DOE Office of Scientific and Technical Information (OSTI.GOV)
Halls, B. R.; Roy, S.; Gord, J. R.
Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single-shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, alongmore » with spectral characteristics using Taylor’s hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening.« less
A Flash X-Ray Facility for the Naval Postgraduate School
1985-06-01
ionizing radiation, *• NPS has had active programs with a Van de Graaff generator, a reactor, radioactive sources, X-ray machines and a linear electron ...interaction of radiation with matter and with coherent radiation. Currently the most active program is at the linear electron accelerator which over...twenty years has produced some 75 theses. The flash X-ray machine was obtained to expan-i and complement the capabilities of the linear electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensch, M.
2010-02-03
In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.
Measuring x-ray spectra of flash radiographic sources [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph
2015-11-02
The x-ray spectra of flash radiographic sources are difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.
NASA Astrophysics Data System (ADS)
Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.
2010-10-01
The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.
Radiation predictions and shielding calculations for RITS-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick
2005-06-01
The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
NASA Astrophysics Data System (ADS)
Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.
2016-06-01
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
FLASH2: Operation, beamlines, and photon diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion
2016-07-27
FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
Faatz, B.; Plönjes, E.; Ackermann, S.; ...
2016-06-20
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less
Laser shocking of materials: Toward the national ignition facility
Meyers, M. A.; Remington, B. A.; Maddox, B.; ...
2010-01-16
In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. In this paper, this technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 10 7–10 8 s -1 and resolving details of themore » kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Finally, other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.« less
Innovative FEL schemes using variable-gap undulators
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2017-06-01
We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.
Development Of A Flash X-Ray Scanner For Stereoradiography And CT
NASA Astrophysics Data System (ADS)
Endorf, Robert J.; DiBianca, Frank A.; Fritsch, Daniel S.; Liu, Wen-Ching; Burns, Charles B.
1989-05-01
We are developing a flash x-ray scanner for stereoradiography and CT which will be able to produce a stereoradiograph in 30 to 70 ns and a complete CT scan in one microsecond. This type of imaging device will be valuable in studying high speed processes, high acceleration, and traumatic events. We have built a two channel flash x-ray system capable of producing stereo radiographs with stereo angles of from 15 to 165 degrees. The dynamic and static Miff 's for the flash x-ray system were measured and compared with similar MIT's measured for a conventional medical x-ray system. We have written and tested a stereo reconstruction algorithm to determine three dimensional space points from corresponding points in the two stereo images. To demonstrate the ability of the system to image traumatic events, a radiograph was obtained of a bone undergoing a fracture. The effects of accelerations of up to 600 g were examined on radiographs taken of human kidney tissue samples in a rapidly rotating centrifuge. Feasibility studies of CT reconstruction have been performed by making simulated Cr images of various phantoms for larger flash x-ray systems of from 8 to 29 flash x-ray tubes.
New developments in flash radiography
NASA Astrophysics Data System (ADS)
Mattsson, Arne
2007-01-01
The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.
Flash x-ray radiography of argon jets in ambient air
NASA Astrophysics Data System (ADS)
Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.
1998-09-01
This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.
European X-Ray Free Electron Laser (EXFEL): local implications
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.
Flash x-ray generator having a liquid-anode diode
NASA Astrophysics Data System (ADS)
Oizumi, Teiji; Sato, Eiichi; Shikoda, Arimitsu; Sagae, Michiaki; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru; Ojima, Hidenori; Takayama, Kazuyoshi; Fujiwara, Akihiro; Mitoya, Kanji
1995-05-01
The constructions and the fundamental studies of a flash x-ray generator having a liquid-anode diode are described. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser, a thyratron pulser as a trigger device, an oil diffusion pump, and a flash x-ray tube. The main condenser was negatively charged from 50 to 70 kV by the power supply, and the electric charges in the condenser were discharged to the x-ray tube after closing a gap switch by using the thyratron pulser. The flash x- ray tube was of a diode type having a mercury anode and a ferrite cathode. The pressure of the tube was primarily determined by the steam pressure of mercury as a function of temperature. The maximum output voltage from the pulser was about -1 times the charged voltage. The maximum tube voltage and current were approximately 60 kV and 3 kA, respectively, with a charged voltage of -60 kV and a space between the anode and cathode electrodes (AC space) of 2.0 mm. The pulse widths of flash x rays were about 50 ns, and the x-ray intensity measured by a thermoluminescence dosimeter had a value of about 2.5 (mu) C/kg at 0.3 m per pulse with a charged voltage of -70 kV and an AC space of 1.0 mm.
Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roecker, Caleb Daniel; Schirato, Richard C.
2017-11-17
Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurredmore » was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.« less
[Nondestructive Evaluation (NDE) Capabilities
NASA Technical Reports Server (NTRS)
Born, Martin
2010-01-01
These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)
Flash-Bang Detector to Model the Attenuation of High-Energy Photons
NASA Astrophysics Data System (ADS)
Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.
2015-12-01
It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.
Theoretical investigations of X-ray bursts
NASA Technical Reports Server (NTRS)
Taam, Ronald E.
1987-01-01
Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.
Femtosecond all-optical synchronization of an X-ray free-electron laser
Schulz, S.; Grguraš, I.; Behrens, C.; ...
2015-01-20
Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less
Femtosecond all-optical synchronization of an X-ray free-electron laser
Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.
2015-01-01
Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823
Compact and reliable triggering method for near muzzle flash radiography
NASA Astrophysics Data System (ADS)
Lee, Eun S.; Hwang, Eul H.; Yim, Dong W.; Song, So Y.
1993-01-01
Precise timing for x-ray bursts is crucial in acquiring useful information from flash radiographic experiments. Triggering the flash x-ray system near the muzzle is a difficult task because of the intrinsic nature of the muzzle blast. In this work a compact and reliable triggering method for near muzzle flash radiography is introduced; a piezoelectric pin probe attached at the end of the barrel. These types of probes have not been activated by the precursor shock wave, but they have been activated by the main blast wave only. Reliability in triggering the flash x-ray system has been confirmed throughout a series of flash radiographic experiments near the muzzle for gun barrels with calibers up to 105 mm.
Generation of flash x-rays using a mercury-anode radiation tube
NASA Astrophysics Data System (ADS)
Oizumi, Teiji; Sato, Eiichi; Sagae, Michiaki; Hayasi, Yasuomi; Tamakawa, Yoshiharu; Yanagisawa, Toru
1993-02-01
The constructions and the radiographic characteristics of a flash x-ray generator having a liquid-anode radiation tube are described. This generator consisted of the following essential components: a high-voltage power supply, a combined ceramic condenser of 10.7 nF, an oil- diffusion pump, an oil circulator, a trigger device, and a flash x-ray tube. The x-ray tube was of a triode and was composed of the following major devices: a mercury anode, a rod-shaped graphite cathode, a trigger electrode made from a copper wire, an x-ray window made from a polyethyleneterephthalate film, and a glass tube body. The ceramic condenser was charged from 40 to 60 kV by a power supply, and the electric charges in the condenser were discharged to the x-ray tube after the triggering. The maximum tube voltage was equivalent to the initial charged voltage of the condenser, and the tube current was less than 0.7 kA. The pulse widths of the flash x rays had values of about 1 microsecond(s) , and the time-integrated x-ray intensity was about 2.4 (mu) C/kg at 0.26 m per pulse with a charged voltage of 60 kV.
Flash Radiographic Studies of Hypervelocity Projectile Interactions with Explosives
1992-07-01
radiography . Explosive/metal target assemblies were designed to be representative of various aspects of explosive filled ordnance or components. The...with Explosives 1. Introduction Flash radiography (flash X-ray) is an effective instrumentation technique that can be used to record ultra high speed...firing chamber and provide a stable mount for the X-ray tubehead. i_ 11 611 Fmim A \\.\\\\ / \\,\\\\ // "-.. .•\\ /i--" " "’ ’i Xray source ColliatorBase X-ray
Voltage and Current Measurements in HIFX Diodes
1977-08-01
Laboratories High- Intensity Flash X Ray Pacility. Sensitivities of these monitors have been measured to an accuracy of 10 percent or better by improved...importance of voltage (V) and current (1) monitors as a diagnostic tool for pulsed-electron beam machines such as High-Intensity Flash X Ray (HIFX) is well...15.4 2.7 109515. .2 7. - 3. 172.6 6.0 2.30 36. 4T. H. Martin, K. R. Prestwicht and D. L. Johnson, Summary of th e Hermes Flash X -Ray Program, Sandia
Development of cable fed flash X-ray (FXR) system
NASA Astrophysics Data System (ADS)
Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana
2017-08-01
Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.
High-durability surface-discharge flash x-ray tube driven by a two-stage Marx pulser
NASA Astrophysics Data System (ADS)
Shikoda, Arimitsu; Sato, Eiichi; Kimura, Shingo; Oizumi, Teiji; Tamakawa, Yoshiharu; Yanagisawa, Toru
1993-02-01
We developed a high-durability flash x-ray tube with a plate-shaped ferrite cathode for the use in the field of biomedical engineering and technology. The surface-discharge cathode was very useful for generating stable flash x rays. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, an energy-storage condenser of 97 nF, a two-stage Marx type pulser, an oil diffusion pump, and a flash x-ray tube. This x-ray tube was of a diode which was connected to the turbo molecular pump and had plate-shaped anode and cathode electrodes. The cathode electrode was made of ferrite, and its edge was covered with a thin gold film by means of the spattering in order to decrease contact resistance. The space between the anode and cathode electrodes could be regulated from the outside of the x-ray rube. The two condensers in Marx circuit were charged from 50 to 70 kV by a power supply, and the condensers were connected in series after closing a gap switch. Thus the maximum output voltages from the pulser were about two times the charged voltages. In this experiment, the maximum tube voltage and the current were about 110 kV and 0.8 kA, respectively. The pulse widths were less than 140 ns, and the maximum x-ray intensity was 1.27 (mu) C/kg at 0.5 m per pulse. The size of the focal spot and the maximum repetition rate were about 2 X 2.5 mm and 50 Hz (fps), respectively.
Flash X-ray with image enhancement applied to combustion events
NASA Astrophysics Data System (ADS)
White, K. J.; McCoy, D. G.
1983-10-01
Flow visualization of interior ballistic processes by use of X-rays has placed more stringent requirements on flash X-ray techniques. The problem of improving radiographic contrast of propellants in X-ray transparent chambers was studied by devising techniques for evaluating, measuring and reducing the effects of scattering from both the test object and structures in the test area. X-ray film and processing is reviewed and techniques for evaluating and calibrating these are outlined. Finally, after X-ray techniques were optimized, the application of image enhancement processing which can improve image quality is described. This technique was applied to X-ray studies of the combustion of very high burning rate (VHBR) propellants and stick propellant charges.
New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)
Morris, C. L.; Brown, E. N.; Agee, C.; ...
2015-12-30
An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less
X-ray emission from upward initiated lightning at Gaisberg tower
NASA Astrophysics Data System (ADS)
Hettiarachchi, P.; Cooray, G. V.; Diendorfer, G.; Pichler, H.; Dwyer, J. R.; Rassoul, H.
2016-12-01
We report the occurrence of X-rays at ground level due to cloud to ground flashes of upward initiated lightning from Gaisberg tower in Austria which is located at a 1300m altitude. This is the first time that the X-rays from upward lightning from a tower top located in high altitude is observed. Measurement was carried out using scintillation detectors installed close to the tower top. X-rays were recorded in three subsequent strokes of two flashes out of the total 15 flashes recorded in the system in the period December 2014 to July 2015. In contrast to the observations from downward natural or triggered lightning, X-rays were observed only within 10 µs prior to the subsequent return stroke. This shows that X-rays were emitted when the dart leader is in the vicinity of the tower top and hence during the most intense phase of the dart leader. Both the detected energy and the fluence of X-rays are far lower compared to X-rays from downward natural or rocket triggered lightning. The X-ray waveforms together with current and electric field measurements is presented and comparison of this result to previous ground level observations of X-rays from natural and triggered lightning is discussed.
Registration of X-rays at 2500 m altitude in association with lightning flashes and thunderstorms
NASA Astrophysics Data System (ADS)
Montanyà, Joan; Fabró, Ferran; van der Velde, Oscar; Romero, David; Solà, Gloria; Hermoso, Juan Ramon; Soula, Serge; Williams, Earle R.; Pineda, Nicolau
2014-02-01
Electric fields and high-energy radiation of natural lightning measured at close range from a mountaintop tower are discussed. In none of the 12 negative cloud-to-ground upward flashes were X-rays observed. Also no energetic radiation was found in one negative upward leader at close range (20 m). In the first of two consecutive negative cloud-to-ground flashes, X-rays were detected during the last 1.75 ms of the leader. During the time of energetic radiation in the flash an intense burst of intracloud VHF sources was located by the interferometers. The X-ray production is attributed to the high electric field runaway electron mechanism during leader stepping. Even though the second flash struck closer than the previous one, no X-rays were detected. The absence of energetic radiation is attributed to being outside of the beam of X-ray photons from the leader tip or to the stepping process not allowing sufficiently intense electric fields ahead of the leader tip. High-speed video of downward negative leaders at the time when X-rays are commonly detected on the ground revealed the increase of speed and luminosity of the leader. Both phenomena allow higher electric fields at the leader front favoring energetic radiation. Background radiation was also measured during thunderstorms. The count rate of a particular day is presented and discussed. The increases in the radiation count rate are more coincident with radar reflectivity levels above 30 dBZ than with the total lightning activity close to the site. The increases of dose are attributed to radon daughter-ion precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."
Generation and dose distribution measurement of flash x-ray in KALI-5000 system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Rakhee; Roy, Amitava; Mitra, S.
2008-10-15
Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less
1991-08-01
The outer perimeter of the converter was attached to the C ring with copper tape. Thermoluminescent dosimeters ( TLDs )* and a coaxial x-ray diode...CaF2) TLDs in Al pillboxes for electronic equilibrium. 7 Figure 2. HIFX beam 400 pinch at 0.05 Torr, Y4 38o in. from face. _360O E 340 d 320 - .~. 300...AD-A239 558Hu D L M-91 -111, 1, 1 ,11I Aucr,, 1991 Electron -Beam-Pinch Experiment at Harry Diamond Laboratories: Providing for a High-Dose-Rate
Multiflash X ray with Image Detanglement for Single Image Isolation
2017-08-31
known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image
Ercan, A; Tate, M W; Gruner, S M
2006-03-01
X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.
An optical supernova associated with the X-ray flash XRF 060218.
Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R
2006-08-31
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurtovoi, G.K.; Burdianskaya, E.O.
1960-01-01
The primary substrate excited by threshold doses of x radiation of the normal human eye causes perception of a light flash in the retinal region. The threshold dose for the retina is about 1 mr; the threshold absorbed dose is about 1 mrad. Persons with a removed eyeball, on irradiation of the operated region with a frontal x-ray beam, perceive a flash of light at definite doses of radiation. Six persons taking part in an experiment saw a flash at doses of 17 to 150 mr (different observers saw flash at different doses) and did not see flash at dosesmore » of 5 to 90 mr. The cause of x-ray phosphene on frontal irradiation of the region of the removed eye with threshold doses is neither the reactivity of the optic nerve stump, the reactivity of the parts of the brain irradiated, nor the sensitivity of the skin receptors. In the cases considered, the cause of x-ray phosphene was irradiation of the retina of the nomnal eye by scattered x rays. The averaged coefficient of scatter was about 2%. On irradiation of the occiptal regions of the brain in subjects with normal eyes at a dose of about 150 mr, one subject perceived a flash of light. In this case, the absorbed dose for the occipital regions of the brain was about 40 mrad. The reason for this phenomenon must be explored. Stimulation of the cerebral formations (after atrophic changes in the visual tract and cortex) by x radia tion with a dose of up to 3 r, did not cause visual sensations. With the disposition of the beam, the absorbed dose for the chiasma was about 1 rad and for the occipital regions about 0.2 rad. In the study of threshold visual sensation and their causes on x irradiation of various regions of the head, it is important to apply defined doses of radiation. Scatter of the x rays in the head must be taken into consideration. (auth)« less
Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.
2014-01-01
The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F′ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II. PMID:25006873
NASA Astrophysics Data System (ADS)
Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.
2014-07-01
The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F’ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.
Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.
Radiographic techniques in the explosive component facility at Sandia National Labs.
NASA Astrophysics Data System (ADS)
Lanoue, John C.
1997-05-01
The Explosive Component Facility at Sandia National Laboratory is a state of the art facility for the design and testing of energetic materials and components. Two key elements of these capabilities are the flash x-ray machines. One is a six head, 150 KeV and the other is a six head, 300 KeV instrument. One of the more interesting uses of the 150 KeV system has been to study the action and reaction of a linear shaped charge (LSC) while submerged in water. The submerged samples were viewed from the top to capture the interaction of one piece of LSC with another piece nearby. Each LSC was covered by separate rubber coverings and affixed to a composite-plate. Three heads, delayed by a specified time, were used to capture the time sequence of events in stop action. Side views of the LSC were done with and without the rubber coverings to examine the dampening effects of the cover. An end-on perspective was also captured by x-ray using one head and several time delays. The debris scatter produced from a larger device has also been examined. The explosive used was a pellet form initiated by a detonator and a timing lead. The x-ray radiographs show the particles from this device as they expand outward. Three x-ray source tubes were used in a large horizontal array, apertured to expose individual pieces of film. Another x-ray source was placed overhead and simultaneously exposed a film under the object.
THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs
Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Stojanovic, Nikola
2018-01-01
FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine’s full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented. PMID:29271749
THz pulse doubler at FLASH: double pulses for pump-probe experiments at X-ray FELs.
Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Schreiber, Siegfried; Stojanovic, Nikola
2018-01-01
FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine's full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented.
High-intensity soft-flash x-ray generator utilizing a low-vacuum diode
NASA Astrophysics Data System (ADS)
Isobe, Hiroshi; Sato, Eiichi; Shikoda, Arimitsu; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru
1991-04-01
The fundamental studies on the high-intensity single flash x-ray generator having a low-vacuum diode for biomedical radiography are described. This generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser with a coaxial oil condenser of l5OnF, a low impedance transmission line made from four coaxial cables with lengths of 5. 6m and a total capacity of 292OpF, a mechanical booster pump, and a flash x-ray tube. The x-ray tube was of the diode-type which was connected to the booster pump with a constant pressure of 1. 7Pa and consisted of the following major devices: a long anode tip made of tungsten with a diameter (D) of less than 3. 0mm and a length (L) of 50mm, a long cathode tip made of tungsten with a D of 1. 0mm and a L of 40mm, a polyoxymethylene insulator, lead diaphragms, and an x-ray window made of polyethylene terephthalate. The coaxial oil condenser in the pulser was charged from 50 to 90kV, and the electric charges in the condenser were discharged to the flash x-ray tube through a transmission line by using a gas gap switch with a highcurrent capacity. The peak voltage increased according to increases in the condenser charged voltage and its value was more than the charged voltage. The peak current primarily increased when the charged voltage was increased, and its value was less than 4OkA. The pulse width of the flash x-rays ranged from 60 to 8Ons, and the time integrated x-ray intensity with a charged voltage of 90kV and an anode cathode (A-C) space of 3. 0mm was about 4pC/kg at 1. Om per pulse the source. The effective focal spot size was primarily determined by the diameter of the anode tip, and its value was about 3. 0mm when an anode diameter of 3. 0mm was employed.
Compact X-ray sources: X-rays from self-reflection
NASA Astrophysics Data System (ADS)
Mangles, Stuart P. D.
2012-05-01
Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.
A study of starting time in great hard X-ray flares
NASA Technical Reports Server (NTRS)
Klein, K. L.; Pick, M.; Magun, A.
1986-01-01
An analysis of the starting time in ten great hard X-ray bursts observed with the X-Ray Burst Spectrometer (HXRBS) is presented. It is shown that the impulsive phase of nine of them is composed of a preflash phase, during which the burst is observed up to an energy limit ranging from some tens of keV to 200 keV, followed ten to some tens of seconds afterwards by a flash phase, where the count rate rises simultaneously in all detector channels. For two events strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Hydrodynamical and Spectral Simulations of HMXB Winds
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Liedahl, D. A.; Plewa, T.
2006-09-01
We describe the results of a research program to develop improved models of the X-ray spectra of cosmic sources such as X-ray binaries, CVs, and AGN in which UV line-driven mass flows are photoionized by an X-ray source. Work to date has focused on high-mass X-ray binaries (HMXBs) and on Vela X-1 in particular, for which there are high-quality Chandra HETG spectra in the archive. Our research program combines FLASH hydrodynamic calculations, XSTAR photoionization calculations, HULLAC atomic data, improved calculations of the line force multiplier, X-ray emission models appropriate to X-ray photoionized plasmas, and Monte Carlo radiation transport. We will present movies of the relevant physical quantities (density, temperature, ionization parameter, velocity) from a FLASH two-dimensional time-dependent simulation of Vela X-1, maps showing the emissivity distributions of the X-ray emission lines, and a preliminary comparison of the resulting synthetic spectra to the Chandra HETG spectra. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Investigations in x-radiation stimulation
NASA Astrophysics Data System (ADS)
Gupta, K. D.
1982-03-01
The objective is to invent a crystal x-ray laser. Investigations in the Radiation Research Lab. at Texas Tech University have established in a very straightforward way the line narrowing associated with a threshold pumping and a nonlinear rise in intensity. Recent work on x-ray Borrmann channeling via monocrystals has demonstrated the existence of a monochromatic x-ray beam without any vertical divergence. This would allow the transport of x-ray energy in space for thousands of miles without any loss of power. Preliminary experiments with a monocrystal excited by pulsed x-rays at Air Force Weapons Laboratory, KAFB, Albuquerque, seem to indicate a gain in intensity of the nondivergent hot spot with a concomitant fading of the regular Laue pattern. Current investigations in this line indicates that with proper doping of the monocrystal the nondivergent beam could be increased in intensity using a flash x-ray tube to pump the doped monocrystal. A concial target double beam flash x-ray line source instrument has been constructed to obtain a beam of nondivergent, stimulated, coherent, and monochromatic x-rays from doped monocrystals. A generation of stimulated x-rays using bunched electrons from pulsed high power klystron striking a monocrystal has been conceived.
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Shiroto, T.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Nagatomo, H.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Harmonic lasing in x-ray free electron lasers
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2012-08-01
Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the parameter space, corresponding to the operating range of soft x-ray beam lines of x-ray FEL facilities (like SASE3 beam line of the European XFEL), harmonics can grow faster than the fundamental wavelength. This feature can be used in some experiments, but might also be an unwanted phenomenon, and we discuss possible measures to diminish it.
NASA Astrophysics Data System (ADS)
Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus
2014-02-01
The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.
Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi
2014-11-01
Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.
NASA Astrophysics Data System (ADS)
Dwyer, J. R.
2016-12-01
Lightning leader models of terrestrial gamma-ray flashes (TGFs) are based on the observations that leaders emit bursts of hard x-rays. These x-rays are thought to be generated by runaway electrons created in the high-field regions associated with the leader tips and/or streamers heads. Inside a thunderstorm, it has been proposed that these runaway electrons may experience additional relativistic runaway electron avalanche (RREA) multiplication, increasing the number and the average energy of the electrons, and possibly resulting in a TGF. When modeling TGFs it is important to include the discharge currents resulting from the ionization produced by the runaway electrons, since these currents may alter the electric fields and affect the TGF. In addition, relativistic feedback effects, caused by backward propagating positrons and backscattered x-rays, need to be included, since relativistic feedback limits the size of the electric field and the amount of a RREA multiplication that may occur. In this presentation, a lightning leader model of terrestrial gamma-ray flashes that includes the effects of the discharge currents and relativistic feedback will be described and compared with observations.
Spot size measurement of a flash-radiography source using the pinhole imaging method
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong
2016-07-01
The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.
High repetition rate compact source of nanosecond pulses of 5-100 keV x-ray photons
NASA Astrophysics Data System (ADS)
Khacef, A.; Viladrosa, R.; Cachoncinlle, C.; Robert, E.; Pouvesle, J. M.
1997-06-01
A powerful, compact, and repetitive flash x-ray system based on a cable transformer technology powered by ceramic capacitors in a Blumlein-like configuration has been developed. Open circuit voltages in excess of 100 kV can be achieved while commutation occurs at low voltage (<20 kV). The x-ray emission from a low impedance x-ray diode with a hollow cathode configuration was observed under a wide range of experimental conditions. The critical parameters limiting the flash x-ray performances are mainly the pressure in the x-ray diode and the anode-cathode space. This true table top device is able to produce doses up to 1 R per shot, measured at the output window, of x-rays between 5 and 100 keV. The pulse widths were about 20 ns and the maximum repetition rate was about 60 Hz. Operation is possible in air or in other gases (He, Ne, Ar, Kr, Xe, H2, N2) at pressures varying from 10-3 mbar for xenon to about 1 mbar for helium.
The relativistic feedback discharge model of terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, Joseph R.
2012-02-01
As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.
Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders
NASA Astrophysics Data System (ADS)
Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.
2017-11-01
Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.
Analysis of induced effects in matter during pulsed Nd:YAG laser welding by flash radiography
NASA Astrophysics Data System (ADS)
Pascal, G.; Noré, D.; Girard, K.; Perret, O.; Naudy, P.
2000-05-01
Tantalum and TA6V (titanium alloy) are respectively used in corrosive chemical product containers and in aircraft and aerospace industries. The objective of this study was to analyze the dynamic behavior of the matter during deep laser spot welding of these materials. The obtained images should allow a better understanding of laser-matter interaction and should validate a model developed for porosities formation. Because of the afterglow of detectors, classical video x-ray systems are not suitable for the analysis of short dynamic effects during and after the laser pulse. An experimental device, based on a flash x-ray generator EUROPULSE 600 kV and a QUANTEL pulsed Nd:YAG laser, has been used. The flash x-ray generator is triggered, after a programmed delay, by the laser shot. The x-ray pulse duration is 30 ns. Welding parameters (pulse duration and energy) yield molten zones of 2 mm depth. Both materials, tantalum and TA6V, have been tested. Radiological films BIOMAX coupled with radioluminescent screens and direct exposure film (DEF) were respectively used for tantalum and TA6V samples. A fine collimation was studied to avoid the scattering effect in the material and in the radioluminescent screen. Radiological test samples, made of tantalum and TA6V, were performed to estimate the images qualities obtained by flash radiography. About 270 laser/x-rays shots were performed. The radiographic images have been digitalized and processed. The results show a deep and narrow capillary hole called "keyhole" which appears a few milliseconds after the beginning of the interaction. The "keyhole" hollows until the end of the laser pulse. After the end of the laser pulse, the molten bath collapses in less than 1 ms, trapping cavities.
X-ray shout echoing through space
NASA Astrophysics Data System (ADS)
2004-01-01
a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space, the team in Leicester have determined accurately the distance to the dust sheets by measuring the size of the expanding rings. The nearest dust sheet is located 2900 light years away and is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The other dust layer is about 4500 light years away. Understanding how dust is distributed in our Galaxy is important because dust favours the collapse of cool gas clouds, which can then form stars and planets. Knowing where dust is located helps astronomers to determine where star and planet formation is likely to occur. Expanding X-ray dust scattering rings, such as those around GRB 031203, have never been seen before. Slower-moving rings, caused by a similar effect, have been seen in visible light around a very few exploding stars, mostly supernovae. The expanding rings also provide much needed information on the gamma-ray burst itself. Gamma-ray bursts are the most powerful explosive events in the Universe, but astronomers are still trying to understand the mystery that surrounds their origin. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a gamma-ray burst. The delayed X-rays from the echo of GRB 031203 are very useful because they tell astronomers how bright the burst was in the X-ray spectrum when it went off on 3 December. The only direct data available from that moment are those obtained by ESA's Integral observatory in the gamma-ray range. "XMM-Newton's measurements are thus crucial to better understand the nature of the burst," said Dr. Fred Jansen, XMM-Newton's project scientist. "The more details we gather of the burst, the more we can learn on how black holes are made." Today, ESA's Integral and XMM-Newton observatories provide astronomers with their most powerful facilities for studying gamma-ray bursts. In 2004 a new gamma-ray satellite, called `Swift', will be launched as part of a collaboration between the USA, United Kingdom and Italy. Swift will add to the flotilla of satellites providing fast and accurate locations of gamma-ray bursts on the sky, which can then be followed with XMM-Newton. This will provide even more opportunities for new discoveries in this cutting-edge field. Notes to editors A scientific paper describing this discovery by Dr. Simon Vaughan and his collaborators has been accepted for publication in ``The Astrophysical Journal'' (see http://arxiv.org/abs/astro-ph/0312603). The other members in Vaughan's team are R. Willingale, P. O'Brien, J. Osborne, A. Levan, M. Watson and J. Tedds from the University of Leicester, United Kingdom; J. Reeves from NASA's Goddard Space Flight Center in Greenbelt, USA; D. Watson from the Neils Bohr Institute for Astronomy in Copenhagen, Denmark; M. Santos-Lleo, P. Rodriguez-Pascual and N. Schartel from ESA's XMM-Newton Science Operations Centre in Villafranca, Spain. Figure caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) Video caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.
Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li
2014-09-01
A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.
X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1
NASA Astrophysics Data System (ADS)
Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.
2007-05-01
We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Hard X-ray and radio emission at the onset of great solar flares
NASA Technical Reports Server (NTRS)
Klein, K.-L.; Pick, M.; Magun, A.; Dennis, B. R.
1987-01-01
A study of the onset phase of ten great hard X-ray bursts is presented. It is shown from hard X-ray and radio observations in different wavelength ranges that the energization of the electrons proceeds on a global time-scale for some tens of seconds. In nine of the bursts, two phases of emission can be distinguished during the onset phase: the preflash phase (during which emission up to an energy limit ranging from some tens of keV to 200 keV is observed) followed ten to some tens of seconds later by the flash phase (where the count rate in all detector channels rises simultaneously to within some seconds). For two of the events, strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase.
A Self-consistent Model for a Full Cycle of Recurrent Novae—Wind Mass-loss Rate and X-Ray Luminosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi, E-mail: mariko.kato@hc.st.keio.ac.jp
2017-04-01
An unexpectedly slow evolution in the pre-optical-maximum phase was suggested in the very short recurrence period of nova M31N 2008-12a. To obtain reasonable nova light curves we have improved our calculation method by consistently combining optically thick wind solutions of hydrogen-rich envelopes with white dwarf (WD) structures calculated by a Henyey-type evolution code. The wind mass-loss rate is properly determined with high accuracy. We have calculated light curve models for 1.2 M {sub ⊙} and 1.38 M {sub ⊙} WDs with mass accretion rates corresponding to recurrence periods of 10 yr and 1 yr, respectively. The outburst lasts 590/29 days,more » in which the pre-optical-maximum phase is 82/16 days, for 1.2/1.38 M {sub ⊙}, respectively. Optically thick winds start at the end of the X-ray flash and cease at the beginning of the supersoft X-ray phase. We also present supersoft X-ray light curves including a prompt X-ray flash and later supersoft X-ray phase.« less
NASA Technical Reports Server (NTRS)
Soderberg, A. M.; Nakar, E.; Cenko, S. B.; Cameron, P. B.; Frail, D. A.; Kulkarni, S. R.; Fox, D. B.; Berger, E.; Gal-Yam, A.; Moon, D-S.;
2007-01-01
We present detailed optical, near-infrared, and radio observations of the X-ray flash 050416a obtained with Palomar and Siding Springs Observatories as well as HST and the VLA, placing this event among the best-studied X-ray flashes to date. In addition, we present an optical spectrum from Keck LRIS from which we measure the redshift of the burst, Z=0.6528. At this redshift the isotropic-equivalent prompt energy release was about 10(exp 51) erg, and using a standard afterglow synchrotron model we find that the blastwave kinetic energy is a factor of 10 larger, E-K,iso approximately equals 10 (exp 52) erg. The lack of an observed jet break to t - 20 days indicates that the opening angle is larger than 7 deg and the total beaming-corrected relativistic energy is larger than 10 exp (50) erg. We further show that the burst produced a strong radio flare at t is similar to 40 days accompanied by an observed flattening in the X-ray band which we attribute to an abrupt circumburst density jump or an episode of energy injection (either from a refreshed shock or off-axis ejecta). Late-time observations with HST show evidence for an associated supernova with peak optical luminosity roughly comparable to that of SN 1998bw. Next, we show that the host galaxy of XRF 050416a is actively forming stars at a rate of at least 2 M-solar per year with a luminosity of L-B is similar to 0.5L* and metallicity of Z is similar to 0.2-0.8 Z-solar. Finally, we discuss the nature of XRF 050416a in the context of short-hard gamma-ray bursts and under the framework of off-axis and dirty fireball models for X-ray flashes.
Lightning leader models of terrestrial gamma-ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.
2017-12-01
Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.
Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru
1991-04-01
The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.
FIREFLY: A cubesat mission to study terrestrial gamma-ray flashes
NASA Astrophysics Data System (ADS)
Klenzing, J. H.; Rowland, D. E.; Hill, J.; Weatherwax, A. T.
2009-12-01
FIREFLY is small satellite mission to investigate the link between atmospheric lightning and terrestrial gamma-ray flashes scheduled to launch in late 2010. The instrumentation includes a Gamma-Ray Detector (GRD), VLF receiver, and photometer. GRD will measure the energy and arrival time of x-ray and gamma-ray photons, as well as the energetic electron flux by using a phoswitch-style layered scintillator. The current status of the instrumentation will be discussed, including laboratory tests and simulations of the GRD. FIREFLY is the second in a series of NSF-funded cubesats designed to study the upper atmosphere.
Spatial resolution of imaging plate with flash X-rays and its utilization for radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, A. M., E-mail: shaikham@barc.gov.in; Romesh, C.; Kolage, T. S.
2015-06-24
A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode.more » It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.« less
Investigating the interaction of x-ray free electron laser radiation with grating structure.
Gaudin, Jérôme; Ozkan, Cigdem; Chalupský, Jaromír; Bajt, Saša; Burian, Tomáš; Vyšín, Ludek; Coppola, Nicola; Farahani, Shafagh Dastjani; Chapman, Henry N; Galasso, Germano; Hájková, Vera; Harmand, Marion; Juha, Libor; Jurek, Marek; Loch, Rolf A; Möller, Stefan; Nagasono, Mitsuru; Störmer, Michael; Sinn, Harald; Saksl, Karel; Sobierajski, Ryszard; Schulz, Joachim; Sovak, Pavol; Toleikis, Sven; Tiedtke, Kai; Tschentscher, Thomas; Krzywinski, Jacek
2012-08-01
The interaction of free electron laser pulses with grating structure is investigated using 4.6±0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7±8.7 mJ/cm2, the interaction triggers a damage process starting at the edge of the grating structure as evidenced by optical and atomic force microscopy. Simulations based on solution of the Helmholtz equation demonstrate an enhancement of the electric field intensity distribution at the edge of the grating structure. A procedure is finally deduced to evaluate damage threshold.
NASA Astrophysics Data System (ADS)
Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.
1994-04-01
The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.
NASA Astrophysics Data System (ADS)
Montanya, J.; Oscar, V. D. V.; Tapia, F. F.
2017-12-01
Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave radiation was detected before the return stroke. The microwave emissions in the first positive leader had lower amplitude but presented longer duration whereas the emissions in the three negative downward dart leaders were more impulsive. X-rays were detected in two of the three negative downward dart leaders.
Prospects for compact high-intensity laser synchrotron x-ray and gamma sources
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.
1997-03-01
A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.
Fermi GBM: Highlights from the First Year
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2009-01-01
The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.
Miniature, mobile X-ray computed radiography system
Watson, Scott A; Rose, Evan A
2017-03-07
A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.
Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.
2016-11-15
An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clustersmore » to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.« less
Properties of X-Ray Flashes from HETE Observations
NASA Astrophysics Data System (ADS)
Ricker, G. R.; HETE Science Team
2005-05-01
Now in its fifth year of operations, HETE continues to provide the observer community with prompt localizations and accurate spectral measurements of GRB sources over a broad energy range, extending from 2-500 keV. As a result of HETE's excellent low energy response, it is uniquely suited to the discovery of X-ray flashes (XRFs). Approximately 1/3 of the ˜20-25 GRBs per year which HETE localizes are XRFs. HETE's localization sample now includes >25 X-ray flashes (XRFs), with redshifts having been established for two: XRF020903 (z=0.25) and XRF030429 (z=2.66). Following on from the original discovery of XRFs by BeppoSAX, HETE has shown that the discovery space for such rapid, soft cosmological transients is quite large: as a class, XRFs (and X-ray rich GRBs) are more numerous than are classical GRBs. Although XRFs may well be related to GRBs, there are indications that XRFs have spectral peaks (in ν Fν ) that can extend down to, or even below, 1 keV. Although the BAT instrument on Swift cannot directly explore this low energy range, the slewing of Swift to HETE-discovered XRFs will enable Swift's XRT to conduct target-of-opportunity followup observations. These Swift XRT followup observations are a powerful means of establishing ˜3-5 arcsecond localizations from the X-ray afterglows, thus enabling sensitive optical and IR searches for counterparts and subsequent redshift measurements. Properties of the sample of HETE-discovered XRFs will be reviewed, and the implications of the HETE sample for the planning of future missions will be discussed. The HETE scientific team includes participants from France, Japan, Brazil, India, Italy, and the USA. This research was supported in the USA by NASA contracts NASW-4690 and NAS8-39073.
On the Connection of Gamma-Ray Bursts and X-Ray Flashes
NASA Astrophysics Data System (ADS)
Ripa, J.; Meszaros, A.
2017-12-01
Classification of gamma-ray bursts (GRBs) into groups has been intensively studied by various statistical tests since 1998. It has been suggested that next to the groups of short/hard and long/soft GRBs there could be another class of intermediate durations. For the Swift/BAT database Veres et al. 2010 (ApJ, 725, 1955) it was found that the intermediate-duration bursts might be related to X-ray flashes (XRFs). On the other hand, Ripa and Meszaros 2016 (Ap&SS, 361, 370) and Ripa et al. 2012 (ApJ, 756, 44) found that the intermediate-duration GRBs in the RHESSI database are spectrally too hard to be given by XRFs. Also, in the BATSE database the intermediate-duration GRBs can be only partly populated by XRFs. The key ideas of the Ripa and Meszaros 2016 (Ap&SS, 361, 370) article are summarized in this poster.
Shot H3837: Darht's first dual-axis explosive experiment
NASA Astrophysics Data System (ADS)
Harsh, James F.; Hull, Lawrence; Mendez, Jacob; McNeil, Wendy Vogan
2012-03-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II.
Cosmic Blasts Much More Common, Astronomers Discover
NASA Astrophysics Data System (ADS)
2006-08-01
A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. http://www.nrao.edu/
Cosmic Blasts Much More Common, Astronomers Discover
NASA Astrophysics Data System (ADS)
2006-08-01
A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System
NASA Astrophysics Data System (ADS)
Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.
2016-02-01
The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.
Constraints on high-energy neutrino emission from SN 2008D
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Ben Zvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Gro, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hül, J. P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K. H.; Kappes A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J. H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-03-01
SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to ~100 events for a core-collapse supernova at 10 Mpc according to the soft jet model.
Influence of Tile Geometry on the Dynamic Fracture of Silicon Carbide (SiC)
2014-03-01
velocity was 440 ± 5.6 m/s. Two flash x-rays were set up above the shot line in front of the light gas gun to measure the velocity of the projectile...long, high-density polyurethane foam sabot. A sabot stripper on the muzzle of the gun disengaged the sabot from the sphere prior to velocity...the masses were consistent to achieve a constant velocity. The projectile traveled from the gun, through a break screen which triggered two flash x
Maskless, reticle-free, lithography
Ceglio, N.M.; Markle, D.A.
1997-11-25
A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.
Maskless, reticle-free, lithography
Ceglio, Natale M.; Markle, David A.
1997-11-25
A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.
Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)
NASA Astrophysics Data System (ADS)
Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin
2013-06-01
The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.
NASA Technical Reports Server (NTRS)
Fujimoto, Masayuki Y.; Sztajno, Mirek; Lewin, Walter H. G.; Vanparadijs, Jan
1986-01-01
The observed properties of type 1 X-ray bursts from 4U/MXB 1636-53 and those of models of thermonuclear flashes on accreting neutron stars are compared. Ways to explain variations in the burst recurrence properties without an apparent correlation with the accretion rate, including the rapid succession of bursts at intervals 10 min are discussed. The strongest X-ray bursts, which occur after a very long interval, are well described by thermonuclear flash models with simple accumulation of accreted fuel, and a spherically symmetric structure in the burning shell. The majority of observed bursts, however, occur after much shorter intervals, and radiate much smaller amounts of energy, by a factor of up to 10 times that predicted by the spherical models. An ignition mechanism of the bursts is proposed in terms of elemental mixing and dissipative heating associated with hydrodynamical instabilities in the neutron star envelope caused by angular momentum carried inward by accreted gas.
Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff
2015-01-01
Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.
Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Bola; Yadav, Devinder; Raj, Rishi
In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.
Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments
Yoon, Bola; Yadav, Devinder; Raj, Rishi; ...
2017-12-29
In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.
The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes
NASA Astrophysics Data System (ADS)
Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano
2005-12-01
We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.
High Energy Astronomy Observatory (HEAO)
1977-06-01
This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being checked by engineers in the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope. The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.
Comparison of Terrestrial Gamma Ray Flash Simulations with Observations by Fermi
2016-10-31
allowing a direction comparison between the gamma rays measured in low -Earth orbit and the VLF-LF radio frequency emissions recorded on the ground...directly calculated from X and its time derivative, including the gamma-ray emission rate, the current moment, and the optical power of the TGF. For
Clusters in intense x-ray pulses
NASA Astrophysics Data System (ADS)
Bostedt, Christoph
2012-06-01
Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.
Long-lasting but Dim Brethren of Cosmic Flashes
NASA Astrophysics Data System (ADS)
2006-08-01
Astronomers, using ESO's Very Large Telescope, have for the first time made the link between an X-ray flash and a supernova. Such flashes are the little siblings of gamma-ray bursts (GRB) and this discovery suggests the existence of a population of events less luminous than 'classical' GRBs, but possibly much more numerous. "This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin," said Elena Pian, (INAF, Italy), lead-author of one of the four papers related to this event appearing in the 31 August issue of Nature. The event began on 18 February 2006: the NASA/PPARC/ASI Swift satellite detected an unusual gamma-ray burst, about 25 times closer and 100 times longer than the typical gamma-ray burst. GRBs release in a few seconds more energy than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are thus the most powerful events since the Big Bang known in the Universe. ESO PR Photo 33/06 ESO PR Photo 33/06 The Field around SN2006aj The explosion, called GRB 060218 after the date it was discovered, originated in a star-forming galaxy about 440 million light-years away toward the constellation Aries. This is the second-closest gamma-ray burst ever detected. Moreover, the burst of gamma rays lasted for nearly 2,000 seconds; most bursts last a few milliseconds to tens of seconds. The explosion was surprisingly dim, however. A team of astronomers has found hints of a budding supernova. Using, among others, ESO's Very Large Telescope (VLT) in Chile, the scientists have watched the afterglow of this burst grow brighter in optical light. This brightening, along with other telltale spectral characteristics in the light, strongly suggests that a supernova was unfolding. Within days, the supernova became apparent. The observations with the VLT started on 21 February 2006, just three days after the discovery. Spectroscopy was then performed nearly daily for seventeen days, providing the astronomers with a large data set to document this new class of events. The group led by Elena Pian indeed confirmed that the event was tied to a supernova called SN 2006aj a few days later. Remarkable details about the chemical composition of the star debris continue to be analysed. The newly discovered supernova is dimmer than hypernovae associated with normal long gamma-ray bursts by about a factor of two, but it is still a factor of 2-3 more luminous than regular core-collapse supernovae. All together, these facts point to a substantial diversity between supernovae associated with GRBs and supernovae associated with X-ray flashes. This diversity may be related to the masses of the exploding stars. Whereas gamma-ray bursts probably mark the birth of a black hole, X-ray flashes appear to signal the type of star explosion that leaves behind a neutron star. Based on the VLT data, a team led by Paolo Mazzali of the Max Planck Institute for Astrophysics in Garching, Germany, postulate that the 18 February event might have led to a highly magnetic type of neutron star called a magnetar. Mazzali and his team find indeed that the star that exploded had an initial mass of 'only' 20 times the mass of the Sun. This is smaller, by about a factor two at least, than those estimated for the typical GRB-supernovae. "The properties of GRB 060218 suggest the existence of a population of events less luminous than 'classical' GRBs, but possibly much more numerous", said Mazzali. "Indeed, these events may be the most abundant form of X- or gamma-ray bursts in the Universe, but instrumental limits allow us to detect them only locally." The astronomers find that the number of such events could be about 100 times more numerous than typical gamma-ray bursts.
PAIR-DOMINATED GeV-OPTICAL FLASH IN GRB 130427A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M., E-mail: indrek.vurm@gmail.com
2014-07-10
We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter A = ρr {sup 2} ∼ 5 × 10{sup 10} g cm{sup –1}. The peak of the flash is emitted by copious e {sup ±} pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations, we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, andmore » the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to ∼1 day. We find that the blast wave Lorentz factor at the peak of the flash is Γ ≈ 200, and the forward shock magnetization is ε{sub B} ∼ 2 × 10{sup –4}. An additional source is required by the data in the optical and X-ray bands at times >10{sup 2} s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.« less
Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian
2016-01-01
A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141
The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays
NASA Technical Reports Server (NTRS)
Neal, V.
1984-01-01
An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.
High Energy Astronomy Observatory (HEAO)
1977-01-01
This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraliya, J. D.
2016-05-23
Manganese substituted Cobalt ferrites of composition with nominal formula Co{sub (1−x)}Mn{sub (x)}Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) prepared by the Flash Combustion Method(FCM). The single phase spinel formation of nano ferrites was confirmed by X-ray diffraction techniques and micro - Raman spectroscopy. The particle size calculated from the Scherrer formula varied within 13 to 17 nm. Lattice parameter, nano particle size, and cation distribution were quantified as a function of the Mn-content in the range x = 0.0 to 1.0. Micro-Raman spectroscopic studies yielded convincing evidence for a transformation of the structure.
30 CFR 50.20-6 - Criteria-MSHA Form 7000-1, Section C.
Code of Federal Regulations, 2011 CFR
2011-07-01
... daughters, non-medical, non-therapeutic X-rays, radium); effects of nonionizing radiation (welding flash, ultra-violet rays, micro-waves, sunburn). (vi) Code 26—Disorders Associated with Repeated Trauma...). Examples: Poisoning by lead, mercury, cadmium, arsenic, or other metals, poisoning by carbon monoxide...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maulois, Melissa, E-mail: melissa.maulois@laplace.univ-tlse.fr; LAPLACE, 118 Route de Narbonne, 31 062 Toulouse Cedex; CEA/DAM, 46 500 Gramat
2016-04-15
The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N{sub 2} and 20% O{sub 2}) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electronmore » beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10{sup 13 }cm{sup −3} is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash application, the electrons are thermalized and their concentration has decreased from about 10{sup 13 }cm{sup −3} down to about 10{sup 12 }cm{sup −3} leaving positive and negative ionised species and atomic radicals whose recombination characteristic times are much longer.« less
Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.
Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin
2018-02-06
The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.
High-energy transients. [from weakly and strongly magnetic neutron stars
NASA Technical Reports Server (NTRS)
Lamb, D. Q.
1991-01-01
The observational characteristics of X-ray bursts are reviewed and the thermonuclear-flash model is examined to assess the suitability of the model and the sources of X- and gamma-ray bursts. The profiles of X-ray bursts from five different sources are delineated, and the global analysis of nuclear burning is discussed to review th range possible X-ray burst behavior. The analysis by Fushiki and Lamb (1987) is noted for the description of regions which lie away from the steady-state cut. The discussion of cyclotron lines in gamma-ray bursts emphasizes the source GB880205, and it is shown that Raman and cyclotron resonant scattering can explain the observed positions, strengths, and widths of the dips in the spectrum. X-ray bursts are theorized to emanate from weakly magnetic neutron stars, and gamma-ray bursts are shown to be the products of strongly magnetic neutron stars.
Science and technology in the stockpile stewardship program, S & TR reprints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, E
This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Õs New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gÕs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinÕ Jupiter! Metallic Hydrogen;more » Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryÐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma« less
An experiment to measure the mass density of a plasma armature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J.W.; Thomas, K.A.; Clothiaux, E.J.
1991-01-01
In this paper a diagnostic technique for determining the mass density, and possibly the plasma composition, of the plasma armature in the MIDI-3 free-running arc device is described. The armature consists primarily of the components of polythylene and copper, and it can reach velocities in excess of 8 km/sec. The approach in this proof-of-principle experiment utilizes a flash x-ray source with x rays having energies from 3 keV to 20 keV, an elliptical x-ray crystal spectrometer, and an appropriate detector array and data acquisition system.
Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow
NASA Astrophysics Data System (ADS)
Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori
2015-06-01
We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.
NASA Technical Reports Server (NTRS)
OBrien, Susan K.; Workman, Gary L.
1996-01-01
The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper operation of the system can provide much useful information with respect to parametric analysis of the hypervelocity experiment. The following report outlines the procedures developed to optimize the operation of the x-ray imaging system and its operational characteristics.
Advanced X-ray Astrophysics Facility (AXAF): Science working group report. [space shuttle payload
NASA Technical Reports Server (NTRS)
1980-01-01
The Advanced X-Ray Astrophysics Facility (AXAF) mission concept is examined from a scientific viewpoint. A brief description of the development of X-ray astronomy and a summary description of AXAF, the scientific objectives of the facility, a description of representative scientific instruments, requirements for X-ray ground testing, and a summary of studies related to spacecraft and support subsystems, are included.
X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility
NASA Technical Reports Server (NTRS)
O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall
2003-01-01
In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.
The bright optical flash and afterglow from the gamma-ray burst GRB 130427A.
Vestrand, W T; Wren, J A; Panaitescu, A; Wozniak, P R; Davis, H; Palmer, D M; Vianello, G; Omodei, N; Xiong, S; Briggs, M S; Elphick, M; Paciesas, W; Rosing, W
2014-01-03
The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100-megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.
Relativistic electron avalanches as a thunderstorm discharge competing with lightning
NASA Astrophysics Data System (ADS)
Kelley, Nicole A.; Smith, David M.; Dwyer, Joseph R.; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K.
2015-08-01
Gamma-ray `glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by >=9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.
Nanosecond time resolved x-ray diagnostics of relativistic electron beam initiated events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuswa, Glenn W.; Chang, James
The dynamic behavior of a test sample during aid shortly after it has teen irradiated by an intense relativistic electron beam (REB) is of great interest to the study of team energy deposition. Since the sample densities are far beyond the cutoff in the optical region, flash x-radiography techniques have been developed to diagnose the evolution of the samples. The conventional approach of analyzing the dynamic behavior of solid densities utilizes one or more short x-ray bursts to record images on photographic emulsion. This technique is not useful in the presence of the intense x-rays from the REB interacting withmore » the sample. We report two techniques for isolating the film package from the REB x-ray pulse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C P; Hartemann, F V
2004-09-21
The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less
X-ray bursts: Observation versus theory
NASA Technical Reports Server (NTRS)
Lewin, W. H. G.
1981-01-01
Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.
X-Ray Simulator Theory Support
1993-11-01
the pulse power elements in existing and future DNA flash x-ray simulators, in particular DECADE. The pulse power for this machine is based on...usually requires usage at less than the radiation the longer the radiation pulse. full power . Energy delivered to the plasma load is converted into...on the Proto II generator sured with ap-i-n diode filtered with 25 pm ofaluminum; the TABLE 1. Nominal parameters for some pulse power generators used
Supernova shock breakout through a wind
NASA Astrophysics Data System (ADS)
Balberg, Shmuel; Loeb, Abraham
2011-06-01
The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.
Accretion Disks and Coronae in the X-Ray Flashlight
NASA Astrophysics Data System (ADS)
Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan
2018-02-01
Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.
Experimental launcher facility - ELF-I: Design and operation
NASA Astrophysics Data System (ADS)
Deis, D. W.; Ross, D. P.
1982-01-01
In order to investigate the general area of ultra-high-current density, high-velocity sliding contacts as applied to electromagnetic launcher armatures, a small experimental launcher, ELF-I, has been developed, and preliminary experiments have been performed. The system uses a 36 kJ, 5 kV capacitor bank as a primary pulse power source. When used in conjunction with a 5-microhenry pulse conditioning coil, a 100-kA peak current and 10-ms-wide pulse is obtained. A three-station 150 kV flash X-ray system is operational for obtaining in-bore photographs of the projectiles. Experimental results obtained for both metal and plasma armatures at sliding velocities of up to 1 km/s are discussed with emphasis on armature-rail interactions.
NASA Technical Reports Server (NTRS)
Croft, W. L.
1986-01-01
The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.
Results of operating LIA-2 in radiograph mode
NASA Astrophysics Data System (ADS)
Starostenko, D. A.; Logachev, P. V.; Akimov, A. V.; Korepanov, A. A.; Bak, P. A.; Panov, A. N.; Pachkov, A. A.; Eliseev, A. A.; Ottmar, A. V.; Kulenko, Ya. V.; Bolkhovityanov, D. Yu.; Fatkin, G. A.; Pavlov, O. A.; Kuznetsov, G. I.; Nikolaev, I. V.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Pavlenko, A. V.
2014-09-01
The LIA-2 linear induction accelerator was developed at the Budker Institute of Nuclear Physics as an electron beam injector for a building induction accelerator at energy of 20 MeV, on the basis of which a complex for flash radiography will be developed. The LIA-2, which was started up in 2010, is currently used as an independent X-ray unit for raying objects with an optic thickness up to 70 mm in the lead equivalent. The effective diameter of the X-ray source is 0.6-0.7 mm.
Blast-Loading Assessment of Multi-Energy Flash Computed Tomography (MEFCT) Diagnostic
2016-08-01
Perrella JA, Sturgill JM. Design of a simple blast pressure gauge based on a heterodyne velocimetry measuring technique. Aberdeen Proving Ground (MD...position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or...of the radiation dose throughout the angular span of the 150-, 300-, and 450-kV flash X-ray sources used in the MEFCT diagnostic: left image shows
Flash water-window x-ray generator with a ferrite capillary
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Sagae, Michiaki; Ichimaru, Toshio; Takayama, Kazuyoshi; Sakamaki, Kimio; Tamakawa, Yoshiharu
1997-12-01
The fundamental study on a flash water-window x-ray generator is described. This generator is composed of a high-voltage power supply, a polarity-inversion high-voltage pulser, a krytron pulser as a trigger device, an oil-diffusion pump, and a vacuum chamber with a capillary. A combined ceramic condenser of about 5 nF in the pulser is charged up to 70 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing a gap switch by the krytron pulser. In the present work, the chamber is evacuated by the pump with a pressure of about 1 by 10-3 Pa, and the titanium anode and cathode electrodes are employed to produce L-series characteristic x rays in the water-window range. The diameter and the length of the ferrite capillary are 2.0 and 30 mm, respectively. Both the cathode voltage and the discharge current displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were minus 24 kV and 2.8 kA, respectively. The pulse durations of the water-window x-rays were nearly equivalent to those of the damped oscillations of the voltage and current, and their values were less than 10 microseconds.
Physics of Gamma Ray Burst Sources
NASA Technical Reports Server (NTRS)
Meszaros, Peter
2004-01-01
During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.
Effect of Speed on Tire-Soil Interaction and Development of Towed Pneumatic Tire-Soil Model
1974-10-01
rigid wheels were per- formed by several researchers under laboratory conditions (Refs. 20 through 22) using the flash X -ray technique. These experiments...Towed Tire-Soil Model ................................... 90 IX Conclusions and Recommendations .............. 95 X References...Velocity Fields ................................. A-1 x Section Page Appendix B - Computer Program Chart for Computation 3- of Tire Performance with
LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakauchi, Daisuke; Kashiyama, Kazumi; Nakamura, Takashi
2012-11-10
Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than {approx}100 M {sub Sun} and typically {approx}40 M {sub Sun }. By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of {approx}10{sup 5} s in the observer frame and amore » peak luminosity of {approx}5 Multiplication-Sign 10{sup 50} erg s{sup -1}. Assuming that the E {sub p}-L {sub p} (or E {sub p}-E {sub {gamma},iso}) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or {approx}100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E {sub p}-E {sub {gamma},iso} correlation holds, we have the possibility to detect Pop III GRBs at z {approx} 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E {sub p}-L {sub p} correlation holds, we have the possibility to detect Pop III GRBs up to z {approx} 19 as long-duration X-ray flashes by Lobster.« less
46 CFR 35.20-30 - Flashing the rays of a searchlight or other blinding light-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS OPERATIONS Navigation § 35.20-30 Flashing the rays of a searchlight or other blinding light—T/ALL. No person shall flash, or cause to be flashed, the rays of a search light or other blinding light... 46 Shipping 1 2012-10-01 2012-10-01 false Flashing the rays of a searchlight or other blinding...
46 CFR 35.20-30 - Flashing the rays of a searchlight or other blinding light-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS OPERATIONS Navigation § 35.20-30 Flashing the rays of a searchlight or other blinding light—T/ALL. No person shall flash, or cause to be flashed, the rays of a search light or other blinding light... 46 Shipping 1 2010-10-01 2010-10-01 false Flashing the rays of a searchlight or other blinding...
46 CFR 35.20-30 - Flashing the rays of a searchlight or other blinding light-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS OPERATIONS Navigation § 35.20-30 Flashing the rays of a searchlight or other blinding light—T/ALL. No person shall flash, or cause to be flashed, the rays of a search light or other blinding light... 46 Shipping 1 2014-10-01 2014-10-01 false Flashing the rays of a searchlight or other blinding...
46 CFR 35.20-30 - Flashing the rays of a searchlight or other blinding light-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS OPERATIONS Navigation § 35.20-30 Flashing the rays of a searchlight or other blinding light—T/ALL. No person shall flash, or cause to be flashed, the rays of a search light or other blinding light... 46 Shipping 1 2013-10-01 2013-10-01 false Flashing the rays of a searchlight or other blinding...
46 CFR 35.20-30 - Flashing the rays of a searchlight or other blinding light-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS OPERATIONS Navigation § 35.20-30 Flashing the rays of a searchlight or other blinding light—T/ALL. No person shall flash, or cause to be flashed, the rays of a search light or other blinding light... 46 Shipping 1 2011-10-01 2011-10-01 false Flashing the rays of a searchlight or other blinding...
Burning plasmas with ultrashort soft-x-ray flashing
NASA Astrophysics Data System (ADS)
Hu, S. X.; Goncharov, V. N.; Skupsky, S.
2012-07-01
Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.
X-ray source development for EXAFS measurements on the National Ignition Facility.
Coppari, F; Thorn, D B; Kemp, G E; Craxton, R S; Garcia, E M; Ping, Y; Eggert, J H; Schneider, M B
2017-08-01
Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
NASA Technical Reports Server (NTRS)
Hamilton, D. B.; Ensminger, D.; Grieser, D. R.; Plummer, A. M.; Saccocio, E. J.; Kissel, J. W.
1973-01-01
The research is reported which was conducted to develop devices for measuring vibrations and deflections of parts, such as impellers, shafts, turbine wheels, and inducers in operating turbopumps. Three devices were developed to the breadboard stage: ultrasonic Doppler transducer, flash X-rays, and light-pipe reflectance. It was found that the X-ray technique is applicable to the shaft assembly and the turbine seal of the J-2 pump, and the light-pipe-reflectance device appears to be ideal for cryogenic pump sections.
X-ray source development for EXAFS measurements on the National Ignition Facility
Coppari, F.; Thorn, D. B.; Kemp, G. E.; ...
2017-08-28
We present that extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. Finally, EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first timemore » on the NIF laser, and the requirements for optimization have been established.« less
Radiation hardening of gated x-ray imagers for the National Ignition Facility (invited).
Bell, P M; Bradley, D K; Kilkenny, J D; Conder, A; Cerjan, C; Hagmann, C; Hey, D; Izumi, N; Moody, J; Teruya, A; Celeste, J; Kimbrough, J; Khater, H; Eckart, M J; Ayers, J
2010-10-01
The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10(17) neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.
floodX: urban flash flood experiments monitored with conventional and alternative sensors
NASA Astrophysics Data System (ADS)
Moy de Vitry, Matthew; Dicht, Simon; Leitão, João P.
2017-09-01
The data sets described in this paper provide a basis for developing and testing new methods for monitoring and modelling urban pluvial flash floods. Pluvial flash floods are a growing hazard to property and inhabitants' well-being in urban areas. However, the lack of appropriate data collection methods is often cited as an impediment for reliable flood modelling, thereby hindering the improvement of flood risk mapping and early warning systems. The potential of surveillance infrastructure and social media is starting to draw attention for this purpose. In the floodX project, 22 controlled urban flash floods were generated in a flood response training facility and monitored with state-of-the-art sensors as well as standard surveillance cameras. With these data, it is possible to explore the use of video data and computer vision for urban flood monitoring and modelling. The floodX project stands out as the largest documented flood experiment of its kind, providing both conventional measurements and video data in parallel and at high temporal resolution. The data set used in this paper is available at https://doi.org/10.5281/zenodo.830513.
Experimental comparison of various techniques for spot size measurement of high-energy X-ray
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Li, Cheng-Gang; Li, Hong; Long, Quan-Hong; Shi, Jin-Shui; Deng, Jian-Jun
2016-08-01
In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.
AXAF: The Advanced X-ray Astrophysics Facility
NASA Technical Reports Server (NTRS)
1988-01-01
The Advanced X-ray Astrophysics Facility (AXAF) will be the X-ray astronomy component of U.S. space exploration via Great Observatories (mostly orbital) for the remainder of the century. AXAF and the research planned for it are discussed for a lay audience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combemale, L., E-mail: lionel.combemale@u-bourgogne.f; Caboche, G.; Stuerga, D.
2009-10-15
Perovskite-oxide nanocrystals of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} with a mean size around 10 nm were prepared by microwave flash synthesis. This reaction was performed in alcoholic solution using metallic salts, sodium ethoxide and microwave autoclave. The obtained powder was characterised after purification by energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM). The results show that integrated perovskite-type phase and uniform particle size were obtained in the microwave treated samples. At last the synthesised powder was directly used in a sintering process. A porous solid, inmore » accordance with the expected applications, was then obtained at low sintering temperature (1000 deg. C) without use of pore forming agent. - Graphical abstract: TEM photograph of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} obtained by microwave flash synthesis. This picture confirms the nanometric size of the ceramic particles.« less
Mock X-ray Observations of Localized LMC Outflows
NASA Astrophysics Data System (ADS)
Tomesh, Teague; Bustard, Chad; Zweibel, Ellen
2018-01-01
The Milky Way’s nearest neighbor, the Large Magellanic Cloud (LMC), is a perfect testing ground for modeling a variety of astrophysical phenomena. Specifically, the LMC provides a unique opportunity for the study of possible localized outflows driven by star formation and their x-ray signatures. We have developed FLASH simulations of theoretical outflows originating in the LMC that we have used to generate predicted observations of X-ray luminosity. This X-ray emission can be a useful probe of the hot gas in these winds which may couple to the cool gas and drive it from the disk. Future observations of the LMC may provide us with valuable checks on our model. This work is partially supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.
Coherence properties of the radiation from FLASH
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2016-02-01
Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.
Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources.
Sobierajski, R; Bruijn, S; Khorsand, A R; Louis, E; van de Kruijs, R W E; Burian, T; Chalupsky, J; Cihelka, J; Gleeson, A; Grzonka, J; Gullikson, E M; Hajkova, V; Hau-Riege, S; Juha, L; Jurek, M; Klinger, D; Krzywinski, J; London, R; Pelka, J B; Płociński, T; Rasiński, M; Tiedtke, K; Toleikis, S; Vysin, L; Wabnitz, H; Bijkerk, F
2011-01-03
We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.
The European XFEL Free Electron Laser at DESY
Weise, Hans [Deutsches Elektronen-Synchrotron, Germany
2017-12-09
The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.
NASA Astrophysics Data System (ADS)
Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.
2007-11-01
We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.
CXO J004318.8+412016, a steady supersoft X-ray source in M 31
NASA Astrophysics Data System (ADS)
Orio, Marina; Luna, G. J. M.; Kotulla, R.; Gallager, J. S.; Zampieri, L.; Mikolajewska, J.; Harbeck, D.; Bianchini, A.; Chiosi, E.; Della Valle, M.; de Martino, D.; Kaur, A.; Mapelli, M.; Munari, U.; Odendaal, A.; Trinchieri, G.; Wade, J.; Zemko, P.
2017-09-01
We obtained an optical spectrum of a star we identify as the optical counterpart of the M31 Chandra source CXO J004318.8+412016, because of prominent emission lines of the Balmer series, of neutral helium, and a He II line at 4686 Å. The continuum energy distribution and the spectral characteristics demonstrate the presence of a red giant of K or earlier spectral type, so we concluded that the binary is likely to be a symbiotic system. CXO J004318.8+412016 has been observed in X-rays as a luminous supersoft source (SSS) since 1979, with effective temperature exceeding 40 eV and variable X-ray luminosity, oscillating between a few times 1035 erg s-1 and a few times 1037 erg s-1 in the space of a few weeks. The optical, infrared and ultraviolet colours of the optical object are consistent with an an accretion disc around a compact object companion, which may be either a white dwarf or a black hole, depending on the system parameters. If the origin of the luminous supersoft X-rays is the atmosphere of a white dwarf that is burning hydrogen in shell, it is as hot and luminous as post-thermonuclear flash novae, yet no major optical outburst has ever been observed, suggesting that the white dwarf is very massive (m ≥ 1.2 M⊙) and it is accreting and burning at the high rate \\dot{m} > 10^{-8} M⊙ yr-1 expected for Type Ia supernovae progenitors. In this case, the X-ray variability may be due to a very short recurrence time of only mildly degenerate thermonuclear flashes.
Flash melting of tantalum in a diamond cell to 85 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karandikar, Amol; Boehler, Reinhard
2016-02-09
Here, we demonstrate a new level of precision in measuring melting temperatures at high pressure using laser flash-heating followed by Scanning Electron Microscopy and Focused Ion Beam Milling. Furthermore, the new measurements on tantalum put unprecedented constraints on its highly debated melting slope, calling for a reevaluation of theoretical, shock compression and diamond cell approaches to determine melting at high pressure. X-ray analysis of the recovered samples confirmed the absence of chemical reactions, which likely played a significant role in previous experiments.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
NASA Technical Reports Server (NTRS)
Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)
2001-01-01
MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.
Advanced X-ray Astrophysics Facility (AXAF): An overview
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; ODell, S. L.; Elsner, R. F.; VanSpeybroeck, L. P.
1995-01-01
The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric imaging, and high-resolution disperse spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics, and cosmology.
Uses of continuum radiation in the AXAF calibration
NASA Technical Reports Server (NTRS)
Kolodziejczak, J. J.; Austin, R. A.; Elsner, R. F.; O'Dell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.
1997-01-01
X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.
Toward a fourth-generation x-ray source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monction, D. E.
1999-05-19
The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less
Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpetti, R. D., LLNL
1997-06-30
The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less
NASA Technical Reports Server (NTRS)
O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab;
2010-01-01
During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
MODELING THE EARLY MULTIWAVELENGTH EMISSION IN GRB 130427A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraija, N.; Lee, W.; Veres, P., E-mail: nifraija@astro.unam.mx, E-mail: wlee@astro.unam.mx, E-mail: pv0004@uah.edu
2016-02-20
One of the most powerful gamma-ray bursts, GRB 130427A was swiftly detected from GeV γ-rays to optical wavelengths. In the GeV band, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope observed the highest-energy photon ever recorded of 95 GeV and a bright peak in the early phase followed by emission temporally extended for more than 20 hr. In the optical band, a bright flash with a magnitude of 7.03 ± 0.03 in the time interval from 9.31 to 19.31 s after the trigger was reported by RAPTOR in r band. We study the origin of the GeV γ-ray emission, using the multiwavelengthmore » observation detected in X-ray and optical bands. The origin of the temporally extended LAT, X-ray, and optical flux is naturally interpreted as synchrotron radiation, and the 95 GeV photon and the integral flux upper limits placed by the high-altitude water Cerenkov observatory are consistent with synchrotron self-Compton from an adiabatic forward shock propagating into the stellar wind of its progenitor. The extreme LAT peak and the bright optical flash are explained through synchrotron self-Compton and synchrotron emission from the reverse shock, respectively, when the ejecta evolves in the thick-shell regime and carries a significant magnetic field.« less
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
1999-01-01
University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
1999-01-01
University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime
NASA Astrophysics Data System (ADS)
Gong, Z.; Hu, R. H.; Lu, H. Y.; Yu, J. Q.; Wang, D. H.; Fu, E. G.; Chen, C. E.; He, X. T.; Yan, X. Q.
2018-04-01
An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ˜ 1023 W cm-2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s-1 mm-2 mrad-2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.
49 CFR 1549.103 - Qualifications and training of individuals with security-related duties.
Code of Federal Regulations, 2011 CFR
2011-10-01
... screening technologies that the facility is authorized to use. These include: (i) The ability to operate x-ray equipment and to distinguish on the x-ray monitor the appropriate imaging standard specified in the certified cargo screening facility security program. Wherever the x-ray system displays colors...
The Remarkable Afterglow of GRB 061007: Implications for Optical Flashes and GRB Fireballs
NASA Astrophysics Data System (ADS)
Mundell, C. G.; Melandri, A.; Guidorzi, C.; Kobayashi, S.; Steele, I. A.; Malesani, D.; Amati, L.; D'Avanzo, P.; Bersier, D. F.; Gomboc, A.; Rol, E.; Bode, M. F.; Carter, D.; Mottram, C. J.; Monfardini, A.; Smith, R. J.; Malhotra, S.; Wang, J.; Bannister, N.; O'Brien, P. T.; Tanvir, N. R.
2007-05-01
We present a multiwavelength analysis of Swift GRB 061007. The 2 m robotic Faulkes Telescope South began observing 137 s after the onset of the γ-ray emission, when the optical counterpart was already decaying from R~10.3 mag, and continued observing for the next 5.5 hr. These observations begin during the final γ-ray flare and continue through and beyond a long, soft tail of γ-ray emission whose flux shows an underlying simple power-law decay identical to that seen at optical and X-ray wavelengths, with temporal slope α~1.7 (F~t-α). This remarkably simple decay in all of these bands is rare for Swift bursts, which often show much more complex light curves. We suggest the afterglow emission begins as early as 30-100 s and is contemporaneous with the ongoing variable prompt emission from the central engine, but originates from a physically distinct region dominated by the forward shock. The observed multiwavelength evolution of GRB 061007 is explained by an expanding fireball whose optical, X-ray, and late-time γ-ray emission is dominated by emission from a forward shock with typical synchrotron frequency, νm, that is already below the optical band as early as t=137 s and a cooling frequency, νc, above the X-ray band to at least t=105 s. In contrast, the typical frequency of the reverse shock lies in the radio band at early time. We suggest that the unexpected lack of bright optical flashes from the majority of Swift GRBs may be explained with a low νm originating from small microphysics parameters, ɛe and ɛB. Finally, the optical light curves imply a minimum jet opening angle θ=4.7deg, and no X-ray jet break before t~106 s makes GRB 061007 a secure outlier to spectral energy correlations.
NASA Astrophysics Data System (ADS)
Li, Kai; Deng, Haixiao
2018-07-01
The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.
Fournier, K B; Brown, C G; Yeoman, M F; Fisher, J H; Seiler, S W; Hinshelwood, D; Compton, S; Holdener, F R; Kemp, G E; Newlander, C D; Gilliam, R P; Froula, N; Lilly, M; Davis, J F; Lerch, Maj A; Blue, B E
2016-11-01
Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility's diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.
NASA Astrophysics Data System (ADS)
Hendrix, Roy E.; Dugger, Paul H.
1983-03-01
Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.
The solar physics Shuttle/Spacelab program and its relationship to studies of the flare build-up
NASA Technical Reports Server (NTRS)
Neupert, W. M.
1976-01-01
The main phase of solar physics (including flare-buildup) research on Shuttle/Spacelab during the 1980s centers around the use of facility instruments for multiple-user, multiple flight operations. Three main facilities are being considered: a meter-class optical telescope for visible and near-UV wavelengths, an EUV/XUV/soft X-ray facility, and a hard X-ray imaging facility (including a full-sun 5-600 keV spectrometer, a nuclear gamma ray spectrometer, and an X-ray polarimeter for the 5-100 keV range). Smaller instruments designed for specific observations and other classes of instruments such as solar monitors that are not on the facility level are also being considered.
Repetitive compact flash x-ray generators for soft radiography
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Shikoda, Arimitsu; Kimura, Shingo; Sagae, Michiaki; Oizumi, Teiji; Takahashi, Kei; Hayasi, Yasuomi; Shoji, Tetsuo; Shishido, Koro; Tamakawa, Yoshiharu; Yanagisawa, Toru
1993-01-01
The construction and the fundamental studies for the repetitive flash x-ray generators designed by Japan Impulse Laboratory in Iwate Medical University are described. These generators are classified to the following two major types: (1) generators having diodes, and (2) generators having triodes. In order to generate high-voltage impulses, we employed the following transmission lines (pulsers): (a) high-voltage-inversion type with a maximum output voltage Vom of about 80 kV, (b) high-voltage- inversion type having a coaxial cable (Vom equals 130 kV), (c) two-stage Marx pulser (Vom equals 150 kV), (d) two-cable-type Blumlein (Vom equals 120 kV), (e) modified Blumlein (Vom equals 120 kV), (f) fundamental transmission line for triode (Vom equals 100 kV), and (g) transmission line for an enclosed triode (Vom equals 100 kV). Using these generators we succeeded in performing high-speed radiography as follows: (a) delayed radiography; (b) multiple-shot radiography; and (c) cineradiography.
The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance
Aballe, Lucia; Foerster, Michael; Pellegrin, Eric; Nicolas, Josep; Ferrer, Salvador
2015-01-01
The spectroscopic LEEM-PEEM experimental station at the CIRCE helical undulator beamline, which started user operation at the ALBA Synchrotron Light Facility in 2012, is presented. This station, based on an Elmitec LEEM III microscope with electron imaging energy analyzer, permits surfaces to be imaged with chemical, structural and magnetic sensitivity down to a lateral spatial resolution better than 20 nm with X-ray excited photoelectrons and 10 nm in LEEM and UV-PEEM modes. Rotation around the surface normal and application of electric and (weak) magnetic fields are possible in the microscope chamber. In situ surface preparation capabilities include ion sputtering, high-temperature flashing, exposure to gases, and metal evaporation with quick evaporator exchange. Results from experiments in a variety of fields and imaging modes will be presented in order to illustrate the ALBA XPEEM capabilities. PMID:25931092
AXAF: The Advanced X-Ray Astrophysics Facility
NASA Technical Reports Server (NTRS)
Pellerin, Charles J.; Weisskopf, Martin C.; Neal, Valerie
2005-01-01
X-rays are produced by violent, energetic, and explosive phenomena in the universe. The Advanced X-Ray Astrophysics Facility (AXAF) is an orbiting observatory designed to view these X-rays. The National Academy of Sciences Survey Committee on Astronomy and Astrophysics has recommended AXAF as the #1 priority among all major new astronomy programs. The scientific importance of AXAF was also highlighted by the Academy's Survey Committee on Physics. Why has AXAF earned such enthusiastic support, not only among astronomers, but also broadly within the nation's scientific community?
Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; ...
2013-02-11
We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less
In-flight observation of long duration gamma-ray glows by aircraft
NASA Astrophysics Data System (ADS)
Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai
2017-04-01
The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.
The Next Century Astrophysics Program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1991-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.
Cho, Young Ho; Kang, Bo Sun
2010-06-01
The X-ray container cargo inspection facility is extensively implemented with the key objective to counter international terrorism and illicit smuggling of the contraband items via the ports. However, activation products are generated from photoneutron capture reactions in the high-energy X-ray container cargo inspection facility. The activation products release inherent delayed radiations which occupational workers are exposed to. In this study, the activation products are estimated using Monte Carlo method and radiation safety of the facility in terms of occupational dose is reviewed.
A hard X-ray nanoprobe beamline for nanoscale microscopy.
Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg
2012-11-01
The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.
FRB180301: AstroSat CZTI upper limits
NASA Astrophysics Data System (ADS)
Anumarlapudi, A.; Aarthy, E.; Arvind, B.; Bhalerao, V.; Bhattacharya, D.; Rao, A. R.; Vadawale, S.
2018-03-01
We carried out offline analysis of data from Astrosat CZTI in a 100 second window centred on the FRB180301 (Parkes discovery - Savchenko, V. et al., ATEL #11376) trigger time, 2018-03-11 at 04:11:54.80 UTC, to look for any coincident hard X-ray flash.
Hartmann wavefront sensors and their application at FLASH.
Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus
2016-01-01
Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.
Experimental study of self magnetic pinch diode as flash radiography source at 4 megavolt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno
2013-10-15
The Self Magnetic Pinch (SMP) diode is a potential high-brightness X-ray source for high voltage generators (2–10 MV) that has shown good reliability for flash radiography applications [D. D. Hinchelwood et al., “High power self-pinch diode experiments for radiographic applications” IEEE Trans. Plasma Sci. 35(3), 565–572 (2007)]. We have studied this diode at about 4 MV, driven by the ASTERIX generator operated at the CEA/GRAMAT [G. Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference (1989), pp. 567–570]. This generator, made up of a capacitor bank and a Blumlein line, wasmore » initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode is modified in order to set up flash radiographic diodes. A previous set of radiographic experiments was carried out on ASTERIX with a Negative Polarity Rod Pinch (NPRP) diode [B. Etchessahar et al., “Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV,” Phys. Plasmas 19(9), 093104 (2012)]. The SMP diode which is examined in the present study provides an alternative operating point on the same generator and a different radiographic performance: 142 ± 11 rad at 1 m dose (Al) for a 3.46 ± 0.42 mm spot size (1.4× FWHM of the LSF). This performance is obtained in a reproducible and robust nominal configuration. However, several parametric variations were also tested, such as cathode diameter and anode/cathode gap. They showed that an even better performance is accessible after optimization, in particular, a smaller spot size (<3 mm). Numbers of electrical, optical, and X-ray diagnostics have been implemented in order to gain more insight in the diode physics and to optimize it further. For the first time in France, visible and laser imaging of the SMP diode has been realized, from a radial point of view, thus, providing key information on the electrode plasmas evolution, responsible for the gap closure.« less
Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung
2016-01-01
We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215
Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung
2016-01-25
We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).
Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite
NASA Astrophysics Data System (ADS)
Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.
2017-08-01
The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.
2011-06-01
induction accelerator with a voltage output of 18MeV at a current of 3kA. The electron beam is focused onto a tantalum target to produce X-rays. The... capacitors in each bank, half of which are charged in parallel positively, and the other half are negatively charged in parallel. The charge voltage can...be varied from ±30kV to ±40kV. The Marx capacitors are fired in series into the Blumleins with up to 400kV 2µS output. Figure 1 FXR Pulsed Power
NASA Astrophysics Data System (ADS)
Zimina, A.; Dardenne, K.; Denecke, M. A.; Grunwaldt, J. D.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Steininger, R.; Vitova, T.
2016-05-01
A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported.
2011-04-01
Proceedings, Bristol, UK (2006). 5. M. A. Mentzer, Applied Optics Fundamentals and Device Applications: Nano, MOEMS , and Biotechnology, CRC Taylor...ballistic sensing, flash x-ray cineradiography, digital image correlation, image processing al- gorithms, and applications of MOEMS to nano- and
2004-03-08
KENNEDY SPACE CENTER, FLA. - A rudder speed brake actuator sits on an air-bearing pallet to undergo X-raying. Four actuators to be installed on the orbiter Discovery are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
A hard X-ray nanoprobe beamline for nanoscale microscopy
Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg
2012-01-01
The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu
Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resultingmore » Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources.« less
NASA Technical Reports Server (NTRS)
Sion, Edward M.; Starrfield, Sumner G.
1994-01-01
We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.
Development of a short duration backlit pinhole for radiography on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntington, C. M.; Krauland, C. M.; Kuranz, C. C.
2010-10-15
Experiments on the National Ignition Facility (NIF) will require bright, short duration, near-monochromatic x-ray backlighters for radiographic diagnosis of many high-energy density systems. This paper details a vanadium pinhole backlighter producing (1.8{+-}0.5)x10{sup 15} x-ray photons into 4{pi} sr near the vanadium He-like characteristic x-ray energy of 5.18 keV. The x-ray yield was quantified from a set of Ross filters imaged to a calibrated image plate, with the Dante diagnostic used to confirm the quasimonochromatic nature of the spectrum produced. Additionally, an x-ray film image shows a source-limited image resolution of 26 {mu}m from a 20 {mu}m diameter pinhole.
NASA Technical Reports Server (NTRS)
Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.
1992-01-01
The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.
High Intensity e-beam Diode Development for Flash X-ray Radiography
NASA Astrophysics Data System (ADS)
Oliver, Bryan
2007-11-01
A variety of electron beam diodes are being used and developed for the purpose of creating high-brightness, flash x-ray radiography sources. In these diodes, high energy (multi MeV), high current (multi kA), small spot (multi mm) electron beams are generated and stopped in high atomic number anode-targets (typically Ta or W). Beam stopping in the target creates copious amounts of bremsstrahlung radiation. In addition, beam heating of the target liberates material, either in the form of low density (˜10^12-10^14 cm-3) ion emission or higher density (> 10^15 cm-3) plasma. In all cases, beam/target collective effects dominate the diode and beam characteristics, affecting the radiation properties (dose and spot-size). Recent experiments at Sandia National Laboratories have demonstrated diodes capable of producing > 350 rad@m with 1.7mm FWHM x-ray source distributions. A review of our present theoretical understanding of the diode (s) operation and our experimental and simulation methods to investigate them will be presented. Emphasis will be given to e- beam sources used on state-of-the-art Inductive Voltage Adder (IVA) pulsed-power accelerators. In particular, the physics of magnetically pinched diodes (e.g. the rod-pinch [1,2]), gas-cell focusing diodes [3] and the magnetically immersed [4] diode will be discussed. Various proposed methods to optimize the x-ray intensity and the direction of future diode research will be discussed. [1] G. Cooperstein, et al., Phys. Plasmas 8, 4618 (2001).[2] B.V. Oliver et al., Phys. Plasmas 11, 3976 (2004)[3] B.V. Oliver, et al., IEEE Trans. on Plasma Science 33, 704 (2005).[4] M.G. Mazarakis, et al., Appl. Phys. Lett. 70, 832 (1997)
Light Echoes in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Kazanas, Demosthenes
2008-01-01
We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct "bunches" separated by a roughly constant time lag of Deltat(t(sub lag))/M approx. 14, regardless of the bursts' azimuthal position. We argue that every other such "bunch" represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon "echo"). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M = 0.99 and mass of M = 10Stellar Mass the QPO is expected at a frequency of v(sub QPO) approx. 1.3 - 1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations. Subject headings: accretion, accretion disks - black hole physics - X-rays: galaxies - stars: oscillations
NASA Astrophysics Data System (ADS)
Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.
2009-08-01
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.
Shot H3837: Darht's First Dual-Axis Explosive Experiment
NASA Astrophysics Data System (ADS)
Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence
2011-06-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.
Falcon: automated optimization method for arbitrary assessment criteria
Yang, Tser-Yuan; Moses, Edward I.; Hartmann-Siantar, Christine
2001-01-01
FALCON is a method for automatic multivariable optimization for arbitrary assessment criteria that can be applied to numerous fields where outcome simulation is combined with optimization and assessment criteria. A specific implementation of FALCON is for automatic radiation therapy treatment planning. In this application, FALCON implements dose calculations into the planning process and optimizes available beam delivery modifier parameters to determine the treatment plan that best meets clinical decision-making criteria. FALCON is described in the context of the optimization of external-beam radiation therapy and intensity modulated radiation therapy (IMRT), but the concepts could also be applied to internal (brachytherapy) radiotherapy. The radiation beams could consist of photons or any charged or uncharged particles. The concept of optimizing source distributions can be applied to complex radiography (e.g. flash x-ray or proton) to improve the imaging capabilities of facilities proposed for science-based stockpile stewardship.
NASA Astrophysics Data System (ADS)
Ziółkowski, Janusz
2003-12-01
The program of the conference was prepared so well (thanks to the organizers) that we got complete and competent reviews in all important fields of high energy cosmic sources. It is not easy to select just a few topics and any choice will be, necessarily, arbitrary. I decided to make brief comments on cosmology, on gamma ray bursts and on X-ray flashes. My personal nomination for the hit of the conference goes this year to the ``Rosetta stone" of gamma ray bursts (term used by Elena Pian): GRB030329 = SN 2003dh.
2004-03-08
KENNEDY SPACE CENTER, FLA. - Workers at Cape Canaveral Air Force Station place one of four rudder speed brake actuators onto a pallet for X-ray. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
Overview of the Chandra X-Ray Observatory Facility
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Six, N. Frank (Technical Monitor)
2002-01-01
The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems (hundreds of degrees below zero Celsius) produce low energy radio and microwave photons, whereas cool bodies like our own (about 30 degrees Celsius) produce infrared radiation. Very high temperatures (millions of degrees Celsius) are one way of producing X-rays.
NASA Astrophysics Data System (ADS)
Eom, Tae-Yil; Ahn, Chee-Hong; Kang, Jun-Gu; Saad Salman, Muhammad; Lee, Sun-Young; Kim, Yong-Hoon; Lee, Hoo-Jeong; Kang, Chan-Mo; Kang, Chiwon
2018-06-01
In this study, we show the evolution of nitrogen defects during a sol–gel reaction in flash-lamp-annealed InGaZnO (IGZO) films and their effects on the device characteristics of their thin-film transistors (TFTs). The flash lamp annealing (FLA) of the IGZO TFT for 16 s helps achieve a mobility of approximately 7 cm2 V‑1 s‑1. However, further extension of the annealing time results only in drastic increases in carrier concentration and off-current. The X-ray photoelectron spectroscopy (XPS) analysis of the N 1s peak unravels the presence of oxygen-vacancy-associated nitrogen defects and their evolution with annealing time, which is possibly responsible for the increase in carrier concentration.
A two-stage series diode for intense large-area moderate pulsed X rays production.
Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang
2017-01-01
This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm 2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.
X-ray astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Holt, Stephen S.
1987-01-01
The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.
Multi-keV X-ray area source intensity at SGII laser facility
NASA Astrophysics Data System (ADS)
Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei
2018-05-01
Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.
46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding light... 46 Shipping 7 2012-10-01 2012-10-01 false Flashing the rays of a searchlight or other blinding light. 167.65-5 Section 167.65-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...
46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding light... 46 Shipping 7 2011-10-01 2011-10-01 false Flashing the rays of a searchlight or other blinding light. 167.65-5 Section 167.65-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...
46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding light... 46 Shipping 7 2013-10-01 2013-10-01 false Flashing the rays of a searchlight or other blinding light. 167.65-5 Section 167.65-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...
46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding light... 46 Shipping 7 2014-10-01 2014-10-01 false Flashing the rays of a searchlight or other blinding light. 167.65-5 Section 167.65-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...
46 CFR 167.65-5 - Flashing the rays of a searchlight or other blinding light.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of a searchlight or other blinding light. Flashing the rays of a searchlight or other blinding light... 46 Shipping 7 2010-10-01 2010-10-01 false Flashing the rays of a searchlight or other blinding light. 167.65-5 Section 167.65-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...
Wang, Hao; Yu, Can; Wei, Xu; Gao, Zhenhua; Xu, Guang Lei; Sun, Da Rui; Li, Zhenjie; Zhou, Yangfan; Li, Qiu Ju; Zhang, Bing Bing; Xu, Jin Qiang; Wang, Lin; Zhang, Yan; Tan, Ying Lei; Tao, Ye
2017-05-01
A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Facilities and Centers Staff Center for X-ray Optics Patrick Naulleau Director 510-486-4529 2-432 PNaulleau
Credit PSR. This image depicts the southwest and southeast facades ...
Credit PSR. This image depicts the southwest and southeast facades as seen when looking north. The concrete block lean-to in the foreground is the facility control room. Between this room and the X-ray room is a four foot thick concrete wall (which can be seen as a "step" between the lowest and highest roof planes) intended as X-ray shielding for operators. The X-ray chamber faces away from the JPL Edwards Facility toward a fenced desert area - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA
FRB180311: AstroSat CZTI upper limits and correction to FRB180301 upper limits
NASA Astrophysics Data System (ADS)
Anumarlapudi, A.; Aarthy, E.; Arvind, B.; Bhalerao, V.; Bhattacharya, D.; Rao, A. R.; Vadawale, S.
2018-03-01
We carried out offline analysis of data from Astrosat CZTI in a 200 second window centred on the FRB 180311 (Parkes discovery - Oslowski, S. et al., ATEL #11396) trigger time, 2018-03-11 04:11:54.80 UTC, to look for any coincident hard X-ray flash.
Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift
NASA Astrophysics Data System (ADS)
Sakamoto, Takanori; Yamazaki, Ryo; Barthelmy, Scott; Gehrels, Neil; Osborne, Julian; Hullinger, Derek; Sato, Goro; Barbier, Louis; Cummings, Jay; Fenimore, Ed; Krimm, Hans; Lamb, Don; Markwardt, Craig; Palmer, David; Parsons, Ann; Stamatikos, Michael; Tueller, Jack
Takanori Sakamoto, Taka.Sakamoto@nasa.gov NASA Goddard Space Flight Center, Greenbelt, Maryland, United States Ryo Yamazaki, ryo@theo.phys.sci.hiroshima-u.ac.jp Hiroshima University, Higashi-Hiroshima, Japan Scott Barthelmy, scott@milkyway.gsfc.nasa.gov NASA GSFC, Greenbelt, Maryland, United States Neil Gehrels, gehrels@milkyway.gsfc.nasa.gov NASA Goddard Space Flight Center, Greenbelt, Maryland, United States Julian Osborne, julo@star.le.ac.uk University of Leicester, Leicester, United Kingdom Derek Hullinger, derek.hullinger@gmail.com Moxtek, Inc, Orem, Utah, United States Goro Sato, Goro.Sato@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Louis Barbier, lmb@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Jay Cummings, jayc@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Ed Fenimore, efenimore@lanl.gov Los Alamos National Laboratory, Los Alamos, California, United States Hans Krimm, hans.krimm@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Don Lamb, d-lamb@uchicago.edu University of Chicago, Chicago, Illinois, United States Craig Markwardt, Craig.Markwardt@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States David Palmer, palmer@lanl.gov Los Alamos National Laboratory, Los Alamos, California, United States Ann Parsons, Ann.M.Parsons@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Michael Stamatikos, michael@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Jack Tueller, jack.tueller@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States We present the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) and X-ray-rich gamma-ray bursts (XRRs) detected and observed by Swift between December 2004 and September 2006. We compare these characteristics to a sample of conventional classical gamma-ray bursts (C-GRBs) observed during the same period. We confirm the correlation between Epeak and fluence noted by others and find further evidence that XRFs, XRRs and C-GRBs form a continuum. We also confirm that our known redshift sample is consistent with the correlation between the peak energy in the GRB rest frame (Epeak) and the isotropic radiated energy (Eiso), so called the Epeak-Eiso relation. The spectral properties of X-ray afterglows of XRFs and C-GRBs are similar, but the temporal properties of XRFs and C-GRBs are quite different. We found that the light curves of C-GRB afterglows show a break to steeper indices (shallow-to-steep break) at much earlier times than do XRF afterglows. Moreover, the overall luminosity of XRF X-ray afterglows is systematically smaller by a factor of two or more compared to that of C-GRBs. These distinct differences between the X-ray afterglows of XRFs and C-GRBs may be the key to understanding not only the mysterious shallow-to-steep break in X-ray afterglow light curves, but also the unique nature of XRFs.
MCNP estimate of ZLS lens sensitivity in an x-ray field
NASA Astrophysics Data System (ADS)
Mitchell, Stephen E.; Baker, Stuart A.; Howe, Russell A.; Malone, Robert M.
2016-09-01
The telecentric zoom lens system (ZLS) has proven to be invaluable in flash x-ray field operations and recent successful experiments pertaining to stockpile stewardship. The ZLS contains 11 custom-manufactured lenses, a turning mirror (pellicle), and an x-ray-to-visible-light converting scintillator. Images are recorded on a fully characterized CCD. All hardware is supported by computerized, programmable, electro-mechanical mounts and alignment apparatus. Seven different glass material types varying in chemical stoichiometry comprise the 11 ZLS lenses. All lenses within the ZLS are out of the path of direct x-ray radiation during normal operation. However, any unshielded scattered x-ray radiation can result in energy deposition into the lenses, which may generate some scintillating light that can couple into the CCD. This extra light may contribute to a decrease in signal-to-noise ratio (SNR) and lower the overall fidelity of the radiograph images. An estimate of the scintillation generation and sensitivities for each of the seven types of glass used as lenses in the ZLS is presented. This report also includes estimates of the total observed background decoupling that each of the lens material types contribute.
X-ray observations of the burst source MXB 1728 - 34
NASA Technical Reports Server (NTRS)
Basinska, E. M.; Lewin, W. H. G.; Sztajno, M.; Cominsky, L. R.; Marshall, F. J.
1984-01-01
Where sufficient information has been obtained, attention is given to the maximum burst flux, integrated burst flux, spectral hardness, rise time, etc., of 96 X-ray bursts observed from March 1976 to March 1979. The integrated burst flux and the burst frequency appear to be correlated; the longer the burst interval, the larger the integrated burst flux, as expected on the basis of simple thermonuclear flash models. The maximum burst flux and the integrated burst flux are strongly correlated; for low flux levels their dependence is approximately linear, while for increasing values of the integrated burst flux, the flux at burst maximum saturates and reaches a plateau.
Detailed Calibration of SphinX instrument at the Palermo XACT facility of INAF-OAPA
NASA Astrophysics Data System (ADS)
Szymon, Gburek; Collura, Alfonso; Barbera, Marco; Reale, Fabio; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Plocieniak, Stefan; Podgorski, Piotr; Trzebinski, Witold; Varisco, Salvatore
The Solar photometer in X-rays (SphinX) experiment is scheduled for launch late summer 2008 on-board the Russian CORONAS-Photon satellite. SphinX will use three silicon PIN diode detectors with selected effective areas in order to record solar spectra in the X-ray energy range 0.3-15 keV with unprecedented temporal and medium energy resolution. High sensitivity and large dynamic range of the SphinX instrument will give for the first time possibility of observing solar soft X-ray variability from the weakest levels, ten times below present thresholds, to the largest X20+ flares. We present the results of the ground X-ray calibrations of the SphinX instrument performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. The calibrations were essential for determination of SphinX detector energy resolution and efficiency. We describe the ground tests instrumental set-up, adopted measurement techniques and present results of the calibration data analysis.
36 CFR 1234.34 - When may NARA conduct an inspection of a records storage facility?
Code of Federal Regulations, 2010 CFR
2010-07-01
....) Required. Entrances/Exits: X-ray & magnetometer at public entrances Recommended. Require x-ray screening of... design requirements, (e.g. fire detection, fire suppression systems, etc.) Entrances/Exits X-Ray and... would focus on tenant agencies, public interface, and feasibility. Required for Level V. Require X-Ray...
36 CFR 1234.34 - When may NARA conduct an inspection of a records storage facility?
Code of Federal Regulations, 2011 CFR
2011-07-01
....) Required. Entrances/Exits: X-ray & magnetometer at public entrances Recommended. Require x-ray screening of... design requirements, (e.g. fire detection, fire suppression systems, etc.) Entrances/Exits X-Ray and... would focus on tenant agencies, public interface, and feasibility. Required for Level V. Require X-Ray...
A study on flash sintering and related phenomena in titania and its composite with alumina
NASA Astrophysics Data System (ADS)
Shikhar
In 2010, Cologna et. al. [1] reported that with a help of small electric field 120 Vcm-1, the sintering temperature of 3 mol % yittria stabilized zirconia could be brought down to 850°C from 1450°C. On top of reducing the temperature requirements, the green sample could be sintered from starting density of 50% to near full density in mere 5 seconds, a sintering rate three orders of magnitude higher than conventional methods. This discovery led to the emergence of a new field of enhanced sintering with electric field, named "Flash Sintering". The objective of this thesis is to understand the phenomenological behavior of flash-sintering and related phenomena on titania and its composites with alumina at elevated temperature. The possible mechanisms to explain flash sintering are discussed: Joule heating and the avalanche of defect generation [2], both induced by the rapid rise in conductivity just before the onset of the flash. Apparently, both mechanisms play a role. The thesis covers the response of pure titania and composites of titania-alumina under flash and compared with conventional sintering. We start with the sintering behavior of pure titania and observe lowering of sintering temperature requirements with higher applied electric field. The conductivity of titania during flash is also measured, and compared with the nominal conductivity of titania at equivalent temperatures. The conductivity during flash is determined to be have a different activation energy. For the composites of titania-alumina, effect of flash on the constrained sintering was studied. It is a known fact that sintering of one component of composite slows down when the other component of a different densification rate is added to it, called constrained sintering. In our case, large inclusions of alumina particles were added to nano-grained titania green compact that hindered its densification. Flash sintering was found to be overcoming this problem and near full densification was achieved. In another experiment, effect of high current density and hold time under flash on the chemical reaction (phase transformation) of titania and alumina to form Al2TiO5 is studied. It was found that not only flash enhances the kinetics of reaction when compared with conventional heating at equivalent temperatures, but also brought down the phase transformation temperature for this spinel formation, as reported by the phase diagram. In-situ X-ray diffraction experiments were performed at the synchrotron facility in Argonne National Laboratory. The specimen temperature were measured during the experiment on the basis of peak shift with temperature and were found to be matching with our predicted values by Black-Body-Radiation model. We also observed the instant evolution of texture in grain orientation of pure titania under flash and their disappearance as the fields were switched off. Study on chemical kinetics between titania and alumina were also performed which supported our findings of in-house experiments.
2004-03-08
KENNEDY SPACE CENTER, FLA. - An X-ray machine is in place to take images of four rudder speed brake actuators to be installed on the orbiter Discovery. The actuators are being X-rayed at the Cape Canaveral Air Force Station’s Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
The NIF x-ray spectrometer calibration campaign at Omega.
Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B
2014-11-01
The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.
DTRA National Ignition Facility (NIF)
2009-01-16
might provide a capability closer to that of UGT ‟s, particularly in the 15-100 keV X-ray band. We conclude that DRTA should monitor developments in...presently be tested. This is because, since the cessation of underground tests ( UGT ‟s), available facilities cannot produce X-ray environments of...provide a capability closer to that of UGT ‟s, particularly in the 15-100 keV X-ray band. However, source characteristics, including the level of
Combined neutron and x-ray imaging at the National Ignition Facility (invited)
Danly, C. R.; Christensen, K.; Fatherley, Valerie E.; ...
2016-10-11
X-ray and neutrons are commonly used to image Inertial Confinement Fusion implosions, providing key diagnostic information on the fuel assembly of burning DT fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occur from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreasedmore » neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a Combined Neutron X-ray Imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line-of-sight. Here, this system is described, and initial results are presented along with prospects for definitive coregistration of the images.« less
Combined neutron and x-ray imaging at the National Ignition Facility (invited).
Danly, C R; Christensen, K; Fatherley, V E; Fittinghoff, D N; Grim, G P; Hibbard, R; Izumi, N; Jedlovec, D; Merrill, F E; Schmidt, D W; Simpson, R A; Skulina, K; Volegov, P L; Wilde, C H
2016-11-01
X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images.
The Origin of the Optical Flashes: The Case Study of GRB 080319B and GRB 130427A
NASA Astrophysics Data System (ADS)
Fraija, N.; Veres, P.
2018-05-01
Correlations between optical flashes and gamma-ray emissions in gamma-ray bursts (GRBs) have been searched in order to clarify the question of whether these emissions occur at internal and/or external shocks. Among the most powerful GRBs ever recorded are GRB 080319B and GRB 130427A, which at early phases presented bright optical flashes possibly correlated with γ-ray components. Additionally, both bursts were fortuitously located within the field of view of the TeV γ-ray Milagro and HAWC observatories, and although no statistically significant excess of counts were collected, upper limits were placed on the GeV–TeV emission. Considering the synchrotron self-Compton emission from internal shocks and requiring the GeV–TeV upper limits, we found that the optical flashes and the γ-ray components are produced by different electron populations. Analyzing the optical flashes together with the multiwavelength afterglow observation, we found that these flashes can be interpreted in the framework of the synchrotron reverse shock model when outflows have arbitrary magnetizations.
Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera
NASA Astrophysics Data System (ADS)
Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.
2018-03-01
In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.
The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), the overhead crane lifts Chandra X-ray Observatory completely out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), workers begin lifting the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
Automated analysis of hot spot X-ray images at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.
2016-11-01
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Automated analysis of hot spot X-ray images at the National Ignition Facility
Khan, S. F.; Izumi, N.; Glenn, S.; ...
2016-09-02
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. Here, for implosions with temperatures above ~4keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Automated analysis of hot spot X-ray images at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Automated analysis of hot spot X-ray images at the National Ignition Facility.
Khan, S F; Izumi, N; Glenn, S; Tommasini, R; Benedetti, L R; Ma, T; Pak, A; Kyrala, G A; Springer, P; Bradley, D K; Town, R P J
2016-11-01
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
This document shares the guidance developed by the Interagency Working Group which was formed to develop guidance to reduce unnecessary radiation exposures from the use of x-rays in the healing arts in Federal health care facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-07-01
A development and cost plan is proposed for the UTEX (Ultraviolet Telescope Experiment X-ray) telescope. Under certain assumptions, the UTEX facility can be developed in about 4 years. An overall development cost is given.
Review of Canadian Light Source facilities for biological applications
NASA Astrophysics Data System (ADS)
Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.
2017-11-01
The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.
X-Ray Astronomy Research at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Austin, Robert A.
1999-01-01
For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.
NASA Astrophysics Data System (ADS)
Marguí, Eva; Hidalgo, Manuela; Migliori, Alessandro; Leani, Juan José; Queralt, Ignasi; Kallithrakas-Kontos, Nikolaos; Streli, Christina; Prost, Josef; Karydas, Andreas Germanos
2018-07-01
The aim of the work is to present a systematic evaluation of the analytical capabilities of the new X-ray fluorescence facility jointly operated between the International Atomic Energy Agency and the Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis. The analytical performance of the XRF beamline end-station (IAEAXspe) was systematically evaluated under TXRF excitation geometry by analyzing different types of aqueous (lake, waste and fresh water) and solid (soil, vegetal, biological) certified reference materials using an excitation energy of 13.0 keV (for the purpose of multielemental analysis). The results obtained for both types of samples in terms of limits of detection and accuracy were also compared with those obtained using laboratory X-ray tube based TXRF systems with different features (including Mo and W X-ray tube systems). Taking advantage of the possibility to work under high vacuum, the IAEAXspe set-up instrumental sensitivity was also determined using an excitation energy of 6.2 keV to explore the possibilities for light elements determination. A clear improvement of the element detection limits is achieved when comparing this facility to conventional X-ray tube based TXRF systems highlighting the benefits of using the monoenergetic synchrotron exciting radiation and the ultra-high vacuum chamber in comparison with conventional laboratory systems. The results of the present work are discussed in view of further exploitation of the facility for different environmental and biological related applications.
NASA Technical Reports Server (NTRS)
Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)
1983-01-01
Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.
NASA Technical Reports Server (NTRS)
Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.
1991-01-01
Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
2000-01-01
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
NASA Technical Reports Server (NTRS)
Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James
1988-01-01
The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.
Brain Management During Trauma
NASA Astrophysics Data System (ADS)
Shatsky, Stanley A.
1984-01-01
The Neurosurgeon faces a dilemma, that is, how to treat and reconstruct the injured skull and brain with limited knowledge as to how the injury occurred. In an attempt to understand such injuries, our group assembled a series of acceleration sleds to experimentally reproduce these injuries in primates and high frame rate flash x-ray cine system to radiographically study their time course.
TREE Preferred Procedures, Selected Electronic Parts.
1982-01-31
presented. Chapter 5 covers dosimetry and environmental correlation procedures. Neutron measurements, photon and electron measurements, and pulse...complications from nonuniformity of dose and to provide accurate dosimetry , exposures should be performed under conditions of electron equi- librium. Unless...nonconducting dosimetry materials or test articles are exposed to intense electron beams characteristic of flash X-ray machines, the effect of the potential
The Symbiotic System SS73 17 seen with Suzaku
NASA Technical Reports Server (NTRS)
Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig
2007-01-01
We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.
Artifact reduction in the CSPAD detectors used for LCLS experiments.
Pietrini, Alberto; Nettelblad, Carl
2017-09-01
The existence of noise and column-wise artifacts in the CSPAD-140K detector and in a module of the CSPAD-2.3M large camera, respectively, is reported for the L730 and L867 experiments performed at the CXI Instrument at the Linac Coherent Light Source (LCLS), in low-flux and low signal-to-noise ratio regime. Possible remedies are discussed and an additional step in the preprocessing of data is introduced, which consists of performing a median subtraction along the columns of the detector modules. Thus, we reduce the overall variation in the photon count distribution, lowering the mean false-positive photon detection rate by about 4% (from 5.57 × 10 -5 to 5.32 × 10 -5 photon counts pixel -1 frame -1 in L867, cxi86715) and 7% (from 1.70 × 10 -3 to 1.58 × 10 -3 photon counts pixel -1 frame -1 in L730, cxi73013), and the standard deviation in false-positive photon count per shot by 15% and 35%, while not making our average photon detection threshold more stringent. Such improvements in detector noise reduction and artifact removal constitute a step forward in the development of flash X-ray imaging techniques for high-resolution, low-signal and in serial nano-crystallography experiments at X-ray free-electron laser facilities.
On the Induced Gravitational Collapse
NASA Astrophysics Data System (ADS)
Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo
2018-01-01
The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.
NASA Astrophysics Data System (ADS)
Dwyer, Joseph R.; Uman, Martin A.
2014-01-01
Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics of upward connecting leaders from those objects or from the ground? What is the physics of compact intra-cloud discharges (CIDs) (that produce a narrow bipolar wideband electric field pulse, a narrow bipolar event or NBE, apparently multiple-reflecting propagating waves within 1 km height, and copious HF and VHF radiation)? How are CIDs related to other types of preliminary breakdown pulses? Are CIDs related to the Terrestrial Gamma-Ray Flashes (TGFs) observed on orbiting satellites or to the Transient Luminous Events (TLEs) photographed above cloud tops, particularly to so-called “gigantic jets”? By what physical mechanisms do lightning leaders emit pulses of X-rays? Do the X-rays play a role in lightning propagation? By what mechanism do thunderclouds generate relatively-steady internal X-rays? Do X-rays and other high energy radiation affect cloud electrification and play a role in lightning initiation? By what physical mechanisms are Terrestrial Gamma-Ray Flashes (TGFs) produced? Do TGFs pose a hazard to individuals in aircraft? How do cloud-to-ground and intra-cloud lightning affect the upper atmosphere and ionosphere? What are the physics of the Transient Luminous Events (TLEs), “Sprites”, “jets”, and “elves”? What is the energy input into the ionosphere/magnetosphere from lightning? How exactly does rocket-and-wire (“classical” with a grounded wire and “altitude” with a floating wire) triggering of lightning work? Are there other possible and practical triggering techniques such as laser triggering? Can triggering reduce or eliminate the local occurrence of natural lightning? What are the power and energy of the component processes of lightning flashes and how are they distributed among electromagnetic processes (DC to light), thermal processes, mechanical (acoustic) processes, and relativistic (high energy) processes (runaway electrons, runaway positrons, X-ray, and gamma rays)? What is the physics of ball lightning? Is there more than one type of ball lightning? Questions 1, 2, 4, 5, 6, and 7 will be addressed directly in the following sections of this paper: Section 3. The Lightning Initiation Problem; Section 4. Lightning Propagation; Section 5. High-Energy Atmospheric Physics; Section 6. CIDs; and Section 7. TLEs.
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Beam Analysis Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane. Journal of the
Flash X-Ray Apparatus With Spectrum Control Functions For Medical Use And Fuji Computed Radiography
NASA Astrophysics Data System (ADS)
Isobe, H.; Sato, E.; Hayasi, Y.; Suzuki, M.; Arima, H.; Hoshino, F.
1985-02-01
Flash radiographic bio-medical studies at sub-microsecond intervals were performed by using both a new type of flash X-ray(FX) apparatus with spectrum control functions and Fuji Computed Radiography(FCR). This single flasher tends to have a comparatively long exposure time and the electric pulse width of the FX wave form is about 0.3,usec. The maximum FX dose is about 50mR at 1m per pulse, and the effective focal spot varies according to condenser charging voltage, A-C distance, etc., ranging from 1.0 to 3.0mm in diameter, but in the low dose rate region it can be reduced to less than 1.0mm in diameter. The FX dose is determined by the condenser charging voltage and the A-C distance, while the FX spectrum is determined by the average voltage of the FX tube and filters. Various clear FX images were obtained by controlling the spectrum and dose. FCR is a new storage medium for medical radiography developed by the Fuji Photo Film Co., Ltd. and this apparatus has various image forming functions: low dose radiography, film density control, image contrast control, subtraction management and others. We have used this new apparatus in conjunction with our FX radiography and have obtained some new and interesting biomedical radiograms: the edge enhancement image, the instantaneous enlarged image, and the single exposure energy subtraction image using the FX spectrum distribution.
Molecular Basis of the Bohr Effect in Arthropod Hemocyanin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, S.; Kawahara, T; Beltramini, M
2008-01-01
Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observedmore » for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.« less
NASA Astrophysics Data System (ADS)
Whitehouse, C. R.; Barnett, S. J.; Soley, D. E. J.; Quarrell, J.; Aldridge, S. J.; Cullis, A. G.; Emeny, M. T.; Johnson, A. D.; Clarke, G. F.; Lamb, W.; Tanner, B. K.; Cottrell, S.; Lunn, B.; Hogg, C.; Hagston, W.
1992-01-01
This paper describes a unique combined UHV MBE growth x-ray topography facility designed to allow the first real-time synchrotron radiation x-ray topography study of strained-layer III-V growth processes. This system will enable unambiguous determination of dislocation nucleation and multiplication processes as a function of controlled variations in growth conditions, and also during post-growth thermal processing. The planned experiments have placed very stringent demands upon the engineering design of the system, and design details regarding the growth chamber; sample manipulator, x-ray optics, and real-time imaging systems are described. Results obtained during a feasibility study are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehouse, C.R.; Barnett, S.J.; Soley, D.E.J.
1992-01-01
This paper describes a unique combined UHV MBE growth x-ray topography facility designed to allow the first real-time synchrotron radiation x-ray topography study of strained-layer III--V growth processes. This system will enable unambiguous determination of dislocation nucleation and multiplication processes as a function of controlled variations in growth conditions, and also during post-growth thermal processing. The planned experiments have placed very stringent demands upon the engineering design of the system, and design details regarding the growth chamber; sample manipulator, x-ray optics, and real-time imaging systems are described. Results obtained during a feasibility study are also presented.
Spectroscopy of X-ray Photoionized Plasmas in the Laboratory
NASA Astrophysics Data System (ADS)
Liedahl, Duane A.; Loisel, Guillaume; Bailey, James E.; Nagayama, Taisuke; Hansen, Stephanie B.; Rochau, Gregory; Fontes, Christopher J.; Mancini, Roberto; Kallman, Timothy R.
2018-06-01
The physical processes operating in astrophysical plasmas --- heating, cooling, ionization, recombination, level population kinetics, and radiation transport --- are all accessible to observation in the laboratory. What distinguishes X-ray photoionized plasmas from the more common case of high-temperature collisionally-ionized plasmas is the elevated level of importance of the radiation/matter interaction. The advent of laboratory facilities with the capability to generate high-powered X-ray sources has provided the means by which to study this interaction, which is also fundamental to active galactic nuclei and other accretion-powered objects. We discuss recent and ongoing experiments, with an emphasis on X-ray spectroscopic measurements of silicon plasmas obtained at the Sandia Z Pulsed Power Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B., E-mail: fournier2@llnl.gov; Brown, C. G.; Yeoman, M. F.
2016-11-15
Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines ofmore » sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.« less
Fournier, K. B.; Brown, Jr., C. G.; Yeoman, M. F.; ...
2016-08-10
Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the NIF’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight.more » We discuss the measured accuracy of sample responses, as well as planned modifications to the XTRRA cassette.« less
Terrestrial gamma-ray flashes monitor demonstrator on CubeSat
NASA Astrophysics Data System (ADS)
Dániel, V.; Pína, L.; Inneman, A.; Zadražil, V.; Báča, T.; Platkevič, M.; Stehlíková, V.; Nentvich, O.; Urban, M.
2016-09-01
The CubeSat mission with the demonstrator of miniaturized X-ray telescope is presented. The paper presents one of the mission objectives of using the instrument for remote sensing of the Terrestrial Gamma-ray Flashes (TGFs). TGFs are intense sources of gamma-rays associated with lightning bolt activity and tropical thunderstorms. The measurement of TGFs exists and was measured by sounding rockets, high altitude balloons or several satellite missions. Past satellite missions were equipped with different detectors working from 10 keV up to 10 MeV. The RHESSI mission spectrum measurement of TGFs shows the maximum counts per second around 75 keV. The used detectors were in general big in volume and cannot be utilized by the CubeSat mission. The presented CubeSat is equipped with miniaturized X-ray telescope using the Timepix non-cooled pixel detector. The detector works between 3 and 60 keV in counting mode (dosimetry) or in spectrum mode with resolution 5 keV. The wide-field X-ray "Lobster-eye" optics/collimator (depending on energy) is used with a view angle of 3 degrees for the source location definition. The UV detectors with FOV 30 degrees and 1.5 degrees are added parallel with the optic as a part of the telescope. The telescope is equipped with software distinguishing between the photons and other particles. Using this software the TGF's detection is possible also in the field of South Atlantic anomaly. For the total ionization dose, the additional detector is used based on Silicone (12-60 keV) and CdTe (20 keV - 1 MeV). The presented instruments are the demonstrators suitable also for the astrophysical, sun and moon observation. The paper shows the details of TGF's observation modes, detectors details, data processing and handling system and mission. The CubeSat launch is planned to summer 2016.
Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilitiesa)
NASA Astrophysics Data System (ADS)
Szabo, C. I.; Feldman, U.; Seely, J. F.; Curry, J. J.; Hudson, L. T.; Henins, A.
2010-10-01
The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.
Shielding of medical imaging X-ray facilities: a simple and practical method.
Bibbo, Giovanni
2017-12-01
The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.
Dante Soft X-ray Power Diagnostic for NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Campbell, K; Turner, R
2004-04-15
Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.
NASA Technical Reports Server (NTRS)
Sakamoti, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.
2006-01-01
We report Swift Burst Alert Telescope (BAT) observations of the X-ray flash (XRF) XRF 050416A. The fluence ratio between the 15-25 and 25-50 keV energy bands of this event is 1.5, thus making it the softest gamma-ray burst (GRB) observed by BAT so far. The spectrum is well fitted by a Band function with E(sup obs)(sub peak) of 15.0(sup +2.3)(sub -2.7) keV. Assuming the redshift of the host galaxy (z = 0.6535), the isotropic equivalent radiated energy E(sub iso) and the peak energy at the GRB rest frame (E(sup src)(sub peak)) of XRF 050416A are not only consistent with the correlation found by Amati et al. and extended to XRFs by Sakamoto et al. but also fill in the gap of this relation around the 30-80 keV range of E(sup src)(sub peak). This result tightens the validity of the E(sup src)(sub Peak)-E(sup src)(sub peak) relation from XRFs to GRBs. We also find that the jet break time estimated using the empirical relation between E(sup src)(sub peak) and the collimation corrected energy E(sub gamma), is inconsistent with the afterglow observation by the Swift X-Ray Telescope. This could be due to the extra external shock emission overlaid around the jet break time or to the nonexistence of a jet break feature for XRFs, which might be a further challenge for GRB jet emission models and XRF/GRB unification scenarios.
Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics
1987-10-01
This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raspa, V.; Moreno, C.; Sigaut, L.
The effective spectrum of the hard x-ray output of a Mather-type tabletop plasma focus device was determined from attenuation data on metallic samples using commercial radiographic film coupled to a Gd{sub 2}O{sub 2}S:Tb phosphor intensifier screen. It was found that the radiation has relevant spectral components in the 40-150 keV range, with a single maximum around 60-80 keV. The radiation output allows for 50 ns resolution, good contrast, and introspective imaging of metallic objects even through metallic walls. A numerical estimation of the induced voltage on the focus during the compressional stage is briefly discussed.
An Investigation of Secondary Jetting Phenomena ’Hyperjet’ Shaped Charge.
1982-08-01
Hyperjet design. Primarily flash x ray techniques would be used to measure jet velocities resulting from secon- dary collisions. A formal report would be...the liner in time: a- X 2 (t-t1 ) 2 Ph __ Eqns. 2 Where a = Liner acceleration of some point in the liner Pcj = Chapman-Jouget explosive pressure Ps...liner. Since liner accerleration of any point along the liner is known, it is therefore possible to describe the governing equation of motion as: d2R = a
1999-04-21
University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
1999-04-21
University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
X-Ray Calibration Facility/Advanced Video Guidance Sensor Test
NASA Technical Reports Server (NTRS)
Johnston, N. A. S.; Howard, R. T.; Watson, D. W.
2004-01-01
The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Cooper, M. C.; Shrestha, I. K.; Petkov, E. E.; Stafford, A.; Moschella, J. J.; Schmidt-Petersen, M. T.; Butcher, C. J.; Kemp, G. E.; Andrews, S. D.; Fournier, K. B.
2016-10-01
The study of laser-generated debris-free x-ray sources in an underdense plasma produced in a high-density linear gas-puff jet was carried out at the LLNL Titan laser (2 ω, 45 J, sub-ps) with an intensity in the 10 um focal spot of 7 x 1019 W/cm2. A linear nozzle with a fast valve was used for the generation of a clusters/gas jet. X-ray diagnostics for the spectral region of 0.7 - 9 keV include: two spectrometers and pinhole cameras, and 3 groups of fast filtered detectors. Electron beams were measured with the EPPS magnetic spectrometer (>1 MeV) and Faraday cups (>72 keV). Spectralon/spectrometer devices were also used to measure absorption of laser radiation in the jets. New results were obtained on: anisotropic generation of x-rays (laser to x-ray conversion coefficient was >1%) and characteristics of laser-generated electron beams; evolution of x-ray generation with the location of the laser focus in a cluster-gas jet, and observations of a strong x-ray flash in some focusing regimes. Non-LTE kinetic modeling was used to estimate plasma parameters. UNR work supported by the DTRA Basic Research Award # HDTRA1-13-1-0033. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.
2017-08-01
The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.
Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.
2006-01-01
The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.
X-Ray Burst Oscillations: From Flame Spreading to the Cooling Wake
NASA Technical Reports Server (NTRS)
Mahmoodifar, Simin; Strohmayer, Tod
2016-01-01
Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such "cooling wake" models, a "canonical" cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an "asymmetric" model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.
DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyburt, R. H.; Keek, L.; Schatz, H.
2016-10-20
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to matchmore » calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picón, A.; Lehmann, C. S.; Bostedt, C.
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less
NASA Technical Reports Server (NTRS)
Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)
2001-01-01
The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.
The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie
2012-07-01
An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, D.
A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)
SLAC Phone Directory: Search Form
Facilities LCLS Hard X-Ray LCLS IT & Networking LCLS IT Photon Systems LCLS Instrumentation Dev LCLS Delivery Dept LCLS Science Research & DevDiv LCLS Soft X-Ray LCLS Technical Support LCLS User Beam Line Ops Sup SSRL MSD Hard X-rays SSRL MSD Soft X-rays SSRL MSDBeam Line Elec SSRL MSDBeam Line
Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics
Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Moonshiram, D.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.
2016-01-01
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site. PMID:27212390
Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics.
Picón, A; Lehmann, C S; Bostedt, C; Rudenko, A; Marinelli, A; Osipov, T; Rolles, D; Berrah, N; Bomme, C; Bucher, M; Doumy, G; Erk, B; Ferguson, K R; Gorkhover, T; Ho, P J; Kanter, E P; Krässig, B; Krzywinski, J; Lutman, A A; March, A M; Moonshiram, D; Ray, D; Young, L; Pratt, S T; Southworth, S H
2016-05-23
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.
History of Chandra X-Ray Observatory
1997-04-15
This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
Temperature dependent GaAs MMIC radiation effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.T.; Roussos, J.A.; Gerdes, J.
1993-12-01
The temperature dependence of pulsed neutron and flash x-ray radiation effects was studied in GaAs MMICs. Above room temperature the long term current transients are dominated by electron trapping in previously existing defects. At low temperature in the range 126 to 259 K neutron induced lattice damage appears to play an increasingly important role in producing long term current transients.
Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER
NASA Astrophysics Data System (ADS)
Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele
2004-02-01
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.
Observations of Gamma-Ray Bursts by HETE-2
NASA Technical Reports Server (NTRS)
Kawai, N.; Matsuoka, M.; Yoshida, A.; Shirasaki, Y.; Ricker, G.; Doty, J.; Vanderspek, R.; Crew, G.; Villasenor, J.; Atteia, J.-L.;
2004-01-01
The High Energy Transient Explorer 2 (HETE-2), launched in October 2000, is currently localizing gamma-ray bursts (GRBs) at a rate of approximately 20/yr, many in real time. As of August 2003, HETE-2 had localized 43 GRBs; 16 localizations had led to the detection of an X-ray, optical, or radio afterglows. The prompt position notification of HETE-2 enabled probing the nature of so-called "dark bursts" for which no optical afterglows were found despite of accurate localizations. In some cases, the optical afterglow was found to be intrinsically faint , and its flux declined rapidly. In another case, the optical emission was likely to be extinguished by the dust in the vicinity of the GRB source. The bright afterglows of GRB021004 and GRB030329 were observed in unprecedented details by telescopes around the world. Strong evidence for the association of long GRBs with the core-collapse supernovae was found. HETE-2 has localized almost as many X-ray rich GRBs as classical GRBs. The nature of the X-ray rich GRBs and X-ray flashes have been studied systematically with HETE-2, and they are found to have many properties in common with the classical GRBs, suggesting that they are a single phenomenon.
PREFACE: 22nd International Congress on X-Ray Optics and Microanalysis
NASA Astrophysics Data System (ADS)
Falkenberg, Gerald; Schroer, Christian G.
2014-04-01
ICXOM22 The 22nd edition of the International Congress on X-ray Optics and Microanalysis (ICXOM 22) was held from 2-6 September 2013, in Hamburg, Germany. The congress was organized by scientists from DESY in collaboration with TU Dresden and Helmholtz-Zentrum Geesthacht, who also formed the scientific advisory board. The congress was hosted in the historical lecture hall building of the University of Hamburg located in the city center. ICXOM22 was attended by about 210 registered participants, including 67 students, and was open for listeners. The attendance was split between 26 countries (Germany 120, rest of Europe 57, America 20, Asia 8, Australia 6). The ICXOM series is a forum for the discussion of new developments in instrumentation, methods and applications in the fields of micro- and nano-analysis by means of X-ray beams. Following the trend of the last 10 years, the conference focusses more and more on synchrotron radiation rather than X-ray laboratory sources. Besides micro-beam X-ray fluorescence and absorption spectroscopy, different methods based on diffraction and full-field imaging were covered. Newly introduced to the ICXOM series was scanning coherent X-ray diffraction imaging, which was shown to evolve into a mature method for the imaging of nanostructures, defects and strain fields. New developments on fast X-ray detectors were discussed (Lambda, Maia) and advances in X-ray optics — like the generation of a sub 5nm point focus by Multilayer Zone plates — were presented. Talks on micro- and nano-analysis applications were distributed in special sessions on bio-imaging, Earth and environmental sciences, and Cultural heritage. The congress featured nine keynote and ten plenary talks, 56 talks in 14 parallel sessions and about 120 posters in three afternoon sessions. Seventeen commercial exhibitors exposed related X-ray instrumentation products, and two luncheon seminars on detector electronics were given. This allowed us to keep the student fees low and to distribute eight student travel grants. The Wednesday was devoted to an outing to DESY with guided tours to PETRA III and FLASH experiments and to the European XFEL construction site. A lecture was given by Henry Chapman introducing to structural imaging at X-ray free-electron lasers. Talks highlighting the current status and future of nanoanalysis at the leading synchrotron facilities APS (J Maser), ESRF (P Cloetens) and SPRing8 (Ishikawa) were given in the DESY auditorium offering other DESY scientists the opportunity to follow the talks. Participants A higher quality version of this image is available in supplementary data Further information about ICXOM22, including a detailed program and electronic abstract book, can be found on the congress website www.icxom22.de. We thank all the participants of ICXOM22, everybody who helped in the organization and are looking forward to hearing about further progress during ICXOM23, which will be organized by Brookhaven National Laboratory in Uptown, New York. Gerald Falkenberg ICXOM22 conference chair Christian Schroer ICXOM22 co-chair
NASA Technical Reports Server (NTRS)
Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.
1988-01-01
A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.
eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility
Doppner, T.; Bachmann, B.; Albert, F.; ...
2016-06-14
We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less
NASA Astrophysics Data System (ADS)
Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.
2017-03-01
The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.
Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2011-01-01
Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.
The X-ray Spectrometer - A cryogenic instrument on the Advanced X-ray Astrophysics Facility
NASA Technical Reports Server (NTRS)
Breon, Susan R.; Hopkins, Richard A.; Nieczkoski, Stephen J.
1991-01-01
The X-ray Spectrometer (XRS) is an instrument on the Advanced X-ray Astrophysics Facility (AXAF), the third of NASA's Great Observatories scheduled for launch in 1998. The XRS detectors have a resolution of approximately 10 eV over the range 0.3 - 10 keV. To achieve this resolution, the detectors are maintained at or below 0.1 Kelvin using an adiabatic demagnetization refrigerator inside a superfluid helium dewar. In addition, split-Stirling-cycle mechanical coolers are used to extend the anticipated on-orbit helium lifetime to a minimum of 4 years. This paper describes the challenges of developing this hybrid cryogenic system and presents an overview of the current design of the system.
STS-93 Crew Interview: Michel Tognini
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA Johnson Space Center (JSC) video release presents a one-on-one interview with Mission Specialist 3, Michel Tognini (Col., French Air Force and Centre Nacional Etudes Spatiales (CNES) Astronaut). Subjects discussed include early influences that made Michel want to be a pilot and astronaut, his experience as a French military pilot and his flying history. Also discussed were French participation in building the International Space Station (ISS), the STS-93 primary mission objective, X-ray observation using the Advanced X-ray Astrophysics Facility (AXAF), and failure scenarios associated with AXAF deployment. The STS-93 mission objective was to deploy the Advanced X-ray Astrophysics Facility (AXAF), later renamed the Chandra X-Ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar.
A neutron-star-driven X-ray flash associated with supernova SN 2006aj.
Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V
2006-08-31
Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor)
1992-01-01
The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.
Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350
NASA Astrophysics Data System (ADS)
van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François
2015-04-01
Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.
BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update
NASA Astrophysics Data System (ADS)
Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.
2015-09-01
We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.
Light Echos in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts
NASA Technical Reports Server (NTRS)
Fukumura, K.; Kazanas, D.
2008-01-01
We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct 'bunches' separated by a roughly constant time lag of t/M approximately equal to 14, regardless of the bursts' azimuthal position. We argue that every other such 'bunch' represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon 'echo'). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M=0.99 and mass of M=10*Msun the QPO is expected at a frequency of approximately 1.3-1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations.
NASA Technical Reports Server (NTRS)
Williams, A. C.
1982-01-01
The scattering of X-rays from state-of-the-art polished mirrors is discussed with reference to the requirements of the Advanced X-ray Astrophysics Facility telescope. An experimental set-up is described which allows information to be obtained with subarcsecond resolution. A sample of the data obtained is presented along with a possible theoretical model for its interpretation.
X-ray metal film filters at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.
1989-01-01
Thin aluminum foil filters have been evaluated at cryogenic temperatures. The results of the test program, including cold cycling and vibration testing, indicate that these filters are fully successful at cryogenic temperatures and can provide the high X-ray transmittance and high background rejection required for the blocking filters which are being developed for the X-Ray Spectrometer, one of the focal plane instruments on the Advanced X-Ray Astrophysics Facility.
Karydas, Andreas Germanos; Czyzycki, Mateusz; Leani, Juan José; Migliori, Alessandro; Osan, Janos; Bogovac, Mladen; Wrobel, Pawel; Vakula, Nikita; Padilla-Alvarez, Roman; Menk, Ralf Hendrik; Gol, Maryam Ghahremani; Antonelli, Matias; Tiwari, Manoj K; Caliri, Claudia; Vogel-Mikuš, Katarina; Darby, Iain; Kaiser, Ralf Bernd
2018-01-01
The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14 keV for the Elettra storage ring operating at 2.0 or 2.4 GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.
History of Chandra X-Ray Observatory
1997-05-01
This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1996-12-16
This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1997-12-16
This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1997-05-01
This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
Research study on stellar X-ray imaging experiment, volume 2
NASA Technical Reports Server (NTRS)
Wilson, H. H.; Vanspeybroeck, L. P.
1972-01-01
A review of the scientific objectives of an integrated X-ray orbiting telescope facility is presented. A set of observations to be conducted to achieve the objectives of the research are described. The techniques and equipment used in the experiment are defined. The configuration of the facility and the specifications of the test equipment are included.
Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics
Picón, A.; Lehmann, C. S.; Bostedt, C.; ...
2016-05-23
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less
NASA Technical Reports Server (NTRS)
2003-01-01
We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Fournier, K. B.; Colvin, J. D.
2015-06-15
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less
Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, G. V.; Beiersdorfer, P.; Emig, J.
2008-10-15
The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
May, M. J.; Fournier, K. B.; Colvin, J. D.; ...
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.
A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source.
Horne, S F; Silterra, J; Holber, W
2009-01-01
Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported.
A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source
Silterra, J; Holber, W
2009-01-01
Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115
Runaway breakdown and electrical discharges in thunderstorms
NASA Astrophysics Data System (ADS)
Milikh, Gennady; Roussel-Dupré, Robert
2010-12-01
This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.
Kritcher, A. L.; Neumayer, P.; Lee, H. J.; ...
2008-10-31
Here, we present K-α x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-α x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1X 10 5 photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to usemore » this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL.« less
Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL.
Suga, Michihiro; Akita, Fusamichi; Sugahara, Michihiro; Kubo, Minoru; Nakajima, Yoshiki; Nakane, Takanori; Yamashita, Keitaro; Umena, Yasufumi; Nakabayashi, Makoto; Yamane, Takahiro; Nakano, Takamitsu; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Kimura, Tetsunari; Nomura, Takashi; Yonekura, Shinichiro; Yu, Long-Jiang; Sakamoto, Tomohiro; Motomura, Taiki; Chen, Jing-Hua; Kato, Yuki; Noguchi, Takumi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Nango, Eriko; Tanaka, Rie; Naitow, Hisashi; Matsuura, Yoshinori; Yamashita, Ayumi; Yamamoto, Masaki; Nureki, Osamu; Yabashi, Makina; Ishikawa, Tetsuya; Iwata, So; Shen, Jian-Ren
2017-03-02
Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn 4 CaO 5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the Q B /non-haem iron and the Mn 4 CaO 5 cluster. The changes around the Q B /non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn 4 CaO 5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ 4 -oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.
Chandra Observations of the X-Ray Environs of SN 1998BW / GRB 980425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouveliotou , C.
2004-07-14
We report X-ray studies of the environs of SN 1998bw and GRB 980425 using the Chandra X-Ray Observatory 1281 days after the GRB. Eight X-ray point sources were localized, three and .ve each in the original error boxes--S1 and S2--assigned for variable X-ray counterparts to the GRB by BeppoSAX. The sum of the discrete X-ray sources plus continuous emission in S2 observed by CXO on day 1281 is within a factor of 1.5 of the maximum and the upper limits seen by BeppoSAX. We conclude that S2 is the sum of several variable sources that have not disappeared, and thereforemore » is not associated with the GRB. Within S1, clear evidence is seen for a decline of approximately a factor of 12 between day 200 and day 1281. One of the sources in S1, S1a, is coincident with the well-determined radio location of SN 1998bw, and is certainly the remnant of that explosion. The nature of the other sources is also discussed. Combining our observation of the supernova with others of the GRB afterglow, a smooth X-ray light curve, spanning {approx} 1300 days, is obtained by assuming the burst and supernova were coincident at 35.6 Mpc. When this X-ray light curve is compared with those of the X-ray ''afterglows'' of ordinary GRBs, X-ray Flashes, and ordinary supernovae, evidence emerges for at least two classes of lightcurves, perhaps bounding a continuum. By three to ten years, all these phenomena seem to converge on a common X-ray luminosity, possibly indicative of the supernova underlying them all. This convergence strengthens the conclusion that SN 1998bw and GRB 980425 took place in the same object. One possible explanation for the two classes is a (nearly) standard GRB observed at different angles, in which case X-ray afterglows with intermediate luminosities should eventually be discovered. Finally, we comment on the contribution of GRBs to the ULX source population.« less
The analysis and modeling of the ARDEC 2.5 km/s 20-mm plasma railgun shot
NASA Astrophysics Data System (ADS)
Sink, D. A.; Chang, D. I.; Davis, A.; Colombo, G.; Hildenbrand, D. J.
1993-01-01
The 20-mm round-bore plasma railgun was successfully fired at the ARDEC electric gun facility. The 4-m gun with copper rails and alumina composite insulators was operated using a light-gas gun injector to start the projectile, already located in the gun, moving prior to the introduction of current. Current from the EMACK homopolar generator (HPG) was commutated into the gun by an explosively-actuated opening switch. The muzzle velocity was recorded by breakwires and flash X-rays at 2.5 km/s. B-dot sensors, rail current Rogowski coils, and breech and muzzle voltage measurements provided data on the in-bore dynamics of the armature. Post-shot analysis using the ARMRAIL (ARMature Physics and RAILgun Performance Model) code successfully provided calculations reproducing all the main features of the data. Models account for the observed secondary arcs present throughout the shot and the basis for the code and physics modeling is given.
UBAT of UFFO/ Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Jeong, S.; Panasyuk, M. I.; Reglero, V.; Connell, P.; Kim, M. B.; Lee, J.; Rodrigo, J. M.; Ripa, J.; Eyles, C.; Lim, H.; Gaikov, G.; Jeong, H.; Leonov, V.; Chen, P.; Castro-Tirado, A. J.; Nam, J. W.; Svertilov, S.; Yashin, I.; Garipov, G.; Huang, M.-H. A.; Huang, J.-J.; Kim, J. E.; Liu, T.-C.; Petrov, V.; Bogomolov, V.; Budtz-Jørgensen, C.; Brandt, S.; Park, I. H.
2018-02-01
The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/ Lomonosov), the UBAT's roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm2 scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device's imaging algorithms. The UFFO/ Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT's design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.
Radiobiological studies using gamma and x rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.
2013-02-01
There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.
1999-03-26
Viewed from above in the Vertical Processing Facility, the Chandra X-ray Observatory is seen with one of its solar panel arrays attached, at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-25
In the Vertical Processing Facility, TRW workers continue checking the deployment of the solar panel array (right) after attaching it to the Chandra X-ray Observatory (left). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
TRW technicians in the Vertical Processing Facility check the fitting of the solar panel array being attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
In the Vertical Processing Facility, the Chandra X-ray Observatory is observed after deployment of the solar panel array (near the bottom and to the right). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
A new streaked soft x-ray imager for the National Ignition Facility
Benstead, J.; Moore, A. S.; Ahmed, M. F.; ...
2016-05-27
Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
Fluence thresholds for grazing incidence hard x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquila, A.; Ozkan, C.; Sinn, H.
2015-06-15
X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. Wemore » conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.« less
Neutron star Interior Composition Explorer (NICER)
2017-12-08
Optics Lead Takashi Okajima prepares to align NICER’s X-ray optics. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Accuracy of real time radiography burning rate measurement
NASA Astrophysics Data System (ADS)
Olaniyi, Bisola
The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.
Design calculations for NIF convergent ablator experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.
2010-11-01
Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less
A data set from flash X-ray imaging of carboxysomes
NASA Astrophysics Data System (ADS)
Hantke, Max F.; Hasse, Dirk; Ekeberg, Tomas; John, Katja; Svenda, Martin; Loh, Duane; Martin, Andrew V.; Timneanu, Nicusor; Larsson, Daniel S. D.; van der Schot, Gijs; Carlsson, Gunilla H.; Ingelman, Margareta; Andreasson, Jakob; Westphal, Daniel; Iwan, Bianca; Uetrecht, Charlotte; Bielecki, Johan; Liang, Mengning; Stellato, Francesco; Deponte, Daniel P.; Bari, Sadia; Hartmann, Robert; Kimmel, Nils; Kirian, Richard A.; Seibert, M. Marvin; Mühlig, Kerstin; Schorb, Sebastian; Ferguson, Ken; Bostedt, Christoph; Carron, Sebastian; Bozek, John D.; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Epp, Sascha W.; Chapman, Henry N.; Barty, Anton; Andersson, Inger; Hajdu, Janos; Maia, Filipe R. N. C.
2016-08-01
Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.
2004-03-08
KENNEDY SPACE CENTER, FLA. - One of four rudder speed brake actuators arrives at Cape Canaveral Air Force Station. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
Energy determination in industrial X-ray processing facilities
NASA Astrophysics Data System (ADS)
Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.
2005-12-01
In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.
Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etchessahar, Bertrand; Bicrel, Beatrice; Cassany, Bruno
2012-09-15
The negative polarity rod pinch diode (NPRPD) is a potential millimeter spot size radiography source for high voltage generators (4 to 8 MV) [Cooperstein et al., 'Considerations of rod-pinch diode operation in negative polarity for radiography,' in Proceedings of the 14th IEEE Pulsed Power Conference, 2003, pp. 975-978]. The NPRPD consists of a small diameter (few mm) cylindrical anode extending from the front end of the vacuum cell through a thin annular cathode, held by a central conductor. The polarity has been inverted when compared to the original rod pinch diode [Cooperstein et al., 'Theoretical modeling and experimental characterization ofmore » a rod-pinch diode,' Phys. Plasmas 8(10), 4618-4636 (2001)] in order to take advantage from the maximal x-ray emission toward the anode holder at such a voltage [Swanekamp et al., 'Evaluation of self-magnetically pinched diodes up to 10 MV as high resolution flash X-ray sources,' IEEE Trans. Plasma Sci. 32(5), 2004-2016 (2004). We have studied this diode at 4.5 MV, driven by the ASTERIX generator [Raboisson et al., 'ASTERIX, a high intensity X-ray generator,' in Proceedings of the 7th IEEE Pulsed Power Conference, 1989, pp. 567-570.]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode has been modified in order to set up flash a radiographic diode [Etchessahar et al., 'Negative polarity rod pinch diode experiments on the ASTERIX generator,' in Conference Records-Abstracts, 37th IEEE International Conference on Plasma Science, 2010]. The experiments and numerical simulations presented here allowed the observation and analysis of various physical phenomena associated with the diode operation. Also, the influence of several experimental parameters, such as cathode and anode diameters, materials and surface states, was examined. In order to achieve the most comprehensive characterization of the diode, both optical and x-ray diagnostics were used, including high speed multi-image ICCD (intensified CCD) cameras, streak camera, dosimeters, spot size measurements, and pinhole cameras. A set of new results have been obtained through this study. The plasma emission from the anode and cathode surfaces and its expansion appear to be critical for the diode functioning. Also, for the first time, potential sources of diode instability were identified. Finally, an optimal and stable diode configuration was found with the following parameters: 52 rad at 1 m (in Al) and 2.2 mm spot size.« less
X-ray Cryogenic Facility (XRCF) Handbook
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey R.
2016-01-01
The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama Huntsville, and more.
Photothermally Activated Motion and Ignition Using Aluminum Nanoparticles
2013-01-17
In comparison with alternative sources such as spark ignition,19 laser igni- tion,20 plasma ignition,21 plasma -assisted combustion,22 and combustion...energy-dispersive X-ray spectroscopy measurements of motion-only and afterignition products confirm significant Al oxidation occurs through sintering ...significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The
NASA Technical Reports Server (NTRS)
Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.;
2012-01-01
Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights.
Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities.
Glasgow, Glenn P
2006-09-01
Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities NCRP Report No. 151, 2005, 246 pp. (Hardcover $100). National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095. ISBN-10 0-0929600-87-8; http://www.NCRPonline.org. © 2006 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Akerlof, C. W.
2001-05-01
Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.
NASA Astrophysics Data System (ADS)
Elfaki, H.; Yousef, S.; Mawad, Ramy; Algafari, Y. H. O.; Amer, M.; Abdel-Sattar, W.
2017-12-01
Severe solar events manifested as highly energetic X-Ray events accompanied by coronal mass ejections ( CMEs) and proton flares caused flash floods in Makkah Al-Mukaramah, Al-Madinah Al-Munawarah and Jeddah. In the case of the 20 January 2005 CME that initiated severe flash on the 22 of January. it is shown that the CME lowered the pressure in the polar region and extended the low pressure regime to Saudi Arabia passing by the Mediterranean. Such passage accelerated evaporation and caused Cumulonimbus clouds to form and discharge flash floods over Makkah Al-Mukaramah. On the other hand, solar forcing due coronal holes have a different technique in initiating flash floods. The November 25 2009 and the 13-15 January 2011 Jeddah flash floods are attributed to prompt events due to fast solar streams emanated from two coronal holes that arrived the Earth on 24 November 2009 and 13 January 2011. We present evidences that those streams penetrated the Earth's magnetosphere and hit the troposphere at the western part of the Red Sea, dissipated their energy at 925mb geopotential height and left two hot spots. It follows that the air in the hot spots expanded and developed spots of low pressure air that spread over the Red Sea to its eastern coast. Accelerated evaporation due to reduced pressure caused quick formation of Cumulonimbus clouds that caused flash floods over Makkah Al-Mukaramah and Jeddah.
Haas, Ed
2018-02-06
NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.
NASA Astrophysics Data System (ADS)
Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Kaymak, V.; Pukhov, A.; Capeluto, M. G.; Wang, Y.; Wang, S.; Rockwood, A.; Curtis, A.; Rocca, J. J.
2016-10-01
Recent experiments at Colorado State University have shown that the effective trapping of clean, Joule-level fs laser pulses of relativistic intensity in arrays of high aspect ratio aligned nanowire creates multi-kev, near solid density, large scale (>4um deep) plasmas. The drastically decreased radiative life time and increased hydrodynamic cooling time from these plasmas increases the x-ray conversion efficiency. We measured a record conversion efficiency of 10% into hv>1KeV photons (2pi steradians), and of 0.3% for hv>6KeV. The experiments used Au and Ni nanowires of 55nm, 80nm and 100nm in diameter with 12% of solid density irradiated by high contrast (>1012) pulses of 60fs FWHM duration from a frequency doubled Ti:Sa laser at intensities of I =5x1019Wcm-2. We also present preliminary results on x-ray emission from Rhodium nanowires in the 19-22KeV range and demonstrate the potential of this picosecond X-ray source in flash radiography. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079.
Bekas, Marcin; Gajewski, Antoni K; Pachocki, Krzysztof
2013-01-01
Within the medical facilities provided by state healthcare services, a universally applied technique for patient diagnosis and treatment relies on ionising radiation; for example in radiotherapy and X-ray (ie. examination). Human exposure to such radiation is not however entirely free of associated health risks. To determine and estimate the numbers and types of X-ray based medical procedures that are performed in general and dental radiography, mammography and computer tomography on patients from the Mazovian province in Poland, which included children, women and men subjects. The numbers of patient subjects undergoing X-rays was estimated by surveying the patient intake in X-ray testing rooms within the healthcare facilities of the Mazovian province. Questionnaires were either dispatched by mail to such healthcare centres or were completed by the X-ray operating staff during the testing of quality control. Results so obtained from the latter, were compared to entries from the X-ray rooms' register During 2009, the number of X-rays performed were 7612046 equivalent to 1460 examinations per 1000 inhabitants. The majority were done on women ie. 3847961 (50.55%), followed by 3193781 (41.96%) on men and 570 304 (7.49%) for children. Results indicated that the predominating medical procedure used of this type, was for making general diagnoses; especially through using chest radiography. Others included, in descending order; dental X-ray (mainly intra-oral examination), computer tomography (mainly CT head examinations) and mammography procedures. It was also found that the annual numbers of having X-rays has increased compared to previous years.
X-Ray Detector Simulations - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tina, Adrienne
2015-08-20
The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less
VETA x ray data acquisition and control system
NASA Technical Reports Server (NTRS)
Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.
1992-01-01
We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.
MAXI observations of long X-ray bursts
NASA Astrophysics Data System (ADS)
Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi
2016-12-01
We report nine long X-ray bursts from neutron stars, detected with the Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hr, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around 1041-1042 erg, whereas both the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during phases of relatively low persistent flux, whereas it usually exhibits standard short X-ray bursts during outbursts.
Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiemann, C.; Patt, M.; Cramm, S.
We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.
The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flippo, Kirk Adler; DeVolder, Barbara Gloria; Doss, Forrest William
The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Lastly, four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim
2007-04-15
X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.
2015-01-01
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...
2015-03-02
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less
Chen, Hui; Hermann, M. R.; Kalantar, D. H.; ...
2017-03-16
Here, the Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10 –4 for x-rays with energies greater thanmore » 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.« less
Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie
2006-01-01
Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.
16th National School on Neutron and X-ray Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor
Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.
16th National School on Neutron and X-ray Scattering
Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian
2018-02-14
Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.
Status of the eROSITA Telescope testing and calibrating the x-ray mirror assemblies
NASA Astrophysics Data System (ADS)
Burwitz, Vadim; Predehl, Peter; Bräuninger, Heinrich; Burkert, Wolfgang; Dennerl, Konrad; Eder, Josef; Friedrich, Peter; Fürmetz, Maria; Grisoni, Gabriele; Hartner, Gisela; Marioni, Fabio; Menz, Benedikt; Pfeffermann, Elmar; Valsecchi, Giuseppe
2013-09-01
The eROSITA X-ray observatory that will be launched on board the Russian Spectrum-RG mission comprises seven X-ray telescopes, each with its own mirror assembly (mirror module + X-ray baffle), electron deflector, filter wheel, and CCD camera with its control electronics. The completed flight mirror modules are undergoing many thorough X-ray tests at the PANTHER X-ray test facility after delivery, after being mated with the X-ray baffle, and again after both the vibration and thermal-vacuum tests. A description of the work done with mirror modules/assemblies and the test results obtained will be reported here. We report also on the environmental tests that have been performed on the eROSITA telescope qualification model.
Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B
2017-03-01
This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the AERB and IAEA to protect patients, workers and the public of this region.
40 CFR 437.1 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... centralized silver recovery from used photographic or x-ray materials activities. The discharge resulting from centralized silver recovery from used photographic or x-ray materials that is treated at a CWT facility along... Nickel Subcategory), Subpart X (Secondary Precious Metals Subcategory), Subpart Z (Secondary Tantalum...
40 CFR 437.1 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... centralized silver recovery from used photographic or x-ray materials activities. The discharge resulting from centralized silver recovery from used photographic or x-ray materials that is treated at a CWT facility along... Nickel Subcategory), subpart X (Secondary Precious Metals Subcategory), subpart Z (Secondary Tantalum...
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2013-05-01
The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples
NASA Technical Reports Server (NTRS)
Griner, D. B.
1981-01-01
NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.
NASA Astrophysics Data System (ADS)
Opachich, Y. P.; Heeter, R. F.; Barrios, M. A.; Garcia, E. M.; Craxton, R. S.; King, J. A.; Liedahl, D. A.; McKenty, P. W.; Schneider, M. B.; May, M. J.; Zhang, R.; Ross, P. W.; Kline, J. L.; Moore, A. S.; Weaver, J. L.; Flippo, K. A.; Perry, T. S.
2017-06-01
Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ˜20 μm thickness have been performed. X-ray yields of up to ˜1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ˜100 μm FWHM, with ˜350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, Paul
2013-11-07
The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites asmore » well as contaminated sites around the United States and beyond.« less
Fermi GBM Observations of Terrestrial Gamma-Ray Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.;
2010-01-01
This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.
[Problems of X-ray mammology manpower training and management].
Rozhkova, N I
2014-01-01
The paper considers the issues of manpower training in X-ray mammology. It mentions staff shortage and no special training, which reduces the efficient activities of X-ray mammographic rooms, as well as shortage of training facilities and no unified educational programs within interdisciplinary integration, inadequate technical equipment in the training facilities, the lack of an accounting system for training higher- and mid-level health workers, as well as engineers. Emphasis is placed on that the educational programs must comply with the organizational forms of testing the specialists to be employed. The introduction of a continuous education system should be accelerated to rule out the decay period of specialists' competence.
1999-03-26
In the Vertical Processing Facility, TRW technicians get ready to attach and deploy a solar panel array on the Chandra X-ray Observatory, which is sitting on a workstand. The panel is to the right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
JEUMICO: Czech-Bavarian astronomical X-ray optics project
NASA Astrophysics Data System (ADS)
Hudec, R.; Döhring, T.
2017-07-01
Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.
NASA Technical Reports Server (NTRS)
Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.; Chen, P. C.
1988-01-01
A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production.
NASA Astrophysics Data System (ADS)
Vacanti, Giuseppe; Barrière, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Daniëlle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Krumrey, Michael; Landgraf, Boris; Müller, Peter; Schreiber, Swenja; Vervest, Mark; Wille, Eric
2017-09-01
While predictions based on the metrology (local slope errors and detailed geometrical details) play an essential role in controlling the development of the manufacturing processes, X-ray characterization remains the ultimate indication of the actual performance of Silicon Pore Optics (SPO). For this reason SPO stacks and mirror modules are routinely characterized at PTB's X-ray Pencil Beam Facility at BESSY II. Obtaining standard X-ray results quickly, right after the production of X-ray optics is essential to making sure that X-ray results can inform decisions taken in the lab. We describe the data analysis pipeline in operations at cosine, and how it allows us to go from stack production to full X-ray characterization in 24 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav
2016-07-27
A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.
Protection of the electronic components of measuring equipment from the X-ray radiation
NASA Astrophysics Data System (ADS)
Perez Vasquez, N. O.; Kostrin, D. K.; Uhov, A. A.
2018-02-01
In this work the effect of X-ray radiation on the operation of integrated circuits of the measurement equipment is discussed. The results of the calculations of a shielding system, allowing using integrated circuits with a high degree of integration in the vicinity of the X-ray source, are shown. The results of the verification of two measurement devices that was used for more than five years in the facility for training and testing of X-ray tubes are presented.
Results from a Grazing Incidence X-Ray Interferometer
NASA Technical Reports Server (NTRS)
Joy, Marshall K.; Shipley, Ann; Cash, Webster; Carter, James
2000-01-01
A prototype grazing incidence interferometer has been built and tested at EUV and X-ray wavelengths using a 120 meter long vacuum test facility at Marshall Space Flight Center. We describe the design and construction of the interferometer, the EUV and x-ray sources, the detector systems, and compare the interferometric fringe measurements with theoretical predictions. We also describe the next-generation grazing incidence system which is designed to provide laboratory demonstration of key technologies that will be needed for a space-based x-ray interferometer.
Terrestrial Gamma-Ray Flashes (TGFs)
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2010-01-01
This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.
Structural biology at the European X-ray free-electron laser facility
Altarelli, Massimo; Mancuso, Adrian P.
2014-01-01
The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 1033 photons s−1 mm−2 mrad−2 per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s−1) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging. PMID:24914145
A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobble, James Allen; Sinars, Daniel Brian
The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF programmore » shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.« less
Structural biology at the European X-ray free-electron laser facility.
Altarelli, Massimo; Mancuso, Adrian P
2014-07-17
The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 10(33) photons s(-1) mm(-2) mrad(-2) per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s(-1)) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; ...
2015-11-23
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain
NASA Astrophysics Data System (ADS)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.
2015-12-01
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.
On the Rate and on the Gravitational Wave Emission of Short and Long GRBs
NASA Astrophysics Data System (ADS)
Ruffini, R.; Rodriguez, J.; Muccino, M.; Rueda, J. A.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Gizzi, D.; Kovacevic, M.; Moradi, R.; Oliveira, F. G.; Pisani, G. B.; Wang, Y.
2018-05-01
On the ground of the large number of gamma-ray bursts (GRBs) detected with cosmological redshift, we classified GRBs in seven subclasses, all with binary progenitors which emit gravitational waves (GWs). Each binary is composed of combinations of carbon–oxygen cores (COcore), neutron stars (NSs), black holes (BHs), and white dwarfs (WDs). The long bursts, traditionally assumed to originate from a BH with an ultrarelativistic jetted emission, not emitting GWs, have been subclassified as (I) X-ray flashes (XRFs), (II) binary-driven hypernovae (BdHNe), and (III) BH–supernovae (BH–SNe). They are framed within the induced gravitational collapse paradigm with a progenitor COcore–NS/BH binary. The SN explosion of the COcore triggers an accretion process onto the NS/BH. If the accretion does not lead the NS to its critical mass, an XRF occurs, while when the BH is present or formed by accretion, a BdHN occurs. When the binaries are not disrupted, XRFs lead to NS–NS and BdHNe lead to NS–BH. The short bursts, originating in NS–NS, are subclassified as (IV) short gamma-ray flashes (S-GRFs) and (V) short GRBs (S-GRBs), the latter when a BH is formed. There are (VI) ultrashort GRBs (U-GRBs) and (VII) gamma-ray flashes (GRFs) formed in NS–BH and NS–WD, respectively. We use the occurrence rate and GW emission of these subclasses to assess their detectability by Advanced LIGO-Virgo, eLISA, and resonant bars. We discuss the consequences of our results in view of the announcement of the LIGO/Virgo Collaboration of the source GW 170817 as being originated by an NS–NS.
Optics Requirements For The Generation-X X-Ray Telescope
NASA Technical Reports Server (NTRS)
O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.;
2008-01-01
US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.
Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility
NASA Technical Reports Server (NTRS)
Kellogg, Edwin M.
1999-01-01
We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.
Chicagoland area. Fermilab delivers first cryomodule for ultrapowerful X-ray laser at SLAC January 19, 2018 The first cryomodule for SLAC's LCLS-II X-ray laser departed Fermilab on Jan. 16. Photo: Reidar Hahn A , which will be the nation's only X-ray free-electron laser facility. 1 2 3 ... 40 » Go Fermilab news
Hard X-ray Imaging for Measuring Laser Absorption Spatial Profiles on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E L; Jones, O S; Landen, O L
2006-04-25
Hard x-ray (''Thin wall'') imaging will be employed on the National Ignition Facility (NIF) to spatially locate laser beam energy deposition regions on the hohlraum walls in indirect drive Inertial Confinement Fusion (ICF) experiments, relevant for ICF symmetry tuning. Based on time resolved imaging of the hard x-ray emission of the laser spots, this method will be used to infer hohlraum wall motion due to x-ray and laser ablation and any beam refraction caused by plasma density gradients. In optimizing this measurement, issues that have to be addressed are hard x-ray visibility during the entire ignition laser pulse with intensitiesmore » ranging from 10{sup 13} to 10{sup 15} W/cm{sup 2}, as well as simultaneous visibility of the inner and the outer laser drive cones. In this work we will compare the hard x-ray emission calculated by LASNEX and analytical modeling with thin wall imaging data recorded previously on Omega and during the first hohlraum experiments on NIF. Based on these calculations and comparisons the thin wall imaging will be optimized for ICF/NIF experiments.« less
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
NASA Technical Reports Server (NTRS)
Kellogg, E.; Brissenden, R.; Flanagan, K.; Freeman, M.; Hughes, J.; Jones, M.; Ljungberg, M.; Mckinnon, P.; Podgorski, W.; Schwartz, D.
1992-01-01
Advanced X-ray Astrophysics Facility (AXAF) X-ray optics testing is conducted by VETA-I, which consists of six nested Wolter type I grazing-incidence mirrors; VETA's X-ray Detection System (VXDS) in turn measures the imaging properties of VETA-I, yielding FWHM and encircled energy of the X-ray image obtained, as well as its effective area. VXDS contains a high resolution microchannel plate imaging X-ray detector and a pinhole scanning system in front of proportional-counter detectors. VETA-I's X-ray optics departs from the AXAF flight configuration in that it uses a temporary holding fixture; its mirror elements are not cut to final length, and are not coated with the metal film used to maximize high-energy reflection.
The U.S. Spectrum X Gamma Coordination Facility
NASA Astrophysics Data System (ADS)
Forman, William R.
1999-08-01
Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.
The U.S. Spectrum X Gamma Coordination Facility
NASA Technical Reports Server (NTRS)
Forman, William R.
1999-01-01
Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.
History of Chandra X-Ray Observatory
1997-03-16
This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most poweful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components relatedto x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1997-03-16
This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
Ejecta Experiments at the Pegasus Pulsed Power Facility
1997-06-01
Laboratory (LANL ). The facility provides both radial and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing...and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing measurements on the target assembly located near...surface variations, microjets can be formed thus contributing to the amount of ejecta. In addition to material properties which contribute to ejecta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ter-Saakov, A.A.; Glebov, M.V.
1985-10-01
An experimental x-ray fluorescence analysis facility has been developed using polarized radiation. A modernized small-sized REIS-I emitter is used as the x-ray genertor. Its characteristics are: a straight-through drift tube with a copper, molybdenum, or silver anode; and a controlled working voltage from 0 to 45 kV. The thickness of the inlet beryllium window is 100 um. Experiments were carried out on the facility on the optimization of fluorescence excitation conditions of biological samples. The investigations conducted of the dosimetric and spectral characteristics of the BS-1, BS-3, and BKh-7 x-ray tubes with copper, silver, and molybdenum anodes have shown thatmore » for the analysis in samples of biogenic elements, it is most efficient to use the BKh-7 and BS-1 tubes with a copper anode.« less
Research relative to high resolution camera on the advanced X-ray astrophysics facility
NASA Technical Reports Server (NTRS)
1986-01-01
The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.
The Chandra X-ray Observatory prepped for removal from its container in the Vertical Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), workers check the overhead cable that will lift the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Chandra X-ray Observatory prepped for removal from its container in the Vertical Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), the Chandra X-ray Observatory (top) lies in its protective container while workers on the floor prepare the overhead cable that will remove it. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Chandra X-ray Observatory prepped for removal from its container in the Vertical Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), workers attach the overhead cable to the Chandra X-ray Observatory to lift it out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan’ko, S. A.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Krauz, V. I.
2015-11-15
Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measuredmore » soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.« less
Opachich, Y. P.; Heeter, R. F.; Barrios, M. A.; ...
2017-06-08
Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500–2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ~20 μm thickness have been performed. X-ray yields of up to ~1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ~100 μm FWHM, with ~350 ps pulse duration during the peak emission stage. Lastly, these results are used to simulate transmission spectramore » for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.« less
Opachich, Y P; Heeter, R F; Barrios, M A; Garcia, E M; Craxton, R S; King, J A; Liedahl, D A; McKenty, P W; Schneider, M B; May, M J; Zhang, R; Ross, P W; Kline, J L; Moore, A S; Weaver, J L; Flippo, K A; Perry, T S
2017-06-01
Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ∼20 μ m thickness have been performed. X-ray yields of up to ∼1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ∼100 μ m FWHM, with ∼350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less
Design and Construction of an X-ray Lightning Camera
NASA Astrophysics Data System (ADS)
Schaal, M.; Dwyer, J. R.; Rassoul, H. K.; Uman, M. A.; Jordan, D. M.; Hill, J. D.
2010-12-01
A pinhole-type camera was designed and built for the purpose of producing high-speed images of the x-ray emissions from rocket-and-wire-triggered lightning. The camera consists of 30 7.62-cm diameter NaI(Tl) scintillation detectors, each sampling at 10 million frames per second. The steel structure of the camera is encased in 1.27-cm thick lead, which blocks x-rays that are less than 400 keV, except through a 7.62-cm diameter “pinhole” aperture located at the front of the camera. The lead and steel structure is covered in 0.16-cm thick aluminum to block RF noise, water and light. All together, the camera weighs about 550-kg and is approximately 1.2-m x 0.6-m x 0.6-m. The image plane, which is adjustable, was placed 32-cm behind the pinhole aperture, giving a field of view of about ±38° in both the vertical and horizontal directions. The elevation of the camera is adjustable between 0 and 50° from horizontal and the camera may be pointed in any azimuthal direction. In its current configuration, the camera’s angular resolution is about 14°. During the summer of 2010, the x-ray camera was located 44-m from the rocket-launch tower at the UF/Florida Tech International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL and several rocket-triggered lightning flashes were observed. In this presentation, I will discuss the design, construction and operation of this x-ray camera.
Characterization results from several commercial soft X-ray streak cameras
NASA Astrophysics Data System (ADS)
Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.
The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.
Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range
NASA Astrophysics Data System (ADS)
Gaines, J. L.; Wittmayer, F. J.
1986-08-01
The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.
Full-aperture x-ray tests of Kirkpatrick-Baez modules: preliminary results
NASA Astrophysics Data System (ADS)
Pina, L.; Marsikova, V.; Hudec, R.; Inneman, A.; Marsik, J.; Cash, W.; Shipley, A.; Zeiger, B.
2011-05-01
We report on preliminary results of full aperture X-ray optical tests at the X-ray test facility at the University of Colorado (USA) of four test modules of Kirkpatrick-Baez (KB) X-ray optical systems performed in August 2010. Direct experimental comparisons were made between gold-coated optics of two novel substrates: glass foils and silicon wafers. The preliminary results are promising, with full-width half-maxima of full stacks being of order of 30 arcsec in 2D full arrangement. These results justify further efforts to improve KB optics for use in low-cost, high-performance space-borne astronomical imaging instruments for X-ray wavelengths.
The Chandra X-ray Observatory: An Astronomical Facility Available to the World
NASA Technical Reports Server (NTRS)
Smith, Randall K.
2006-01-01
The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations
Kantsyrev, V L; Chuvatin, A S; Rudakov, L I; Velikovich, A L; Shrestha, I K; Esaulov, A A; Safronova, A S; Shlyaptseva, V V; Osborne, G C; Astanovitsky, A L; Weller, M E; Stafford, A; Schultz, K A; Cooper, M C; Cuneo, M E; Jones, B; Vesey, R A
2014-12-01
A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed.
NASA Technical Reports Server (NTRS)
Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.
1992-01-01
This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.
Neutron star Interior Composition Explorer (NICER)
2017-12-08
NICER’s X-ray concentrator optics are inspected under a black light for dust and foreign object debris that could impair functionality once in space. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Neutron star Interior Composition Explorer (NICER)
2017-12-08
NICER engineer Steven Kenyon prepares seven of the 56 X-ray concentrators for installation in the NICER instrument. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki
2016-05-01
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.
MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...
2014-03-13
Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less
Flash sintering of stoichiometric and hyper-stoichiometric urania
Valdez, James Anthony; Byler, Darrin David; Kardoulaki, Erofili; ...
2018-03-29
Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO 2) pellets. Stoichiometric (UO 2.00) and hyper-stoichiometric (UO 2.16) pellets were flash sintered at 600 °C within a few (2–3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (T H) for both conditions shows that in the case of flash sintering at 600 °C, T H =more » 0.3 versus T H = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO 2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 184 s at a field of 188 V/cm and a current density of 442 mA/mm 2. For the UO 2.16 pellet, the highest achieved density was 92% TD when flash sintered at 600 °C for 140 s at a field of 188 V/cm and a current density of 632 mA/mm 2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. Lastly, in all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.« less
Flash sintering of stoichiometric and hyper-stoichiometric urania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, James Anthony; Byler, Darrin David; Kardoulaki, Erofili
Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO 2) pellets. Stoichiometric (UO 2.00) and hyper-stoichiometric (UO 2.16) pellets were flash sintered at 600 °C within a few (2–3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (T H) for both conditions shows that in the case of flash sintering at 600 °C, T H =more » 0.3 versus T H = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO 2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 184 s at a field of 188 V/cm and a current density of 442 mA/mm 2. For the UO 2.16 pellet, the highest achieved density was 92% TD when flash sintered at 600 °C for 140 s at a field of 188 V/cm and a current density of 632 mA/mm 2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. Lastly, in all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.« less
Flash sintering of stoichiometric and hyper-stoichiometric urania
NASA Astrophysics Data System (ADS)
Valdez, J. A.; Byler, D. D.; Kardoulaki, E.; Francis, J. S. C.; McClellan, K. J.
2018-07-01
Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO2) pellets. Stoichiometric (UO2.00) and hyper-stoichiometric (UO2.16) pellets were flash sintered at 600 °C within a few (2-3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (TH) for both conditions shows that in the case of flash sintering at 600 °C, TH = 0.3 versus TH = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 185 s at a field of 188 V/cm and a current density of 442 mA/mm2. For the UO2.16 pellet, the highest achieved density was 91% TD when flash sintered at 600 °C for 123 s at a field of 188 V/cm and a current density of 632 mA/mm2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. In all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.
Images of the laser entrance hole from the static x-ray imager at NIF.
Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K
2010-10-01
The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.
The differential absorption hard x-ray spectrometer at the Z facility
Bell, Kate S.; Coverdale, Christine A.; Ampleford, David J.; ...
2017-08-03
The Differential Absorption Hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of 7 Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the Hard X-Ray Spectrometer (HXRS) that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources drivenmore » by the Z Machine.« less
1999-03-26
In the Vertical Processing Facility, TRW technicians look at the point of attachment on the Chandra X-ray Observatory, at left, for the solar panel array (behind them). They are getting ready to attach and deploy the solar panel. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
Early optical emission from the gamma-ray burst of 4 October 2002.
Fox, D W; Yost, S; Kulkarni, S R; Torii, K; Kato, T; Yamaoka, H; Sako, M; Harrison, F A; Sari, R; Price, P A; Berger, E; Soderberg, A M; Djorgovski, S G; Barth, A J; Pravdo, S H; Frail, D A; Gal-Yam, A; Lipkin, Y; Mauch, T; Harrison, C; Buttery, H
2003-03-20
Observations of the long-lived emission--or 'afterglow'--of long-duration gamma-ray bursts place them at cosmological distances, but the origin of these energetic explosions remains a mystery. Observations of optical emission contemporaneous with the burst of gamma-rays should provide insight into the details of the explosion, as well as into the structure of the surrounding environment. One bright optical flash was detected during a burst, but other efforts have produced negative results. Here we report the discovery of the optical counterpart of GRB021004 only 193 seconds after the event. The initial decline is unexpectedly slow and requires varying energy content in the gamma-ray burst blastwave over the course of the first hour. Further analysis of the X-ray and optical afterglow suggests additional energy variations over the first few days.
Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L
2014-11-01
The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.
Establishment of new design criteria for GlidCop ® X-ray absorbers
Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary; ...
2017-02-20
Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less
Establishment of new design criteria for GlidCop ® X-ray absorbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary
Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less
NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions
NASA Astrophysics Data System (ADS)
1998-07-01
NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from the Operations Control Center after launch. "As is usually the case, we identified a few issues to be resolved before launch," said Wojtalik. "Overall, however, the observatory performed exceptionally well." The observatory test team discovered a mechanical problem with one of the primary science instruments, the Imaging Spectrometer. A door protecting the instrument did not function when commanded by test controllers. "We do these tests to check and double check every aspect of satellite operation that could affect the ultimate success of the science mission," said Craig Staresinich, TRW Advanced X-ray Astrophysics Facility program manager. "Discovering a problem now is a success. Discovering a problem later, after launch, would be a failure." A team of NASA and contractor engineers are studying the mechanical problem and developing a plan to correct it. The instrument will be sent back to its builder, Lockheed-Martin Astronautics in Denver, Colo., where it will be repaired while the rest of the observatory continues other testing. This should still allow an on-time delivery of the observatory to NASA's Kennedy Space Center, Fla., in August, where it will be readied for launch in January. With a resolving power 10 times greater than previous X-ray telescopes, the new X-ray observatory will provide scientists with views of previously invisible X-ray sources, including black holes, exploding stars and interstellar gasses. The third of NASA's Great Observatories, it will join the Compton Gamma Ray Observatory and the Hubble Space Telescope in orbit. The Advanced X-ray Astrophysics Facility program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, D.C. TRW Space & Electronics Group is assembling the observatory and doing verification testing. The Advanced X-ray Astrophysics Facility Operations Control Center is operated by the Smithsonian Astrophysical Observatory. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, Conn. The mirrors were coated by Optical Coating Laboratory, Inc., Santa Rosa, Calif., and assembled by EastmanKodak Co., Rochester, N.Y. The Advanced X-ray Astrophysics Facility Charge-Coupled Device Imaging Spectrometer was developed by Pennsylvania State University, University Park, Pa., and the Massachusetts Institute of Technology (MIT), Cambridge. One diffraction grating was developed by MIT, the other by the Space Research Organization Netherlands, Utrecht, Netherlands, in collaboration with the Max Planck Institute, Garching, Germany. The High Resolution Camera was built by the Smithsonian Astrophysical Observatory. Ball Aerospace & Technologies Corporation of Boulder, Colo., developed the aspect camera and the Science Instrument Module. Note to editors: Digital images to accompany this release are available via the World Wide Web at the following URL: http://chandra.harvard.edu/press/images.html
Dante soft x-ray power diagnostic for National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E.L.; Campbell, K.M.; Turner, R.E.
2004-10-01
Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic rangemore » using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.« less
NASA Astrophysics Data System (ADS)
Sarria, David; Lebrun, Francois; Blelly, Pierre-Louis; Chipaux, Remi; Laurent, Philippe; Sauvaud, Jean-Andre; Prech, Lubomir; Devoto, Pierre; Pailot, Damien; Baronick, Jean-Pierre; Lindsey-Clark, Miles
2017-07-01
With a launch expected in 2018, the TARANIS microsatellite is dedicated to the study of transient phenomena observed in association with thunderstorms. On board the spacecraft, XGRE and IDEE are two instruments dedicated to studying terrestrial gamma-ray flashes (TGFs) and associated terrestrial electron beams (TEBs). XGRE can detect electrons (energy range: 1 to 10 MeV) and X- and gamma-rays (energy range: 20 keV to 10 MeV) with a very high counting capability (about 10 million counts per second) and the ability to discriminate one type of particle from another. The IDEE instrument is focused on electrons in the 80 keV to 4 MeV energy range, with the ability to estimate their pitch angles. Monte Carlo simulations of the TARANIS instruments, using a preliminary model of the spacecraft, allow sensitive area estimates for both instruments. This leads to an averaged effective area of 425 cm2 for XGRE, used to detect X- and gamma-rays from TGFs, and the combination of XGRE and IDEE gives an average effective area of 255 cm2 which can be used to detect electrons/positrons from TEBs. We then compare these performances to RHESSI, AGILE and Fermi GBM, using data extracted from literature for the TGF case and with the help of Monte Carlo simulations of their mass models for the TEB case. Combining this data with the help of the MC-PEPTITA Monte Carlo simulations of TGF propagation in the atmosphere, we build a self-consistent model of the TGF and TEB detection rates of RHESSI, AGILE and Fermi. It can then be used to estimate that TARANIS should detect about 200 TGFs yr-1 and 25 TEBs yr-1.
A test cassette for x-ray-exposure experiments at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B.; Celeste, J.; Rekow, V.
2010-07-15
We present the design and operation of a test cassette for exposure of samples to radiation environments at the National Ignition Facility. The cassette provides options for square and round samples and exposure areas; the cassette provides for multiple levels of filtration on a single sample, which allows dynamic range in experiments. The samples had normal lines of sight to the x-ray source in order to have uniform x-ray illumination. The incident x-radiation onto the samples was determined by the choice of filter thicknesses and materials. The samples were held at precise locations, accurate to within a few hundred microns,more » in the target chamber in order to have a known fluence incident. In the cassette, the samples were held in place in such a way that a minimal ''line contact'' allows them to have the maximal mechanical response to the x-ray load. We present postshot images of the debris found on films used for filters, and pre- and postexposure specimens.« less
X-ray microbeam stand-alone facility for cultured cells irradiation
NASA Astrophysics Data System (ADS)
Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.
2017-03-01
The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.
Design of Initial Opacity Platform at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Heeter, R. F.; Ahmed, M. F.; Ayers, S. L.; Emig, J. A.; Iglesias, C. A.; Liedahl, D. A.; Schneider, M. B.; Wilson, B. G.; Huffman, E. J.; King, J. A.; Opachich, Y. P.; Ross, P. W.; Bailey, J. E.; Rochau, G. A.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Cardenas, T.; Devolder, B. G.; Dodd, E. S.; Kline, J. L.; Sherrill, M. E.; Perry, T. S.
2016-10-01
The absorption and re-emission of x-rays by partly stripped ions plays a critical role in stars and in many laboratory plasmas. A NIF Opacity Platform has been designed to resolve a persistent disagreement between theory and experiments on the Sandia Z facility, studying iron in conditions closely related to the solar radiation-convection transition boundary. A laser heated hohlraum ``oven'' will produce iron plasmas at temperatures >150 eV and electron densities >=7x1021/cm3, and be probed with continuum X-rays from a capsule implosion backlighter source. The resulting X-ray transmission spectra will be recorded on a specially designed Opacity Spectrometer. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
A multi-cone x-ray imaging Bragg crystal spectrometer
Bitter, M.; Hill, K. W.; Gao, Lan; ...
2016-08-26
This article describes a new x-ray imaging Bragg crystal spectrometer, which—in combination with a streak camera or a gated strip detector—can be used for time-resolved measurements of x-ray line spectra at the National Ignition Facility and other high power laser facilities. The main advantage of this instrument is that it produces perfect images of a point source for each wavelength in a selectable spectral range and that the detector plane can be perpendicular to the crystal surface or inclined by an arbitrary angle with respect to the crystal surface. Furthermore, these unique imaging properties are obtained by bending the x-raymore » diffracting crystal into a certain shape, which is generated by arranging multiple cones with different aperture angles on a common nodal line.« less
A Remarkable Three Hour Thermonuclear Burst from 4U 1820-30
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Brown, Edward F.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present a detailed observational and theoretical study of an approximately three hour long X-ray burst (the "super burst") observed by the Rossi X-ray Timing Explorer (RXTE) from the low mass X-ray binary (LMXB) 4U 1820-30. This is the longest X-ray burst ever observed from this source, and perhaps one of the longest ever observed in great detail from any source. We show that the super burst is thermonuclear in origin. Its peak luminosity of approximately 3.4 x 10(exp 38) ergs s(exp -1) is consistent with the helium Eddington limit for a neutron star at approximately 7 kpc, as well as the peak luminosity of other, shorter, thermonuclear bursts from the same source. The super burst begins in the decaying tail of a more typical (approximately equal to 20 s duration) thermonuclear burst. These shorter, more frequent bursts are well known helium flashes from this source. The level of the accretion driven flux as well as the observed energy release of upwards of 1.5 x 10(exp 42) ergs indicate that helium could not be the energy source for the super burst. We outline the physics relevant to carbon production and burning on helium accreting neutron stars and present calculations of the thermal evolution and stability of a carbon layer and show that this process is the most likely explanation for the super burst. Ignition at the temperatures in the deep carbon "ocean" requires greater than 30 times the mass of carbon inferred from the observed burst energetics unless the He flash is able to trigger a deflagration from a much smaller mass of carbon. We show, however, that for large columns of accreted carbon fuel, a substantial fraction of the energy released in the carbon burning layer is radiated away as neutrinos, and the heat that is conducted from the burning layer in large part flows inward, only to be released on timescales longer than the observed burst. Thus the energy released during the event possibly exceeds that observed in X-rays by more than a factor of ten, making the scenario of burning a large mass of carbon at great depths consistent with the observed fluence without invoking any additional trigger. A strong constraint on this scenario is the recurrence time: to accrete an ignition column of 1013 g cm (exp -1) takes approximately 13/(M/3 x 10(exp 17) g s(exp -1) yr. Spectral analysis during the super burst reveals the presence of a broad emission line between 5.8 - 6.4 keV and an edge at 8 - 9 keV likely due to reflection of the burst flux from the inner accretion disk in 4U 1820-30. We believe this is the first time such a signature has been unambiguously detected in the spectrum of an X-ray burst.
NASA Astrophysics Data System (ADS)
Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.
2017-12-01
Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.
NASA Astrophysics Data System (ADS)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-01
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, I.R.
A pilot study in two states led to the establishment of the Dental Exposure Normalization Technique (DENT) program. This, in brief, is an exposure reduction and quality assurance program for radiological health agencies. The health agency sends X-ray exposure cards to dental X-ray facilities. These are exposed by the dentist and returned for analysis. Facilities which show excessive exposure are then visited to demonstrate the changes in exposure and processing necessary to produce diagnostic quality radiographs with minimum patient exposure.
AXAF-1 high-resolution mirror assembly image model and comparison with x-ray ground-test image
NASA Astrophysics Data System (ADS)
Zissa, David E.
1999-09-01
The completed High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) was tested at the X-ray Calibration Facility (XRCF) at the NASA- Marshall Space Flight Center (MSFC) in 1997. The MSFC image model was developed during the development of AXAF-I. The MSFC model is a detailed ray-trace model of the as-built HRMA optics and the XRCF teste conditions. The image encircled-energy distributions from the model are found to general agree well with XRCF test data nd the preliminary Smithsonian Astrophysical Observatory (SAO) model. MSFC model effective-area result generally agree with those of the preliminary SAO model. Preliminary model effective-area results were reported by SAO to be approximately 5-13 percent above initial XRCF test results. The XRCF test conditions are removed from the MSFC ray-trace model to derive an on-orbit prediction of the HRMA image.
1999-02-06
Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-06
Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Soft x-ray power diagnostic improvements at the Omega Laser Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorce, C.; Schein, J.; Weber, F.
2006-10-15
Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant,more » radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed.« less
Diagnosing radiative shocks from deuterium and tritium implosions on NIF.
Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H
2012-10-01
During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.
The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements
Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin
2012-01-01
In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903
All sky Northern Hemisphere 10(15) EV gamma-ray survey
NASA Technical Reports Server (NTRS)
Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Sommers, P.; Steck, D.
1985-01-01
Flux limits in the range 10 to the minus 13th power-10 to the minus 12 power/sq cm/s have been obtained by observing Cerenkov flashes from small air showers. During 1983, a 3.5 sigma excess of showers was observed during the phase interval 0.2 to 0.3 of the 4.8h period of Cygnus X-3, but no excess was found in 1984 observations.
Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code
1979-06-01
dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was
Taking the measure of neutron stars with NICER
NASA Astrophysics Data System (ADS)
Mahmoodifar, Simin
2018-01-01
The Neutron Star Interior Composition Explorer (NICER) is NASA's new X-ray timing instrument onboard the ISS that was launched in June 2017. With a large effective area, low background, very precise absolute timing and great low energy response, NICER has been doing a fantastic job in observing many interesting phenomena related to neutron stars and black holes. One of the main goals of the NICER mission is to constrain the equation of state of ultra-dense matter by measuring the masses and radii of several rotation-powered millisecond pulsars. This is being done by fitting pulse waveform models that incorporate all relevant relativistic effects and atmospheric radiation transfer processes to the periodic soft X-ray modulations produced by the rotation of hot spots located near the magnetic polar caps of these pulsars. Some of the other interesting topics that are being studied with NICER includes phenomena related to Type I X-ray bursts, which are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries, such as photospheric radius expansion and burst oscillations. NICER's large effective area and excellent low energy response enable new, detailed studies of these bursts in the soft X-ray band. In this talk I will present some of the early results from the first seven months of the NICERmission and will report on the progress being made by the NICER team in measuring the masses and radii of pulsars.
Accessing protein conformational ensembles using room-temperature X-ray crystallography
Fraser, James S.; van den Bedem, Henry; Samelson, Avi J.; Lang, P. Therese; Holton, James M.; Echols, Nathaniel; Alber, Tom
2011-01-01
Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation. PMID:21918110
NASA Technical Reports Server (NTRS)
McFerrin, Michael; Snell, Edward; Curreri, Peter A. (Technical Monitor)
2002-01-01
An X-ray based method for determining cryoprotectant concentrations necessary to protect solutions from crystalline ice formation was developed. X-ray images from a CCD area detector were integrated as powder patterns and quantified by determining the standard deviation of the slope of the normalized intensity curve in the resolution range where ice rings are known to occur. The method was tested determining the concentrations of glycerol, PEG400, ethylene glycol and 1,2-propanediol necessary to form an amorphous glass at 1OOK with each of the 98 crystallization solutions of Crystal Screens I and II (Hampton Research, Laguna Hills, California, USA). For conditions that required glycerol concentrations of 35% or above cryoprotectant conditions using 2,3-butanediol were determined. The method proved to be remarkably accurate. The results build on the work of [Garman and Mitchell] and extend the number, of suitable starting conditions to alternative cryoprotectants. In particular, 1,2-propanediol has emerged as a particularly good additive for glass formation upon flash cooling.
The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.
Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo
2008-08-29
The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
A Probable Taurid Impact on the Moon
NASA Technical Reports Server (NTRS)
Cooke, William J.; Suggs, R. M.; Swift, Wesley R.
2006-01-01
On November 7, 2005, at 23:41:52 UT, observers located at the Marshall Space Flight Center captured the flash produced by a kilogram-size meteoroid striking the lunar surface. Photometric analysis of the event video, combined with the plausible assumptions of a luminous efficiency of 2x10" and that the meteoroid was a member of the Taurid meteoroid stream, yield a striking power of approximately 640 lbs of TNT and a mass of approximately 3.8 kg. Even though no confirming independent observations are known to exist, there is high confidence in the impact origin of the flash; reasonable attempts have been made to eliminate other possibilities, such as cosmic ray hits on the CCD and glints from satellites that may have crossed the lunar disk near the impact time.
[Nikola Tesla: flashes of inspiration].
Villarejo-Galende, Albero; Herrero-San Martín, Alejandro
2013-01-16
Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.
Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A
NASA Technical Reports Server (NTRS)
Dwek, Eliahu; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, John; DeBuizer James M.; Gehrz, Robert D.; Kirshner, Robert P.; McCray, Richard;
2007-01-01
Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova.
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering
NASA Astrophysics Data System (ADS)
Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald
2017-10-01
Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.
Operation and Characteristics of the Flash X-Ray Generator at the Naval Postgraduate School
1989-06-01
DTIC users Unclassified \\aoNe of Re. , .; e Ind\\. z. 22b Telephone (i’iud .4o rc-code’ 2:¢ O :ice S.\\mb . X K Nlzru’amal (40’S 6J4(-2431 l) 1) 1 1).\\ 14...from the NAVAL POSTGR ADUATE SCHOO. June 1989 Author: tg, Ree f.Iltruszkam X. K. laruyani7 hlesis Advisor ;;100 k S Reader K. E . \\\\oehler. Chairman...Department of IPh1 siLs G. E . Schacher. Dean of Science and Engineering m mm m mm mmli mmmm I i N mmmmm m m 11 ABSTRACT Installation of the Model I 12A
Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.
Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L
2012-10-01
As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.
MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV-ZEL'DOVICH EFFECT AND X-RAY PEAKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molnar, Sandor M.; Hearn, Nathan C.; Stadel, Joachim G., E-mail: sandor@phys.ntu.edu.tw
2012-03-20
Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zel'dovich (SZ) effect images compared with high-resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were aboutmore » 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal, and therefore the offset between the SZ and X-ray peaks, change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak-lensing observations of the merging galaxy cluster CL0152-1357, we find that a large relative velocity of 4800 km s{sup -1} is necessary to explain the observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.« less
Computational Studies of X-ray Framing Cameras for the National Ignition Facility
2013-06-01
Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 USA Abstract The NIF is the world’s most powerful laser facility and is...a phosphor screen where the output is recorded. The x-ray framing cameras have provided excellent information. As the yields at NIF have increased...experiments on the NIF . The basic operation of these cameras is shown in Fig. 1. Incident photons generate photoelectrons both in the pores of the MCP and
Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures
NASA Astrophysics Data System (ADS)
Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G. W.; Falcone, R. W.; Glenzer, S. H.; Kraus, D.; Landen, O. L.; Kritcher, A. L.
2016-12-01
We have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. A preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.
Soft x-ray free-electron laser induced damage to inorganic scintillators
Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; ...
2015-01-07
An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determinedmore » by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.« less
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
NASA Astrophysics Data System (ADS)
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.
NASA Astrophysics Data System (ADS)
Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.
2016-12-01
While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.
Impact Flash Monitoring Facility on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Needham, D. H.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.; Kring, D. A.; Neal, C. R.; Fassett, C. I.
2018-02-01
Cameras mounted to the Deep Space Gateway exterior will detect flashes caused by impacts on the lunar surface. Observed flashes will help constrain the current lunar impact flux and assess hazards faced by crews living and working in cislunar space.
NASA Technical Reports Server (NTRS)
Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.
1975-01-01
A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.
1999-02-10
In the Vertical Processing Facility (VPF), workers prepare the shrouded Chandra X-ray Observatory for its lift to a vertical position. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-10
In the Vertical Processing Facility (VPF), the shrouded Chandra X-ray Observatory achieves a vertical position via the overhead crane. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Bennett, G. R.; Herrmann, M. C.; Edwards, M. J.; ...
2007-11-13
We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO 2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.
X-ray backlighting of imploding aluminium liners on PTS facility
NASA Astrophysics Data System (ADS)
Yang, Qingguo; Liu, Dongbing; Mu, Jian; Huang, Xianbin; Dan, Jiakun; Xie, Xudong; Deng, Wu; Feng, Shuping; Wang, Meng; Ye, Yan; Peng, Qixian; Li, Zeren
2016-09-01
The x-ray backlighting systems, including a 1.865 keV (Si Heα line) spherically bent crystal imaging system and an ˜8.3 keV (Cu Heα line) point-projection imaging system, newly fielded on the Primary Test Stand facility are introduced and its preliminary experimental results in radiography of the aluminium (Al) liners with seeded sinusoidal perturbations are presented. The x-ray backlighter source is created using a 1 TW, 1 kJ Nd: glass high power laser, kilo-joule laser system, recently constructed at China Academy of Engineering Physics. The ablation melt and instability of the imploding Al liner outer edge under the driving current of ˜7.5 MA are successfully observed using these two backlighting systems, respectively.
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas
NASA Astrophysics Data System (ADS)
Wallace, M. S.; Haque, S.; Neill, P.; Pereira, N. R.; Presura, R.
2018-01-01
A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.
Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.
Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R
2018-01-01
A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.
Segmented X-Ray Optics for Future Space Telescopes
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.
2013-01-01
Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.
Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities
NASA Technical Reports Server (NTRS)
Schwartz, D. A.
1981-01-01
The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.
The high energy X-ray universe
Giacconi, Riccardo
2010-01-01
Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K; Weber, F; Dewald, E
2004-04-15
The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.
Cascaded chirped photon acceleration for efficient frequency conversion
NASA Astrophysics Data System (ADS)
Edwards, Matthew R.; Qu, Kenan; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.
2018-05-01
A cascaded sequence of photon acceleration stages using the instantaneous creation of a plasma density gradient by flash ionization allows the generation of coherent and chirped ultraviolet and x-ray pulses with independently tunable frequency and bandwidth. The efficiency of the cascaded process scales with 1/ω in energy, and multiple stages produce significant frequency up-conversion with gas-density plasmas. Chirping permits subsequent pulse compression to few-cycle durations, and output frequencies are not limited to integer harmonics.
NASA Technical Reports Server (NTRS)
Johnson, Howard C. (Editor)
1988-01-01
Recent advances in high-speed optical and electrooptic devices are discussed in reviews and reports. Topics examined include data quantification and related technologies, high-speed photographic applications and instruments, flash and cine radiography, and novel ultrafast methods. Also considered are optical streak technology, high-speed videographic and photographic equipment, and X-ray streak cameras. Extensive diagrams, drawings, graphs, sample images, and tables of numerical data are provided.
Back-streaming ion beam measurements in a Self Magnetic Insulated (SMP) electron diode
NASA Astrophysics Data System (ADS)
Mazarakis, Michael; Johnston, Mark; Kiefer, Mark; Leckbee, Josh; Webb, Timothy; Bennett, Nichelle; Droemer, Darryl; Welch, Dale; Nielsen, Dan; Ziska, Derek; Wilkins, Frank; Advance radiography department Team
2014-10-01
A self-magnetic pinch diode (SMP) is presently the electron diode of choice for high energy flash x-ray radiography utilizing pulsed power drivers. The Sandia National Laboratories RITS accelerator is presently fit with an SMP diode that generates very small electron beam spots. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The diode's anode is made of high Z metal in order to produce copious and energetic flash x-rays for radiographic imaging of high areal density objects. In any high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (~1 cm) and the diode region very hostile. We are currently measuring the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip. We then are evaluating the A-K gap voltage by ion time of flight measurements supplemented with filtered Rogowski coils. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE- AC04-94AL850.
Three years of Transients with Fermi GBM
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2012-01-01
The Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument, sensitive between 8 keV and 40 MeV, with a primary objective of supporting the Large Area Telescope (LAT) in observations of Gamma-Ray Bursts (GRBs). Both instruments are part of the Fermi Gamma-ray Space Telescope. Together, the GBM and LAT instruments have provided ground-breaking measurements of GRBs that have, after 10 years of focus on GRB afterglows, inspired renewed interest in the prompt emission phase of GRBs and the physical mechanisms that fuel them. In addition to GRB science, GBM has made significant contributions to the astrophysics of galactic transient sources including long-term variations in the Crab nebula, spin state transitions in accretion powered pulsars, state transitions in black hole X-ray binaries, and unprecedented time-resolved spectral studies of soft gamma-ray repeater bursts. Closer to home, GBM also contributes to solar flare and terrestrial gamma flash science.
Element Specific Imaging Using Muonic X-rays
NASA Astrophysics Data System (ADS)
Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.
The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.
Jacobs, Jac J W M; Jacobs, Jan P A M; van Sonderen, Eric; van der Molen, Thys; Sanderman, Robbert
2015-05-06
Teleradiology entails attainment of x-rays in one location, transfer over some distance and assessment at another location for diagnosis or consultation. This study documents fracture diagnostics, unnecessary trips to the hospital, treatment and number of x-rays for the years 2006 and 2009, before and after the introduction of teleradiology in a general practice on the island of Ameland in the north of the Netherlands. In a retrospective, descriptive, observational before and after study of the introduction of x-ray facilities in an island-based general practice, we compared the number of accurately diagnosed fractures, unnecessary trips, treatments and number of x-rays taken in 2006 when only a hospital x-ray facility was available 5 hours away with those in 2009 after an x-ray facility became available at a local general practice. All patients visiting a general practice on the island of Ameland in 2006 and 2009 with trauma and clinical suspicion of a fracture, dislocation or sprain were included in the study. The initial clinical diagnoses, including those based on the outcomes of x-rays, were compared for the two years and also whether the patients were treated at home or in hospital. A total of 316 and 490 patients with trauma visited a general practice in 2006 and 2009, respectively. Of these patients, 66 and 116 were found to have fractures or dislocations in the two years, respectively. In 2006, 83 x-rays were ordered; in 2009, this was 284. In 2006, 9 fractures were missed; in 2009, this was only 2. In 2006, 15 patients with fractures or dislocations were treated at the general practice; in 2009, this had increased to 77. Since the introduction of teleradiology the number of missed fractures in patients visiting the general practice with trauma and the number of the unnecessary trips to a hospital are reduced. In addition more patients with fractures and dislocations can be treated in the general practice as opposed to the hospital.
TU-H-CAMPUS-TeP2-02: FLASH Irradiation Improves the Therapeutic Index Following GI Tract Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schueler, E; Trovati, S; King, G
Purpose: To investigate and characterize the radiobiological effectiveness of very high dose rate radiotherapy (FLASH) compared to conventional irradiation in an in vivo model. Methods: The gastrointestinal (GI) tract of C57BL/6 mice were irradiated with doses ranging between 10 and 18 Gy using a custom stereotactic jig. A Varian Clinac 21EX was modified to allow dose rates ranging from 0.05 to 240 Gy/s at the position of the mirror. With the gantry at 180 degrees, the jig holding the individual animals was placed above the mirror to take advantage of the reduced source to target distance. Mice were irradiated withmore » 20MeV electrons. Following irradiation, the mice were monitored twice daily for morbidity and daily for weight changes. Results: Mice irradiated with FLASH irradiation had lower weight loss compared to the mice receiving conventional irradiation. Following FLASH irradiation, a maximum weight loss of ∼20% was observed at day 6 with subsequent recovery, while following conventional irradiation, higher weight losses was observed with fewer instances of recovery. Concerning survival, all mice in the conventionally irradiated groups had a 100% mortality in the range of 15.5–18 Gy, while the mice irradiated with FLASH irradiation had a 100% survival in the same range. Conclusion: These results have demonstrated proof of principle that FLASH irradiations have a dramatic impact on the overall survival of mice following GI tract irradiations. If the increase in the therapeutic window can be validated and understood, this would revolutionize the field of radiation oncology and lead to increased cure rates with reduced side effects following treatment, resulting in increased quality of life for cancer survivors. Funding: DoD, Award#:W81XWH-14-1-0014, Weston Havens Foundation, Bio-X (Stanford University), the Office of the Dean of the Medical School, the Office of the Provost (Stanford University), and the Swedish Childhood Cancer Foundation; BL and PM are founders of TibaRay,Inc.; BL and PM have received research grants from Varian and RaySearch Laboratory.« less
Final Scientific Report: DE-SC0008580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidler, Gerald T.
We report scientific, technical, and organizational accomplishments under DE-SC0008580. This includes 10 publications, 5 patent or provisional patent applications, beamtime with important results at both LCLS and APS, and new progress in understanding target design for x-ray heating experiments at x-ray heating facilities.
X-ray penumbral imaging diagnostic developments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.
2017-08-01
X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.
NASA Astrophysics Data System (ADS)
Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong
2017-10-01
The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.
NASA Astrophysics Data System (ADS)
Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl
2015-09-01
Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.
Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024
2013-08-15
Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less
A US Coordination Facility for the Spectrum-X-Gamma Observatory
NASA Technical Reports Server (NTRS)
Forman, William R.
1999-01-01
Spectrum-X Gamma (SXG) is a world-class, orbiting astronomical observatory, with capabilities for all-sky monitoring, polarimetry, and high resolution spectroscopy, and wavelength coverage extending from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray (SPIN) regimes. SXG is a multi-national mission developed under the sponsorship of the Russian Academy of Sciences, with participation from several European countries and the U.S. The U.S. involvement in SXG includes both instrumentation and data rights. The U.S. Spectrum X Gamma Coordination Facility (SXGCF) supports U.S. observers in proposing for SXG SODART observations, analyzing SXG data, and conducting archival research. The SXGCF also has the responsibility for organizing the U.S. archive of SXG data, which will eventually include approximately half of the data from most SXG instruments. This report summarizes the activities of the SXGCF scientific and technical staff during the period from Feb. 1 through July 31, 1999.
The Columbia University proton-induced soft x-ray microbeam.
Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J
2011-09-15
A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-15
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV.more » In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.« less
NASA Astrophysics Data System (ADS)
Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan
2017-10-01
Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas
NASA Astrophysics Data System (ADS)
Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.
2018-06-01
In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
On the nature of short and long gamma-ray bursts
NASA Astrophysics Data System (ADS)
Ruffini, Remo; Fryer, Chris; Muccino, Marco; Rueda Hernandez, Jorge
2016-03-01
For a long GRB (L-GRB) the induced gravitational collapse (IGC) paradigm proposes as progenitor a binary system made up of a carbon-oxygen core undergoing a supernova (SN) that triggers hypercritical accretion onto a neutron star (NS) companion. For a short GRB (S-GRB), a NS-NS merger is adopted. We divide L-GRBs and S-GRBs into subclasses, depending whether or not a black hole (BH) is formed. For long bursts, when no BH is formed we have the X-ray flashes (XRFs), with isotropic energy Eiso <=1052 erg and rest-frame spectral peak energy Ep , i <= 200 keV. When a BH is formed we have authentic L-GRBs, with Eiso >1052 erg and Ep , i > 200 keV. For short bursts, when no BH is formed we have short gamma-ray flashes (S-GRFs) with Eiso <=1052 erg and Ep , i <= 2 MeV, while an authentic S-GRBs occur if BH is formed, with Eiso >1052 erg and Ep , i > 2 MeV. We give examples and observational signatures of the four subclasses. In the case of S-GRBs and BdHNe evidence is given of the coincidence of the onset of the high-energy GeV emission with the birth of a Kerr-Newman BH.
A test cassette for x-ray-exposure experiments at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B.; Celeste, J.; Rekow, V.
2010-07-01
We present the design and operation of a test cassette for exposure of samples to radiation environments at the National Ignition Facility. The cassette provides options for square and round samples and exposure areas; the cassette provides for multiple levels of filtration on a single sample, which allows dynamic range in experiments. The samples had normal lines of sight to the x-ray source in order to have uniform x-ray illumination. The incident x-radiation onto the samples was determined by the choice of filter thicknesses and materials. The samples were held at precise locations, accurate to within a few hundred microns,more » in the target chamber in order to have a known fluence incident. In the cassette, the samples were held in place in such a way that a minimal “line contact” allows them to have the maximal mechanical response to the x-ray load. We present postshot images of the debris found on films used for filters, and pre- and postexposure specimens.« less
Two visual observations of relevance to the search for optical counterparts of gamma-ray sources
NASA Astrophysics Data System (ADS)
Warner, B.
1986-05-01
The authors draw attention to a visual observation of a brief flash from ζ Lyrae, observed by Heis in 1850, which resembles the optical burst detected electronically by Wdowiak and Clifton (1985) from β Cam in 1969. Visual observation by the author of a second magnitude flash of very short duration is shown to originate from planar reflection from a very distant satellite. Such flashes will contribute to the "noise" in all-sky searches for optical counterparts of γ-ray bursters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfield, B.R.; Rendell, J.T.
1991-01-01
The present conference discusses the application of schlieren photography in industry, laser fiber-optic high speed photography, holographic visualization of hypervelocity explosions, sub-100-picosec X-ray grating cameras, flash soft X-radiography, a novel approach to synchroballistic photography, a programmable image converter framing camera, high speed readout CCDs, an ultrafast optomechanical camera, a femtosec streak tube, a modular streak camera for laser ranging, and human-movement analysis with real-time imaging. Also discussed are high-speed photography of high-resolution moire patterns, a 2D electron-bombarded CCD readout for picosec electrooptical data, laser-generated plasma X-ray diagnostics, 3D shape restoration with virtual grating phase detection, Cu vapor lasers for highmore » speed photography, a two-frequency picosec laser with electrooptical feedback, the conversion of schlieren systems to high speed interferometers, laser-induced cavitation bubbles, stereo holographic cinematography, a gatable photonic detector, and laser generation of Stoneley waves at liquid-solid boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Dennis; Padmore, Howard; Lessner, Eliane
Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less
ART-XC/SRG: joint calibration of mirror modules and x-ray detectors
NASA Astrophysics Data System (ADS)
Tkachenko, A.; Pavlinsky, M.; Levin, V.; Akimov, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Yaskovich, A.; Oleinikov, V.; Gubarev, M.; Ramsey, B.
2017-08-01
The Astronomical Roentgen Telescope - X-ray Concentrator (ART-XC) is a hard x-ray instrument with energy response 6-30 keV that will to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. ART-XC consists of seven co-aligned mirror modules coupled with seven focal plane CdTe double-sided strip detectors. The mirror modules had been fabricated and calibrated at the NASA Marshall Space Flight Center (MSFC). The Russian Space Research Institute (IKI) has developed and tested the X-ray detectors. The joint x-ray calibration of the mirror modules and focal plane detectors was carried out at the IKI test facility. Details of the calibration procedure and an overview of the results are presented here.
Application of MEMS-based x-ray optics as tuneable nanosecond choppers
NASA Astrophysics Data System (ADS)
Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin
2017-08-01
Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.
The great flare of 1982 June 6
NASA Technical Reports Server (NTRS)
Tanaka, K.; Zirin, H.
1985-01-01
The great soft X-ray (SXR) flare (X12) of the past solar maximum was observed by Hinotori and by Big Bear Solar Observatory (BBSO) on June 6, 1982. Hinotori data consist of hard X-ray (HXR) and SXR images in the rise and decay of the flare, high-resolution soft X-ray spectra throughout the flare, and HXR and gamma-ray data. The BBSO data include films of H-alpha, H-alpha blue wing, D3 and longitudinal magnetic field, as well as video tapes of continuum. Images in HXR, SXR, H-alpha, D3 and the continuum are compared and SXR spectra analyzed. The flare resulted from extended motion of a large spot shearing the magnetic field. D3 and white-light images exhibit a progression from fast flashes to two ribbons, while both HXR and SXR are centered on the optical kernels. The continuum emission shows the same temporal behavior as the HXR at 160 keV. In its early phases, the Fe XXV line was double-peaked, and a decreasing blueshifted (up to 400 km/sec) component was observed, from which the evaporation rate of chromospheric material was estimated. It is suggested that this upflow is adequate to supply the coronal cloud. Flare energetics are discussed in detail, and it is concluded that a significant amount of energy was deposited in the corona, and that nonthermal electrons are the major energy input.
Science Goals for an All-sky Viewing Observatory in X-rays
NASA Astrophysics Data System (ADS)
Remillard, R. A.; Levine, A. M.; Morgan, E. H.; Bradt, H. V.
2003-03-01
We describe a concept for a NASA SMEX Mission that will provide a comprehensive investigation of cosmic explosions. These range from the short flashes at cosmological distances in Gamma-ray bursts, to the moments of relativistic mass ejections in Galactic microquasars, to the panorama of outbursts used to identify the stellar-scale black holes in our Galaxy. With an equatorial launch, an array of 31 cameras can cover 97% of the sky with an average exposure efficiency of 65%. Coded mask cameras with Xe detectors (1.5-12 keV) are chosen for their ability to distinguish thermal and non-thermal processes, while providing high throughput and msec time resolution to capture the detailed evolution of bright events. This mission, with 1' position accuracy, would provide a long-term solution to the critical needs for monitoring services for Chandra and GLAST, with possible overlap into the time frame for Constellation-X. The sky coverage would create additional science opportunities beyond the X-ray missions: "eyes" for LIGO and partnerships for time-variability with LOFAR and dedicated programs at optical observatories. Compared to the RXTE ASM, AVOX offers improvements by a factor of 40 in instantaneous sky coverage and a factor of 10 in sensitivity to faint X-ray sources (i.e. to 0.8 mCrab at 3 sigma in 1 day).
Intense X-ray machine for penetrating radiography
NASA Astrophysics Data System (ADS)
Lucht, Roy A.; Eckhouse, Shimon
Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.
Investigation of ultra low-dose scans in the context of quantum-counting clinical CT
NASA Astrophysics Data System (ADS)
Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.
2012-03-01
In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.