by further research activities, we believe this research is timely in order to enhance our understanding of the potential contribution of the S1 data within the SM-DA framework for flash flood risk mitigation.

  19. Satellites, tweets, forecasts: the future of flood disaster management?

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  20. Economic impact due to Cimanuk river flood disaster in Garut district using Cobb-Douglas analysis with least square method

    NASA Astrophysics Data System (ADS)

    Bestari, T. A. S.; Supian, S.; Purwani, S.

    2018-03-01

    Cimanuk River, Garut District, West Java which have upper course in Papandayan Mountain have an important purpose in dialy living of Garut people as a water source. But in 2016 flash flood in this river was hitted and there was 26 peple dead and 23 peole gone. Flash flood which hitted last year make the settlement almost align with the ground, soaking school and hospital. BPLHD Jawa Barat saw this condition as a disaster which coused by distroyed upper course of Cimanuk River. Flash Flood which happened on the 2016 had ever made economic sector paralized. Least square method selected to analyze economic condition in residents affected post disaster, after the mathematical equations was determined by Cobb Douglas Method. By searching proportion value of the damage, and the result expected became a view to the stakeholder to know which sector that become a worse and be able to make a priority in development

  1. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  2. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour at 20th of June 2012, based on open data sources of geology, soil and land use. The aim of FFRM is to provide an estimation of the damage risk caused by flash-floods for the whole of Upper Austria. To address the hazard, inundation depths were calculated with the extended 2D-model using design rains with an 100-year return period provided by the Environmental Ministry [7]. The potential damage was calculated using damage functions, which were derived from our experience from damage surveys of past events in Austria and according to guidelines for determination of cost-benefit-ratios for flood protection measures [8]. The greatest difficulty was to get appropriate data for the distribution of houses and industrial plants. Zoning plans provide good information on spatial distribution of residential, commercial and industrial areas, but does not contain information on the kind of industry, which is essential for estimating absolute damage values. To get a first idea detailed information from surveyed areas was intersected with the zoning plan, which provides an average damage in the respective zones. The first results can be found on www.waterviewer.com and will be updated with the further development of the project. [1] URBAS, risk management of extreme flooding events - prediction and management of flash floods in urban areas, www.urbanesturzfluten.de, prompted on 13th of November 2014 [2] Società Meteorologica Italiana (SMI), http://www.nimbus.it/eventi/2013/130624flashfloodRimini.pdf, prompted on 13th of November 2014 [3]Newspaper "Österreich", http://www.oe24.at/oesterreich/chronik/Sturzflut-Regen-legt-Ost-Oesterreich-lahm/1509113, prompted on 13th of November 2014 [4] Newspaper "Oberösterreichische Nachrichten", http://www.nachrichten.at/oberoesterreich/Unwetter-Mure-riss-Strasse-mit-Wohnhaus-in-Gosau-gefaehrdet;art4,911288 , prompted on 13th of November 2014 [5] Sharing Water-related Information to Tackle Changes in the Hydrosphere - for Operational Needs (SWITCH-ON), http://water-switch-on.eu [6] European Commission, directive 2007/60/EC of the European Parliament and the Council of 23rd October 2007 on the assessment and management of flood risks: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:288:0027:0034:en:PDF [7] http://ehyd.gv.at [8] Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management: „Kosten-Nutzen-Untersuchungen im Schutzwaserbau", July 2009

  3. Testing an innovative framework for flood forecasting, monitoring and mapping in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Between May and June 2016, France was hit by severe floods, particularly in the Loire and Seine river basins. In this work, we use this case study to test an innovative framework for flood forecasting, mapping and monitoring. More in detail, the system integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. We explore in detail the performance of each component of the system, demonstrating the improvements in respect to stand-alone flood forecasting and monitoring systems. We show how the performances of the forecasting component can be refined using the real-time feedback from social media monitoring to identify which areas were flooded, to evaluate the flood intensity, and therefore to correct impact estimations. Moreover, we show how the integration with impact forecast and social media monitoring can improve the timeliness and efficiency of satellite based emergency mapping, and reduce the chances of missing areas where flooding is already happening. These results illustrate how the new integrated approach leads to a better and earlier decision making and a timely evaluation of impacts.

  4. Living together flash-floods: the Versilia (Italy) case study

    NASA Astrophysics Data System (ADS)

    Caporali, Enrica; Pileggi, Tiziana; Gruntfest, Eve; Ruin, Isabelle; Federici, Giorgio

    2010-05-01

    The phenomena involved in extreme flash-flood events are complex and their prediction is affected by a given degree of uncertainty that makes the warning communication very difficult to achieve. The promotion of the natural hazards perception and the improvement in warning communication, aimed at human life losses reduction, became extremely important to accomplish. As a case study the Versilia river basin, in North - West Tuscany, Central Italy, prone to frequent flash-flood events, is considered. In the area, as stated from Santini (a local historian of XIX century), since 1386 existed special statutes, imposing rivers maintenance for protection against floods. Historical data testify also that the biggest flood events have occurred in the years 1774, 1885, 1902 and 1996. The last event is the one deeply analyzed and better documented. It was exceptional, the consequences on the population were dramatic, and the effects on building and infrastructures were catastrophic. With reference to the Versilia region, a geographic database for flood risk assessment, integrating diachronic data with the results of hydrological and sedimentological modeling, and integrating different competencies, is implemented. The purpose is to provide valuable aid to flash-floods prediction, risk assessment, structural and non-structural mitigation measures. As a first attempt, the combination of all the information available on the history of floods of Versilia region and model results, together with human exposure to flash-flood risk, is also explored. The aim is to investigate the detailed hydrometeorological circumstances that lead to accidental casualties and to better understand the predominant physical factors of risk. In the framework of enhancing natural hazards perception, a very particular educational experience, dedicated to the personnel that work on the territory with different roles and in different fields (i.e. municipal and provincial police, national forest body, voluntary associations, etc.), that in the early warning and in emergency states can be involved in the warning system and the Civil Protection Activities, is also described. The Versilia area, in the days around last Christmas (25-28 December 2009), has been hit again by a series of intense weather events. The rainfall and instability data, as well as the interventions, of these last events, have been acquired and are being processing. The aim is to analyze and verify the impacts on the territory and on the population, also in terms of communities' behavior, risk perception and capacity to cope.

  5. Characterization of a Mediterranean flash flood event using rain gauges, radar, GIS and lightning data

    NASA Astrophysics Data System (ADS)

    Barnolas, M.; Atencia, A.; Llasat, M. C.; Rigo, T.

    2008-06-01

    Flash flood events are very common in Catalonia, generating a high impact on society, including losses in life almost every year. They are produced by the overflowing of ephemeral rivers in narrow and steep basins close to the sea. This kind of floods is associated with convective events producing high rainfall intensities. The aim of the present study is to analyse the 12 14 September 2006 flash flood event within the framework of the characteristics of flood events in the Internal Basins of Catalonia (IBC). To achieve this purpose all flood events occurred between 1996 and 2005 have been analysed. Rainfall and radar data have been introduced into a GIS, and a classification of the events has been done. A distinction of episodes has been made considering the spatial coverage of accumulated rainfall in 24 h, and the degree of the convective precipitation registered. The study case can be considered as a highly convective one, with rainfalls covering all the IBC on the 13th of September. In that day 215.9 mm/24 h were recorded with maximum intensities above 130 mm/h. A complete meteorological study of this event is also presented. In addition, as this is an episode with a high lightning activity it has been chosen to be studied into the framework of the FLASH project. In this way, a comparison between this information and raingauge data has been developed. All with the goal in mind of finding a relation between lightning density, radar echoes and amounts of precipitation. Furthermore, these studies improve our knowledge about thunderstorms systems.

  6. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  7. Heavy Rain, Flash Flooding Possible Across Parts of Lower Mississippi Valley, Southeast

    NASA Image and Video Library

    2017-12-08

    The system that brought heavy rainfall and flash flooding to parts of the southern Plains and western Gulf Coast over the past several days continues to push eastward, with the greatest potential for heavy rain and flash flooding on Monday across parts of the lower Mississippi Valley and Southeast. This image was taken by GOES East at 1515Z on October 26, 2015. Credit: NOAA/NASA GOES Project Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Brief communication: On-site data collection of damage caused by flash floods: Experiences from Braunsbach, Germany, in May/June 2016

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret

    2017-04-01

    At the end of May and beginning of June 2016, several municipalities in Southern Germany suffered from severe flash floods and debris flows which have been triggered by intense rainfall in Central Europe. Overall, the insured losses of these events amounted to EUR 1.2 billion in Germany. Especially the strong and unexpected flash flood on May 29th in Braunsbach (Baden Wurttemberg) - a small village counting about 1,000 residents - attracted media and policymakers due to its devastating character. The understanding of damage caused by flash floods requires ex-post collection of relevant but yet sparsely available information, linking process intensities to damage by using adequate methods of data gathering. Thus, on-site data collection was carried out after the flash flood event in Braunsbach, using open source software as helpful and efficient tool for data acquisition and evaluation. A digital survey was designed and conducted by a team of five researchers who investigated all buildings affected by water and debris flows. The collected data includes an estimation of a particular damage class, the inundation depth, and other relevant information. A post - hoc data analysis was done with R 3.3.1 and QGIS 2.14.3, performing both, a Random Forest Model (RF) and Random Generalized Linear Model (RGLM) as well as preparing a Spearman's rank correlation matrix. For visual interpretation and better overview of the study area and analysis results, a "process intensity" map was created, revealing important links of damage driving factors. We find that not only the water depth, which is often considered as only damage driving factor in riverine flood loss modelling, but also the exposition of a building to the flow direction and susceptible building parts like e.g. shop windows seem to be risk factors in flash-flood prone regions. Although no significant correlations were found, the analyses indicate that also building material (i.e. half-timbered or masonry) and structural precaution could play a role on the extent of damage and therefore offer options of damage mitigation. It is revealed that the damage driving as well as damage reducing factors are complex, contingent upon the surrounding and remarkably different from riverine floods. Further, it can be concluded that open source data collection software for mobile use has great potential as a scientific tool to generate extensive valuable data under challenging conditions.

  9. NASA Spacecraft Eyes Severe Flooding in Argentina

    NASA Image and Video Library

    2013-04-05

    NASA Terra spacecraft captured this view of severe flooding in La Plata, Argentina, on April 4, 2013. Torrential rains and record flash flooding has killed more than 50 and left thousands homeless, according to news reports.

  10. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.

  11. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  12. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  13. Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics

    NASA Astrophysics Data System (ADS)

    Kuchment, L.

    2012-04-01

    Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.

  14. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for example, relocating levees, improving flood warning systems, or boosting overall economic resilience). The assessment includes the locations and numbers of people at risk, as well as the locations and value of buildings, roads and railways, and crops at risk. An accompanying atlas includes easy-to-use risk maps and tables for the Ganges basins.

  15. The flood event of 10-12 November 2013 on the Tiber River basin (central Italy): real-time flood forecasting with uncertainty supporting risk management and decision-making

    NASA Astrophysics Data System (ADS)

    Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths correspond approximately to a return period of 200 years. Most rivers in Umbria have been involved, exceeding hydrometric thresholds and causing flooding (e.g. Chiascio river). The flood event was continuously monitored at the Umbria Region CF and the possible evolution predicted and assessed on the basis of the model forecasts. The predictions provided by MISDc and STAFOM-RCM were found useful to support real-time decision-making addressed to flood risk management. Moreover, the quantification of the uncertainty affecting the deterministic forecast stages was found consistent with the level of confidence selected and had practical utility corroborating the need of coupling deterministic forecast and 'uncertainty' when the model output is used to support decisions about flood management. REFERENCES Barbetta, S., Moramarco, T., Brocca, L., Franchini, M., Melone, F. (2014). Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3), 729-743. Brocca, L., Melone, F., Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813

  16. Global scale predictability of floods

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Gijsbers, Peter; Sperna Weiland, Frederiek

    2016-04-01

    Flood (and storm surge) forecasting at the continental and global scale has only become possible in recent years (Emmerton et al., 2016; Verlaan et al., 2015) due to the availability of meteorological forecast, global scale precipitation products and global scale hydrologic and hydrodynamic models. Deltares has setup GLOFFIS a research-oriented multi model operational flood forecasting system based on Delft-FEWS in an open experimental ICT facility called Id-Lab. In GLOFFIS both the W3RA and PCRGLOB-WB model are run in ensemble mode using GEFS and ECMWF-EPS (latency 2 days). GLOFFIS will be used for experiments into predictability of floods (and droughts) and their dependency on initial state estimation, meteorological forcing and the hydrologic model used. Here we present initial results of verification of the ensemble flood forecasts derived with the GLOFFIS system. Emmerton, R., Stephens, L., Pappenberger, F., Pagano, T., Weerts, A., Wood, A. Salamon, P., Brown, J., Hjerdt, N., Donnelly, C., Cloke, H. Continental and Global Scale Flood Forecasting Systems, WIREs Water (accepted), 2016 Verlaan M, De Kleermaeker S, Buckman L. GLOSSIS: Global storm surge forecasting and information system 2015, Australasian Coasts & Ports Conference, 15-18 September 2015,Auckland, New Zealand.

  17. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  18. Non-parametric data-based approach for the quantification and communication of uncertainties in river flood forecasts

    NASA Astrophysics Data System (ADS)

    Van Steenbergen, N.; Willems, P.

    2012-04-01

    Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the probability of flooding of a certain area, based on the uncertainty assessment of the flood forecasts. By using this type of maps, water managers can focus their attention on the areas with the highest flood probability. Also the larger public can consult these maps for information on the probability of flooding for their specific location, such that they can take pro-active measures to reduce the personal damage. The method of quantifying the uncertainty was implemented in the operational flood forecasting system for the navigable rivers in the Flanders region of Belgium. The method has shown clear benefits during the floods of the last two years.

  19. Characterisation of flooding in Alexandria in October 2015 and suggested mitigating measures

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Zevenbergen, Chris; Wahaab, R. A. Wahaab R. A.; Elbarki, W. A. I. Elbarki W. A. I.; Busker, T. Busker T.; Salinas Rodriguez, C. N. A. Salinas Rodriguez C. N. A.

    2017-04-01

    In October 2015 Alexandria (Egypt) experienced exceptional flooding. The flooding was caused by heavy rainfall in a short period of time in a city which normally does not receive a large amount of rainfall. The heavy rainfall caused a tremendous volume of runoff, which the city's drainage system was unable to drain off to the Mediterranean Sea. Seven people have died due to the flood, and there were huge direct and indirect damages. The city does not have a flood forecasting system. An analysis with rainfall forecast from the European Centre for Medium Range Weather Forecast (ECMWF) showed that the extreme rainfall could have been forecasted about a week back. Naturally, if a flood forecasting model was in place the flooding could have been predicted well in advance. Alexandria, along with several other Arab cities, are not prepared at all for natural hazards. Preparedness actions leading to improved adaptation and resilience are not in place. The situation is being further exacerbated with rapid urbanisation and climate change. The local authorities estimate that about 30000 new buildings have been (illegally) constructed during the last five years at a location near the main pumping station (Max Point). This issue may have a very serious adverse effect on hydrology and requires further study to estimate the additional runoff from the newly urbanised areas. The World Bank has listed Alexandria as one of the five coastal cities, which may have very significant risk of coastal flooding due to the climate change. Setting up of a flood forecasting model along with an evidence-based research on the drainage system's capacity is seen as immediate actions that can significantly improve the preparedness of the city towards flooding. Furthermore, the region has got a number of large lakes, which potentially can be used to store extra water as a flood mitigation measure. Two water bodies, namely the Maryot Lake and the Airport Lake, are identified from which water can be pumped out in advance to keep storage available in case of flooding. Keywords: Alexandria, flood, Egypt, rainfall, forecasting.

  20. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which might provide better and more reliable forecast for the flood affected communities.

  1. A pan-African medium-range ensemble flood forecast system

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Bisselink, Bernard; Pappenberger, Florian; Thielen, Jutta

    2015-04-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this study the predictive capability is investigated, to estimate AFFS' potential as an operational flood forecasting system for the whole of Africa. This is done in a hindcast mode, by reproducing pan-African hydrological predictions for the whole year of 2003 where important flood events were observed. Results were analysed in two ways, each with its individual objective. The first part of the analysis is of paramount importance for the assessment of AFFS as a flood forecasting system, as it focuses on the detection and prediction of flood events. Here, results were verified with reports of various flood archives such as Dartmouth Flood Observatory, the Emergency Event Database, the NASA Earth Observatory and Reliefweb. The number of hits, false alerts and missed alerts as well as the Probability of Detection, False Alarm Rate and Critical Success Index were determined for various conditions (different regions, flood durations, average amount of annual precipitations, size of affected areas and mean annual discharge). The second part of the analysis complements the first by giving a basic insight into the prediction skill of the general streamflow. For this, hydrological predictions were compared against observations at 36 key locations across Africa and the Continuous Rank Probability Skill Score (CRPSS), the limit of predictability and reliability were calculated. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. Also the forecasts showed on average a good reliability, and the CRPSS helped identifying regions to focus on for future improvements. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe and Mozambique) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a good prospective as an operational system, as it has demonstrated its significant potential to contribute to the reduction of flood-related losses in Africa by providing national and international aid organizations timely with medium-range flood forecast information. However, issues related to the practical implication will still need to be investigated.

  2. Probabilistic flood warning using grand ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    He, Y.; Wetterhall, F.; Cloke, H.; Pappenberger, F.; Wilson, M.; Freer, J.; McGregor, G.

    2009-04-01

    As the severity of floods increases, possibly due to climate and landuse change, there is urgent need for more effective and reliable warning systems. The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. An ensemble of weather forecasts from one Ensemble Prediction System (EPS), when used on catchment hydrology, can provide improved early flood warning as some of the uncertainties can be quantified. EPS forecasts from a single weather centre only account for part of the uncertainties originating from initial conditions and stochastic physics. Other sources of uncertainties, including numerical implementations and/or data assimilation, can only be assessed if a grand ensemble of EPSs from different weather centres is used. When various models that produce EPS from different weather centres are aggregated, the probabilistic nature of the ensemble precipitation forecasts can be better retained and accounted for. The availability of twelve global EPSs through the 'THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for the design of an improved probabilistic flood forecasting framework. This work presents a case study using the TIGGE database for flood warning on a meso-scale catchment. The upper reach of the River Severn catchment located in the Midlands Region of England is selected due to its abundant data for investigation and its relatively small size (4062 km2) (compared to the resolution of the NWPs). This choice was deliberate as we hypothesize that the uncertainty in the forcing of smaller catchments cannot be represented by a single EPS with a very limited number of ensemble members, but only through the variance given by a large number ensembles and ensemble system. A coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts is set up to study the potential benefits of using the TIGGE database in early flood warning. Physically based and fully distributed LISFLOOD suite of models is selected to simulate discharge and flood inundation consecutively. The results show the TIGGE database is a promising tool to produce forecasts of discharge and flood inundation comparable with the observed discharge and simulated inundation driven by the observed discharge. The spread of discharge forecasts varies from centre to centre, but it is generally large, implying a significant level of uncertainties. Precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial variability of precipitation on a comparatively small catchment. This perhaps indicates the need to improve NWPs resolution and/or disaggregation techniques to narrow down the spatial gap between meteorology and hydrology. It is not necessarily true that early flood warning becomes more reliable when more ensemble forecasts are employed. It is difficult to identify the best forecast centre(s), but in general the chance of detecting floods is increased by using the TIGGE database. Only one flood event was studied because most of the TIGGE data became available after October 2007. It is necessary to test the TIGGE ensemble forecasts with other flood events in other catchments with different hydrological and climatic regimes before general conclusions can be made on its robustness and applicability.

  3. Rainfall Across the Globe: Precipitation. The Role of Landmass in Monsoon Development. The Relationship Between Precipitation and Sea Surface Temperature on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Chao, Winston; Schubert, Siegfried; Suarez, Max; Pegion, Philip

    2000-01-01

    The numerical simulation of precipitation helps scientists understand the complex mechanisms that determine how and why rainfall is distributed across the globe. Simulation aids in the development of forecastin,g efforts that inform policies regarding the management of water resources. Precipitation modeling also provides short-term warnings, for emergencies such as flash floods and mudslides. Just as precipitation modeling can warn of an impending abundance of rainfall, it can help anticipate the absence of rainfall in drought. What constitutes a drought? A meteorological drought simply means that an area is getting a significantly lower amount of rain than usual over a prolonged period of time and an agricultural drought is based on the level of soil moisture.

  4. A radar-based hydrological model for flash flood prediction in the dry regions of Israel

    NASA Astrophysics Data System (ADS)

    Ronen, Alon; Peleg, Nadav; Morin, Efrat

    2014-05-01

    Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.

  5. Parcel-scale urban coastal flood mapping: Leveraging the multi-scale CoSMoS model for coastal flood forecasting

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Barnard, P. L.; Sanders, B. F.

    2011-12-01

    California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for meaningful prediction of sea level rise impacts and coastal flood forecasting.

  6. Improving the analysis of social component of flash-floods risk assessment: Application to urban areas of Castilla y León (Spain)

    NASA Astrophysics Data System (ADS)

    Aroca Jimenez, Estefanía; Bodoque del Pozo, Jose Maria; Garcia Martin, Juan Antonio; Diez Herrero, Andres

    2016-04-01

    The increasing evidence of anthropogenic climate change, the respective intensification of extreme events as well as the increase in human exposure to natural hazards and their vulnerability show that the enhancement of strategies on how to reduce disaster risk and promote adaptation to extreme events is critical to increase resilience. Growing economic losses, high numbers of casualties and the disruption of livelihoods in various places of the world, at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Social vulnerability characterizes the predisposition of society to be afflicted by hazards such as floods, being flash floods one of the hazards with the greatest capacity to generate risk. Despite its importance, social vulnerability is often a neglected aspect of traditional risk assessments which mainly focus on economic and structural measures. The aim of this research is to identify those social characteristics which render people vulnerable to flash flood hazards, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is a Social Susceptibility Index (SSI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Analysis of demographic and socio-economic information provided by different public organisms. By adding exposure information to SSI, a Social and Infraestructure Flood Vulnerability Index (SIFVI) is created. The methodology proposed here is implemented in the region of Castilla y León (94,226 km2). Townships that are included in this study meet two requirements: i) city centres are affected by an area where potential significant flash-flood risk exists (i.e. villages are crossed by rivers with a longitudinal slope higher than 0.01); ii) city centres are affected by an area with low or exceptional probability of flooding (as provided by Directive 2007/60/EC of 23 october 2007 on the assessment and management of flood risks) acording with the preliminary assessment of flood risk made by water authorities. This analysis of social vulnerability to flash floods means an advance in relation to disaster risk reduction allowing for grouping urban areas with similar resilience. With regard to the above, strengthening of resilience is one of the most important foundation of risk mitigation.

  7. Understanding triggers and dynamics of wood-laden flash floods in mountain catchments: examples from the Zulg River (Switzerland)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Galatiotto, Niccolo; Bürkli, Livia; Stoffel, Markus

    2017-04-01

    Mountain rivers are prone to flash floods, and in forested basins, large quantities of wood can be moved and transported long distances downstream during such events. Under certain circumstances, congested transport of wood may result in wood-laden flows in which a large number of logs form a mass moving together with the flow and thus alter its dynamics. This process could significantly increase the flood hazard and risk, however, the knowledge about the formation of these wood-laden flows is still very limited. The Zulg River (23 km long and 89 km2 drainage area) is located in the Swiss Prealps in the canton of Bern (Switzerland). In the Zulg catchment, heavy local precipitation usually leads to a fast reaction of the water level downstream and very often flash floods are transporting significant volume of wood. There are several bridges crossing the river at the area of Steffisburg and downstream of this town the Zulg flows into the Aare River that crosses the city of Bern few kilometres downstream. Therefore, a better understanding of these processes will help to improve the flood risk management of the region. In this work we are analysing four recent floods (i.e., 2012, 2013, 2015 and 2016) with significant wood transport and the goal is to decipher the triggering and formation of the wood-laden flash floods. We collected aerial pictures from before and after each flood to map the pre- and post-flood conditions and mapped riverscape units, landslides and the wood logs and jams already deposited along the river channel. The forest stand volumes recruited during the events is analysed based on the land use maps available and provided by the Cantonal Forest Service. We also analysed movies taken by witnesses during these flash flood events, which may potentially provide highly valuable information (i.e., the amount and type of wood in motion or what was roughly the velocity and direction of the water) to quantify wood fluxes. However, the usage of these home movies is challenging and we are applying different techniques to extract as much information as possible from these kind of videos. Results will shed light into the dynamics of the wood-laden flows estimating wood fluxes and volumes in the Zulg River, but they will also contribute to better understand these processes in mountain rivers in general. This study is performed within the scope of the Research Project WoodFlow founded by the Swiss Federal Office for the Environment (FOEN).

  8. Flood Warning and Forecasting System in Slovakia

    NASA Astrophysics Data System (ADS)

    Leskova, Danica

    2016-04-01

    In 2015, it finished project Flood Warning and Forecasting System (POVAPSYS) as part of the flood protection in Slovakia till 2010. The aim was to build POVAPSYS integrated computerized flood forecasting and warning system. It took a qualitatively higher level of output meteorological and hydrological services in case of floods affecting large territorial units, as well as local flood events. It is further unfolding demands on performance and coordination of meteorological and hydrological services, troubleshooting observation, evaluation of data, fast communication, modeling and forecasting of meteorological and hydrological processes. Integration of all information entering and exiting to and from the project POVAPSYS provides Hydrological Flood Forecasting System (HYPOS). The system provides information on the current hydrometeorological situation and its evolution with the generation of alerts and notifications in case of exceeding predefined thresholds. HYPOS's functioning of the system requires flawless operability in critical situations while minimizing the loss of its key parts. HYPOS is a core part of the project POVAPSYS, it is a comprehensive software solutions based on a modular principle, providing data and processed information including alarms, in real time. In order to achieve full functionality of the system, in proposal, we have put emphasis on reliability, robustness, availability and security.

  9. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol. Earth Syst. Sci., 18(5), 1561-1573. doi: 10.5194/hess-18-1561-2014 Santos, M., Santos, J. A., & Fragoso, M. (2015). Historical damaging flood records for 1871-2011 in Northern Portugal and underlying atmospheric forcings. Journal of Hydrology, 530, 591-603. doi: 10.1016/j.jhydrol.2015.10.011 Wilhelmi, O. V., & Morss, R. E. (2013). Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study. Environmental Science & Policy, 26, 49-62. doi: 10.1016/j.envsci.2012.07.005 Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M., Quaresma, I., Santos, P. P., Santos, M., & Verde, J. (2014). DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards, 1-30. doi: 10.1007/s11069-013-1018-y

  10. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  11. Application research for 4D technology in flood forecasting and evaluation

    NASA Astrophysics Data System (ADS)

    Li, Ziwei; Liu, Yutong; Cao, Hongjie

    1998-08-01

    In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.

  12. Multiobjective hedging rules for flood water conservation

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Zhang, Chi; Cai, Ximing; Li, Yu; Zhou, Huicheng

    2017-03-01

    Flood water conservation can be beneficial for water uses especially in areas with water stress but also can pose additional flood risk. The potential of flood water conservation is affected by many factors, especially decision makers' preference for water conservation and reservoir inflow forecast uncertainty. This paper discusses the individual and joint effects of these two factors on the trade-off between flood control and water conservation, using a multiobjective, two-stage reservoir optimal operation model. It is shown that hedging between current water conservation and future flood control exists only when forecast uncertainty or decision makers' preference is within a certain range, beyond which, hedging is trivial and the multiobjective optimization problem is reduced to a single objective problem with either flood control or water conservation. Different types of hedging rules are identified with different levels of flood water conservation preference, forecast uncertainties, acceptable flood risk, and reservoir storage capacity. Critical values of decision preference (represented by a weight) and inflow forecast uncertainty (represented by standard deviation) are identified. These inform reservoir managers with a feasible range of their preference to water conservation and thresholds of forecast uncertainty, specifying possible water conservation within the thresholds. The analysis also provides inputs for setting up an optimization model by providing the range of objective weights and the choice of hedging rule types. A case study is conducted to illustrate the concepts and analyses.

  13. Continental scale data assimilation of discharge and its effect on flow predictions

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; van Dijk, Albert

    2017-04-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) and Europe into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  14. Continental scale data assimilation of discharge and its effect on flow predictions across the contiguous US (CONUS)

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Schellekens, J.; van Dijk, A.; Molenaar, R.

    2016-12-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  15. How do I know if I’ve improved my continental scale flood early warning system?

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik

    2017-04-01

    Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.

  16. Action-based flood forecasting for triggering humanitarian action

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; van den Hurk, Bart; van Aalst, Maarten K.; Amuron, Irene; Bamanya, Deus; Hauser, Tristan; Jongma, Brenden; Lopez, Ana; Mason, Simon; Mendler de Suarez, Janot; Pappenberger, Florian; Rueth, Alexandra; Stephens, Elisabeth; Suarez, Pablo; Wagemaker, Jurjen; Zsoter, Ervin

    2016-09-01

    Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.

  17. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    NASA Astrophysics Data System (ADS)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north-south negative gradient of mean annual rainfall in the study region was found to be negatively correlated with rain cells intensity and positively correlated with rain cells area. Additional analysis was done for convective rain cells over two nearby catchments located in the central part of the study region, by ascribing some of the rain events to observed flash-flood events. It was found that rain events associated with flash-floods have higher maximal rain cell intensity and lower minimal cell speed than rain events that did not lead to a flash-flood in the watersheds. This information contributes to our understanding of rain patterns over the dry area of the Dead Sea and their connection to flash-floods. The statistical distributions of rain cells properties can be used for high space-time resolution stochastic simulations of rain storms that can serve as an input to hydrological models.

  18. Characterization of bed load discharge in unsteady flow events in an ephemeral channel

    NASA Astrophysics Data System (ADS)

    Halfi, Eran

    2017-04-01

    There are many methods and equations for estimating bedload flux in steady flow conditions. Yet, very little is known about the effect of very unsteady flows, such as flash floods, on bedload flux. The unpredictable nature of the floods together with many logistic difficulties and safety issues in monitoring explain this gap in knowledge. Global climate change may increase flood event occurrence, making their understanding even more crucial. This research focuses on two durations of flash floods where the flow is most rapidly changing: a) flash flood bore arriving on dry river bed and b) flash flood bore arriving on a column of moving water. The methodology of our study is based on the demonstrated ability of the Eshtemoa gauging station to automatically monitor the variation of bedload flux depending on flow and bed characteristics, along with innovative equipment including hydrophones and geophones for capturing acoustic signals of bedload sediments (1 Hz), video cameras for continuous monitoring of water surface velocity (by the LSPIV method to determine its structure and velocity) and 3-D velocimetry for characterizing turbulence (40 Hz). Additional to these, a well-planned deployment was carried out, including alerting sensors and cellular transmission, enabling to be onsite when bores arrive. During the winter of 2015-2016 two flow events were sufficiently large to transport significant amounts of bedload; the magnitude of the larger event occurs once in a few years. Calibration between the acoustic indirect sensor and the direct slot sampler allow determination of bedload flux at a frequency of 1 Hz. Analyses of the two events indicate an increase of the turbulent nature (increase of the turbulent kinetic energy and the instantaneous vertical velocities), shear stress and bedload flux during the rising limb in the first two minutes of bore arrival.

  19. Rapid Proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during Freshwater Flash Floods in French Mediterranean Coastal Lagoons

    PubMed Central

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R.

    2015-01-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. PMID:26319881

  20. Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons.

    PubMed

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick

    2015-11-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. The Genesis of August 2017 Nepal Floods

    NASA Astrophysics Data System (ADS)

    Uprety, M.; Dugar, S.; Gautam, D.; Budimir, M.; Parajuli, B.; Kharbuja, R. G.

    2017-12-01

    The 2017 monsoon in Nepal was normal until mid-August 2017 when a low pressure system that formed parallel to the foothills of the Churia range brought significant amount of rain in the southern Terai belt. Rivers from East to West swelled as many of them crossed the pre-defined warning thresholds, and rainfall depths in excess of 200 mm to 600 mm were recorded in over a dozen meteorological stations across the country between 11th and 13th of August. The West Rapti River recorded water level of approximately 9 meters while the adjacent Babai River crossed 10 meters and smaller rivers such as Riu Khola and Kankai rose up to 4.8 meters and 5.5 meters respectively, well above danger levels for consecutive days. Early warning systems established in the aforementioned rivers were critical to saving lives and livelihoods. However the severity of flash floods from intermittent streams that originate from the Churia range caught people unaware and led to massive water logging and devastation across Eastern and Central Nepal that claimed 96 lives and displaced more than 14.060 families. The Department of Hydrology and Meteorology with help from telecom operators sent more than 6 million SMS messages to communities residing along the floodplains. These messages provided them with critical information on when to evacuate their homes and move to safer grounds, yet the shear spatial scale and extend of floods meant that communities struggled to find refuge on higher ground. Whilst the Global Flood Awareness System (GLoFAS) indicated with medium probability that major rivers across Nepal might swell in mid-August and the 3 day rainfall forecasts from the Numerical Weather Prediction (NWP) consistently indicated heavy precipitation in the southern Terai belt, yet no significant early actions were taken in response to this information. Despite the availability of forecast information on streamflow prediction and rainfall, there was limited pre-emptive actions and now it is imperative that governments, donors and humanitarian responders in Nepal think beyond the traditional disaster response and relief paradigm and move towards developing and investing in a system that links scientific weather forecasts with predefined early preparedness actions which is currently being piloted and can contribute towards minimizing disaster losses.

  2. Technical Note: Initial assessment of a multi-method approach to spring-flood forecasting in Sweden

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2016-02-01

    Hydropower is a major energy source in Sweden, and proper reservoir management prior to the spring-flood onset is crucial for optimal production. This requires accurate forecasts of the accumulated discharge in the spring-flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialized set-up of the HBV model. In this study, a number of new approaches to spring-flood forecasting that reflect the latest developments with respect to analysis and modelling on seasonal timescales are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for the Swedish river Vindelälven over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring-flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for early forecasts improvements of up to 25 % are found. This potential is reasonably well realized in a multi-method system, which over all forecast dates reduced the error in SFV by ˜ 4 %. This improvement is limited but potentially significant for e.g. energy trading.

  3. Convectively induced mesoscale weather systems in the tropical and warm-season midlatitude atmosphere

    NASA Astrophysics Data System (ADS)

    Smull, Bradley F.

    1995-07-01

    As anticipated by Nelson [1991] in the last U.S. National Report, mesoscale meteorology has continued to be an area of vigorous research activity. Progress is evinced by a growing number of process-oriented studies capitalizing on expanded observational capabilities, as well as more theoretical treatments employing numerical simulations of increasing sophistication. While the majority of papers within the scope of this review fall into the category of basic research, the field's maturation is evident in the emergence of a growing number of applications to operational weather forecasting. Even as our ability to anticipate shifts in synoptic scale upper-air patterns and associated baroclinic developments has steadily improved, lagging skill with regard to quantitative forecasts of precipitation—particularly in situations where deep moist convection is prevalent—has sustained research in warm-season mesoscale meteorology. Each spring and summer midlatitude populations are exposed to life-threatening natural weather phenomena in the form of lightning, tornadoes, straight-line winds, hail, and flash floods. This point was driven home during the summer of 1993, when an extraordinarily persistent series of mesoscale convective systems (MCSs) led to unusually severe and widespread flooding throughout the Mississippi and Missouri river basins. In addition to this obvious impact on regional climate, the 1990's have brought an increased appreciation for the less direct yet potentially significant role that tropical convection may play in shaping global climate through phenomena such as the El Niño-Southern Oscillation (ENSO).

  4. Values of Deploying a Compact Polarimetric Radar to Monitor Extreme Precipitation in a Mountainous Area: Mineral County, Colorado

    NASA Astrophysics Data System (ADS)

    Cheong, B. L.; Kirstetter, P. E.; Yu, T. Y.; Busto, J.; Speeze, T.; Dennis, J.

    2015-12-01

    Precipitation in mountainous regions can trigger flash floods and landslides especially in areas affected by wildfire. Because of the small space-time scales required for observation, they remain poorly observed. A light-weighted X-band polarimetric radar can rapidly respond to the situation and provide continuous rainfall information with high resolution for flood forecast and emergency management. A preliminary assessment of added values to the operational practice in Mineral county, Colorado was performed in Fall 2014 and Summer 2015 with a transportable polarimetric radar deployed at the Lobo Overlook. This region is one of the numerous areas in the Rocky Mountains where the WSR-88D network does not provide sufficient weather coverage due to blockages, and the limitations have impeded forecasters and local emergency managers from making accurate predictions and issuing weather warnings. High resolution observations were collected to document the precipitation characteristics and demonstrate the added values of deploying a small weather radar in such context. The analysis of the detailed vertical structure of precipitation explain the decreased signal sampled by the operational radars. The specific microphysics analyzed though polarimetry suggest that the operational Z-R relationships may not be appropriate to monitor severe weather over this wildfire affected region. Collaboration with the local emergency managers and the National Weather Service shows the critical value of deploying mobile, polarimetric and unmanned radars in complex terrain. Several selected cases are provided in this paper for illustration.

  5. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because models tend to have more difficulty in correctly predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of cloud-allowing forecasts become available.

  6. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  7. The October 2015 flash-floods in south eastern France: hydrological analyses, inundation mapping and impact estimations

    NASA Astrophysics Data System (ADS)

    Payrastre, Olivier; Bourgin, François; Lebouc, Laurent; Le Bihan, Guillaume; Gaume, Eric

    2017-04-01

    The October 2015 flash-floods in south eastern France caused more than twenty fatalities, high damages and large economic losses in high density urban areas of the Mediterranean coast, including the cities of Mandelieu-La Napoule, Cannes and Antibes. Following a post event survey and preliminary analyses conducted within the framework of the Hymex project, we set up an entire simulation chain at the regional scale to better understand this outstanding event. Rainfall-runoff simulations, inundation mapping and a first estimation of the impacts are conducted following the approach developed and successfully applied for two large flash-flood events in two different French regions (Gard in 2002 and Var in 2010) by Le Bihan (2016). A distributed rainfall-runoff model applied at high resolution for the whole area - including numerous small ungauged basins - is used to feed a semi-automatic hydraulic approach (Cartino method) applied along the river network - including small tributaries. Estimation of the impacts is then performed based on the delineation of the flooded areas and geographic databases identifying buildings and population at risk.

  8. Flash Flood Risk Perception in an Italian Alpine Region. From Research into Adaptive Strategies.

    NASA Astrophysics Data System (ADS)

    Scolobig, A.; de Marchi, B.; Borga, M.

    2009-04-01

    Flash floods are characterised by short lead times and high levels of uncertainty. Adaptive strategies to face them need to take into account not only the physical characteristics of the hydro-geological phenomena, but also peoples' risk perceptions, attitudes and behaviours in case of an emergency. It is quite obvious that a precondition for an effective adaptation, e.g. in the case of a warning, is the awareness of being endangered. At the same time the perceptions of those at risk and their likely actions inform hazard warning strategies and recovery programmes following such events. Usually low risk awareness or "wrong perceptions" of the residents are considered among the causes of an inadequate preparedness or response to flash floods as well as a symptom of a scarce self-protection culture. In this paper we will focus on flood risk perception and on how research on this topic may contribute to design adaptive strategies and give inputs to flood policy decisions. We will report on a flood risk perception study of the population residing in four villages in an Italian Alpine Region (Trentino Alto-Adige), carried out between October 2005 and January 2006. A total of 400 standardised questionnaires were submitted to local residents by face to face interviews. The surveys were preceded by focus groups with officers from agencies in charge of flood risk management and semi-structured and in-depth interviews with policy, scientific and technical experts. Survey results indicated that people are not so worried about hydro-geological phenomena, and think that their community is more endangered than themselves. The knowledge of the territory and danger sources, the unpredictability of flash floods and the feeling of safety induced by structural devices are the main elements which make the difference in shaping residents' perceptions. The study also demonstrated a widespread lack of adoption of preparatory measures among residents, together with a general low evaluation of individual preparedness to face the events. At the same time there is a widespread trust in officials dealing with risk and emergency management, which confirms a general trend in delegating responsibility for safety to the agencies in charge. It is clear from the research findings that the problem is not only a lack of risk awareness and that flash flood risk perceptions are socially constructed in the sense that norms and values, as well as belief systems, influence and possibly define them. Several factors intervene in this process and most of them are highly context dependent. Therefore we underline the importance of understanding the local contexts and engaging with local perspectives on risk in the design of adaptive strategies. Taking these perspectives seriously into account is a prerequisite for the inclusion of those at risk in awareness raising processes, in developing and delivering strategies and in planning flood management, as required also by the European Floods Directive (EU 2007), which foresees "the active involvement of interested parties in the production, review and updating of the flood risk management plans ..." (Article 10). We also underline that a major effort in understanding how risk perception research can inform adaptive strategies is still needed to improve individual capability to positively face future flash flood emergencies.

  9. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa

    2011-05-01

    We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.

  10. An operational real-time flood forecasting system in Southern Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio

    2015-04-01

    A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.

  11. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.

  12. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  13. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating characteristics) curve.

  14. Improving near-range forecasts of severe precipitation with GNSS and InSAR high-resolution data

    NASA Astrophysics Data System (ADS)

    Miranda, P. M.; Mateus, P.; Nico, G.; Catalão, J.; Pinto, P.; Tomé, R.; Benevides, P.

    2017-12-01

    Precipitable water vapor (PWV) maps obtained by GNSS observations are now routinely incorporated into meteorological reanalysis by the main forecast centers such as ECMWF and NCEP. Such data, however, represent a small subset of the available microwave information, which now includes many regional networks of GNSS stations capable to produce frequent updates of the PWV distribution (at least at hourly time scales), and in some cases very high resolution PWV-anomaly fields that may be produced by SAR interferometry (Mateus et al 2013). Such very high resolution fields can be assimilated into state of the art forecast models such as WRF improving it's performance (Mateus et al 2016). In the present study, the assimilation of InSAR data from Sentinel 1A is used to analyse the evolution of two severe precipitation events, which occurred 12 hours apart in the city of Adra in 6-7 September 2015, southern Spain, timed after the two successive passages of the Sentinel. Such events, which produced a flash flood with casualties and large structural damage, were not forecasted by the operational models, but are very accurately reproduced once InSAR data is assimilated, as shown by local observations including weather radar. The physical processes involved in the development of the storm are discussed in some detail, by comparing different simulations: a control run, an experiment with GNSS assimilation, and the experiment with InSAR assimilation. While InSAR images are at this time only available every 6 days, the fact that an improvement of the water vapor distribution by data assimilation can have such a dramatic impact in severe weather forecasts suggests there is significant room for improvement in near term forecasting, by a better incorporation of both higher resolution GNSS data and more frequent SAR images.

  15. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    NASA Astrophysics Data System (ADS)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  16. How much are you prepared to PAY for a forecast?

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Coughlan, Erin; Ramos, Maria-Helena; Pappenberger, Florian; Wetterhall, Fredrik; Bachofen, Carina; van Andel, Schalk Jan

    2015-04-01

    Probabilistic hydro-meteorological forecasts are a crucial element of the decision-making chain in the field of flood prevention. The operational use of probabilistic forecasts is increasingly promoted through the development of new novel state-of-the-art forecast methods and numerical skill is continuously increasing. However, the value of such forecasts for flood early-warning systems is a topic of diverging opinions. Indeed, the word value, when applied to flood forecasting, is multifaceted. It refers, not only to the raw cost of acquiring and maintaining a probabilistic forecasting system (in terms of human and financial resources, data volume and computational time), but also and most importantly perhaps, to the use of such products. This game aims at investigating this point. It is a willingness to pay game, embedded in a risk-based decision-making experiment. Based on a ``Red Cross/Red Crescent, Climate Centre'' game, it is a contribution to the international Hydrologic Ensemble Prediction Experiment (HEPEX). A limited number of probabilistic forecasts will be auctioned to the participants; the price of these forecasts being market driven. All participants (irrespective of having bought or not a forecast set) will then be taken through a decision-making process to issue warnings for extreme rainfall. This game will promote discussions around the topic of the value of forecasts for decision-making in the field of flood prevention.

  17. Flash flood characterisation of the Haor area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  18. Predictability and extended-range prognosis in natural hazard risk mitigation process: A case study over west Greece

    NASA Astrophysics Data System (ADS)

    Matsangouras, Ioannis T.; Nastos, Panagiotis T.

    2014-05-01

    Natural hazards pose an increasing threat to society and new innovative techniques or methodologies are necessary to be developed, in order to enhance the risk mitigation process in nowadays. It is commonly accepted that disaster risk reduction is a vital key for future successful economic and social development. The systematic improvement accuracy of extended-range prognosis products, relating with monthly and seasonal predictability, introduced them as a new essential link in risk mitigation procedure. Aiming at decreasing the risk, this paper presents the use of seasonal and monthly forecasting process that was tested over west Greece from September to December, 2013. During that season significant severe weather events occurred, causing significant impact to the local society (severe storms/rainfalls, hail, flash floods, etc). Seasonal and monthly forecasting products from European Centre for Medium-Range Weather Forecasts (ECMWF) depicted, with probabilities stratified by terciles, areas of Greece where significant weather may occur. As atmospheric natural hazard early warning systems are able to deliver warnings up to 72 hours in advance, this study illustrates that extended-range prognosis could be introduced as a new technique in risk mitigation. Seasonal and monthly forecast products could highlight extended areas where severe weather events may occur in one month lead time. In addition, a risk mitigation procedure, that extended prognosis products are adopted, is also presented providing useful time to preparedness process at regional administration level.

  19. Flooding from Intense Rainfall: an overview of project SINATRA

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2014-05-01

    Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. (2) Use this new understanding and data to improve models of FFIR so we can predict where they may happen nationwide by: employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas; scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR; improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run (3) Use these new findings and predictions to provide the Environment Agency and other professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities by: developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence; developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management.

  20. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.

  1. Flash flood hazard assessment through modelling in small semi-arid watersheds. The example of the Beni Mellal watershed in Morocco

    NASA Astrophysics Data System (ADS)

    Werren, G.; Balin, D.; Reynard, E.; Lane, S. N.

    2012-04-01

    Flood modelling is essential for flood hazard assessment. Modelling becomes a challenge in small, ungauged watersheds prone to flash floods, like the ones draining the town of Beni Mellal (Morocco). Four temporary streams meet in the urban area of Beni Mellal, producing every year sheet floods, harmful to infrastructure and to people. Here, statistical analysis may not give realistic results, but the study of these repeated real flash flood events may provide a better understanding of watershed specific hydrology. This study integrates a larger cooperation project between Switzerland and Morroco, aimed at knowledge transfer in disaster risk reduction, especially through hazard mapping and land-use planning, related to implementation of hazard maps. Hydrologic and hydraulic modelling was carried out to obtain hazard maps. An important point was to find open source data and methods that could still produce a realistic model for the area concerned, in order to provide easy-to-use, cost-effective tools for risk management in developing countries like Morocco, where routine data collection is largely lacking. The data used for modelling is the Web available TRMM 3-Hour 0.25 degree rainfall data provided by the Tropical Rainfall Measurement Mission Project (TRMM). Hydrologic modelling for discharge estimation was undertaken using methods available in the HEC-HMS software provided by the US Army Corps of Engineers® (USACE). Several transfer models were used, so as to choose the best-suited method available. As no model calibration was possible for no measured flow data was available, a one-at-the-time sensitivity analysis was performed on the parameters chosen, in order to detect their influence on the results. But the most important verification method remained field observation, through post-flood field campaigns aimed at mapping water surfaces and depths in the flooded areas, as well as river section monitoring, where rough discharge estimates could be obtained using empirical equations. Another information source was local knowledge, as people could give a rough estimation of concentration time by describing flood evolution. Finally, hydraulic modelling of the flooded areas in the urban perimeter was performed using the USACE HEC-RAS® software capabilities. A specific challenge at this stage was field morphology, as the flooded areas form large alluvial fans, with very different flood behaviour compared to flood plains. Model "calibration" at this stage was undertaken using the mapped water surfaces and depths. Great care was taken for field geometry design, where field observations, measured cross sections and field images were used to improve the existing DTM data. The model included protection dikes already built by local authorities in their flood-fight effort. Because of flash-flood specific behaviour, only maximal flooded surfaces and flow velocities were simulated through steady flow analysis in HEC-RAS. The discharge estimates obtained for the chosen event were comparable to 10-year return periods as estimated by the watershed authorities. Times of concentration correspond to this previous estimation and to local people descriptions. The modelled water surfaces reflect field reality. Flash-flood modelling demands extensive knowledge of the studied field in order to compensate data scarcity. However, more precise data, like radar rainfall estimates available in Morocco, would definitely improve outputs. In this perspective, better data access at the local level and good use of the available methods could benefit the disaster risk reduction effort as a whole.

  2. The potential of remotely sensed soil moisture for operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Nowadays, remotely sensed soil moisture is readily available from multiple space born sensors. The high temporal resolution and global coverage make these products very suitable for large-scale land-surface applications. The potential to use these products in operational flood forecasting has thus far not been extensively studied. In this study, we evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the timing and height of the flood peak and low flows. EFAS is used for operational flood forecasting in Europe and uses a distributed hydrological model for flood predictions for lead times up to 10 days. Satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of only discharge observations. Discharge observations are available at the outlet and at six additional locations throughout the catchment. To assimilate soil moisture data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, derived from a detailed model-satellite soil moisture comparison study, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are used in that the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 10-15% on average, compared to assimilation of discharge only. The rank histograms show that the forecast is not biased. The timing errors in the flood predictions are decreased when soil moisture data is used and imminent floods can be forecasted with skill one day earlier. In conclusion, our study shows that assimilation of satellite soil moisture increases the performance of flood forecasting systems for large catchments, like the Upper Danube. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of future soil moisture missions with a higher spatial resolution like SMAP to improve near-real time flood forecasting in large catchments.

  3. Evaluating the Predictability of South-East Asian Floods Using ECMWF and GloFAS Forecasts

    NASA Astrophysics Data System (ADS)

    Pillosu, F. M.

    2017-12-01

    Between July and September 2017, the monsoon season caused widespread heavy rainfall and severe floods across countries in South-East Asia, notably in India, Nepal and Bangladesh, with deadly consequences. According to the U.N., in Bangladesh 140 people lost their lives and 700,000 homes were destroyed; in Nepal at least 143 people died, and more than 460,000 people were forced to leave their homes; in India there were 726 victims of flooding and landslides, 3 million people were affected by the monsoon floods and 2000 relief camps were established. Monsoon season happens regularly every year in South Asia, but local authorities reported the last monsoon season as the worst in several years. What made the last monsoon season particularly severe in certain regions? Are these causes clear from the forecasts? Regarding the meteorological characterization of the event, an analysis of forecasts from the European Centre for Medium-Range Weather Forecast (ECMWF) for different lead times (from seasonal to short range) will be shown to evaluate how far in advance this event was predicted and start discussion on what were the factors that led to such a severe event. To illustrate hydrological aspects, forecasts from the Global Flood Awareness System (GloFAS) will be shown. GloFAS is developed at ECMWF in co-operation with the European Commission's Joint Research Centre (JRC) and with the support of national authorities and research institutions such as the University of Reading. It will become operational at the end of 2017 as part of the Copernicus Emergency Management Service. GloFAS couples state-of-the-art weather forecasts with a hydrological model to provide a cross-border system with early flood guidance information to help humanitarian agencies and national hydro-meteorological services to strengthen and improve forecasting capacity, preparedness and mitigation of natural hazards. In this case GloFAS has shown good potential to become a useful tool for better and earlier preparedness. For instance, first tests showed that by 28th July GloFAS was able to forecast that a relatively large flood peak would probably occur between 13th and 22nd August. An actual flood peak was recorded around 16th August according to the Bangladeshi Flood Forecasting Centre.

  4. Initial assessment of a multi-model approach to spring flood forecasting in Sweden

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2015-06-01

    Hydropower is a major energy source in Sweden and proper reservoir management prior to the spring flood onset is crucial for optimal production. This requires useful forecasts of the accumulated discharge in the spring flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialised set-up of the HBV model. In this study, a number of new approaches to spring flood forecasting, that reflect the latest developments with respect to analysis and modelling on seasonal time scales, are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for three main Swedish rivers over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for specific locations and lead times improvements of 20-30 % are found. When combining all forecasts in a weighted multi-model approach, a mean improvement over all locations and lead times of nearly 10 % was indicated. This demonstrates the potential of the approach and further development and optimisation into an operational system is ongoing.

  5. Forecasting Lightning Threat Using WRF Proxy Fields

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.

    2010-01-01

    Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.

  6. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.

  7. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  8. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  9. 78 FR 48762 - Missouri Disaster #MO-00065

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Administrative declaration of a disaster for the State of Missouri dated 08/02/2013. Incident: Severe storm system that generated flooding, flash flooding, high winds, hail, and tornadoes. Incident Period: 05/29...

  10. New developments at the Flood Forecasting Centre: operational flood risk assessment and guidance

    NASA Astrophysics Data System (ADS)

    Pilling, Charlie

    2017-04-01

    The Flood Forecasting Centre (FFC) is a partnership between the UK Met Office, the Environment Agency and Natural Resources Wales. The FFC was established in 2009 to provide an overview of flood risk across England and Wales and to provide flood guidance services primarily for the emergency response community. The FFC provides forecasts for all natural sources of flooding, these being fluvial, surface water, coastal and groundwater. This involves an assessment of possible hydrometeorological events and their impacts over the next five days. During times of heightened flood risk, the close communication between the FFC, the Environment Agency and Natural Resources Wales allows mobilization and deployment of staff and flood defences. Following a number of severe flood events during winters 2013-14 and 2015-16, coupled with a drive from the changing landscape in national incident response, there is a desire to identify flood events at even longer lead time. This earlier assessment and mobilization is becoming increasingly important and high profile within Government. For example, following the exceptional flooding across the north of England in December 2015 the Environment Agency have invested in 40 km of temporary barriers that will be moved around the country to help mitigate against the impacts of large flood events. Efficient and effective use of these barriers depends on identifying the broad regions at risk well in advance of the flood, as well as scaling the magnitude and duration of large events. Partly in response to this, the FFC now produce a flood risk assessment for a month ahead. In addition, since January 2017, the 'new generation' daily flood guidance statement includes an assessment of flood risk for the 6 to 10 day period. Examples of both these new products will be introduced, as will some of the new developments in science and technical capability that underpin these assessments. Examples include improvements to fluvial forecasting from 'fluvial decider', and downscaled hydrometeorological data that generates probabilistic river flows at 6 days lead time using the Delft-FEWS / Grid-to-Grid modelling system. Advances in coastal forecasting from surge and wave ensembles and also the longer range 'coastal decider' approach will also be presented.

  11. Experiences from coordinated national-level landslide and flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé

    2015-04-01

    While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.

  12. Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model

    NASA Astrophysics Data System (ADS)

    Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan

    2016-10-01

    Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.

  13. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.

  14. Forecasting snowmelt flooding over Britain using the Grid-to-Grid model: a review and assessment of methods

    NASA Astrophysics Data System (ADS)

    Dey, Seonaid R. A.; Moore, Robert J.; Cole, Steven J.; Wells, Steven C.

    2017-04-01

    In many regions of high annual snowfall, snowmelt modelling can prove to be a vital component of operational flood forecasting and warning systems. Although Britain as a whole does not experience prolonged periods of lying snow, with the exception of the Scottish Highlands, the inclusion of snowmelt modelling can still have a significant impact on the skill of flood forecasts. Countrywide operational flood forecasts over Britain are produced using the national Grid-to-Grid (G2G) distributed hydrological model. For Scotland, snowmelt is included in these forecasts through a G2G snow hydrology module involving temperature-based snowfall/rainfall partitioning and functions for temperature-excess snowmelt, snowpack storage and drainage. Over England and Wales, the contribution of snowmelt is included by pre-processing the precipitation prior to input into G2G. This removes snowfall diagnosed from weather model outputs and adds snowmelt from an energy budget land surface scheme to form an effective liquid water gridded input to G2G. To review the operational options for including snowmelt modelling in G2G over Britain, a project was commissioned by the Environment Agency through the Flood Forecasting Centre (FFC) for England and Wales and in partnership with the Scottish Environment Protection Agency (SEPA) and Natural Resources Wales (NRW). Results obtained from this snowmelt review project will be reported on here. The operational methods used by the FFC and SEPA are compared on past snowmelt floods, alongside new alternative methods of treating snowmelt. Both case study and longer-term analyses are considered, covering periods selected from the winters 2009-2010, 2012-2013, 2013-2014 and 2014-2015. Over Scotland, both of the snowmelt methods used operationally by FFC and SEPA provided a clear improvement to the river flow simulations. Over England and Wales, fewer and less significant snowfall events occurred, leading to less distinction in the results between the methods. It is noted that, for all methods considered, large uncertainties remain in flood forecasts influenced by snowmelt. Understanding and quantifying these uncertainties should lead to more informed flood forecasts and associated guidance information.

  15. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece

    NASA Astrophysics Data System (ADS)

    Karagiorgos, Konstantinos; Thaler, Thomas; Heiser, Micha; Hübl, Johannes; Fuchs, Sven

    2016-10-01

    In the framework of flood risk assessment, vulnerability is a key concept to assess the susceptibility of elements at risk. Besides the increasing amount of studies on flash floods available, in-depth information on vulnerability in Mediterranean countries was missing so far. Moreover, current approaches in vulnerability research are driven by a divide between social scientists who tend to view vulnerability as representing a set of socio-economic factors, and natural scientists who view vulnerability in terms of the degree of loss to an element at risk. Further, vulnerability studies in response to flash flood processes are rarely answered in the literature. In order to close this gap, this paper implemented an integrated vulnerability approach focusing on residential buildings exposed to flash floods in Greece. In general, both physical and social vulnerability was comparable low, which is interpreted as a result from (a) specific building regulations in Greece as well as general design principles leading to less structural susceptibility of elements at risk exposed, and (b) relatively low economic losses leading to less social vulnerability of citizens exposed. The population show high risk awareness and coping capacity to response to natural hazards event and in the same time the impact of the events are quite low, because of the already high use of local protection measures. The low vulnerability score for East Attica can be attributed especially to the low physical vulnerability and the moderate socio-economic well-being of the area. The consequence is to focus risk management strategies mainly in the reduction of the social vulnerability. By analysing both physical and social vulnerability an attempt was made to bridge the gap between scholars from sciences and humanities, and to integrate the results of the analysis into the broader vulnerability context.

  16. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  17. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  18. The suitability of remotely sensed soil moisture for improving operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S. M.; Bierkens, M. F. P.

    2013-11-01

    We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model for flood predictions with lead times up to 10 days. For this study, satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF, are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 5-10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more data is assimilated into the system and the best performance is achieved with the assimilation of both discharge and satellite observations. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.

  19. The suitability of remotely sensed soil moisture for improving operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S. M.; Bierkens, M. F. P.

    2014-06-01

    We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5-10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.

  20. Flood Forecasting in Wales: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    How, Andrew; Williams, Christopher

    2015-04-01

    With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping

  1. Calibration of commercial microwave link derived- rainfall and its relevance to flash flood occurrence in the Dead Sea area

    NASA Astrophysics Data System (ADS)

    Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich

    2016-04-01

    Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML's path were extracted and rain intensities were derived and averaged to simulate the dependence of the CML rain intensity on path's length. The CML-derived rain intensity is then multiplied by a correlation factor, found by fitting the CML intensity to that of the radar's rain (instantaneous rather than cumulative values) using least squares. Relative humidity is taken into account from the beginning of storms because its low values can lead to the Virga phenomenon - rain drops evaporate before reaching the ground, particularly in arid regions. This is a significant disadvantage of using radar data in dry regions. Therefore, the CML contribution may be significant in this environment. Spatial assumptions including uniformity are used to allow the computed specific discharge to be compared to the corrected and the uncorrected rain intensity. The time difference between the runoff generating attenuation pattern and the arrival of the wave at the outlet is examined and can constitute the base of a future short term flood warning system.

  2. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.

    2016-01-01

    This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system. Complementary with the deterministic forecast of the hydraulic state, the estimation of an uncertainty range is given relying on off-line and on-line diagnosis. The possibilities to further extend the control vector while limiting the computational cost and equifinality problem are finally discussed.

  3. Development of Hydrometeorological Monitoring and Forecasting as AN Essential Component of the Early Flood Warning System:

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2012-12-01

    Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of current information, forecasts and warnings to consumers automatically. Besides scientific and technical issues the implementation of these objectives requires solution of a number of organizational issues. Thus, as a result of the increased complexity of types of hydrometeorological data and in order to develop forecasting methods, a reconsideration of meteorological and hydrological measurement networks should be carried out. The "optimal density of measuring networks" is proposed taking into account principal terms: a) minimizing an uncertainty in characterizing the spacial distribution of hydrometeorological parameters; b) minimizing the Total Life Cycle Cost of creation and maintenance of measurement networks. Much attention will be given to training Ukrainian disaster management authorities from the Ministry of Emergencies and the Water Management Agency to identify the flood hazard risk level and to indicate the best protection measures on the basis of continuous monitoring and forecasts of evolution of meteorological and hydrological conditions in the river basin.

  4. Effect of differential forest management on land-use change (LUC) in a tropical hill forest of Malaysia.

    PubMed

    Masum, Kazi Mohammad; Mansor, Asyraf; Sah, Shahrul Anuar Mohd; Lim, Hwee San

    2017-09-15

    Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Integrating Fluvial and Oceanic Drivers in Operational Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, Liv; Erikson, Li; Barnard, Patrick; Kim, Jungho; Cifelli, Rob; Johnson, Lynn

    2016-04-01

    The nine counties that make up the San Francisco Bay area are home to 7.5 million people and these communties are susceptible to flooding along the bay shoreline and inland creeks that drain to the bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. The U.S. Geological Survey ( USGS) and National Weather Service (NWS) are developing a state-of-the-art flooding forecast model for the San Francisco Bay area that will predict watershed and ocean-based flooding up to 72 hours in advance of an approaching storm. The model framework for flood forecasts is based on the USGS-developed Coastal Storm Modeling System (CoSMoS) that was applied to San Francisco Bay under the Our Coast Our Future project. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model, and tributary discharges from the Research Distributed Hydrologic Model (RDHM), developed by the NWS Office of Hydrologic Development. The flooding extent is determined by overlaying the resulting water levels onto a recently completed 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. Here we present initial pilot results of hindcast winter storms in January 2010 and December 2012, where the flooding is driven by oceanic and fluvial factors respectively. We also demonstrate the feasibility of predicting flooding on an operational time scale that incorporates both atmospheric and hydrologic forcings.

  6. Implementation of remote sensing data for flood forecasting

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Li, Y.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2016-12-01

    Flooding is one of the most frequent and destructive natural disasters. A timely, accurate and reliable flood forecast can provide vital information for flood preparedness, warning delivery, and emergency response. An operational flood forecasting system typically consists of a hydrologic model, which simulates runoff generation and concentration, and a hydraulic model, which models riverine flood wave routing and floodplain inundation. However, these two types of models suffer from various sources of uncertainties, e.g., forcing data initial conditions, model structure and parameters. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using streamflow measurements, and such applications are limited in well-gauged areas. The recent increasing availability of spatially distributed Remote Sensing (RS) data offers new opportunities for flood events investigation and forecast. Based on an Australian case study, this presentation will discuss the use 1) of RS soil moisture data to constrain a hydrologic model, and 2) of RS-derived flood extent and level to constrain a hydraulic model. The hydrological model is based on a semi-distributed system coupled with a two-soil-layer rainfall-runoff model GRKAL and a linear Muskingum routing model. Model calibration was performed using either 1) streamflow data only or 2) both streamflow and RS soil moisture data. The model was then further constrained through the integration of real-time soil moisture data. The hydraulic model is based on LISFLOOD-FP which solves the 2D inertial approximation of the Shallow Water Equations. Streamflow data and RS-derived flood extent and levels were used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space was quantified and discussed.

  7. Slovak Flood Forecasting Service at the National and International Level

    NASA Astrophysics Data System (ADS)

    Leskova, Danica; Mikuličková, Michaela

    2017-04-01

    National Flood Forecasting Service is based on national legislation /Slovak legislation/ so that it could deal with the flood situation at the local level. Information about international rivers, e.g.: Danube, March (Morava), Uh, and Latorica are received on the basis of bilateral agreements. An important supplementary information is the European Flood Awareness System (EFAS). In this presentation a forecasting system POVAPSYS, which has been in Slovakia in use since 2016, is also shown. The Slovak Hydrometeorological Institute (SHMI) is a partner of EFAS, but simultaneously is a part of consortium of the EFAS Dissemination Centre, and its role is to analyze results of models, to analyze hydrometeorological situation, to disseminate information, and to send flood notifications to the EFAS partners. Both systems will be presented.

  8. Developing empirical lightning cessation forecast guidance for the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Stano, Geoffrey T.

    The Kennedy Space Center in east Central Florida is one of the few locations in the country that issues lightning advisories. These forecasts are vital to the daily operations of the Space Center and take on even greater significance during launch operations. The U.S. Air Force's 45th Weather Squadron (45WS), who provides forecasts for the Space Center, has a good record of forecasting the initiation of lightning near their locations of special concern. However, the remaining problem is knowing when to cancel a lightning advisory. Without specific scientific guidelines detailing cessation activity, the Weather Squadron must keep advisories in place longer than necessary to ensure the safety of personnel and equipment. This unnecessary advisory time costs the Space Center millions of dollars in lost manpower each year. This research presents storm and environmental characteristics associated with lightning cessation that then are utilized to create lightning cessation guidelines for isolated thunderstorms for use by the 45WS during the warm season months of May through September. The research uses data from the Lightning Detection and Ranging (LDAR) network at the Kennedy Space Center, which can observe intra-cloud and portions of cloud-to-ground lightning strikes. Supporting data from the Cloud-to-Ground Lightning Surveillance System (CGLSS), radar observations from the Melbourne WSR-88D, and Cape Canaveral morning radiosonde launches also are included. Characteristics of 116 thunderstorms comprising our dataset are presented. Most of these characteristics are based on LDAR-derived spark and flash data and have not been described previously. In particular, the first lightning activity is quantified as either cloud-to-ground (CG) or intra-cloud (IC). Only 10% of the storms in this research are found to initiate with a CG strike. Conversely, only 16% of the storms end with a CG strike. Another characteristic is the average horizontal extent of all the flashes comprising a storm. Our average is 12-14 km, while the greatest flash extends 26 km. Comparisons between the starting altitude of the median and last flashes of a storm are analyzed, with only 37% of the storms having a higher last flash initiating altitude. Additional observations are made of the total lightning flash rate, percentage of CG to IC lightning, trends of individual flash initiation altitudes versus the average initiation altitude, the average inter-flash time distribution, and time series of inter-flash times. Five schemes to forecast lightning cessation are developed and evaluated. 100 of the 116 storms were randomly selected as the dependent sample, while the remaining 16 storms were used for verification. The schemes included a correlation and regression tree analysis, multiple linear regression, trends of storm duration, trend of the altitude of the greatest reflectivity to the time of the final flash, and a percentile scheme. Surprisingly, the percentile method was found to be the most effective technique and the simplest. The inclusion of real time storm parameters is found to have little effect on the results, suggesting that different forecast predictors, such as microphysical data from polarimetric radar, will be necessary to produce improved skill. When the percentile method used a confidence level of 99.5%, it successfully maintained lightning advisories for all 16 independent storms on which the schemes were tested. Since the computed wait time was 25 min, compared to the 45WS' most conservative and accurate wait time of 30 min, the percentile method saves 5 min for each advisory. This 5 min of savings safely shortens the Weather Squadron's advisories and saves money. Additionally, these results are the first to evaluate the 30/30 rule that is used commonly. The success of the percentile method is surprising since it out performs more complex procedures involving correlation and regression tree analysis and regression schemes. These more sophisticated statistical analyses were expected to perform better since they include more predictors in the forecasts. However, with the predictors available to us, this was not the case. While not the expected result, the percentile method succeeds in creating a safe and expedited forecast.

  9. How Hydroclimate Influences the Effectiveness of Particle Filter Data Assimilation of Streamflow in Initializing Short- to Medium-range Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.

    2017-12-01

    Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt events. We describe the methodology and present seasonal and inter-basin variations in DA-enhanced forecast skill.

  10. Improving the accuracy of flood forecasting with transpositions of ensemble NWP rainfall fields considering orographic effects

    NASA Astrophysics Data System (ADS)

    Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei

    2016-08-01

    The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.

  11. Bill spurs efforts to improve forecasting of inland flooding from tropical storms

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Newly-enacted U.S. legislation to reduce the threat of inland flooding from tropical storms could provide a "laser beam" focus to dealing with this natural hazard, according to Rep. Bob Etheridge (D-N.C.), the chief sponsor of the bill.The Tropical Cyclone Inland Forecasting Improvement and Warning System Development Act, (PL. 107-253), signed into law on 29 October, authorizes the National Oceanic and Atmospheric Administration's U.S. Weather Research Program (USWRP) to improve the capability to accurately forecast inland flooding from tropical storms through research and modeling.

  12. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    NASA Astrophysics Data System (ADS)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.

  13. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event.

    PubMed

    Knebl, M R; Yang, Z-L; Hutchison, K; Maidment, D R

    2005-06-01

    This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.

  14. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post-event observed depth grids and remote sensing-derived flood extents for the 2017 hurricane season. These newly available forecasted models were used for pre-event response planning and early estimated hazard exposure counts, allowing FEMA to plan for and stand up operations several days sooner than previously possible.

  15. Summary of Natural Hazard Statistics for 2017 in the United States

    MedlinePlus

    ... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...

  16. Summary of Natural Hazard Statistics for 2015 in the United States

    MedlinePlus

    ... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...

  17. Flood risk awareness during the 2011 floods in the central United States: showcasing the importance of hydrologic data and interagency collaboration

    USGS Publications Warehouse

    Holmes, Robert R.; Schwein, Noreen O.; Shadie, Charles E.

    2012-01-01

    Floods have long had a major impact on society and the environment, evidenced by the more than 1,500 federal disaster declarations since 1952 that were associated with flooding. Calendar year 2011 was an epic year for floods in the United States, from the flooding on the Red River of the North in late spring to the Ohio, Mississippi, and Missouri River basin floods in the spring and summer to the flooding caused by Hurricane Irene along the eastern seaboard in August. As a society, we continually seek to reduce flood impacts, with these efforts loosely grouped into two categories: mitigation and risk awareness. Mitigation involves such activities as flood assessment, flood control implementation, and regulatory activities such as storm water and floodplain ordinances. Risk awareness ranges from issuance of flood forecasts and warnings to education of lay audiences about the uncertainties inherent in assessing flood probability and risk. This paper concentrates on the issue of flood risk awareness, specifically the importance of hydrologic data and good interagency communication in providing accurate and timely flood forecasts to maximize risk awareness. The 2011 floods in the central United States provide a case study of the importance of hydrologic data and the value of proper, timely, and organized communication and collaboration around the collection and dissemination of that hydrologic data in enhancing the effectiveness of flood forecasting and flood risk awareness.

  18. Improving Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Katiyar, Nitin

    2006-01-01

    In flood-prone international river basins (IRBs), many riparian nations that are located close to a basin's outlet face a major problem in effectively forecasting flooding because they are unable to assimilate in situ rainfall data in real time across geopolitical boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission, which is expected to begin in 2010, will comprise high-resolution passive microwave (PM) sensors (at resolution ~3-6 hours, 10 × 10 square kilometers) that may provide new opportunities to improve flood forecasting in these river basins. Research is now needed to realize the potential of GPM. With adequate research in the coming years, it may be possible to identify the specific IRBs that would benefit cost-effectively from a preprogrammed satellite-based forecasting system in anticipation of GPM. Acceleration of such a research initiative is worthwhile because it could reduce the risk of the cancellation of GPM [see Zielinski, 2005].

  19. Precipitation and floodiness

    NASA Astrophysics Data System (ADS)

    Stephens, E.; Day, J. J.; Pappenberger, F.; Cloke, H.

    2015-12-01

    There are a number of factors that lead to nonlinearity between precipitation anomalies and flood hazard; this nonlinearity is a pertinent issue for applications that use a precipitation forecast as a proxy for imminent flood hazard. We assessed the degree of this nonlinearity for the first time using a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010). We introduced new indices to assess large-scale flood hazard, or floodiness, and quantified the link between monthly precipitation, river discharge, and floodiness anomalies at the global and regional scales. The results show that monthly floodiness is not well correlated with precipitation, therefore demonstrating the value of hydrometeorological systems for providing floodiness forecasts for decision-makers. A method is described for forecasting floodiness using the Global Flood Awareness System, building a climatology of regional floodiness from which to forecast floodiness anomalies out to 2 weeks.

  20. A Multidisciplinary Approach for Monitoring Flood and Landslide Hazards: Application to The Quebrada de Ramón Watershed in Central Chile.

    NASA Astrophysics Data System (ADS)

    Contreras Vargas, M. T.; Oberli, C.; Castro, L. M.; Ledezma, C., Sr.; Gironas, J. A.; Escauriaza, C. R.

    2016-12-01

    Floods and landslides produced by heavy rainfall in the Andes have acquired new relevance due to recent large-scale events, which have had devastating consequences. The complexity of the geomorphology and the climate that characterizes this region promote the occurrence of flash floods with high sediment concentrations. In addition, cities are expanding in the Andean foothills, occupying the floodplains, and increasing the exposure of the population and infrastructure to floods and landslides. Performing a hazard assessment of extreme events in these regions is a very complex task, due to the great uncertainty associated to the factors controlling the dynamics of floods and landslides, and the lack of historical records of hydrometeorological variables. The analysis is further complicated by anthropic activities that can amplify the effects of these events, and by the influence of climate change and the ENSO phenomenon. To provide a better understanding of these events in Andean regions, we integrate knowledge from different disciplines to study various aspects associated to floods and landslides in the Quebrada de Ramón, an Andean watershed located in central Chile. We combine two methodologies to collect the information in the field: 1) We use traditional methods, including sediment samples, weather stations, and topographic data from aerial photography and LIDAR; and 2) We also implement innovative methods based on a wireless network of sensors for monitoring hydrometeorological variables in real-time. We employ this information to develop and couple weather forecast, hydrological and hydrodynamic models, which are used to predict the propagation of floods in the river channel and the urban area, as well as the occurrence of landslides on specific sections of the watershed. This work is expected to provide more reliable information to citizens, city planners, emergency managers and other decision makers to enhance the preparedness, response, and resilience of cities near mountain regions. Work supported by Fondecyt grants 1130940 and 1161439, and CONICYT/FONDAP grants 15110017 and 15110020.

  1. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  2. Exploring the interactions between forecast accuracy, risk perception and perceived forecast reliability in reservoir operator's decision to use forecast

    NASA Astrophysics Data System (ADS)

    Shafiee-Jood, M.; Cai, X.

    2017-12-01

    Advances in streamflow forecasts at different time scales offer a promise for proactive flood management and improved risk management. Despite the huge potential, previous studies have found that water resources managers are often not willing to incorporate streamflow forecasts information in decisions making, particularly in risky situations. While low accuracy of forecasts information is often cited as the main reason, some studies have found that implementation of streamflow forecasts sometimes is impeded by institutional obstacles and behavioral factors (e.g., risk perception). In fact, a seminal study by O'Connor et al. (2005) found that risk perception is the strongest determinant of forecast use while managers' perception about forecast reliability is not significant. In this study, we aim to address this issue again. However, instead of using survey data and regression analysis, we develop a theoretical framework to assess the user-perceived value of streamflow forecasts. The framework includes a novel behavioral component which incorporates both risk perception and perceived forecast reliability. The framework is then used in a hypothetical problem where reservoir operator should react to probabilistic flood forecasts with different reliabilities. The framework will allow us to explore the interactions among risk perception and perceived forecast reliability, and among the behavioral components and information accuracy. The findings will provide insights to improve the usability of flood forecasts information through better communication and education.

  3. UCAR group urges STORM program

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A blue-ribbon panel of scientists has proposed a decade-long, $1 billion program to improve forecasting operations and research of regional and local hazardous weather. The panel, appointed by the University Corporation for Atmospheric Research (UCAR), believes that the program could reduce the $20-billion annual cost of damage from severe weather by $1 billion per year.The primary aim of the program is to ‘enable weather services, public and private, to observe and predict stormscale weather phenomena— such as squall lines, thunderstorms, flash floods, local heavy snows, or tornadoes—with the accuracy and reliability to protect the public, serve the national economy, and meet defense requirements,’ as explained in the report, The National STORM (Stormscale Operational and Research Meteorology) Program: A Call to Action. Stormscale phenomena also include nonviolent weather: freezing rain, dense ground fog, low-lying clouds that disrupt ground or air traffic, persistent temperature inversions, and strong nocturnal cooling that may produce killing frost.

  4. Estimating Global Precipitation for Science and Application

    NASA Technical Reports Server (NTRS)

    Huffman, George J.

    2013-01-01

    Over the past two decades there has been vigorous development in the satellite assets and the algorithms necessary to estimate precipitation around the globe. In particular the highly successful joint NASAJAXA Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission, also joint between NASA and JAXA, have driven these issues. At the same time, the long-running Global Precipitation Climatology Project (GPCP) continues to extend a stable, climate-oriented view of global precipitation. This talk will provide an overview of these projects and the wider international community of precipitation datasets, sketch plans for next-generation products, and provide some examples of the best use for the different products. One key lesson learned is that different data sets are needed to address the variety of issues that need precipitation data, including detailed 3-D views of hurricanes, flash flood forecasting, drought analysis, and global change.

  5. Adapting National Water Model Forecast Data to Local Hyper-Resolution H&H Models During Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Singhofen, P.

    2017-12-01

    The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.

  6. The FASTER Approach: A New Tool for Calculating Real-Time Tsunami Flood Hazards

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Cross, A.; Johnson, L.; Miller, K.; Nicolini, T.; Whitmore, P.

    2014-12-01

    In the aftermath of the 2010 Chile and 2011 Japan tsunamis that struck the California coastline, emergency managers requested that the state tsunami program provide more detailed information about the flood potential of distant-source tsunamis well ahead of their arrival time. The main issue is that existing tsunami evacuation plans call for evacuation of the predetermined "worst-case" tsunami evacuation zone (typically at a 30- to 50-foot elevation) during any "Warning" level event; the alternative is to not call an evacuation at all. A solution to provide more detailed information for secondary evacuation zones has been the development of tsunami evacuation "playbooks" to plan for tsunami scenarios of various sizes and source locations. To determine a recommended level of evacuation during a distant-source tsunami, an analytical tool has been developed called the "FASTER" approach, an acronym for factors that influence the tsunami flood hazard for a community: Forecast Amplitude, Storm, Tides, Error in forecast, and the Run-up potential. Within the first couple hours after a tsunami is generated, the National Tsunami Warning Center provides tsunami forecast amplitudes and arrival times for approximately 60 coastal locations in California. At the same time, the regional NOAA Weather Forecast Offices in the state calculate the forecasted coastal storm and tidal conditions that will influence tsunami flooding. Providing added conservatism in calculating tsunami flood potential, we include an error factor of 30% for the forecast amplitude, which is based on observed forecast errors during recent events, and a site specific run-up factor which is calculated from the existing state tsunami modeling database. The factors are added together into a cumulative FASTER flood potential value for the first five hours of tsunami activity and used to select the appropriate tsunami phase evacuation "playbook" which is provided to each coastal community shortly after the forecast is provided.

  7. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  8. Vulnerability assessment including tangible and intangible components in the index composition: An Amazon case study of flooding and flash flooding.

    PubMed

    Andrade, Milena Marília Nogueira de; Szlafsztein, Claudio Fabian

    2018-07-15

    The vulnerability of cities and communities in the Amazon to flooding and flash flooding is increasing. The effects of extreme events on populations vary across landscapes, causing vulnerability to differ spatially. Traditional vulnerability studies in Brazil and across the world have used the vulnerability index for the country and, more recently, municipality scales. The vulnerability dimensions are exposure, sensitivity, and adaptive capacity. For each of these dimensions, there is a group of indicators that constitutes a vulnerability index using quantitative data. Several vulnerability assessments have used sensitivity and exposure analyses and, recently, adaptive capacity has been considered. The Geographical Information Systems (GIS) analysis allows spatial regional modeling using quantitative vulnerability indicators. This paper presents a local-scale vulnerability assessment in an urban Amazonian area, Santarém City, using interdisciplinary methods. Data for exposure and sensitivity were gathered by remote sensing and census data, respectively. However, adaptive capacity refers to local capacities, whether infrastructural or not, and the latter were gathered by qualitative participatory methods. For the mixed data used to study adaptive capacity, we consider tangible components for countable infrastructure that can cope with hazards, and intangible components that reflect social activities based on risk perceptions and collective action. The results indicate that over 80% of the area is highly or moderately vulnerable to flooding and flash flooding. Exposure and adaptive capacity were determinants of the results. Lower values of adaptive capacity play a significant role in vulnerability enhancement. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    PubMed Central

    Pujolar, José Martin; Vincenzi, Simone; Zane, Lorenzo; Jesensek, Dusan; De Leo, Giulio A.; Crivelli, Alain J.

    2011-01-01

    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F ST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change. PMID:21931617

  10. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh

    PubMed Central

    Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K.

    2017-01-01

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r2 values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country. PMID:29036896

  11. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh.

    PubMed

    Ahmed, M Razu; Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K

    2017-10-14

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r ² values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country.

  12. Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany

    NASA Astrophysics Data System (ADS)

    Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.

    Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.

  13. Hydrological Forecasting Practices in Brazil

    NASA Astrophysics Data System (ADS)

    Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena

    2016-04-01

    This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.

  14. Real-time flood forecasting by employing artificial neural network based model with zoning matching approach

    NASA Astrophysics Data System (ADS)

    Sulaiman, M.; El-Shafie, A.; Karim, O.; Basri, H.

    2011-10-01

    Flood forecasting models are a necessity, as they help in planning for flood events, and thus help prevent loss of lives and minimize damage. At present, artificial neural networks (ANN) have been successfully applied in river flow and water level forecasting studies. ANN requires historical data to develop a forecasting model. However, long-term historical water level data, such as hourly data, poses two crucial problems in data training. First is that the high volume of data slows the computation process. Second is that data training reaches its optimal performance within a few cycles of data training, due to there being a high volume of normal water level data in the data training, while the forecasting performance for high water level events is still poor. In this study, the zoning matching approach (ZMA) is used in ANN to accurately monitor flood events in real time by focusing the development of the forecasting model on high water level zones. ZMA is a trial and error approach, where several training datasets using high water level data are tested to find the best training dataset for forecasting high water level events. The advantage of ZMA is that relevant knowledge of water level patterns in historical records is used. Importantly, the forecasting model developed based on ZMA successfully achieves high accuracy forecasting results at 1 to 3 h ahead and satisfactory performance results at 6 h. Seven performance measures are adopted in this study to describe the accuracy and reliability of the forecasting model developed.

  15. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  16. Urban RoGeR: Merging process-based high-resolution flash flood model for urban areas with long-term water balance predictions

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2016-12-01

    Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.

  17. Assessing public flood risk perception for understanding the level of risk preparedness - Evidence from a community-based survey (the Bend Subcarpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Balteanu, Dan; Micu, Dana; Dumitrascu, Monica; Chendes, Viorel; Dragota, Carmen; Kucsicsa, Gheorghita; Grigorescu, Ines; Persu, Mihaela; Costache, Andra

    2016-04-01

    Floods (slow-onset and rapid) are among the costliest hydro-meteorological hazards in Romania, with strong societal and economic impacts, especially in small rural settlements, with a limited adaptive capacity to their adverse effects induced by the regional socio-economic context (e.g. aging population, low economic power). The study-area is located in the Bend Subcarpathians (Romania), a region with high tectonic mobility (the Seismic Vrancea Region), active slope processes (e.g. shallow and deep-seated landslides, mud flow, gully erosion) and increasing frequency of flash floods associated to heavy rainfalls. The study was conducted in the framework of the project "Vulnerability of the environment and human settlements to floods in the context of Global Environmental Change - VULMIN" (PN-II-PT-PCCA-2011-3.1-1587), funded by the Ministry of National Education over the 2012-2016 period (http://www.igar-vulmin.ro). Prior research derived valuable insights into the local population vulnerability to extreme hydro-meteorological events, revealing an increased individual experience to past hydrological events, a high level of worry associated to flood recurrence, a low rate of the perceived trustworthiness in national institutions and authorities, as well as evident differences between the perception of community members and local authorities in terms of risk preparedness. In the present study, an attempt has been made for developing an advanced understanding of the current level of flood risk preparedness within some communities strongly affected by the floods of 1970-1975, 2005 and 2010. The recent events had a significant impact on local communities and infrastructure in terms of the financial losses, causing a visible stress and even psychological trauma on some residents of the most affected households. The selected communities are located in areas affected by recurrent hydro-meteorological hazards (floods and flash floods), with return periods below 10 years. A flash flood susceptibility index developed within the project was also used to identify the rural communities located in areas with high susceptibility to flash floods with return periods of 50 and 100 years. A questionnaire-based survey was conducted in 12 rural settlements located in the Teleajen-Buzau hydrographic area (Buzǎu and Prahova counties), in 2014 and 2015, totally addressed to nearly 100 residents who experienced or witnessed past flood events in their current living area. The findings reflect a generally good level of awareness of flood exposure of the living areas among the community members, which is closely connected to the high worry level and large damages associated to past floods events. The results showed that the increased level of awareness and worry is not resulting in an increased level of preparedness at the level of affected communities. Several important gaps have been identified in terms of existing capacity for prevention and reduction of adverse effects of floods within the flood prone and already flood affected areas that explain the decreased resilience of all selected rural communities: e.g. a low efficiency of the early flood warning process; a limited effectiveness of the implemented structural measures aimed to improve the community resilience, to respond and cope with floods; the lack of training activities and exercises on flood prevention, protection and mitigation for the exposed population. These gaps are related to the limited financial support of the authorities to implement long-term measures for human safety, as well as for the protection of goods and property in the flood prone areas.

  18. Medium range flood forecasts at global scale

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.

    2006-12-01

    While weather and climate forecast methods have advanced greatly over the last two decades, this capability has yet to be evidenced in mitigation of water-related natural hazards (primarily floods and droughts), especially in the developing world. Examples abound of extreme property damage and loss of life due to floods in the underdeveloped world. For instance, more than 4.5 million people were affected by the July 2000 flooding of the Mekong River and its tributaries in Cambodia, Vietnam, Laos and Thailand. The February- March 2000 floods in the Limpopo River of Mozambique caused extreme disruption to that country's fledgling economy. Mitigation of these events through advance warning has typically been modest at best. Despite the above noted improvement in weather and climate forecasts, there is at present no system for forecasting of floods globally, notwithstanding that the potential clearly exists. We describe a methodology that is eventually intended to generate global flood predictions routinely. It draws heavily from the experimental North American Land Data Assimilation System (NLDAS) and the companion Global Land Data Assimilation System (GLDAS) for development of nowcasts, and the University of Washington Experimental Hydrologic Prediction System to develop ensemble hydrologic forecasts based on Numerical Weather Prediction (NWP) models which serve both as nowcasts (and hence reduce the need for in situ precipitation and other observations in parts of the world where surface networks are critically deficient) and provide forecasts for lead times as long as fifteen days. The heart of the hydrologic modeling system is the University of Washington/Princeton University Variable Infiltration Capacity (VIC) macroscale hydrology model. In the prototype (tested using retrospective data), VIC is driven globally up to the time of forecast with daily ERA40 precipitation (rescaled on a monthly basis to a station-based global climatology), ERA40 wind, and ERA40 average surface air temperature (with temperature ranges adjusted to a station-based climatology). In the retrospective forecasting mode, VIC is driven by global NCEP ensemble 15-day reforecasts provided by Tom Hamill (NOAA/ERL), bias corrected with respect to the adjusted ERA40 data and further downscaled spatially using higher spatial resolution Global Precipitation Climatology Project (GPCP) 1dd daily precipitation. Downward solar and longwave radiation, surface relative humidity, and other model forcings are derived from relationships with the daily temperature range during both the retrospective (spinup) and forecast period. The initial system is implemented globally at one-half degree spatial resolution. We evaluate model performance retrospectively for predictions of major floods for the Oder River in 1997, the Mekong River in 2000 and the Limpopo River in 2000.

  19. Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins

    NASA Astrophysics Data System (ADS)

    Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.

    2016-12-01

    Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.

  20. Flood Vulnerability Assessment Map

    EIA Publications

    Maps of energy infrastructure with real-time storm and emergency information by fuel type and by state. Flood hazard information from FEMA has been combined with EIA's energy infrastructure layers as a tool to help state, county, city, and private sector planners assess which key energy infrastructure assets are vulnerable to rising sea levels, storm surges, and flash flooding. Note that flood hazard layers must be zoomed-in to street level before they become visible.

  1. Atmospheric radiation measurement program facilities newsletter, March 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J.

    2002-04-18

    International H2O Project (IHOP-2002)--The International H2O Project (IHOP-2002) will take place in west-central Oklahoma over 44 days, May 13-June 25, 2002. The main focus will be water vapor and its role in storm development and rainfall production, information needed to improve rainfall forecasting. Forecasting the amount and location of rainfall is difficult, particularly in the warm months, and improvements are urgently needed. Accurate prediction of floods would be very beneficial to society, because flooding is costly in terms of loss of life and property damage. Deaths resulting from flash flooding outnumber those from hurricanes, tornadoes, windstorms, or lightning, and damagemore » due to flooding exceeds $5 billion annually. One measure of weather forecasting success is the accuracy of the Quantitative Precipitation Forecast (QPF), which predicts the amount of precipitation to be received at a certain location. One of the research goals of IHOP-2002 is to determine whether more accurate, detailed measurement of humidity will improve a computer model's ability to forecast rainfall amounts accurately. Current water vapor measurements are inadequate. The weather balloons (radiosondes) that gather most of the water vapor data used in today's weather and global climate models have three problems. First, the radiosonde stations are located too far apart, generating a grid of data that is too coarse to show the needed details in water vapor variability. Second, the radiosonde launches occur only every 12 hours, again providing too few data points for a highly variable parameter. Third, the radiosonde instrument has biases and inaccuracies in its measurements. Questionable data quality and data sets too coarse in both time and space make accurate forecasting difficult. The key to better, more accurate, higher-resolution water vapor measurements is dependable, ground-based sensors that operate continually and accurately. Such sensors will decrease dependence on sparsely spaced, costly weather balloon releases. IHOP-2002 will give researchers an active platform for testing and evaluating the capabilities and limitations of several water vapor measurement instruments. For example, the National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory will be bringing a mini-DIAL (differential absorption lidar) to the SGP central facility for comparison with the SGP Raman lidar. Lidars send beams of laser light skyward and measure scattered light not absorbed by water molecules. The collection of IHOP-2002 instruments includes 2 fixed radars, 6 mobile radars, 2 airborne radars, 8 lidars (6 of which can sample water vapor), 1 advanced wind profiler, 2 sodars, 3 interferometers, 18 special surface stations, 800 radiosondes, 400 dropsondes, 1 tethersonde system, 52 global positioning system receivers, 3 profiling radiometers, 1 mobile profiling radiometer and wind profiler, and 5 water vapor radiometers. Six research aircraft will be deployed during the course of the field campaign. The aircraft will occasionally fly low-level tracks and will deploy dropsondes. A dropsonde resembles a radiosonde, an instrument package attached to a helium-filled balloon that rises into the atmosphere, but the dropsonde is released from an airplane and collects data on its way down to the ground. Finders of dropsondes are asked to follow the instructions on the package for returning the device to the researcher. Funding for IHOP-2002 is from many sources, including NOAA, the National Science Foundation, the National Center for Atmospheric Research, and the U.S. Department of Energy. Participation is worldwide, including researchers from Australia, Canada, France, Germany, the Netherlands, the United Kingdom, and the United States.« less

  2. Improving a stage forecasting Muskingum model by relating local stage and remote discharge

    NASA Astrophysics Data System (ADS)

    Barbetta, S.; Moramarco, T.; Melone, F.; Brocca, L.

    2009-04-01

    Following the parsimonious concept of parameters, simplified models for flood forecasting based only on flood routing have been developed for flood-prone sites located downstream of a gauged station and at a distance allowing an appropriate forecasting lead-time. In this context, the Muskingum model can be a useful tool. However, critical points in hydrological routing are the representation of lateral inflows contribution and the knowledge of stage-discharge relationships. As regards the former, O'Donnell (O'Donnell, T., 1985. A direct three-parameter Muskingum procedure incorporating lateral inflow, Hydrol. Sci. J., 30[4/12], 479-496) proposed a three-parameter Muskingum procedure assuming the lateral inflows proportional to the contribution entering upstream. Using this approach, Franchini and Lamberti (Franchini, M. & Lamberti, P., 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone, Water Resour. Res., 30[7], 2183-2196) presented a simple model Muskingum type to provide forecast water levels at the downstream end by selecting a routing time interval and, hence, a forecasting lead-time allowing to express the forecast stage as a function of only observed quantities. Moramarco et al. (Moramarco, T., Barbetta, S., Melone, F. & Singh, V.P., 2006. A real-time stage Muskingum forecasting model for a site without rating curve, Hydrol. Sci. J., 51[1], 66-82) enhanced the modeling scheme incorporating a procedure for adapting the parameter linked to lateral inflows. This last model, called STAFOM (STAge FOrecasting Model), was also extended to a two connected river branches schematization in order to improve significantly the forecasting lead-time. The STAFOM model provided satisfactory results for most of the analysed flood events observed in different river reaches in the Upper-Middle Tiber River basin in Central Italy. However, the analysis highlighted that the stage forecast should be enhanced when sudden modifications occur in the upstream and downstream hydrographs recorded in real-time. Moramarco et al. (Moramarco, T., Barbetta, S., F. Melone, F. & Singh, V.P., 2005. Relating local stage and remote discharge with significant lateral inflow, J. Hydrol. Engng ASCE, 10[1], 58-69) showed that for any flood condition at ends of a river reach, a direct proportionality between the upstream and downstream mean velocity can be found. This insight was the basis for developing the Rating Curve Model (RCM) that allows to also accommodate significant lateral inflow contributions, permitting, without using a flood routing procedure and without the need of a rating curve at a local site, to relate the local hydraulic conditions with those at a remote gauged section. Therefore, to improve the STAFOM performance mainly for highly varying flood conditions, the model has been here modified by coupling it with a procedure based on the RCM approach. Several flood events occurred along different equipped river reaches of the Upper Tiber River basin have been used as case study. Results showed that the new model, named STAFOM-RCM, apart from to improve the stage forecast accuracy in terms of error on peak stage, Nash-Sutcliffe efficiency coefficient and the coefficient of persistence, allowed to use a larger lead time thus avoiding the two-river branches cascade schematization where fluctuations in stage forecasting occur more frequently.

  3. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  4. Multi-scale hydrometeorological observation and modelling for flash flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-09-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.

  5. Multi-scale hydrometeorological observation and modelling for flash-flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-02-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.

  6. Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0

    NASA Astrophysics Data System (ADS)

    Li, S.; Sun, D.; Goldberg, M.; Sjoberg, W.; Santek, D.; Hoffman, J.

    2017-12-01

    Near real-time satellite-derived flood maps are invaluable to river forecasters and decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood detection software has been developed using Suomi-NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to automatically generate near real-time flood maps for National Weather Service (NWS) River Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that include water detection, cloud shadow removal, terrain shadow removal, minor flood detection, water fraction retrieval, and floodwater determination. The software is designed for flood detection in any land region between 80°S and 80°N, and it has been running routinely with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive Processing System) and applied in flood operations. Initial feedback from operational forecasters on the product accuracy and performance has been largely positive. The software capability has also been extended to areas outside of the USA via a case-driven mode to detect major floods all over the world. Offline validation efforts include the visual inspection of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS automatic flood products and a quantitative evaluation using Landsat imagery. The steady performance from the 3-year routine process and the promising validation results indicate that VNG Flood V1.0 has a high feasibility for flood detection at the product level.

  7. Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Ramos, Maria-Helena; Coughlan de Perez, Erin; Cloke, Hannah Louise; Stephens, Elisabeth; Wetterhall, Fredrik; van Andel, Schalk Jan; Pappenberger, Florian

    2016-08-01

    Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecast uncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty in transforming the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called "How much are you prepared to pay for a forecast?". The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydro-meteorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants' willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.

  8. Flood forecasting within urban drainage systems using NARX neural network.

    PubMed

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  9. Building regional early flood warning systems by AI techniques

    NASA Astrophysics Data System (ADS)

    Chang, F. J.; Chang, L. C.; Amin, M. Z. B. M.

    2017-12-01

    Building early flood warning system is essential for the protection of the residents against flood hazards and make actions to mitigate the losses. This study implements AI technology for forecasting multi-step-ahead regional flood inundation maps during storm events. The methodology includes three major schemes: (1) configuring the self-organizing map (SOM) to categorize a large number of regional inundation maps into a meaningful topology; (2) building dynamic neural networks to forecast multi-step-ahead average inundated depths (AID); and (3) adjusting the weights of the selected neuron in the constructed SOM based on the forecasted AID to obtain real-time regional inundation maps. The proposed models are trained, and tested based on a large number of inundation data sets collected in regions with the most frequent and serious flooding in the river basin. The results appear that the SOM topological relationships between individual neurons and their neighbouring neurons are visible and clearly distinguishable, and the hybrid model can continuously provide multistep-ahead visible regional inundation maps with high resolution during storm events, which have relatively small RMSE values and high R2 as compared with numerical simulation data sets. The computing time is only few seconds, and thereby leads to real-time regional flood inundation forecasting and make early flood inundation warning system. We demonstrate that the proposed hybrid ANN-based model has a robust and reliable predictive ability and can be used for early warning to mitigate flood disasters.

  10. Record Flood-Producing Rainstorms of 17-18 July 1996 in the Chicago Metropolitan Area. Part III: Impacts and Responses to the Flash Flooding.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1999-03-01

    A record-breaking 24-h rainstorm on 17-18 July 1996 was centered on south Chicago and its southern and western suburbs, areas with a population of 3.4 million. The resulting flash flooding in Chicago and 21 suburbs broke all-time records in the region and brought the Illinois and Mississippi Rivers above flood stage. More than 4300 persons were evacuated from the flooded zones and 35000 homes experienced flood damage. Six persons were killed and the total estimated cost of the flood (losses and recovery actions) was 645 million, ranking as Illinois' second most costly weather disaster on record after the 1993 flood. Extensive damages and travel delays occurred on metropolitan transportation systems (highways and railroads). Commuters were unable to reach Chicago for up to three days and more than 300 freight trains were delayed or rerouted. Communities dealt with removal of flood-damaged materials, as well as damage to streets, bridges, and sewage treatment and water treatment plants. Reduced crop yields in adjacent rural areas represented a 67 million loss of farm income. Conflicts between communities developed over blame for the flooding due to inadequate storage capacity resulting in new regional flood planning. Federal and state aid ultimately reached 265 million, 41% of the storm costs. More than 85000 individuals received assistance, and 222 structures have been relocated under the federal Hazard Mitigation Grant Program at a cost of 19.6 million.

  11. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge observations and several years of archived forecasts, overall empirical error distributions termed 'overall error' were for each gauge derived for a range of relevant forecast lead times. b) The error distributions vary strongly with the hydrometeorological situation, therefore a subdivision into the hydrological cases 'low flow, 'rising flood', 'flood', flood recession' was introduced. c) For the sake of numerical compression, theoretical distributions were fitted to the empirical distributions using the method of moments. Here, the normal distribution was generally best suited. d) Further data compression was achieved by representing the distribution parameters as a function (second-order polynome) of lead time. In general, the 'overall error' obtained from the above procedure is most useful in regions where large human impact occurs and where the influence of the meteorological forecast is limited. In upstream regions however, forecast uncertainty is strongly dependent on the current predictability of the atmosphere, which is contained in the spread of an ensemble forecast. Including this dynamically in the hydrological forecast uncertainty estimation requires prior elimination of the contribution of the weather forecast to the 'overall error'. This was achieved by calculating long series of hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The resulting error distribution is termed 'model error' and can be applied on hydrological ensemble forecasts, where ensemble rainfall forecasts are used as forcing. The concept will be illustrated by examples (good and bad ones) covering a wide range of catchment sizes, hydrometeorological regimes and quality of hydrological model calibration. The methodology to combine the static and dynamic shares of uncertainty will be presented in part II of this study.

  12. HESS Opinions "On forecast (in)consistency in a hydro-meteorological chain: curse or blessing?"

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Cloke, H. L.; Persson, A.; Demeritt, D.

    2011-07-01

    Flood forecasting increasingly relies on numerical weather prediction forecasts to achieve longer lead times. One of the key difficulties that is emerging in constructing a decision framework for these flood forecasts is what to dowhen consecutive forecasts are so different that they lead to different conclusions regarding the issuing of warnings or triggering other action. In this opinion paper we explore some of the issues surrounding such forecast inconsistency (also known as "Jumpiness", "Turning points", "Continuity" or number of "Swings"). In thsi opinion paper we define forecast inconsistency; discuss the reasons why forecasts might be inconsistent; how we should analyse inconsistency; and what we should do about it; how we should communicate it and whether it is a totally undesirable property. The property of consistency is increasingly emerging as a hot topic in many forecasting environments.

  13. Development of a flood early warning system and communication with end-users: the Vipava/Vipacco case study in the KULTURisk FP7 project

    NASA Astrophysics Data System (ADS)

    Grossi, Giovanna; Caronna, Paolo; Ranzi, Roberto

    2014-05-01

    Within the framework of risk communication, the goal of an early warning system is to support the interaction between technicians and authorities (and subsequently population) as a prevention measure. The methodology proposed in the KULTURisk FP7 project aimed to build a closer collaboration between these actors, in the perspective of promoting pro-active actions to mitigate the effects of flood hazards. The transnational (Slovenia/ Italy) Soča/Isonzo case study focused on this concept of cooperation between stakeholders and hydrological forecasters. The DIMOSHONG_VIP hydrological model was calibrated for the Vipava/Vipacco River (650 km2), a tributary of the Soča/Isonzo River, on the basis of flood events occurred between 1998 and 2012. The European Centre for Medium-Range Weather Forecasts (ECMWF) provided the past meteorological forecasts, both deterministic (1 forecast) and probabilistic (51 ensemble members). The resolution of the ECMWF grid is currently about 15 km (Deterministic-DET) and 30 km (Ensemble Prediction System-EPS). A verification was conducted to validate the flood-forecast outputs of the DIMOSHONG_VIP+ECMWF early warning system. Basic descriptive statistics, like event probability, probability of a forecast occurrence and frequency bias were determined. Some performance measures were calculated, such as hit rate (probability of detection) and false alarm rate (probability of false detection). Relative Opening Characteristic (ROC) curves were generated both for deterministic and probabilistic forecasts. These analysis showed a good performance of the early warning system, in respect of the small size of the sample. A particular attention was spent to the design of flood-forecasting output charts, involving and inquiring stakeholders (Alto Adriatico River Basin Authority), hydrology specialists in the field, and common people. Graph types for both forecasted precipitation and discharge were set. Three different risk thresholds were identified ("attention", "pre-alarm" or "alert", "alarm"), with an "icon-style" representation, suitable for communication to civil protection stakeholders or the public. Aiming at showing probabilistic representations in a "user-friendly" way, we opted for the visualization of the single deterministic forecasted hydrograph together with the 5%, 25%, 50%, 75% and 95% percentiles bands of the Hydrological Ensemble Prediction System (HEPS). HEPS is generally used for 3-5 days hydrological forecasts, while the error due to incorrect initial data is comparable to the error due to the lower resolution with respect to the deterministic forecast. In the short term forecasting (12-48 hours) the HEPS-members show obviously a similar tendency; in this case, considering its higher resolution, the deterministic forecast is expected to be more effective. The plot of different forecasts in the same chart allows the use of model outputs from 4/5 days to few hours before a potential flood event. This framework was built to help a stakeholder, like a mayor, a civil protection authority, etc, in the flood control and management operations, and was designed to be included in a wider decision support system.

  14. The Financial Benefit of Early Flood Warnings in Europe

    NASA Astrophysics Data System (ADS)

    Pappenberger, Florian; Cloke, Hannah L.; Wetterhall, Fredrik; Parker, Dennis J.; Richardson, David; Thielen, Jutta

    2015-04-01

    Effective disaster risk management relies on science based solutions to close the gap between prevention and preparedness measures. The outcome of consultations on the UNIDSR post-2015 framework for disaster risk reduction highlight the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management in order to save people's lives and property and reduce the overall impact of severe events. In particular, continental and global scale flood forecasting systems provide vital information to various decision makers with which early warnings of floods can be made. Here the potential monetary benefits of early flood warnings using the example of the European Flood Awareness System (EFAS) are calculated based on pan-European Flood damage data and calculations of potential flood damage reductions. The benefits are of the order of 400 Euro for every 1 Euro invested. Because of the uncertainties which accompany the calculation, a large sensitivity analysis is performed in order to develop an envelope of possible financial benefits. Current EFAS system skill is compared against perfect forecasts to demonstrate the importance of further improving the skill of the forecasts. Improving the response to warnings is also essential in reaping the benefits of flood early warnings.

  15. Flood-inundation maps for the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Johnston, Craig M.; Hays, Laura

    2012-01-01

    Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.

  16. Hydrologic Modeling at the National Water Center: Operational Implementation of the WRF-Hydro Model to support National Weather Service Hydrology

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.

    2015-12-01

    The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of streamflow regulation.

  17. Condition of the upper atmosphere of the Earth at the final stage of flight manned orbital facility (MOF) "Mir". The modeling description

    NASA Astrophysics Data System (ADS)

    Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.

    At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.

  18. Human exposure to flash floods Relation between flood parameters and human vulnerability during a storm of September 2002 in Southern France

    NASA Astrophysics Data System (ADS)

    Ruin, Isabelle; Creutin, Jean-Dominique; Anquetin, Sandrine; Lutoff, Céline

    2008-10-01

    SummaryThe aim of this paper is to investigate the detailed hydrometeorological circumstances that lead to accidental casualties, and to better understand the prominent physical factors of risk. Based on an event that affected the Gard region (Southern France) in September 2002, it is a first attempt to combine analysis of the physical and human response to Mediterranean storms. After details concerning the methodology (for meteorological, hydrological and casualty analysis), the local context and the event, the authors examine two points: the dynamics of the event (flash-flood and riverine-flood response to the storm) together with human exposure on the one hand, and scale as a critical problem affecting flood risk on the other. This investigation stresses the specificity of small catchments, which are more dangerous both in hydrological and human terms. Moreover, this contribution linking social sciences and geophysics constitutes an important step in what [Morss, R.E., Wilhelmi, O.V., Downton, M.W., Gruntfest, E., 2005. Flood risk, uncertainty, and scientific information for decision making. Bull. Am. Meteor. Soc. 86 (11), 1593-1601] call the "End to end to end" process

  19. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.

    2012-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.

  20. Prospects for development of unified global flood observation and prediction systems (Invited)

    NASA Astrophysics Data System (ADS)

    Lettenmaier, D. P.

    2013-12-01

    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  1. An Open-Book Modular Watershed Modeling Framework for Rapid Prototyping of GPM- based Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Katiyar, N.; Hossain, F.

    2006-05-01

    Floods have always been disastrous for human life. It accounts for about 15 % of the total death related to natural disasters. There are around 263 transboundary river basins listed by UNESCO, wherein at least 30 countries have more than 95% of their territory locked in one or more such transboundary basins. For flood forecasting in the lower riparian nations of these International River Basins (IRBs), real-time rainfall data from upstream nations is naturally the most critical factor governing the forecasting effectiveness. However, many upstream nations fail to provide data to the lower riparian nations due to a lack of in-situ rainfall measurement infrastructure or a lack of a treaty for real-time sharing of rainfall data. A potential solution is therefore to use satellites that inherently measure rainfall across political boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission appears very promising in providing this vital rainfall information under the data- limited scenario that will continue to prevail in most IRBs. However, satellite rainfall is associated with uncertainty and hence, proper characterization of the satellite rainfall error propagation in hydrologic models for flood forecasting is a critical priority that should be resolved in the coming years in anticipation of GPM. In this study, we assess an open book modular watershed modeling approach for estimating the expected error in flood forecasting related to GPM rainfall data. Our motivation stems from the critical challenge in identifying the specific IRBs that would benefit from a pre-programmed satellite-based forecasting system in anticipation of GPM. As the number of flood-prone IRBs is large, conventional data-intensive implementation of existing physically-based distributed hydrologic models on case-by-case IRBs is considered time-consuming for completing such a global assessment. A more parsimonious approach is justified at the expense of a tolerable loss of detail and accuracy. Through assessment of our proposed modular modeling framework, we present our initial understanding in resolving the fundamental question - Can a parsimonious open-book watershed modeling framework be a physically consistent proxy for rapid and global identification of IRBs in greater need of a GPM-based flood forecasting system?

  2. A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley

    2016-04-01

    An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between observed and simulated streamflows as a result of more realistic sub-daily meteorological forcing.

  3. High-resolution Rainfall Mapping in Dallas-Fort Worth (DFW) Urban Network of Radars at Multiple Frequencies

    NASA Astrophysics Data System (ADS)

    Chandra, Chandrasekar V.; Chen*, Haonan

    2015-04-01

    Urban flash flood is one of the most commonly encountered hazardous weather phenomena. Unfortunately, the rapid urbanization has made the densely populated areas even more vulnerable to flood risks. Hence, accurate and timely monitoring of rainfall at high spatiotemporal resolution is critical to severe weather warning and civil defense, especially in urban areas. However, it is still challenging to produce high-resolution products based on the large S-band National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD), due to the sampling limitations and Earth curvature effect. Since 2012, the U.S. National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) has initiated the development of Dallas-Fort Worth (DFW) radar remote sensing network for urban weather hazards mitigation. The DFW urban radar network consists of a combination of high-resolution X-band radars and a standard NWS NEXRAD radar operating at S-band frequency. High-resolution quantitative precipitation estimation (QPE) is one of the major research goals in the deployment of this urban radar network. It has been shown in the literature that the dual-polarization radar techniques can improve the QPE accuracy over traditional single-polarization radars by rendering more measurements to enhance the data quality, providing more information about rain drop size distribution (DSD), and implying more characteristics of different hydrometeor types. This paper will present the real-time dual-polarization CASA DFW QPE system, which is developed via fusion of observations from both the high-resolution X band radar network and the S-band NWS radar. The specific dual-polarization rainfall algorithms at different frequencies (i.e., S- and X-band) will be described in details. In addition, the fusion methodology combining observations at different temporal resolution will be presented. In order to demonstrate the capability of rainfall estimation of the CASA DFW QPE system, rainfall measurements from ground rain gauges will be used for evaluation purposes. This high-resolution QPE system is used for urban flash flood forecasting when coupled with hydrological models.

  4. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case

    NASA Astrophysics Data System (ADS)

    Fiori, E.; Comellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D. J.; Tanelli, S.; Parodi, A.

    2014-03-01

    The city of Genoa, which places between the Tyrrhenian Sea and the Apennine mountains (Liguria, Italy) was rocked by severe flash floods on the 4th of November, 2011. Nearly 500 mm of rain, a third of the average annual rainfall, fell in six hours. Six people perished and millions of Euros in damages occurred. The synoptic-scale meteorological system moved across the Atlantic Ocean and into the Mediterranean generating floods that killed 5 people in Southern France, before moving over the Ligurian Sea and Genoa producing the extreme event studied here. Cloud-permitting simulations (1 km) of the finger-like convective system responsible for the torrential event over Genoa have been performed using Advanced Research Weather and Forecasting Model (ARW-WRF, version 3.3). Two different microphysics (WSM6 and Thompson) as well as three different convection closures (explicit, Kain-Fritsch, and Betts-Miller-Janjic) were evaluated to gain a deeper understanding of the physical processes underlying the observed heavy rain event and the model's capability to predict, in hindcast mode, its structure and evolution. The impact of forecast initialization and of model vertical discretization on hindcast results is also examined. Comparison between model hindcasts and observed fields provided by raingauge data, satellite data, and radar data show that this particular event is strongly sensitive to the details of the mesoscale initialization despite being evolved from a relatively large scale weather system. Only meso-γ details of the event were not well captured by the best setting of the ARW-WRF model and so peak hourly rainfalls were not exceptionally well reproduced. The results also show that specification of microphysical parameters suitable to these events have a positive impact on the prediction of heavy precipitation intensity values.

  5. A GIS-based model for the hydrological and hydraulic reconstruction of historical flash-floods in urban areas. The case of the river Turia in Valencia (1957)

    NASA Astrophysics Data System (ADS)

    Portugués Mollá, Iván; Felici, Xavier Bonache i.; Mateu Bellés, Joan F.; Segura, Juan B. Marco

    2015-04-01

    Flash-floods are recurrent events in the Mediterranean arch, mostly derived from cold air pool phenomena triggering hydro-geomorphic high-intensity processes, combining high discharge and low frequency. In urban environments the complexity of the processes become higher due to the existence of very fast-response basins and quick-response runoff. However, immediate activities of cleaning up and restoration delete the urban marks. After a short time both significance and dimension of the hydro-geomorphic event become completely unrecognizable. Nevertheless, these episodes generate extensive administrative documentation which is testimony of the processes in almost real time. Exploiting this source typology in order to reconstruct events far in time within urban areas, which may lack database sufficiently rich, is necessary to understand the hydrological and hydraulic derived processes. This is particularly the case of the Valencia flash-flood (1957), located in the lower Turia River basin (6.400 km2). Within a short interval (15 hours) there were registered two flood peaks (estimated at that time at 2.500 and 3.700 m3/s). The double overflowing inundated a large proportion of the urban area. The flash-flood activated fast processes with high energy that left numerous hydro-geomorphic marks. Although those tracks were deleted in a short while after the flood, it remains a legacy that had not yet been exploited, consisting of immediate aerial and oblique high resolution photography, pictures at street level, water level record and administrative records, such as claim files for compensation. Paradoxically, despite the event is considered as a milestone on metropolitan territorial planning and it was decided to divert the river Turia definitely through a major project (12 km of channeling, known as South Solution), being the scenario notably altered, the analysis of the hydrological and hydraulic process has never been reviewed. Undoubtedly, a modern study would ensure a more effective and accurate risk management within the Valencian metropolitan area. The development of a GIS-based model enables the utilization of these materials, most of them unpublished. This non-systematic information can be treated jointly from a new perspective. In short, this model facilitates the provision of a database through a vast amount of organized, structured and georeferenced information about the event. In a second stage, it makes possible to interpret the hydro-geomorphic processes from the 1957 event (trenches along barrier beaches, erosion, deposition processes…) and hydraulic processes (main flow encroachment versus quasi-hydrostatic-flood, or 1D versus 2D flood behavior), which can be identified in order to obtain georeferenced information about spatial variability, directional information of flows and point distribution of water levels and flooded points. It is also necessary to carry out photo-interpretation works to clarify some unresolved issues with the objective of establishing the real order of magnitude of the flash-flood concerning the discharge rank. In the same way, some other elements can be identified such as urban streams along the streets, levees overtopping and breaks, flooded area, etc. Lastly, in the future the GIS database will enable to obtain a more accurate both hydraulic mathematical modelling and calibration/validation.

  6. National Water Model assessment for water management needs over the Western United States.

    NASA Astrophysics Data System (ADS)

    Viterbo, F.; Thorstensen, A.; Cifelli, R.; Hughes, M.; Johnson, L.; Gochis, D.; Wood, A.; Nowak, K.; Dahm, K.

    2017-12-01

    The NOAA National Water Model (NWM) became operational in August 2016, providing the first ever, real-time distributed high-resolution forecasts for the continental United States. Since the model predictions occur at the CONUS scale, there is a need to evaluate the NWM in different regions to assess the wide variety and heterogeneity of hydrological processes that are included (e.g., snow melting, ice freezing, flash flooding events). In particular, to address water management needs in the western U.S., a collaborative project between the Bureau of Reclamation, NOAA, and NCAR is ongoing to assess the NWM performance for reservoir inflow forecasting needs and water management operations. In this work, the NWM is evaluated using different forecast ranges (short to medium) and retrospective historical runs forced by North American Land Data Assimilation System (NLDAS) analysis to assess the NWM skills over key headwaters watersheds in the western U.S. that are of interest to the Bureau of Reclamation. The streamflow results are analyzed and compared with the available observations at the gauge sites, evaluating different NWM operational versions together with the already existing local River Forecast Center forecasts. The NWM uncertainty is also considered, evaluating the propagation of the precipitation forcing uncertainties in the resulting hydrograph. In addition, the possible advantages of high-resolution distributed output variables (such as soil moisture, evapotranspiration fluxes) are investigated, to determine the utility of such information for water managers in terms of watershed characteristics in areas that traditionally have not had any forecast information. The results highlight the NWM's ability to provide high-resolution forecast information in space and time. As anticipated, the performance is best in regions that are dominated by natural flows and where the model has benefited from efforts toward parameter calibration. In highly regulated basins, the water management operations result in NWM overestimation of the peak flows and too fast recession curves. As a future project goal, some reforecasts will be run on target locations, ingesting water management information into the NWM and comparing the new results with the actual operational forecast.

  7. Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas

    USGS Publications Warehouse

    Studley, Seth E.

    2003-01-01

    The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood recovery teams also have the ability to view the estimated flood-inundation map pertaining to the most recent flood. The availability of these maps and the ability to monitor the real-time stream stage through the U.S. Geological Survey Web site provide emergency management personnel and residents with information that is critical for evacuation and rescue efforts in the event of a flood as well as for post-flood recovery efforts.

  8. The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.

    2004-01-01

    The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.

  9. A framework for probabilistic pluvial flood nowcasting for urban areas

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick

    2016-04-01

    Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the larger city of Gent, Belgium. After each of the different above-mentioned components were evaluated, they were combined and tested for recent historical flood events. The rainfall nowcasting, hydraulic sewer and 2D inundation modelling and socio-economical flood risk results each could be partly evaluated: the rainfall nowcasting results based on radar data and rain gauges; the hydraulic sewer model results based on water level and discharge data at pumping stations; the 2D inundation modelling results based on limited data on some recent flood locations and inundation depths; the results for the socio-economical flood consequences of the most extreme events based on claims in the database of the national disaster agency. Different methods for visualization of the probabilistic inundation results are proposed and tested.

  10. Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.

    2011-08-15

    A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less

  11. Coupled 1-D sewer and street networks and 2-D flooding model to rapidly evaluate surface inundation

    NASA Astrophysics Data System (ADS)

    Kao, Hong-Ming; Hsu, Hao-Ming

    2017-04-01

    Flash floods have occurred frequently in the urban areas around the world and cause the infrastructure and people living to expose continuously in the high risk level of pluvial flooding. According to historical surveys, the major reasons of severe surface inundations in the urban areas can be attributed to heavy rainfall in the short time and/or drainage system failure. In order to obtain real-time flood forecasting with high accuracy and less uncertainty, an appropriate system for predicting floods is necessary. For the reason, this study coupled 1-D sewer and street networks and 2-D flooding model as an operational modelling system for rapidly evaluating surface inundation. The proposed system is constructed by three significant components: (1) all the rainfall-runoff of a sub-catchment collected via gullies is simulated by the RUNOFF module of the Storm Water Management Model (SWMM); (2) and directly drained to the 1-D sewer and street networks via manholes as inflow discharges to conduct flow routing by using the EXTRAN module of SWMM; (3) after the 1-D simulations, the surcharges from manholes are considered as point sources in 2-D overland flow simulations that are executed by the WASH123D model. It can thus be used for urban flood modelling that reflects the rainfall-runoff processes, and the dynamic flow interactions between the storm sewer system and the ground surface in urban areas. In the present study, we adopted the Huwei Science and Technology Park, located in the south-western part of Taiwan, as the demonstration area because of its high industrial values. The region has an area about 1 km2 with approximately 1 km in both length and width. It is as isolated urban drainage area in which there is a complete sewer system that collects the runoff and drains to the detention pond. Based on the simulated results, the proposed modelling system was found that the simulated floods fit to the survey records because the physical rainfall-runoff phenomena in urban environment were better reflected. Keywords: SWMM, WASH123D, surface inundation, real-time.

  12. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  13. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  14. Global and regional aspects for genesis of catastrophic floods - the problems of forecasting and estimates for mass and water balance (surface and groundwater contribution)

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei; Trifonov, Dmitriy; Abrakhin, Sergei

    2017-04-01

    1. The principal goal of present talk is, to discuss the existing uncertainty and discrepancy between water balance estimation for the area under heavy rain flood, on the one hand from the theoretical approach and reasonable data base due to rainfall going from atmosphere and, on the other hand the real practicle surface water flow parameters measured by some methods and/or fixed by some eye-witness (cf. [1]). The vital item for our discussion is that the last characteristics sometimes may be noticeably grater than the first ones. Our estimations show the grater water mass discharge observation during the events than it could be expected from the rainfall process estimation only [2]. The fact gives us the founding to take into account the groundwater possible contribution to the event. 2. We carried out such analysis, at least, for two catastrophic water events in 2015, i.e. (1) torrential rain and catastrophic floods in Lousiana (USA), June 16-20; (2) Assam flood (India), Aug. 22 - Sept. 8. 3. Groundwater flood of a river terrace discussed e.g. in [3] but in respect when rise of the water table above the land surface occurs coincided with intense rainfall and being as a relatively rare phenomenon. In our hypothesis the principal part of possible groundwater exit to surface is connected with a crack-net system state in earth-crust (including deep layers) as a water transportation system, first, being in variated pressure field for groundwater basin and, second, modified by different reasons ( both suddenly (the Krimsk-city flash flood event, July 2012, Russia) and/or smoothly (the Amur river flood event, Aug.-Sept. 2013, Russia) ). Such reconstruction of 3D crack-net under external reasons (resulting even in local variation of pressures in any crack-section) is a principal item for presented approach. 4. We believe that in some cases the interconnection of floods and preceding earthquakes may occur. The problem discuss by us for certain events ( e.g. in addition to these above events, for the 2013 Colorado flood (USA) ). 5. Thus, we believe that now is the time to have the transition from «surface view» - i.e. observable results by eye-witness and consequences of the water events, to «fundamental approach» - i.e. measured physical parameters during the continuous monitoring and possible mechanisms of their variation. References 1. Trifonova T.A., Akimov V.A., Abrakhin S.I., Arakelian S.M., Prokoshev V.G. Basic principles of modeling and forecasting of extreme natural and man-made disasters. Monograph, Russian Emercom Publ., 2014, - 436 p., Moscow. 2. Trifonova T., Trifonov D., Arakelian S. The 2015 disastrous floods in Assam, India, and Louisiana, USA: water balance estimation. Hydrology 2016, 3(4), 41; doi:10.3390/hydrology3040041. 3. Madeline B. Cotkowitz, John W. Attig, Thomas McDermott. Groundwater flood a river terrace in southwest Wisconsin, USA. Hydrogeology Journal. 2014. DOI 10.1007/s10040-014-1129-x.

  15. Gauging Flash-Floods: Automated Measurement of Flood Events in Mountain Torrents

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Boss, Stefan; Fritschi, Bruno; Zappa, Massimiliano

    2017-04-01

    Rating curves contain uncertainties, especially in their upper range of higher discharge. This is due to more uncertainties in the measurements and also the typically lower number of measurements of high discharge events. However, it is the upper part of a rating curve that is of interest if it comes to dimensioning protection measures against floods and flash floods. For small municipalities who plan mitigation measures like a dam for protection against flash floods of small mountain torrent a rating curve as accurate as possible can be of great interest. It helps to reduce costs that can be caused by both under- and overdimensioning of a protective structure. We therefore invented a mobile discharge measurement station that is set up to construct a rating curve for small turbulent mountain torrents. It operates with salt dilution method and works in its current setup up to about 10 m3/s. The salt is injected automatically to the torrent when an event of desired magnitude takes place. Further downstream a conductivity measuring sensor records the change in salt concentration of the stream water. This mechanism is guided by automatic continuous observation of radar quantitative precipitation estimates (QPE) and a water pressure sensor. Measurements at a first test site gave promising results. The system does event measurements independent of the time of day and day of the week. The measuring equipment at the field site is only activated in case of an event. Therefore it has a low power consumption and can be run by only two solar panels.

  16. Simulation of rainfall-runoff for major flash flood events in Karachi

    NASA Astrophysics Data System (ADS)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  17. Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

    NASA Astrophysics Data System (ADS)

    Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD

    2018-01-01

    Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.

  18. Flash floods along the Italian coastal areas: examples from Pozzuoli city, Campania, Italy

    NASA Astrophysics Data System (ADS)

    Esposito, Giuseppe; Grimaldi, Giuseppe; Matano, Fabio; Mazzola, Salvatore; Sacchi, Marco

    2014-05-01

    The Italian western coastal areas are the most exposed in the country to low-pressure systems coming from the central-western Mediterranean Sea and Atlantic Ocean. In the last years, many Italian coastal villages were struck by floods and flow processes triggered by high-intensity and short-duration rainfall, typical of flash flood events. In the Campania region (SW Italy) a series of events has caused several fatalities and heavy damages in the last decades, i.e. the flash floods of Casamicciola - Ischia Island (10/11/2009 - 1 fatality) and Atrani (9/9/2010 - 1 fatality). In this work we describe the rainfall properties and the ground effects of the 2009, 2010 and 2011 flash floods which involved the city of Pozzuoli, along the Campi Flegrei coast, where a catastrophic flood event (13 fatalities) is reported in 1918 in the AVI Project database. Rainfall data were measured at a sampling rate of 10 minutes by a regional Civil Protection rain gauge located in the city of Pozzuoli near the areas struck by the flash flood effects. In order to analyze the extreme features of the rainstorms and compare them, we have considered the 1-hour maximum rainfall amount and the 10-min peak storm intensity value for each event. The first rainstorm occurred on 14 September 2009; it was characterized by a 1-hour maximum rainfall amount of 34.4 mm and a 10-min peak storm intensity of 57.6 mm/h. The second rainstorm occurred on 30 July 2010; it was characterized by a 1-hour maximum rainfall amount of 40.6 mm and a 10-min peak storm intensity of 126 mm/h. The third rainstorm occurred on 06 November 2011; it was characterized by a 1-hour maximum rainfall amount of 44.2 mm and a 10-min peak storm intensity of 67.2 mm/h. The three described rainstorms all triggered erosional processes and shallow landslides in the upper part of the Pozzuoli drainage basin that supplied sheet flows and hyperconcentrated flows downstream, with severe damage to the human structures built near or inside the main drainage channels. In this area, in fact, one of the most serious problems for the Civil Protection authorities is the intense urbanization that dramatically increases not only the volcanic and seismic risks but also the level of geo-hydrological risk. The high degree of damage within the basin was also caused by incautious man-made modification of sectors of the drainage network and the use of culverts and even concrete-walled channel segments that in some cases were used as paved roads for local transportation. In all the three cases no warnings were issued to citizens because of the lack of early-warning systems but, fortunately, no fatalities or injuries were reported after the events. The analysis of these flash flood episodes showed an interesting case of interaction between hydrological processes and the geologic setting of a highly urbanized area such as the Campi Flegrei district, where the occurrence of heavy rain coupled with abundance of loose pyroclastic material on the steep volcanic hillslopes is likely to produce high levels of geo-hydrological hazard and risk.

  19. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping

    2017-11-01

    Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For peak values taking flood forecasts from each individual member into account is more appropriate.

  20. Utilization of GPS Tropospheric Delays for Climate Research

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan

    2017-05-01

    The tropospheric delay is one of the main error sources in Global Positioning Systems (GPS) and its impact plays a crucial role in near real-time weather forecasting. Accessibility and accurate estimation of this parameter are essential for weather and climate research. Advances in GPS application has allowed the measurements of zenith tropospheric delay (ZTD) in all weather conditions and on a global scale with fine temporal and spatial resolution. In addition to the rapid advancement of GPS technology and informatics and the development of research in the field of Earth and Planetary Sciences, the GPS data has been available free of charge. Now only required sophisticated processing techniques but user friendly. On the other hand, the ZTD parameter obtained from the models or measurements needs to be converted into precipitable water vapor (PWV) to make it more useful as a component of weather forecasting and analysis atmospheric hazards such as tropical storms, flash floods, landslide, pollution, and earthquake as well as for climate change studies. This paper addresses the determination of ZTD as a signal error or delay source during the propagation from the satellite to a receiver on the ground and is a key driving force behind the atmospheric events. Some results in terms of ZTD and PWV will be highlighted in this paper.

  1. The THOR Project-Reducing the Impact of Thunderstorms on Aviation and the General Public Through a Multi-Agency Effect

    NASA Technical Reports Server (NTRS)

    Smith, Stephan B.; Pace, David; Goodman, Steven J.; Burgess, Donald W.; Smarsh, David; Roberts, Rita D.; Wolfson, Marilyn M.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Thunderstorms are high impact weather phenomena. They also pose an extremely challenging forecast problem. The National Oceanic and Atmospheric Administration (NOAA), the Federal Aviation Administration (FAA), the National Aeronautic and Space Administration (NASA), and the Air Force Weather Agency (AFWA), have decided to pool technology and scientific expertise into an unprecedented effort to better observe, diagnose, and forecast thunderstorms. This paper describes plans for an operational field test called the THunderstorm Operational Research (THOR) Project beginning in 2002, the primary goals of which are to: 1) Reduce the number of Thunderstorm-related Air Traffic Delays with in the National Airspace System (NAS) and, 2) Improve severe thunderstorm, tornado and airport thunderstorm warning accuracy and lead time. Aviation field operations will be focused on the prime air traffic bottleneck in the NAS, the airspace bounded roughly by Chicago, New York City and Washington D.C., sometimes called the Northeast Corridor. A variety of new automated thunderstorm forecasting applications will be tested here that, when implemented into FAA-NWS operations, will allow for better tactical decision making and NAS management during thunderstorm days. Severe thunderstorm operations will be centered on Northern Alabama. NWS meteorologists from the forecast office in Birmingham will test the utility of experimental lightning, radar, and profiler data from a mesoscale observing network being established by NASA's Marshall Space Flight Center. In addition, new tornado detection and thunderstorm nowcasting algorithms will be examined for their potential for improving warning accuracy. The Alabama THOR site will also serve as a test bed for new gridded, digital thunderstorm and flash flood warning products.

  2. Hyper-resolution hydrological modeling: Completeness of Formulation, Appropriateness of Descritization, and Physical LImits of Predictability

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.

    2017-12-01

    HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.

  3. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  4. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  5. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  6. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  7. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    NASA Astrophysics Data System (ADS)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  8. A Flash Flood Study on the Small Montaneous River Catchments in Western Romania

    NASA Astrophysics Data System (ADS)

    Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël

    2013-04-01

    The present study focuses on flash flood modeling on several mountaneous catchments situated in Western Romania by the use of two methodologies, when rainfall and catchment characteristics are known. Hence, the Soil Conservation Service (SCS) Method and the Rational Method will be employed for the generation of the 1%, 2% and 10% historical flash flood hydrographs on the basis of data spanning from 1989-2009. The SCS Method has been applied on the three gauged catchments in the study area: Petris, Troas and Monorostia making use of the existing interconnection between GIS and the rainfall-runoff models. The DEM, soil data and land use preprocessing in GIS allowed a determination of the hydrologic parameters needed for the rainfall-runoff model, with special emphasis on determining the time of concentration, Lag time and the weighted Curve Number according to Antecedent Moisture Conditions II, adapted for the Romanian territory. HEC-HMS rainfall-runoff model (Hydrologic Engineering Center- Hydrologic Modeling System) facilitates the historical 1%, 2% and 10% flash flood hydrograph generation for the three afore mentioned watersheds. The model is calibrated against measured streamflow data from the three existing gauging stations. The results show a good match between the resulted hydrographs and the observed hydrographs under the form of the Peak Weighted Error RMS values. The hydrographs generated by surface runoff on the ungauged catchments in the area is based on an automation of a workflow in GIS, built with ArcGIS Model Builder graphical interface, as a large part of the functions needed were available as ArcGIS tools. The several components of this model calculate: the runoff depth in mm, the runoff coefficient, the travel time and finally the discharge module which is an application of the rational method, allowing the discharge computation for every cell within the catchment. The result consists of discharges for each isochrones that will be subsequently interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

  9. Flooding in ephemeral streams: incorporating transmission losses

    USDA-ARS?s Scientific Manuscript database

    Stream flow in semiarid lands commonly occurs as a form of flash floods in dry ephemeral stream beds. The goal of this research is to couple hydrological and hydraulic models treats channel transmission losses and test the methodology in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW). For h...

  10. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Fundel, F.; Zappa, M.

    2011-07-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment. No definitive conclusion on the model chain capacity to forecast flooding events endangering the city of Zurich could be drawn because of the under-sampling of extreme events. Further research on the form of the reforecasts needed to infer on floods associated to return periods of several decades, centuries, is encouraged.

  11. A first large-scale flood inundation forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domainmore » has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.« less

  12. Flood prevention dams for arid regions at a micro-scale sub-catchment, case study: Tabuk, Saudi Arabia.

    PubMed

    Abushandi, Eyad

    2016-12-01

    Unexpected flash flooding is one of the periodic hydrological problems affecting the city of Tabuk in Saudi Arabia. The region has high potential for floods as it suffers high rainfall intensity in a short time and also has high urbanization rates and topographic complexity. Constructing flood prevention dams is one option to solve this problem. A cost-effective design requires a detailed feasibility study and analysis for the selection of suitable sites. The aim of this study was to develop a method for selecting a suitable site for flood protection dams in the Abu Saba'a district, the most affected part of the city of Tabuk during the flash flood in January 2013. Spatial analysis was applied using Landsat Thematic Mapper images and Shuttle Radar Topography Mission digital elevation model to select a site in the Abu Saba'a area. A simple model using ArcGIS was built including all suggested parameters. The results showed the best site for a dam was 2 km distance backfrom the area, where all parameter values matched. The results showed that the dynamic properties of land cover can affect site selection. It is therefore suggested that more field and hydrological data should be gathered for greater accuracy.

  13. Weighing costs and losses: A decision making game using probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Werner, Micha; Ramos, Maria-Helena; Wetterhall, Frederik; Cranston, Michael; van Andel, Schalk-Jan; Pappenberger, Florian; Verkade, Jan

    2017-04-01

    Probabilistic forecasts are increasingly recognised as an effective and reliable tool to communicate uncertainties. The economic value of probabilistic forecasts has been demonstrated by several authors, showing the benefit to using probabilistic forecasts over deterministic forecasts in several sectors, including flood and drought warning, hydropower, and agriculture. Probabilistic forecasting is also central to the emerging concept of risk-based decision making, and underlies emerging paradigms such as impact-based forecasting. Although the economic value of probabilistic forecasts is easily demonstrated in academic works, its evaluation in practice is more complex. The practical use of probabilistic forecasts requires decision makers to weigh the cost of an appropriate response to a probabilistic warning against the projected loss that would occur if the event forecast becomes reality. In this paper, we present the results of a simple game that aims to explore how decision makers are influenced by the costs required for taking a response and the potential losses they face in case the forecast flood event occurs. Participants play the role of one of three possible different shop owners. Each type of shop has losses of quite different magnitude, should a flood event occur. The shop owners are presented with several forecasts, each with a probability of a flood event occurring, which would inundate their shop and lead to those losses. In response, they have to decide if they want to do nothing, raise temporary defences, or relocate their inventory. Each action comes at a cost; and the different shop owners therefore have quite different cost/loss ratios. The game was played on four occasions. Players were attendees of the ensemble hydro-meteorological forecasting session of the 2016 EGU Assembly, professionals participating at two other conferences related to hydrometeorology, and a group of students. All audiences were familiar with the principles of forecasting and water-related risks, and one of the audiences comprised a group of experts in probabilistic forecasting. Results show that the different shop owners do take the costs of taking action and the potential losses into account in their decisions. Shop owners with a low cost/loss ratio were found to be more inclined to take actions based on the forecasts, though the absolute value of the losses also increased the willingness to take action. Little differentiation was found between the different groups of players.

  14. Diagnosis of North American Multi-Model Ensemble (NMME) skill for predicting floods and droughts over the continental USA

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Villarini, G.; Bradley, A.

    2015-12-01

    Model predictions of precipitation and temperature are crucial to mitigate the impacts of major flood and drought events through informed planning and response. However, the potential value and applicability of these predictions is inescapably linked to their forecast quality. The North-American Multi-Model Ensemble (NMME) is a multi-agency supported forecasting system for intraseasonal to interannual (ISI) climate predictions. Retrospective forecasts and real-time information are provided by each agency free of charge to facilitate collaborative research efforts for predicting future climate conditions as well as extreme weather events such as floods and droughts. Using the PRISM climate mapping system as the reference data, we examine the skill of five General Circulation Models (GCMs) from the NMME project to forecast monthly and seasonal precipitation and temperature over seven sub-regions of the continental United States. For each model, we quantify the seasonal accuracy of the forecast relative to observed precipitation using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill), and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. The quantification of these biases allows us to diagnose each model's skill over a full range temporal and spatial scales. Finally, we test each model's forecasting skill by evaluating its ability to predict extended periods of extreme temperature and precipitation that were conducive to 'billion-dollar' historical flood and drought events in different regions of the continental USA. The forecasting skill of the individual climate models is summarized and presented along with a discussion of different multi-model averaging techniques for predicting such events.

  15. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.

  16. Improving global flood risk awareness through collaborative research: Id-Lab

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Zijderveld, A.; Cumiskey, L.; Buckman, L.; Verlaan, M.; Baart, F.

    2015-12-01

    Scientific and end-user collaboration on operational flood risk modelling and forecasting requires an environment where scientists and end-users can physically work together and demonstrate, enhance and learn about new tools, methods and models for forecasting and warning purposes. Therefore, Deltares has built a real-time demonstration, training and research infrastructure ('operational' room and ICT backend). This research infrastructure supports various functions like (1) Real time response and disaster management, (2) Training, (3) Collaborative Research, (4) Demonstration. The research infrastructure will be used for a mixture of these functions on a regular basis by Deltares and a multitude of both scientists as well as end users such as universities, research institutes, consultants, governments and aid agencies. This infrastructure facilitates emergency advice and support during international and national disasters caused by rainfall, tropical cyclones or tsunamis. It hosts research flood and storm surge forecasting systems for global/continental/regional scale. It facilitates training for emergency & disaster management (along with hosting forecasting system user trainings in for instance the forecasting platform Delft-FEWS) both internally and externally. The facility is expected to inspire and initiate creative innovations by bringing together different experts from various organizations. The room hosts interactive modelling developments, participatory workshops and stakeholder meetings. State of the art tools, models and software, being applied across the globe are available and on display within the facility. We will present the Id-Lab in detail and we will put particular focus on the global operational forecasting systems GLOFFIS (Global Flood Forecasting Information System) and GLOSSIS (Global Storm Surge Information System).

  17. The 2-3 November 2015 flood of the Sió River (NE Iberian Peninsula): a flash flood that turns into a mudflow downstream

    NASA Astrophysics Data System (ADS)

    Carles Balasch Solanes, Josep; Lluís Ruiz-Bellet, Josep; Rodríguez, Rafael; Tuset, Jordi; Castelltort, Xavier; Barriendos, Mariano; Pino, David; Mazón, Jordi

    2016-04-01

    Historical and recent evidence shows that many floods in the interior of Catalonia (NE Iberian Peninsula) usually have such a great sediment load that can even alter the hydraulic behaviour of the flow. This is especially true in catchments with a great proportion of agricultural soils, which are the main source of sediment. The night of 2-3 November 2015 torrential rains fell on the headwaters of the Sió River catchment (508 km2); the subsequent flood caused four deaths and many damages along the stream. The hydrological, hydraulic and sedimentary characteristics of this recent flood have been analysed in order to gain a better insight on the characteristics of the major historical floods in the same catchment. The rainfall height on the headwaters was between 139 and 146 mm in ten hours, with a maximum intensity of about 50 mm·h-1. In the rest of the catchment it rained much less (22-71 mm). The agricultural soils in the headwaters show evidence of intense erosion by laminar and concentrated Hortonian overland flow in their superficial layer (Ap1; 10 cm), which uncovered the more compact underlying layer (Ap2). The peak flow in the headwaters (Oluges) was 90 m3·s-1 (that is, a specific peak flow near 1 m3·s-1·km-2) and it diminished downstream: 40 m3·s-1 in the centre of the catchment (Oluges + 27 km) and 15 m3·s-1 in the outlet (Oluges + 54 km). The suspended sediment load was 10-15% in volume in the headwaters and, judging from recorded images and eyewitnesses, it increased as the flow moved downstream, turning the flash flood into a mudflow. This concentration gain was most probably caused by the flood wave's water loss due to the dryness of the riverbed and translated in an increased viscosity that ultimately altered the hydraulic behaviour of the flow, slowing it down. This process of water loss has been observed in flash floods in dry riverbeds in arid and semiarid areas such as Negev (Israel) and Atacama (Chile). Historical floods in neighbouring catchments (Ondara and Corb Rivers) are known to have had hyperconcetrated flows.

  18. Construction of an integrated social vulnerability index in urban areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-09-01

    Among the natural hazards, flash flooding is the leading cause of weather-related deaths. Flood risk management (FRM) in this context requires a comprehensive assessment of the social risk component. In this regard, integrated social vulnerability (ISV) can incorporate spatial distribution and contribution and the combined effect of exposure, sensitivity and resilience to total vulnerability, although these components are often disregarded. ISV is defined by the demographic and socio-economic characteristics that condition a population's capacity to cope with, resist and recover from risk and can be expressed as the integrated social vulnerability index (ISVI). This study describes a methodological approach towards constructing the ISVI in urban areas prone to flash flooding in Castilla y León (Castile and León, northern central Spain, 94 223 km2, 2 478 376 inhabitants). A hierarchical segmentation analysis (HSA) was performed prior to the principal components analysis (PCA), which helped to overcome the sample size limitation inherent in PCA. ISVI was obtained from weighting vulnerability factors based on the tolerance statistic. In addition, latent class cluster analysis (LCCA) was carried out to identify spatial patterns of vulnerability within the study area. Our results show that the ISVI has high spatial variability. Moreover, the source of vulnerability in each urban area cluster can be identified from LCCA. These findings make it possible to design tailor-made strategies for FRM, thereby increasing the efficiency of plans and policies and helping to reduce the cost of mitigation measures.

  19. Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis

    NASA Astrophysics Data System (ADS)

    Chaney, M. M.; Smith, J. A.; Baeck, M. L.

    2017-12-01

    Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.

  20. Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Ramos, Maria-Helena; Coughlan, Erin; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; van Andel, Schalk-Jan; Pappenberger, Florian

    2016-04-01

    Forecast uncertainty is a twofold issue, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic forecasts over deterministic forecasts for a diversity of activities in the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. The setup and the results of a risk-based decision-making experiment, designed as a game on the topic of flood protection mitigation, called ``How much are you prepared to pay for a forecast?'', will be presented. The game was played at several workshops in 2015, including during this session at the EGU conference in 2015, and a total of 129 worksheets were collected and analysed. The aim of this experiment was to contribute to the understanding of the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants' willingness-to-pay for a forecast, the results of the game showed that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers. Balancing avoided costs and the cost (or the benefit) of having forecasts available for making decisions is not straightforward, even in a simplified game situation, and is a topic that deserves more attention from the hydrological forecasting community in the future.

  1. LINKS to NATIONAL WEATHER SERVICE MARINE FORECAST OFFICES

    Science.gov Websites

    Coastal Flooding Tsunamis 406 EPIRB's National Weather Service Marine Forecasts LINKS to NATIONAL WEATHER Marine Forecasts in text form ) Coastal NWS Forecast Offices have regionally focused marine webpages which are overflowing with information such as coastal forecasts, predicted tides, and buoy observations

  2. Home | Sonoma County Water Agency

    Science.gov Websites

    Precipitation Information (AQPI) Fluoridation Atmospheric Rivers Urban Water Management Plan Flood Protection Advanced Quantitative Precipitation Information (AQPI) Fluoridation Atmospheric Rivers Urban Water Management Plan Flood Protection Flood Forecast/Emergency Info Stream Maintenance Program Flood Protection

  3. Discharge data assimilation in a distributed hydrologic model for flood forecasting purposes

    NASA Astrophysics Data System (ADS)

    Ercolani, G.; Castelli, F.

    2017-12-01

    Flood early warning systems benefit from accurate river flow forecasts, and data assimilation may improve their reliability. However, the actual enhancement that can be obtained in the operational practice should be investigated in detail and quantified. In this work we assess the benefits that the simultaneous assimilation of discharge observations at multiple locations can bring to flow forecasting through a distributed hydrologic model. The distributed model, MOBIDIC, is part of the operational flood forecasting chain of Tuscany Region in Central Italy. The assimilation system adopts a mixed variational-Monte Carlo approach to update efficiently initial river flow, soil moisture, and a parameter related to runoff production. The evaluation of the system is based on numerous hindcast experiments of real events. The events are characterized by significant rainfall that resulted in both high and relatively low flow in the river network. The area of study is the main basin of Tuscany Region, i.e. Arno river basin, which extends over about 8300 km2 and whose mean annual precipitation is around 800 mm. Arno's mainstream, with its nearly 240 km length, passes through major Tuscan cities, as Florence and Pisa, that are vulnerable to floods (e.g. flood of November 1966). The assimilation tests follow the usage of the model in the forecasting chain, employing the operational resolution in both space and time (500 m and 15 minutes respectively) and releasing new flow forecasts every 6 hours. The assimilation strategy is evaluated in respect to open loop simulations, i.e. runs that do not exploit discharge observations through data assimilation. We compare hydrographs in their entirety, as well as classical performance indexes, as error on peak flow and Nash-Sutcliffe efficiency. The dependence of performances on lead time and location is assessed. Results indicate that the operational forecasting chain can benefit from the developed assimilation system, although with a significant variability due to the specific characteristics of any single event, and with downstream locations more sensitive to observations than upstream sites.

  4. Dynamic Water Storage during Flash Flood Events in the Mountainous Area of Rio de Janeiro/Brazil - Case study: Piabanha River Basin

    NASA Astrophysics Data System (ADS)

    Araujo, L.; Silva, F. P. D.; Moreira, D. M.; Vásquez P, I. L.; Justi da Silva, M. G. A.; Fernandes, N.; Rotunno Filho, O. C.

    2017-12-01

    Flash floods are characterized by a rapid rise in water levels, high flow rates and large amounts of debris. Several factors have relevance to the occurrence of these phenomena, including high precipitation rates, terrain slope, soil saturation degree, vegetation cover, soil type, among others. In general, the greater the precipitation intensity, the more likely is the occurrence of a significant increase in flow rate. Particularly on steep and rocky plains or heavily urbanized areas, relatively small rain rates can trigger a flash flood event. In addition, high rain rates in short time intervals can temporarily saturate the surface soil layer acting as waterproofing and favoring the occurrence of greater runoff rates due to non-infiltration of rainwater into the soil. Thus, although precipitation is considered the most important factor for flooding, the interaction between rainfall and the soil can sometimes be of greater importance. In this context, this work investigates the dynamic storage of water associated with flash flood events for Quitandinha river watershed, a tributary of Piabanha river, occurred between 2013 and 2014, by means of water balance analyses applied to three watersheds of varying magnitudes (9.25 km², 260 km² and 429 km²) along the rainy season under different time steps (hourly and daily) using remotely sensed and observational precipitation data. The research work is driven by the hypothesis of a hydrologically active bedrock layer, as the watershed is located in a humid region, having intemperate (fractured) rock layer, just below a shallow soil layer, in the higher part of the basin where steep slopes prevail. The results showed a delay of the variation of the dynamic storage in relation to rainfall peaks and water levels. Such behavior indicates that the surface soil layer, which is not very thick in the region, becomes rapidly saturated along rainfall events. Subsequently, the water infiltrates into the rocky layer and the water storage in the fractured bedrock assumes significant role due to its corresponding release to streams as storm flows.

  5. Medium Range Ensembles Flood Forecasts for Community Level Applications

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S.; Kawasaki, A.; Babel, M. S.; AIT

    2013-05-01

    Early warning is a key element for disaster risk reduction. In recent decades, there has been a major advancement in medium range and seasonal forecasting. These could provide a great opportunity to improve early warning systems and advisories for early action for strategic and long term planning. This could result in increasing emphasis on proactive rather than reactive management of adverse consequences of flood events. This can be also very helpful for the agricultural sector by providing a diversity of options to farmers (e.g. changing cropping pattern, planting timing, etc.). An experimental medium range (1-10 days) flood forecasting model has been developed for Bangladesh which provides 51 set of discharge ensembles forecasts of one to ten days with significant persistence and high certainty. This could help communities (i.e. farmer) for gain/lost estimation as well as crop savings. This paper describe the application of ensembles probabilistic flood forecast at the community level for differential decision making focused on agriculture. The framework allows users to interactively specify the objectives and criteria that are germane to a particular situation, and obtain the management options that are possible, and the exogenous influences that should be taken into account before planning and decision making. risk and vulnerability assessment was conducted through community consultation. The forecast lead time requirement, users' needs, impact and management options for crops, livestock and fisheries sectors were identified through focus group discussions, informal interviews and questionnaire survey.

  6. Flash-Flood hydrological simulations at regional scale. Scale signature on road flooding vulnerability

    NASA Astrophysics Data System (ADS)

    Anquetin, Sandrine; Vannier, Olivier; Ollagnier, Mélody; Braud, Isabelle

    2015-04-01

    This work contributes to the evaluation of the dynamics of the human exposure during flash-flood events in the Mediterranean region. Understanding why and how the commuters modify their daily mobility in the Cévennes - Vivarais area (France) is the long-term objective of the study. To reach this objective, the methodology relies on three steps: i) evaluation of daily travel patterns, ii) reconstitution of road flooding events in the region based on hydrological simulation at regional scale in order to capture the time evolution and the intensity of flood and iii) identification of the daily fluctuation of the exposition according to road flooding scenarios and the time evolution of mobility patterns. This work deals with the second step. To do that, the physically based and non-calibrated hydrological model CVN (Vannier, 2013) is implemented to retrieve the hydrological signature of past flash-flood events in Southern France. Four past events are analyzed (September 2002; September 2005 (split in 2 different events); October 2008). Since the regional scale is investigated, the scales of the studied catchments range from few km2 to few hundreds of km2 where many catchments are ungauged. The evaluation is based on a multi-scale approach using complementary observations coming from post-flood experiments (for small and/or ungaugged catchments) and operational hydrological network (for larger catchments). The scales of risk (time and location of the road flooding) are also compared to observed data of road cuts. The discussion aims at improving our understanding on the hydrological processes associated with road flooding vulnerability. We specifically analyze runoff coefficient and the ratio between surface and groundwater flows at regional scale. The results show that on the overall, the three regional simulations provide good scores for the probability of detection and false alarms concerning road flooding (1600 points are analyzed for the whole region). Our evaluation procedure provides new insights on the active hydrological processes at small scales (catchments area < 10 km²) since these small scales, distributed over the whole region, are analyzed through road cuts data and post-flood field investigations. As shown in Vannier (2013), the signature of the altered geological layer is significant on the simulated discharges. For catchments under schisty geology, the simulated discharge, whatever the catchment size, is usually overestimated. Vannier, O, 2013, Apport de la modélisation hydrologique régionale à la compréhension des processus de crue en zone méditerranéenne, PhD-Thesis (in French), Grenoble University.

  7. A back-fitting algorithm to improve real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan

    2018-07-01

    Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.

  8. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between forecast skill and lead-time. Forecast skill is determined by statistical analysis of probability of detection (POD), false alarm ratio (FAR), Operational Utility Index (OUI), and critical success index (CSI).

  9. Genetic and life-history consequences of extreme climate events

    PubMed Central

    Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J.

    2017-01-01

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. PMID:28148745

  10. A preliminary look at the impact of warming Mediterranean Sea temperatures on some aspects of extreme thunderstorm events in Italy

    NASA Astrophysics Data System (ADS)

    Gallus, William; Parodi, Antonio; Miglietta, Marcello; Maugeri, Maurizio

    2017-04-01

    As the global climate has warmed in recent decades, interest has grown in the impacts on extreme events associated with thunderstorms such as tornadoes and intense rainfall that can cause flash flooding. Because warmer temperatures allow the atmosphere to contain larger values of water vapor, it is generally accepted that short-term rainfall may become more intense in a future warmer climate. Regarding tornadoes, it is more difficult to say what might happen since although increased temperatures and humidity in the lowest part of the troposphere should increase thermodynamic instability, allowing for stronger thunderstorm updrafts, vertical wind shear necessary for storm-scale rotation may decrease as the pole to equator temperature gradient weakens. The Mediterranean Sea is an important source for moisture that fuels thunderstorms in Italy, and it has been warming faster than most water bodies in recent decades. The present study uses three methods to gain preliminary insight into the role that the warming Mediterranean may have on tornadoes and thunderstorms with intense rainfall in Italy. First, a historical archive of Italian tornadoes has been updated for the 1990s, and it will be used along with other data from the European Severe Weather Database to discuss possible trends in tornado occurrence. Second, convection-allowing Weather Research and Forecasting (WRF) model simulations have been performed for three extreme events to examine sensitivity to both the sea surface temperatures and other model parameters. These events include a flash flood-producing storm event near Milan, a non-tornadic severe hail event in far northeastern Italy, and the Mira EF-4 tornado of July 2015. Sensitivities in rainfall amount, radar reflectivity and storm structure, and storm rotation will be discussed. Finally, changes in the frequency of intense mesoscale convective system events in and near the Ligurian Sea, inferred from the presence of strong convergence lines in EXPRESS-Hydro regional climate model output, will be examined.

  11. A new concept to study the effect of climate change on different flood types

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno

    2014-05-01

    Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.

  12. Paleohydrologic techniques used to define the spatial occurrence of floods

    USGS Publications Warehouse

    Jarrett, R.D.

    1990-01-01

    Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods vary by latitude. The study results have implications for floodplain management and design of hydraulic structures in the mountains of Colorado and other Rocky Mountain States. ?? 1990.

  13. Reinforced two-step-ahead weight adjustment technique for online training of recurrent neural networks.

    PubMed

    Chang, Li-Chiu; Chen, Pin-An; Chang, Fi-John

    2012-08-01

    A reliable forecast of future events possesses great value. The main purpose of this paper is to propose an innovative learning technique for reinforcing the accuracy of two-step-ahead (2SA) forecasts. The real-time recurrent learning (RTRL) algorithm for recurrent neural networks (RNNs) can effectively model the dynamics of complex processes and has been used successfully in one-step-ahead forecasts for various time series. A reinforced RTRL algorithm for 2SA forecasts using RNNs is proposed in this paper, and its performance is investigated by two famous benchmark time series and a streamflow during flood events in Taiwan. Results demonstrate that the proposed reinforced 2SA RTRL algorithm for RNNs can adequately forecast the benchmark (theoretical) time series, significantly improve the accuracy of flood forecasts, and effectively reduce time-lag effects.

  14. Risk assessment of flash floods in central Pyrenees (Spain) through land use change analysis

    NASA Astrophysics Data System (ADS)

    Serrano-Notivoli, Roberto; Mora, Daniel; Sánchez-Fabre, Miguel; Ángel Saz, Miguel; Ollero, Alfredo

    2015-04-01

    Nowadays, the main cause of the damages to human areas is the increased risk exposure. The urbanization in touristic areas in Pyrenees has increased enormously in last 25 years, and the most of urban development have been made on land occupied by the stream channel. We present two different case studies in central Pyrenees: one in Aragón river and one in Ésera river. We made a land use analysis from 1956 to 2013 in the headwaters of these two rivers delimiting the channel in different flash floods events, and analysing the amount and distribution of precipitation at the same time. The results show that the risk exposure is one of the main factors of the impact of flash floods. We found that most of the damage on urbanization and human activities was caused by the urban occupation of areas that were located on the floodplain of the river. For both Aragon and Esera headwaters precipitation events were considered extreme in their time series. However, the amount of precipitation of these extreme events does not support the consequences in geomorphological and human environments. The events of high intensity rainfall over the last years could be expected, yet, it had unexpected consequences that could be predictable by land managers through an appropriate regional planning.

  15. Vulnerability and Sensitivity of Women and the Aged to Hydrological Extremes in Rural Communities of South Eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Mbajiorgu, Constantine; Ezenne, Gloria I.; Ndulue, Emeka L.

    2017-04-01

    Annual rainfall total of Southeastern Nigeria varies widely from year to year and across the seasons. Southeastern Nigeria is marked with two distinctive seasons, namely: the rainy season (occurs March through November) and the dry season (December through February). Highest daily rainfall of this area occurs in the months of July through September. Climate change has brought about either prolonged rainy or dry season in this region. Flash floods are common features in Southeastern Nigeria during the rainy (wet) season, but the unprecedented floods of 2012 represent the worst with 21 million people displaced, 597,476 houses destroyed or damaged, over 363 people killed and an estimated loss of USD 19.6 billion. Hydrological extremes such as these affect men and women differently because of the different roles socio-culturally assigned to them. Women are more vulnerable and sensitive to floods and drought because of their conventional gender responsibilities. This study assesses how women and the elderly of rural communities of Southeastern Nigeria are affected by hydrological extremes, their vulnerability to the effects as well as risk reduction approaches to cope with and/or adapt to the impacts of climate change. In the study area, women are predominantly the providers of food, water and fuel, and climate change has adverse impacts on all three. Women in these rural communities practice subsistence farming during the rainy season. Their farm lands are submerged during flood events destroying their crops and they are helpless during prolonged dry seasons. Inadequacy of hydrological data makes it difficult to predict and forecast hydrological extremes in the region. Several other factors exacerbate vulnerability of women and the aged to the impacts of hydrological extremes, such as rural poverty, limited livelihood options, education, lack of basic services, and socio-cultural norms. The poverty level affects their resilience and recovery from any flood disaster. It is proposed to reduce the risks associated with hydrological extremes in this region by providing a master plan for flood control and relief measures for potential victims; floods mitigation through land use regulation and watershed management; building institutional capacity for flood prediction and creating public awareness, as well as minimize the impact of floods and droughts through the provision and maintenance of appropriate engineering structures.

  16. Development of flood-inundation maps for the West Branch Susquehanna River near the Borough of Jersey Shore, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Hoffman, Scott A.

    2011-01-01

    Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.

  17. Validation of Satellite-based Rainfall Estimates for Severe Storms (Hurricanes & Tornados)

    NASA Astrophysics Data System (ADS)

    Nourozi, N.; Mahani, S.; Khanbilvardi, R.

    2005-12-01

    Severe storms such as hurricanes and tornadoes cause devastating damages, almost every year, over a large section of the United States. More accurate forecasting intensity and track of a heavy storm can help to reduce if not to prevent its damages to lives, infrastructure, and economy. Estimating accurate high resolution quantitative precipitation (QPE) from a hurricane, required to improve the forecasting and warning capabilities, is still a challenging problem because of physical characteristics of the hurricane even when it is still over the ocean. Satellite imagery seems to be a valuable source of information for estimating and forecasting heavy precipitation and also flash floods, particularly for over the oceans where the traditional ground-based gauge and radar sources cannot provide any information. To improve the capability of a rainfall retrieval algorithm for estimating QPE of severe storms, its product is evaluated in this study. High (hourly 4km x 4km) resolutions satellite infrared-based rainfall products, from the NESDIS Hydro-Estimator (HE) and also PERSIANN (Precipitation Estimation from Remotely Sensed Information using an Artificial Neural Networks) algorithms, have been tested against NEXRAD stage-IV and rain gauge observations in this project. Three strong hurricanes: Charley (category 4), Jeanne (category 3), and Ivan (category 3) that caused devastating damages over Florida in the summer 2004, have been considered to be investigated. Preliminary results demonstrate that HE tends to underestimate rain rates when NEXRAD shows heavy storm (rain rates greater than 25 mm/hr) and to overestimate when NEXRAD gives low rainfall amounts, but PERSIANN tends to underestimate rain rates, in general.

  18. Pathways to designing and running an operational flood forecasting system: an adventure game!

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Ramos, Maria-Helena; Cloke, Hannah; Crochemore, Louise; Giuliani, Matteo; Aalbers, Emma

    2017-04-01

    In the design and building of an operational flood forecasting system, a large number of decisions have to be taken. These include technical decisions related to the choice of the meteorological forecasts to be used as input to the hydrological model, the choice of the hydrological model itself (its structure and parameters), the selection of a data assimilation procedure to run in real-time, the use (or not) of a post-processor, and the computing environment to run the models and display the outputs. Additionally, a number of trans-disciplinary decisions are also involved in the process, such as the way the needs of the users will be considered in the modelling setup and how the forecasts (and their quality) will be efficiently communicated to ensure usefulness and build confidence in the forecasting system. We propose to reflect on the numerous, alternative pathways to designing and running an operational flood forecasting system through an adventure game. In this game, the player is the protagonist of an interactive story driven by challenges, exploration and problem-solving. For this presentation, you will have a chance to play this game, acting as the leader of a forecasting team at an operational centre. Your role is to manage the actions of your team and make sequential decisions that impact the design and running of the system in preparation to and during a flood event, and that deal with the consequences of the forecasts issued. Your actions are evaluated by how much they cost you in time, money and credibility. Your aim is to take decisions that will ultimately lead to a good balance between time and money spent, while keeping your credibility high over the whole process. This game was designed to highlight the complexities behind decision-making in an operational forecasting and emergency response context, in terms of the variety of pathways that can be selected as well as the timescale, cost and timing of effective actions.

  19. Planform changes and large wood dynamics in two torrents during a severe flash flood in Braunsbach, Germany 2016.

    PubMed

    Lucía, Ana; Schwientek, Marc; Eberle, Joachim; Zarfl, Christiane

    2018-05-30

    This work presents a post-event survey study, addressing the geomorphic response and large wood budget of two torrents, Grimmbach and Orlacher Bach, in southwestern Germany that were affected by a flash flood on May 29, 2016. During the event, large amounts of wood clogged and damaged a bridge of a cycling path at the outlet of the Grimmbach, while the town of Braunsbach was devastated by discharge and material transported along the Orlacher Bach. The severity of the event in these two small catchments (30.0 km 2 and 5.95 km 2 , respectively) is remarkable in basins with a relatively low average slope (10.7 and 12.0%, respectively). In order to gain a better understanding of the driving forces during this flood event an integrated approach was applied including (i) an estimate of peak discharges, (ii) an analysis of changes in channel width by comparing available aerial photographs before the flood with a post-flood aerial surveys with an Unmanned Aerial Vehicle and validation with field observations, (iii) a detailed mapping of landslides and analysis of their connectivity with the channel network and finally (iv) an analysis of the amounts of large wood recruited and deposited in the channel. The morphological changes in the channels can be explained by hydraulic parameters, such as stream power and unit stream power, and by morphological parameters such as the valley confinement. This is similar for LW recruitment amounts and volume of exported LW since most of it comes from the erosion of the valley floor. The morphological changes and large wood recruitment and deposit are in the range of studied mountain rivers. Both factors thus need to be considered for mapping and mitigating flash flood hazards also in this kind of low range mountains. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A GIS-Based Model for the analysis of an urban flash flood and its hydro-geomorphic response. The Valencia event of 1957

    NASA Astrophysics Data System (ADS)

    Portugués-Mollá, I.; Bonache-Felici, X.; Mateu-Bellés, J. F.; Marco-Segura, J. B.

    2016-10-01

    Flash floods are recurrent events around the Mediterranean region. Extreme episodes activate hydro-geomorphic high-intensity processes with low frequency. In urban environments, the complexity becomes higher due to the existence of very quick-response runoff. However, immediate recovery works remove the urban marks. After a short time both the significance and magnitude of the hydro-geomorphic event become completely unrecognizable. Nevertheless, these episodes generate extensive documentation which is testimony of the processes in almost real time. It is necessary to exploit this source typology in order to draw flood sketches when events far in time may lack a sufficiently rich database. This is particularly the case for the Valencia flash flood (October 1957), located in the lower Turia River basin (Eastern Spain). It left numerous pieces of hydro-geomorphic evidence, but its tracks were covered a short while after the flood. In any case, it remains part of a non-systematic legacy that has not yet been exploited, consisting of immediate aerial and oblique high resolution photography, pictures at street level, water marks and administrative records. Paradoxically, despite being considered a milestone in metropolitan territorial planning (the river was definitely diverted), an accurate reconstruction of the hydraulic behaviour was required from an integrated point of view. To this aim, the development of a GIS-Based Model enabled the utilisation of the above-mentioned materials. This non-conventional information was treated jointly from a new perspective. It provided database support through a vast amount of organised, structured and georeferenced information about the 1957 event. In a second stage, the GBM made it possible to characterise the Turia urban reach and interpret both the hydro-geomorphic (trenches along barrier beaches, erosion, deposition, etc.) and hydraulic (urban streams along the streets, flow directions, flood extent, levees breaks, overflows and inflows, etc.) processes mainly through photo-interpretation.

  1. Comparison of Alaskan Flood Stages: Annual Exceedance Probability vs. Impact Based Stages and Recommendations for the Future

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.

    2016-12-01

    The Alaska River Forecasting Center (APRFC) issues water level forecasts that are used in conjunction with established flood stages to provide flood warning and advisory information to the public. The APRFC typically establishes flood stages based on observed impacts but Alaska has sparse empirical data (e.g., few impact surveys). Thus service hydrologists in Alaska use flood frequency analysis (LP3 distribution) to estimate flood stages from annual exceedance probabilities (AEPs) (Curran et al, 2016). Previously, the APRFC has maintained that bankfull stage corresponds to the 50% AEP, minor to 10-20% AEP, moderate to 2.5-7% AEP, and major to 1-2% AEP, but we now need to statistically verify this relationship. Our objective is therefore to validate the relationship between flood stages and stage associated with the 50, 20, 10, 4, 2, 1, 0.2, and 0.5 AEPs to provide recommendations for improved flood forecasting. We studied the relationship between AEP and flood stage for all gages (56) used by the APRFC that had rating curves not older than 3 years, flood stages based on observed impacts, and at least 10 years of peak annual stage data. The analysis found relatively strong relationships for all flood stages, except for bankfull stage, but with some differences when compared to the traditionally referenced relationship. Major flood stage appears to be most similar to the 1-.2% AEP (100-500 year RI) while moderate flood stage best fits the 2-4% AEP (25-50 year interval). Gages showing a difference in stage of 2 ft or greater exhibited this difference across all flood stages, which we link to site specific qualities such as susceptibility to ice-jam flooding. We present this method as a possible application to Alaskan Rivers as a general flood stage guideline.

  2. Using palynology to re-assess the Dead Sea laminated sediments - Indeed varves?

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Lopez-Merino, Lourdes; Belmaker, Reuven; Eshel, Amram; Epshtein Epshtein, Valentina; Leroy, Suzanne

    2017-04-01

    Lacustrine laminated sediments are often varves representing annual rhythmic deposition. The Dead Sea high-stand laminated sections consist of mm-scale alternating detrital and authigenic aragonite laminae. Previous studies assumed these laminae were varves; detritus deposition during the winter and aragonite in the summer. These sequences were used for varve counting and chronology, however this assumption has never been robustly validated. Here, we report an examination of the seasonal deposition of detrital and aragonite couplets from two well-known Late Holocene laminated sections at the Ze'elim fan-delta using palynology and grain-size distribution analyses. These analyses are complemented by the study of contemporary flash-flood samples and multivariate statistical analysis. Because transport affects the pollen preservation state, well-preserved (mostly) air-borne transported pollen was analysed separately from badly-preserved pollen and fungal spores, which are more indicative of water transport and reworking from soils. Our results indicate that (i) both detrital and aragonite laminae were deposited during the rainy season; (ii) aragonite laminae have significantly lower reworked pollen and fungal spore concentrations than detrital and flash-flood samples; and (iii) detrital laminae are composed of recycling of local and distal sources, with coarser particles that were initially deposited in the Dead Sea watershed and later transported via run-off to the lake. The conclusions suggest that detrital and aragonite couplets in the Dead Sea laminated sediments are most likely not varves and that the laminae deposition is related to the occurrence of flash-flood events. Consequently, at least for the Holocene sequences, laminated sediments cannot be considered as varves and Quaternary laminated sequences should be re-evaluated. The Dead Sea Basin laminated sequences (as the ICDP Dead Sea Deep Drilling Project record) should be used for the reconstruction of palaeo-flash flood records that will have a significant impact on understanding the palaeo-hydrology of the DSB and its implication to high-resolution climatic interpretation.

  3. Disaster Management in Flash Floods in Leh (Ladakh): A Case Study

    PubMed Central

    Gupta, Preeti; Khanna, Anurag; Majumdar, S

    2012-01-01

    Background: On August 6, 2010, in the dark of the midnight, there were flash floods due to cloud burst in Leh in Ladakh region of North India. It rained 14 inches in 2 hours, causing loss of human life and destruction. The civil hospital of Leh was badly damaged and rendered dysfunctional. Search and rescue operations were launched by the Indian Army immediately after the disaster. The injured and the dead were shifted to Army Hospital, Leh, and mass casualty management was started by the army doctors while relief work was mounted by the army and civil administration. Objective: The present study was done to document disaster management strategies and approaches and to assesses the impact of flash floods on human lives, health hazards, and future implications of a natural disaster. Materials and Methods: The approach used was both quantitative as well as qualitative. It included data collection from the primary sources of the district collectorate, interviews with the district civil administration, health officials, and army officials who organized rescue operations, restoration of communication and transport, mass casualty management, and informal discussions with local residents. Results: 234 persons died and over 800 were reported missing. Almost half of the people who died were local residents (49.6%) and foreigners (10.2%). Age-wise analysis of the deaths shows that the majority of deaths were reported in the age group of 25–50 years, accounting for 44.4% of deaths, followed by the 11–25-year age group with 22.2% deaths. The gender analysis showed that 61.5% were males and 38.5% were females. A further analysis showed that more females died in the age groups <10 years and ≥50 years. Conclusions: Disaster preparedness is critical, particularly in natural disasters. The Army's immediate search, rescue, and relief operations and mass casualty management effectively and efficiently mitigated the impact of flash floods, and restored normal life. PMID:23112446

  4. Integration of social perception in flash flood risk management for resilience improvement

    NASA Astrophysics Data System (ADS)

    Diez-Herrero, Andres; Amerigo, Maria; Bodoque, Jose Maria; Garcia, Juan Antonio; Olcina-Cantos, Jorge

    2015-04-01

    Spain is, behind Switzerland, the second most mountainous country in Europe, which determines that after the occurrence of heavy or intense rainfall events, a fast hydrological response takes place due to steep slopes and strong hydrological connectivity. As a result, flash floods are, among natural hazards, the main social risk in Spain. In fact, they have provoked some of the greatest natural disasters in recent history of the country (e.g. Yebra and Almoguera in 1995, Biescas in 1996 or Badajoz in 1997, which totalized more than 200 deceased in the last decades). This work is focused on the village of Navaluenga (Central Spain), in which we have been studying flash floods, under the consideration of different perspectives and using different approaches, for the past 20 years; and in which the regional government has recently approved the Civil Protection Plan.In this research, we examine social perception of flash floodsthrough surveys and interviews; one turn previous to the communication plan and other one after this dissemination activities to population. To this end, the individual and groupal differences were explored, by taking into account socio-demographic variables. In addition, we have considered psychological and material dimensions of vulnerability associated to flood risk, as well as to the emotional dimension through the consideration of psyco-environmental variables.Thus, this research aims to identify what aspects of the social perception differs from scientific/technical knowledge acquired which, in turn, may decrease the efficiency of a risk mitigation plan or even determine its failure. To minimize this lack of harmony, and at the same time to increase awareness of population, we propose a risk communication plan to improve preparedness of the community. To this end, we propose an approach in which messages reach the population quickly and in an understandable way. In this regard, risk communication is based on the integration of suitable protocols.

  5. UC Irvine CHRS iRain - An Integrated System for Global Real-time Precipitation Observation

    NASA Astrophysics Data System (ADS)

    Tran, H.; Nguyen, P.; Huynh, P.; Palacios, T.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    CHRS iRain developed by the Center for Hydrometeorology and Remote Sensing (CHRS), University of California, Irvine is an integrated system for global real-time rainfall observation and visualization using multiple data sources from satellites, radars, gauges, and crowd sourcing. Its backbone is the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS, Hong et al. 2004). Apart from using traditional PERSIANN technique (Hsu et al. 1997), the PERSIANN-CCS also applies image processing and pattern recognition techniques, which significantly improve its accuracy as well as its temporal and spatial resolution (in hourly and 4 km x 4 km respectively). Although satellite-based precipitation products are developing fast, they are still relatively new compared with other precipitation observations by traditional measuring methods, such as radar or rain gauges. CHRS iRain also provides hourly precipitation information from NCEP Stage IV multi-sensor (radar + gauges) products and gauges with over 2000 NOAA River Forecast Center stations. On the website, users can retrieve data of the most recent 72 hour precipitation over different spatial regions regarding their own interests such as grid coordinate, rectangle, watershed, basin, political division, and country. CHRS iRain is a useful tool that provides important global rainfall information for water resources management and decision making for natural disasters such as flash floods, urban flooding, and river flooding. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institue for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

  6. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin

    2018-03-01

    Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.

  7. Comparing flood mortality in Portugal and Greece under a gender and age perspective

    NASA Astrophysics Data System (ADS)

    Pereira, Susana; Diakakis, Michalis; Deligiannakis, Georgios; Luís Zêzere, José

    2017-04-01

    Flood mortality is analyzed and compared between Portugal and Greece. Flood fatality incidents are explored and compared in terms of their temporal evolution, spatial distribution, deadliest flood types, surrounding environments, gender and age of the victims. A common flood fatalities database for the period 1960-2010 was formed by merging the DISASTER database for Portugal and the Greek database previously built from documental sources. Each entry of the database, corresponding to a flood fatal incident has the following attributes: (i) ID number of the flood case; (ii) the flood type (riverine flood, flash flood, urban flood, or not defined type); (iii) date (day-month-year); (iv) location (x and y coordinates); (v) number of fatalities; (vi) surrounding environment where the flood fatal incident occurred (i.e. outdoors on foot, outdoors inside a vehicle, or inside a building). (vii) gender of the victim (male, female, or gender not reported); (viii) age of the victim (< 15; 15-29; 39-44; 45 - 64; >65 years). Excluding the outlier 1967 flash flood event occurred in the Lisbon metropolitan area that caused 522 fatalities, Portugal recorded 114 flood fatalities (related to 80 flood cases) and Greece registered 189 fatalities (related to 57 flood cases). Results identified decreasing mortality trend in both countries, despite some fluctuations irregularly distributed over time. Since the 1980's the number of flood cases with multiple fatalities has been gradually decreasing. In both Greece and Portugal flash floods were responsible for more than 80% of flood mortality and the main metropolitan areas of each country (Athens and Lisbon) presented a clustering of fatalities, attributed to the higher population density combined with the presence of flood-prone areas. Indoor fatalities have been gradually reducing with time, whereas vehicle-related deaths have been rising in both countries. In both countries the majority of flood victims are males, indicating that males are more vulnerable to fatal floods. These gender differences can be explained by cultural reasons that expose men to hazardous occupations or risk behaviors, or underestimation of risk. Furthermore, the victims' age distribution showed in Greece a prevalence of decedents over 65 years old in comparison with the general population. Individuals younger than 15 and older than 65 years old recorded a gradual decrease within the period studied. Both groups recorded more than half of the victims (54.5%) in the 1960-1970 decade, and gradually decreased to 15.1% in the 2001-2010 decade. In Portugal in the last 3 decades a reduced number of young fatalities (<15 years) was registered, while the age class 45 - 64 years registered the highest number of fatalities. In Portugal a prevalence of men's mortality in all age groups was found, except in the age class >65 years, where female population is dominant in the elder ages. Both countries showed very similar trends in most parameters examined. Older victims and males were found more vulnerable as in most of the relevant literature. Acknowledgments Susana Pereira is supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [grant number PTDC/ATPGEO/1660/2014] funded by Portuguese Foundation for Science and Technology (FCT).

  8. Developing flood-inundation maps for Johnson Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam J.; Beal, Benjamin A.

    2017-04-14

    Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar) data collected in 2014 to delineate water-surface extents for each of the eight modeled stages. The availability of flood-inundation maps in conjunction with real-time data from the USGS streamgages along Johnson Creek and forecasted hydrographs from the National Weather Service Northwest River Forecast Center will provide residents of the watershed and emergency management personnel with valuable information that may aid in flood response, including potential evacuations, road closures, and mitigation efforts. In addition, these maps may be used for post-flood recovery efforts.

  9. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within the calibrated water-surface elevations for comparison. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 05516500, Yellow River at Plymouth, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  10. Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru

    NASA Astrophysics Data System (ADS)

    Thouret, J.-C.; Enjolras, G.; Martelli, K.; Santoni, O.; Luque, J. A.; Nagata, M.; Arguedas, A.; Macedo, L.

    2013-02-01

    Arequipa, the second largest city in Peru, is exposed to many natural hazards, most notably earthquakes, volcanic eruptions, landslides, lahars (volcanic debris flows), and flash floods. Of these, lahars and flash floods, triggered by occasional torrential rainfall, pose the most frequently occurring hazards that can affect the city and its environs, in particular the areas containing low-income neighbourhoods. This paper presents and discusses criteria for delineating areas prone to flash flood and lahar hazards, which are localized along the usually dry (except for the rainy season) ravines and channels of the Río Chili and its tributaries that dissect the city. Our risk-evaluation study is based mostly on field surveys and mapping, but we also took into account quality and structural integrity of buildings, available socio-economic data, and information gained from interviews with risk-managers officials. In our evaluation of the vulnerability of various parts of the city, in addition to geological and physical parameters, we also took into account selected socio-economic parameters, such as the educational and poverty level of the population, unemployment figures, and population density. In addition, we utilized a criterion of the "isolation factor", based on distances to access emergency resources (hospitals, shelters or safety areas, and water) in each city block. By combining the hazard, vulnerability and exposure criteria, we produced detailed risk-zone maps at the city-block scale, covering the whole city of Arequipa and adjacent suburbs. Not surprisingly, these maps show that the areas at high risk coincide with blocks or districts with populations at low socio-economic levels. Inhabitants at greatest risk are the poor recent immigrants from rural areas who live in unauthorized settlements in the outskirts of the city in the upper parts of the valleys. Such settlements are highly exposed to natural hazards and have little access to vital resources. Our study provides good rationale for the risk zoning of the city, which in turn may be used as an educational tool for better understanding the potential effects of natural hazards and the exposure of the population residing in and around Arequipa. We hope that our work and the risk-zonation maps will provide the impetus and basis for risk-management authorities of the Municipality and the regional government of Arequipa to enforce existing regulations in building in hazardous zones and to adopt an effective long-term strategy to reduce risks from lahar, flash flood, and other natural hazards.

  11. Surface Water and Flood Extent Mapping, Monitoring, and Modeling Products and Services for the SERVIR Regions

    NASA Technical Reports Server (NTRS)

    Anderson, Eric

    2016-01-01

    SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.

  12. Genetics, Physiological Mechanisms and Breeding of Flood-Tolerant Rice (Oryza sativa L.).

    PubMed

    Singh, Anuradha; Septiningsih, Endang M; Balyan, Harendra S; Singh, Nagendra K; Rai, Vandna

    2017-02-01

    Flooding of rice fields is a serious problem in the river basins of South and South-East Asia where about 15 Mha of lowland rice cultivation is regularly affected. Flooding creates hypoxic conditions resulting in poor germination and seedling establishment. Flash flooding, where rice plants are completely submerged for 10-15 d during their vegetative stage, causes huge losses. Water stagnation for weeks to months also leads to substantial yield losses when large parts of rice aerial tissues are inundated. The low-yielding traditional varieties and landraces of rice adapted to these flooding conditions have been replaced by flood-sensitive high-yielding rice varieties. The 'FR13A' rice variety and the Submergence 1A (SUB1A) gene were identified for flash flooding and subsequently introgressed to high-yielding rice varieties. The challenge is to find superior alleles of the SUB1A gene, or even new genes that may confer greater tolerance to submergence. Similarly, genes have been identified in tolerant landraces of rice for their ability to survive by rapid stem elongation (SNORKEL1 and SNORKEL2) during deep-water flooding, and for anaerobic germination ability (TPP7). Research on rice genotypes and novel genes that are tolerant to prolonged water stagnation is in progress. These studies will greatly assist in devising more efficient and precise molecular breeding strategies for developing climate-resilient high-yielding rice varieties for flood-prone regions. Here we review the state of our knowledge of flooding tolerance in rice and its application in varietal improvement. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Assessment of parameter regionalization methods for modeling flash floods in China

    NASA Astrophysics Data System (ADS)

    Ragettli, Silvan; Zhou, Jian; Wang, Haijing

    2017-04-01

    Rainstorm flash floods are a common and serious phenomenon during the summer months in many hilly and mountainous regions of China. For this study, we develop a modeling strategy for simulating flood events in small river basins of four Chinese provinces (Shanxi, Henan, Beijing, Fujian). The presented research is part of preliminary investigations for the development of a national operational model for predicting and forecasting hydrological extremes in basins of size 10 - 2000 km2, whereas most of these basins are ungauged or poorly gauged. The project is supported by the China Institute of Water Resources and Hydropower Research within the framework of the national initiative for flood prediction and early warning system for mountainous regions in China (research project SHZH-IWHR-73). We use the USGS Precipitation-Runoff Modeling System (PRMS) as implemented in the Java modeling framework Object Modeling System (OMS). PRMS can operate at both daily and storm timescales, switching between the two using a precipitation threshold. This functionality allows the model to perform continuous simulations over several years and to switch to the storm mode to simulate storm response in greater detail. The model was set up for fifteen watersheds for which hourly precipitation and runoff data were available. First, automatic calibration based on the Shuffled Complex Evolution method was applied to different hydrological response unit (HRU) configurations. The Nash-Sutcliffe efficiency (NSE) was used as assessment criteria, whereas only runoff data from storm events were considered. HRU configurations reflect the drainage-basin characteristics and depend on assumptions regarding drainage density and minimum HRU size. We then assessed the sensitivity of optimal parameters to different HRU configurations. Finally, the transferability to other watersheds of optimal model parameters that were not sensitive to HRU configurations was evaluated. Model calibration for the 15 catchments resulted in good model performance (NSE > 0.5) in 10 and medium performance (NSE > 0.2) in 3 catchments. Optimal model parameters proofed to be relatively insensitive to different HRU configurations. This suggests that dominant controls on hydrologic parameter transfer can potentially be identified based on catchment attributes describing meteorological, geological or landscape characteristics. Parameter regionalization based on a principal component analysis (PCA) nearest neighbor search (using all available catchment attributes) resulted in a 54% success rate in transferring optimal parameter sets and still yielding acceptable model performance. Data from more catchments are required to further increase the parameter transferability success rate or to develop regionalization strategies for individual parameters.

  14. The August 2002 flood in Salzburg / Austria experience gained and lessons learned from the ``Flood of the century''?

    NASA Astrophysics Data System (ADS)

    Wiesenegger, H.

    2003-04-01

    On the {12th} of August 2002 a low pressure system moved slowly from northern Italy towards Slovakia. It continuously carried moist air from the Mediterranean towards the northern rim of the Alps with the effect of wide-spread heavy rainfall in Salzburg and other parts of Austria. Daily precipitation amounts of 100 - 160 mm, in some parts even more, as well as rainfall intensities of 5 - 10 mm/h , combined with well saturated soils lead to a rare flood with a return period of 100 years and more. This rare hydrological event not only caused a national catastrophe with damages of several Billion Euro, but also endangered more than 200,000 people, and even killed some. As floods are dangerous, life-threatening, destructive, and certainly amongst the most frequent and costly natural disasters in terms of human hardship as well as economic loss, a great effort, therefore, has to be made to protect people against negative impacts of floods. In order to achieve this objective, various regulations in land use planning (flood maps), constructive measurements (river regulations and technical constructions) as well as flood warning systems, which are not suitable to prevent big floods, but offer in-time-warnings to minimize the loss of human lives, are used in Austria. HYDRIS (Hydrological Information System for flood forecasting in Salzburg), a modular river basin model, developed at Technical University Vienna and operated by the Hydrological Service of Salzburg, was used during the August 2002 flood providing accurate 3 to 4 hour forecasts within 3 % of the real peak discharge of the fast flowing River Salzach. The August {12^th}} flood was in many ways an exceptional, very fast happening event which took many people by surprise. At the gauging station Salzburg / Salzach (catchment area 4425 {km^2}) it took only eighteen hours from mean annual discharge (178 {m3/s}) to the hundred years flood (2300 {m3/s}). The August flood made clear, that there is a strong need for longer lead times in Salzburg's flood forecasts. Methods to incorporate precipitation forecasts, provided by the Met Office, as well as observations of actual soil conditions, therefore, have to be developed and should enable hydrologists to predict possible scenarios and impacts of floods, forecasted for the next 24 hours. As a further consequence of the August 2002 flood, building regulations, e.g. the use of oil tanks in flood prone areas, have to be checked and were necessary adapted. It is also necessary to make people, who already live in flood prone areas, aware of the dangers of floods. They also need to know about the limits of flood protection measurements and about what happens, if flood protection design values are exceeded. Alarm plans, dissemination of information by using modern communication systems (Internet) as well as communication failure in peak times and co-ordination of rescue units are also a subject to be looked at carefully. The above mentioned measurements are amongst others of a 10 point program, developed by the Government of the Province of Salzburg and at present checked with regards to feasibility. As it is to be expected, that the August 2002 flood was not the last rare one of this century, experience gained should be valuably for the next event.

  15. Real-time Ensemble Flow Forecasts for a 2017 Mock Operation Test Trial of Forecast Informed Reservoir Operations for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Jasperse, J.; Hartman, R. K.; Whitin, B.; Kalansky, J.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates 15-day ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to conduct a mock operation test trial of the EFO alternative for 2017. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The operational trial utilized real-time ESPs prepared by the CNRFC and observed flow information to simulate hydrologic conditions in Lake Mendocino and a 50-mile downstream reach of the Russian River to the City of Healdsburg. Results of the EFO trial demonstrate a 6% increase in reservoir storage at the end of trial period (May 10) relative to observed conditions. Additionally, model results show no increase in flows above flood stage for points downstream of Lake Mendocino. Results of this investigation and other studies demonstrate that the EFO alternative may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  16. The quality and value of seasonal precipitation forecasts for an early warning of large-scale droughts and floods in West Africa

    NASA Astrophysics Data System (ADS)

    Bliefernicht, Jan; Seidel, Jochen; Salack, Seyni; Waongo, Moussa; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Seasonal precipitation forecasts are a crucial source of information for an early warning of hydro-meteorological extremes in West Africa. However, the current seasonal forecasting system used by the West African weather services in the framework of the West African Climate Outlook forum (PRESAO) is limited to probabilistic precipitation forecasts of 1-month lead time. To improve this provision, we use an ensemble-based quantile-quantile transformation for bias correction of precipitation forecasts provided by a global seasonal ensemble prediction system, the Climate Forecast System Version 2 (CFS2). The statistical technique eliminates systematic differences between global forecasts and observations with the potential to preserve the signal from the model. The technique has also the advantage that it can be easily implemented at national weather services with low capacities. The statistical technique is used to generate probabilistic forecasts of monthly and seasonal precipitation amount and other precipitation indices useful for an early warning of large-scale drought and floods in West Africa. The evaluation of the statistical technique is done using CFS hindcasts (1982 to 2009) in a cross-validation mode to determine the performance of the precipitation forecasts for several lead times focusing on drought and flood events depicted over the Volta and Niger basins. In addition, operational forecasts provided by PRESAO are analyzed from 1998 to 2015. The precipitation forecasts are compared to low-skill reference forecasts generated from gridded observations (i.e. GPCC, CHIRPS) and a novel in-situ gauge database from national observation networks (see Poster EGU2017-10271). The forecasts are evaluated using state-of-the-art verification techniques to determine specific quality attributes of probabilistic forecasts such as reliability, accuracy and skill. In addition, cost-loss approaches are used to determine the value of probabilistic forecasts for multiple users in warning situations. The outcomes of the hindcasts experiment for the Volta basin illustrate that the statistical technique can clearly improve the CFS precipitation forecasts with the potential to provide skillful and valuable early precipitation warnings for large-scale drought and flood situations several months in ahead. In this presentation we give a detailed overview about the ensemble-based quantile-quantile-transformation, its validation and verification and the possibilities of this technique to complement PRESAO. We also highlight the performance of this technique for extremes such as the Sahel drought in the 80ties and in comparison to the various reference data sets (e.g. CFS2, PRESAO, observational data sets) used in this study.

  17. On using TRMM data and rainfall forecasts from meteorological models in data-scarce transboundary catchments - an example of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Tohidul Islam, Md.

    2014-05-01

    This research focuses on the flood risk of the Haor region in the north-eastern part of Bangladesh. The prediction of the hydrological variables at different spatial and temporal scales in the Haor region is dependent on the influence of several upstream rivers in the Meghalaya catchment in India. Limitation in hydro-meteorological data collection and data sharing issues between the two countries dominate the feasibility of hydrological studies, particularly for near-realtime predictions. One of the possible solutions seems to be in making use of the variety of satellite based and meteorological model products for rainfall. The abundance of a variety of rainfall products provides a good basis of hydrological modelling of a part of the Ganges and Brahmaputra basin. In this research the TRMM data and rainfall forecasts from ECMWF have been compared with the scarce rain gauge data from the upstream Meghalaya catchment. Subsequently, the TRMM data and rainfall forecasts from ECMWF have been used as the meteorological input to a rainfall-runoff model of the Meghalaya catchment. The rainfall-runoff model of Meghalaya has been developed using the DEM data from SRTM. The generated runoff at the outlet of Meghalaya has been used as the upstream boundary condition in the existing rainfall-runoff model of the Haor region. The simulation results have been compared with the existing results based on simulations without any information of the rainfall-runoff in the upstream Meghalaya catchment. The comparison showed that the forecasting lead time has been substantially increased. As per the existing results the forecasting lead time at a number of locations in the catchment was about 6 to 8 hours. With the new results the forecasting lead time has gone up, with different levels of accuracy, to about 24 hours. This additional lead time will be highly beneficial in managing flood risk of the Haor region of Bangladesh. The research shows that satellite based rainfall products and rainfall forecasts from meteorological models can be very useful in flood risk management, particularly for data scarce regions and/or transboundary regions with data sharing issues. Keywords: flood risk management, TRMM, ECMWF, flood forecasting, Haor, Bangladesh. Abbreviations: TRMM: Tropical Rainfall Measuring Mission ECMWF: European Centre for Medium-Range Weather Forecasts DEM: Digital Elevation Model SRTM: Shuttle Radar Topography Mission

  18. The Continuous Monitoring of Flash Flood Velocity Field based on an Automated LSPIV System

    NASA Astrophysics Data System (ADS)

    Li, W.; Ran, Q.; Liao, Q.

    2014-12-01

    Large-scale particle image velocimetry (LSPIV) is a non-intrusive tool for flow velocity field measurement and has more advantages against traditional techniques, with its applications on river, lake and ocean, especially under extreme conditions. An automated LSPIV system is presented in this study, which can be easily set up and executed for continuous monitoring of flash flood. The experiment site is Longchi village, Sichuan Province, where 8.0 magnitude earthquake occurred in 2008 and debris flow happens every year since then. The interest of area is about 30m*40m of the channel which has been heavily destroyed by debris flow. Series of videos obtained during the flood season indicates that flood outbreaks after rainstorm just for several hours. Measurement is complete without being influenced by this extreme weather condition and results are more reliable and accurate due to high soil concentration. Compared with direct measurement by impellor flow meter, we validated that LSPIV works well at mountain stream, with index of 6.7% (Average Relative Error) and 95% (Nash-Sutcliffe Coefficient). On Jun 26, the maximum flood surface velocity reached 4.26 m/s, and the discharge based on velocity-area method was also decided. Overall, this system is safe, non-contact and can be adjusted according to our requirement flexibly. We can get valuable data of flood which is scarce before, which will make a great contribution to the analysis of flood and debris flow mechanism.

  19. U.S. High Seas Marine Text Forecasts by Area

    Science.gov Websites

    Flooding Tsunamis 406 EPIRB's U.S. High Seas Marine Text Forecasts by Area OPC N.Atlantic High Seas Forecast NHC N.Atlantic High Seas Forecast OPC N.Pacific High Seas Forecast HFO N.Pacific High Seas Forecast NHC N.Pacific High Seas Forecast HFO S.Pacific High Seas Forecast U.S. High Seas Marine Text

  20. Climate forecasts in disaster management: Red Cross flood operations in West Africa, 2008.

    PubMed

    Braman, Lisette Martine; van Aalst, Maarten Krispijn; Mason, Simon J; Suarez, Pablo; Ait-Chellouche, Youcef; Tall, Arame

    2013-01-01

    In 2008, the International Federation of Red Cross and Red Crescent Societies (IFRC) used a seasonal forecast for West Africa for the first time to implement an Early Warning, Early Action strategy for enhanced flood preparedness and response. Interviews with disaster managers suggest that this approach improved their capacity and response. Relief supplies reached flood victims within days, as opposed to weeks in previous years, thereby preventing further loss of life, illness, and setbacks to livelihoods, as well as augmenting the efficiency of resource use. This case demonstrates the potential benefits to be realised from the use of medium-to-long-range forecasts in disaster management, especially in the context of potential increases in extreme weather and climate-related events due to climate variability and change. However, harnessing the full potential of these forecasts will require continued effort and collaboration among disaster managers, climate service providers, and major humanitarian donors. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

Top