Sample records for flashing ratchet model

  1. Quasi-steady-state analysis of coupled flashing ratchets.

    PubMed

    Levien, Ethan; Bressloff, Paul C

    2015-10-01

    We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.

  2. The flashing Brownian ratchet and Parrondo's paradox.

    PubMed

    Ethier, S N; Lee, Jiyeon

    2018-01-01

    A Brownian ratchet is a one-dimensional diffusion process that drifts towards a minimum of a periodic asymmetric sawtooth potential. A flashing Brownian ratchet is a process that alternates between two regimes, a one-dimensional Brownian motion and a Brownian ratchet, producing directed motion. These processes have been of interest to physicists and biologists for nearly 25 years. The flashing Brownian ratchet is the process that motivated Parrondo's paradox, in which two fair games of chance, when alternated, produce a winning game. Parrondo's games are relatively simple, being discrete in time and space. The flashing Brownian ratchet is rather more complicated. We show how one can study the latter process numerically using a random walk approximation.

  3. The flashing Brownian ratchet and Parrondo’s paradox

    PubMed Central

    Ethier, S. N.

    2018-01-01

    A Brownian ratchet is a one-dimensional diffusion process that drifts towards a minimum of a periodic asymmetric sawtooth potential. A flashing Brownian ratchet is a process that alternates between two regimes, a one-dimensional Brownian motion and a Brownian ratchet, producing directed motion. These processes have been of interest to physicists and biologists for nearly 25 years. The flashing Brownian ratchet is the process that motivated Parrondo’s paradox, in which two fair games of chance, when alternated, produce a winning game. Parrondo’s games are relatively simple, being discrete in time and space. The flashing Brownian ratchet is rather more complicated. We show how one can study the latter process numerically using a random walk approximation. PMID:29410868

  4. Exact solution of a ratchet with switching sawtooth potential

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Klümper, Andreas

    2018-01-01

    We consider the flashing potential ratchet model with general asymmetric potential. Using Bloch functions, we derive equations which allow for the calculation of both the ratchet's flux and higher moments of distribution for rather general potentials. We indicate how to derive the optimal transition rates for maximal velocity of the ratchet. We calculate explicitly the exact velocity of a ratchet with simple sawtooth potential from the solution of a system of 8 linear algebraic equations. Using Bloch functions, we derive the equations for the ratchet with potentials changing periodically with time. We also consider the case of the ratchet with evolution with two different potentials acting for some random periods of time.

  5. Quantum ratchet effect in a time non-uniform double-kicked model

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  6. High-temperature ratchets with sawtooth potentials

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2016-11-01

    The concept of the effective potential is suggested as an efficient instrument to get a uniform analytical description of stochastic high-temperature on-off flashing and rocking ratchets. The analytical representation for the average particle velocity, obtained within this technique, allows description of ratchets with sharp potentials (and potentials with jumps in particular). For sawtooth potentials, the explicit analytical expressions for the average velocity of on-off flashing and rocking ratchets valid for arbitrary frequencies of potential energy fluctuations are derived; the difference in their high-frequency asymptotics is explored for the smooth and cusped profiles, and profiles with jumps. The origin of the difference as well as the appearance of the jump behavior in ratchet characteristics are interpreted in terms of self-similar universal solutions which give the continuous description of the effect. It is shown how the jump behavior in motor characteristics arises from the competition between the characteristic times of the system.

  7. Theory of slightly fluctuating ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, V. M.; Shapochkina, I. V.; Lin, S. H.; Trakhtenberg, L. I.

    2017-04-01

    We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green's function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.

  8. Ratchet Effects in Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle-particle interactions, and nondissipative effects.

  9. Ratchet Effects in Active Matter Systems

    DOE PAGES

    Reichhardt, Cynthia Jane; Reichhardt, Charles

    2016-12-21

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia Jane; Reichhardt, Charles

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less

  11. Electrodynamic ratchet motor.

    PubMed

    Lim, Jiufu; Sader, John E; Mulvaney, Paul

    2009-03-01

    Brownian ratchets produce directed motion through rectification of thermal fluctuations and have been used for separation processes and colloidal transport. We propose a flashing ratchet motor that enables the transduction of electrical energy into rotary micromechanical work. This is achieved through torque generation provided by boundary shaping of equipotential surfaces. The present device contrasts to previous implementations that focus on translational motion. Stochastic simulations elucidate the performance characteristics of this device as a function of its geometry. Miniaturization to nanoscale dimensions yields rotational speeds in excess of 1 kHz, which is comparable to biomolecular motors of similar size.

  12. Extended Parrondo's game and Brownian ratchets: strong and weak Parrondo effect.

    PubMed

    Wu, Degang; Szeto, Kwok Yip

    2014-02-01

    Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin p(b) is used, otherwise a favorable p(g) coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M(1) or M(2). Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M(2) is not a multiple of M(1), the combination of B(M(1)) and B(M(2)) has strong and weak Parrondo effect for some subsets in the parameter space (p(b),p(g)), while there is neither strong nor weak effect when M(2) is a multiple of M(1). Furthermore, when M(2) is not a multiple of M(1), a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.

  13. Cooperation and competition between two symmetry breakings in a coupled ratchet

    NASA Astrophysics Data System (ADS)

    Li, Chen-Pu; Chen, Hong-Bin; Fan, Hong; Xie, Ge-Ying; Zheng, Zhi-Gang

    2018-03-01

    We investigate the collective mechanism of coupled Brownian motors in a flashing ratchet in the presence of coupling symmetry breaking and space symmetry breaking. The dependences of directed current on various parameters are extensively studied in terms of numerical simulations and theoretical analysis. Reversed motion can be achieved by modulating multiple parameters including the spatial asymmetry coefficient, the coupling asymmetry coefficient, the coupling free length and the coupling strength. The dynamical mechanism of these transport properties can be reasonably explained by the effective potential theory and the cooperation or competition between two symmetry breakings. Moreover, adjusting the Gaussian white noise intensity, which can induce weak reversed motion under certain condition, can optimize and manipulate the directed transport of the ratchet system.

  14. Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Debasish; Chaudhuri, Abhishek

    2012-02-01

    Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für PhysikEPJAFV1434-600110.1007/BF01391621 252, 25 (1972)], we present a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model of molecular motors.

  15. Entropic bounds on currents in Langevin systems

    NASA Astrophysics Data System (ADS)

    Dechant, Andreas; Sasa, Shin-ichi

    2018-06-01

    We derive a bound on generalized currents for Langevin systems in terms of the total entropy production in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency—Carnot efficiency for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet—can only be reached at vanishing power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat and entropy in a nonthermal situation where the friction and noise intensity are state dependent.

  16. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces

    DOE PAGES

    Li, Qing; Kang, Qinjun J.; Francois, Marianne M.; ...

    2016-10-09

    Here in this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D 2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowlymore » inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Lastly, numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.« less

  17. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qing; Kang, Qinjun J.; Francois, Marianne M.

    Here in this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D 2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowlymore » inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Lastly, numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.« less

  18. Impact of rough potentials in rocked ratchet performance

    NASA Astrophysics Data System (ADS)

    Camargo, S.; Anteneodo, C.

    2018-04-01

    We consider thermal ratchets modeled by overdamped Brownian motion in a spatially periodic potential with a tilting process, both unbiased on average. We investigate the impact of the introduction of roughness in the potential profile, over the flux and efficiency of the ratchet. Both amplitude and wavelength that characterize roughness are varied. We show that depending on the ratchet parameters, rugosity can either spoil or enhance the ratchet performance.

  19. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  20. Robustness of multidimensional Brownian ratchets as directed transport mechanisms.

    PubMed

    González-Candela, Ernesto; Romero-Rochín, Víctor; Del Río, Fernando

    2011-08-07

    Brownian ratchets have recently been considered as models to describe the ability of certain systems to locate very specific states in multidimensional configuration spaces. This directional process has particularly been proposed as an alternative explanation for the protein folding problem, in which the polypeptide is driven toward the native state by a multidimensional Brownian ratchet. Recognizing the relevance of robustness in biological systems, in this work we analyze such a property of Brownian ratchets by pushing to the limits all the properties considered essential to produce directed transport. Based on the results presented here, we can state that Brownian ratchets are able to deliver current and locate funnel structures under a wide range of conditions. As a result, they represent a simple model that solves the Levinthal's paradox with great robustness and flexibility and without requiring any ad hoc biased transition probability. The behavior of Brownian ratchets shown in this article considerably enhances the plausibility of the model for at least part of the structural mechanism behind protein folding process.

  1. Dislocation based controlling of kinematic hardening contribution to simulate primary and secondary stages of uniaxial ratcheting

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.

    2017-07-01

    The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.

  2. Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li

    2015-05-01

    Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.

  3. Uniaxial ratchetting of 316FR steel at room temperature -- Part 2. Constitutive modeling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, N.; Abdel-Karim, M.

    2000-01-01

    Uniaxial ratchetting experiments of 316FR steel at room temperature reported in Part 1 are simulated using a new kinematic hardening model which has two kinds of dynamic recovery terms. The model, which features the capability of simulating slight opening of stress-strain hysteresis loops robustly, is formulated by furnishing the Armstrong and Frederick model with the critical state of dynamic recovery introduced by Ohno and Wang (1993). The model is then combined with a viscoplastic equation, and the resulting constitutive model is applied successfully to simulating the experiments. It is shown that for ratchetting under stress cycling with negative stress ratio,more » viscoplasticity and slight opening of hysteresis loops are effective mainly in early and subsequent cycles, respectively, whereas for ratchetting under zero-to-tension only viscoplasticity is effective.« less

  4. Design Models for Shaping of a Tooth Profile of External Fine-Module Ratchet Teeth

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2016-04-01

    Simulation of the shaping for the fine-module external ratchet teeth at which the contacting surfaces are formed by the straight segments is considered in this paper. The design schemes for shaping of the proposed ratchet teeth by a shaper cutter and a rack are obtained. It is defined that the maximum length of the straight segment of the front edge ratchet teeth will be formed at shaping by a rack cutter. The effect of a module, a gradient angle and a radius of blank circles on the length of the straight segment of the front edge ratchet teeth is investigated.

  5. Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.

    PubMed

    Kenward, Martin; Slater, Gary W

    2008-11-01

    We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.

  6. Active Brownian motion models and applications to ratchets

    NASA Astrophysics Data System (ADS)

    Fiasconaro, A.; Ebeling, W.; Gudowska-Nowak, E.

    2008-10-01

    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircaselike and Mateos ratchet potentials, also with the additional loads modelled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This stochastically driven directionality effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed.

  7. Course 3: Modelling Motor Protein Systems

    NASA Astrophysics Data System (ADS)

    Duke, T.

    Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit

  8. A Theory for the Roll-Ratchet Phenomenon in High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1997-01-01

    Roll-ratchet refers to a high frequency oscillation which can occur in pilot-in-the-loop control of roll attitude in high performance aircraft. The frequencies of oscillation are typically well beyond those associated with the more familiar pilot-induced oscillation. A structural model of the human pilot which has been employed to provide a unified theory for aircraft handling qualities and pilot-induced oscillations is employed here to provide a theory for the existence of roll-ratchet. It is hypothesized and demonstrated using the structural model that the pilot's inappropriate use of vestibular acceleration feedback can cause this phenomenon, a possibility which has been discussed previously by other researchers. The possible influence of biodynamic feedback on roll ratchet is also discussed.

  9. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  10. Propulsion mechanisms for Leidenfrost solids on ratchets.

    PubMed

    Baier, Tobias; Dupeux, Guillaume; Herbert, Stefan; Hardt, Steffen; Quéré, David

    2013-02-01

    We propose a model for the propulsion of Leidenfrost solids on ratchets based on viscous drag due to the flow of evaporating vapor. The model assumes pressure-driven flow described by the Navier-Stokes equations and is mainly studied in lubrication approximation. A scaling expression is derived for the dependence of the propulsive force on geometric parameters of the ratchet surface and properties of the sublimating solid. We show that the model results as well as the scaling law compare favorably with experiments and are able to reproduce the experimentally observed scaling with the size of the solid.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Guozheng, E-mail: guozhengkang@home.swjtu.edu.cn; Dong, Yawei; Liu, Yujie

    The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasingmore » applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.« less

  12. Biomechanical investigation of a novel ratcheting arthrodesis nail.

    PubMed

    McCormick, Jeremy J; Li, Xinning; Weiss, Douglas R; Billiar, Kristen L; Wixted, John J

    2010-10-14

    Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion.

  13. Biomechanical investigation of a novel ratcheting arthrodesis nail

    PubMed Central

    2010-01-01

    Background Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. Methods A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Results Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. Conclusion With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion. PMID:20942976

  14. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    PubMed

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ratcheted electrophoresis of Brownian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalik, Mikołaj; Bishop, Kyle J. M., E-mail: kjmbishop@engr.psu.edu

    2016-05-16

    The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operatingmore » condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.« less

  16. Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature

    DTIC Science & Technology

    2011-11-01

    ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose

  17. Detection of terahertz radiation in metamaterials: giant plasmonic ratchet effect (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Kachorovski, Valentin; Shur, Michael S.

    2017-05-01

    The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson's equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power. [1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015

  18. Sensitivity of PBX-9502 after ratchet growth

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta N.; Swift, Damian

    2012-03-01

    Ratchet growth, or irreversible thermal expansion of the TATB-based plastic-bonded explosive PBX-9502, leads to increased sensitivity, as a result of increased porosity. The observed increase of between 3.1 and 3.5 volume percent should increase sensitivity according to the published Pop-plots for PBX-9502 [1]. Because of the variable size, shape, and location of the increased porosity, the observed sensitivity of the ratchet-grown sample is less than the sensitivity of a sample pressed to the same density. Modeling of the composite, using a quasi-harmonic EOS for unreacted components [2] and a robust porosity model for variations in density [3], allowed comparison of the initiation observed in experiment with behavior modeled as a function of density. An Arrhenius model was used to describe reaction, and the EOS for products was generated using the CHEETAH code [4]. A 1-D Lagrangian hydrocode was used to model in-material gauge records and the measured turnover to detonation, predicting greater sensitivity to density than observed for ratchet-grown material. This observation is consistent with gauge records indicating intermittent growth of the reactive wave, possibly due to inhomogeneities in density, as observed in SEM images of the material [5].

  19. Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-05-01

    The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.

  20. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  1. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    NASA Astrophysics Data System (ADS)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  2. Reversible vector ratchets for skyrmion systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.

  3. Reversible vector ratchets for skyrmion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  4. Reversible vector ratchets for skyrmion systems

    DOE PAGES

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    2017-03-03

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  5. Flux of a Ratchet Model and Applications to Processive Motor Proteins

    NASA Astrophysics Data System (ADS)

    Li, Jing-Hui

    2015-10-01

    In this paper, we investigate the stationary probability current (or flux) of a Brownian ratchet model as a function of the flipping rate of the fluctuating potential barrier. It is shown that, with suitably selecting the parameters' values of the ratchet system, we can get the negative resonant activation, the positive resonant activation, the double resonant activation, and the current reversal, for the stationary probability current versus the flipping rate. The appearance of these phenomena is the result of the cooperative effects of the potential's dichotomous fluctuations and the internal thermal fluctuations on the evolution of the flux versus the flipping rate of the fluctuating potential barrier. In addition, some applications of our results to the motor proteins are discussed. Supported by K.C. Wong Magna Fund in Ningbo University in China

  6. Reversible Vector Ratchet Effect in Skyrmion Systems

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Reichhardt, Charles; Reichhardt, Cynthia

    Magnetic skyrmions are topological non-trivial spin textures found in several magnetic materials. Since their motion can be controlled using ultralow current densities, skyrmions are appealing for potential applications in spintronics as information carriers and processing devices. In this work, we studied the collective transport properties of driven skyrmions based on a particle-like model with molecular dynamics (MD) simulation. Our results show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a new class of ratchet system, which we call a vector ratchet, that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated up to 360 degrees relative to the substrate asymmetry direction. This could represent a new method for controlling skyrmion motion for spintronic applications.

  7. Tunable φ Josephson junction ratchet.

    PubMed

    Menditto, R; Sickinger, H; Weides, M; Kohlstedt, H; Koelle, D; Kleiner, R; Goldobin, E

    2016-10-01

    We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a φ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also under the action of an additional dc current, which acts as a counterforce trying to stop the ratchet. Under these conditions the ratchet works against the counterforce, thus producing a nonzero output power. Finally, we estimate the efficiency of the φ Josephson junction ratchet.

  8. Ratcheting Behavior of a Titanium-Stabilized Interstitial Free Steel

    NASA Astrophysics Data System (ADS)

    De, P. S.; Chakraborti, P. C.; Bhattacharya, B.; Shome, M.; Bhattacharjee, D.

    2013-05-01

    Engineering stress-control ratcheting behavior of a titanium-stabilized interstitial free steel has been studied under different combinations of mean stress and stress amplitude at a stress rate of 250 MPa s-1. Tests have been done up to 29.80 pct true ratcheting strain evolution in the specimens at three maximum stress levels. It is observed that this amount of ratcheting strain is more than the uniform tensile strain at a strain rate of 10-3 s-1 and evolves without showing tensile instability of the specimens. In the process of ratcheting strain evolution at constant maximum stresses, the effect of increasing stress amplitude is found to be more than that of increasing the mean stress component. Further, the constant maximum stress ratcheting test results reveal that the number of cycles ( N) required for 29.80 pct. true ratcheting strain evolution exponentially increases with increase of stress ratio ( R). Post-ratcheting tensile test results showing increase of strength and linear decrease in ductility with increasing R at different constant maximum stresses indicate that stress parameters used during ratcheting tests influence the size of the dislocation cell structure of the steel even with the same amount of ratcheting strain evolution. It is postulated that during ratcheting fatigue, damage becomes greater with the increase of R for any fixed amount of ratcheting strain evolution at constant maximum stress.

  9. Power transduction of actin filaments ratcheting in vitro against a load.

    PubMed

    Démoulin, Damien; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2014-12-16

    The actin cytoskeleton has the unique capability of producing pushing forces at the leading edge of motile cells without the implication of molecular motors. This phenomenon has been extensively studied theoretically, and molecular models, including the widely known Brownian ratchet, have been proposed. However, supporting experimental work is lacking, due in part to hardly accessible molecular length scales. We designed an experiment to directly probe the mechanism of force generation in a setup where a population of actin filaments grows against a load applied by magnetic microparticles. The filaments, arranged in stiff bundles by fascin, are constrained to point toward the applied load. In this protrusion-like geometry, we are able to directly measure the velocity of filament elongation and its dependence on force. Using numerical simulations, we provide evidence that our experimental data are consistent with a Brownian ratchet-based model. We further demonstrate the existence of a force regime far below stalling where the mechanical power transduced by the ratcheting filaments to the load is maximal. The actin machinery in migrating cells may tune the number of filaments at the leading edge to work in this force regime.

  10. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.

    2015-07-01

    We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.

  11. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less

  12. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-07-31

    We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized.more » As a result, skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.« less

  13. Cyclotron resonance of the magnetic ratchet effect and second harmonic generation in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kheirabadi, Narjes; McCann, Edward; Fal'ko, Vladimir I.

    2018-02-01

    We model the magnetic ratchet effect in bilayer graphene in which a dc electric current is produced by an ac electric field of frequency ω in the presence of a steady in-plane magnetic field and inversion-symmetry breaking. In bilayer graphene, the ratchet effect is tunable by an external metallic gate which breaks inversion symmetry. For zero in-plane magnetic field, we show that trigonal warping and inversion-symmetry breaking are able to produce a large dc valley current, but not a nonzero total dc charge current. For the magnetic ratchet in a tilted magnetic field, the perpendicular field component induces cyclotron motion with frequency ωc and we find that the dc current displays cyclotron resonance at ωc=ω , although this peak in the current is actually smaller than its value at ωc=0 . Second harmonic generation, however, is greatly enhanced by resonances at ωc=ω and ωc=2 ω for which the current is generally much larger than at ωc=0 .

  14. Circular and linear magnetic quantum ratchet effects in dual-grating-gate CdTe-based nanostructures

    NASA Astrophysics Data System (ADS)

    Faltermeier, P.; Budkin, G. V.; Hubmann, S.; Bel'kov, V. V.; Golub, L. E.; Ivchenko, E. L.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Kozlov, D. A.; Weiss, D.; Ganichev, S. D.

    2018-07-01

    Circular and linear magnetic quantum ratchet effects induced by alternating electric fields in the terahertz frequency range have been observed. The ratchet current shows 1/B-periodic oscillations with an amplitude, which is much larger than the photocurrent at zero magnetic field and is sensitive to the orientation of the terahertz electric field (linear ratchet) and to the radiation helicity (circular ratchet). The ratchet effects are detected in (Cd,Mn)Te quantum well structures with dual-grating-gate lateral superlattices. Theoretical analysis performed in the framework of semiclassical approach and taking into account the Landau quantization describes well the experimental data.

  15. Chaotic dynamics and control of deterministic ratchets.

    PubMed

    Family, Fereydoon; Larrondo, H A; Zarlenga, D G; Arizmendi, C M

    2005-11-30

    Deterministic ratchets, in the inertial and also in the overdamped limit, have a very complex dynamics, including chaotic motion. This deterministically induced chaos mimics, to some extent, the role of noise, changing, on the other hand, some of the basic properties of thermal ratchets; for example, inertial ratchets can exhibit multiple reversals in the current direction. The direction depends on the amount of friction and inertia, which makes it especially interesting for technological applications such as biological particle separation. We overview in this work different strategies to control the current of inertial ratchets. The control parameters analysed are the strength and frequency of the periodic external force, the strength of the quenched noise that models a non-perfectly-periodic potential, and the mass of the particles. Control mechanisms are associated with the fractal nature of the basins of attraction of the mean velocity attractors. The control of the overdamped motion of noninteracting particles in a rocking periodic asymmetric potential is also reviewed. The analysis is focused on synchronization of the motion of the particles with the external sinusoidal driving force. Two cases are considered: a perfect lattice without disorder and a lattice with noncorrelated quenched noise. The amplitude of the driving force and the strength of the quenched noise are used as control parameters.

  16. How does a scanning ribosomal particle move along the 5'-untranslated region of eukaryotic mRNA? Brownian Ratchet model.

    PubMed

    Spirin, Alexander S

    2009-11-17

    A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.

  17. Electrostatic Ratchet in the Protective Antigen Channel Promotes Anthrax Toxin Translocation*

    PubMed Central

    Wynia-Smith, Sarah L.; Brown, Michael J.; Chirichella, Gina; Kemalyan, Gigi; Krantz, Bryan A.

    2012-01-01

    Central to the power-stroke and Brownian-ratchet mechanisms of protein translocation is the process through which nonequilibrium fluctuations are rectified or ratcheted by the molecular motor to transport substrate proteins along a specific axis. We investigated the ratchet mechanism using anthrax toxin as a model. Anthrax toxin is a tripartite toxin comprised of the protective antigen (PA) component, a homooligomeric transmembrane translocase, which translocates two other enzyme components, lethal factor (LF) and edema factor (EF), into the cytosol of the host cell under the proton motive force (PMF). The PA-binding domains of LF and EF (LFN and EFN) possess identical folds and similar solution stabilities; however, EFN translocates ∼10–200-fold slower than LFN, depending on the electrical potential (Δψ) and chemical potential (ΔpH) compositions of the PMF. From an analysis of LFN/EFN chimera proteins, we identified two 10-residue cassettes comprised of charged sequence that were responsible for the impaired translocation kinetics of EFN. These cassettes have nonspecific electrostatic requirements: one surprisingly prefers acidic residues when driven by either a Δψ or a ΔpH; the second requires basic residues only when driven by a Δψ. Through modeling and experiment, we identified a charged surface in the PA channel responsible for charge selectivity. The charged surface latches the substrate and promotes PMF-driven transport. We propose an electrostatic ratchet in the channel, comprised of opposing rings of charged residues, enforces directionality by interacting with charged cassettes in the substrate, thereby generating forces sufficient to drive unfolding. PMID:23115233

  18. Effective Brownian ratchet separation by a combination of molecular filtering and a self-spreading lipid bilayer system.

    PubMed

    Motegi, Toshinori; Nabika, Hideki; Fu, Yingqiang; Chen, Lili; Sun, Yinlu; Zhao, Jianwei; Murakoshi, Kei

    2014-07-01

    A new molecular manipulation method in the self-spreading lipid bilayer membrane by combining Brownian ratchet and molecular filtering effects is reported. The newly designed ratchet obstacle was developed to effectively separate dye-lipid molecules. The self-spreading lipid bilayer acted as both a molecular transport system and a manipulation medium. By controlling the size and shape of ratchet obstacles, we achieved a significant increase in the separation angle for dye-lipid molecules compared to that with the previous ratchet obstacle. A clear difference was observed between the experimental results and the simple random walk simulation that takes into consideration only the geometrical effect of the ratchet obstacles. This difference was explained by considering an obstacle-dependent local decrease in molecular diffusivity near the obstacles, known as the molecular filtering effect at nanospace. Our experimental findings open up a novel controlling factor in the Brownian ratchet manipulation that allow the efficient separation of molecules in the lipid bilayer based on the combination of Brownian ratchet and molecular filtering effects.

  19. Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety

    NASA Astrophysics Data System (ADS)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2017-06-01

    Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.

  20. Fitness of RNA virus decreased by Muller's ratchet

    NASA Astrophysics Data System (ADS)

    Chao, Lin

    1990-11-01

    WHY sex exists remains an unsolved problem in biology1-3. If mutations are on the average deleterious, a high mutation rate can account for the evolution of sex4. One form of this mutational hypothesis is Muller's ratchet5,6. If the mutation rate is high, mutation-free individuals become rare and they can be lost by genetic drift in small populations. In asexual populations, as Muller5 noted, the loss is irreversible and the load of deleterious mutations increases in a ratchet-like manner with the successive loss of the least-mutated individuals. Sex can be advantageous because it increases the fitness of sexual populations by re-creating mutation-free individuals from mutated individuals and stops (or slows) Muller's ratchet. Although Muller's ratchet is an appealing hypothesis, it has been investigated and documented experimentally in only one group of organisms-ciliated protozoa2. I initiated a study to examine the role of Muller's ratchet on the evolution of sex in RNA viruses and report here a significant decrease in fitness due to Muller's ratchet in 20 lineages of the RNA bacteriophage Φ6. These results show that deleterious mutations are generated at a sufficiently high rate to advance Muller's ratchet in an RNA virus and that beneficial, backward and compensatory mutations cannot stop the ratchet in the observed range of fitness decrease.

  1. Anisotropy in the Ratchet Growth of PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Ricardo Blum; Liu, Cheng; Thompson, Darla Graff

    2015-03-12

    TATB-based compactions and composites are known to undergo “ratchet growth”, an irreversible volume increase that occurs upon heating or cooling of a specimen. Ratchet growth likely arises because the coefficient of thermal expansion of the TATB crystals is strongly anisotropic, but the exact mechanism is not well-understood. TATB crystals in solid, plastic-bonded, explosive PBX 9502 parts can have a preferred crystallographic orientation (texture) caused by the compaction process. As a result, the irreversible strain associated with PBX 9502 ratchet growth is anisotropic. The present paper relates the magnitude of ratchet growth to the crystalline anisotropy of the TATB crystals. Themore » crystalline anisotropy is measured by x-ray diffraction and the ratchet growth is measured by a digital image-correlation technique.« less

  2. Punchets: nonlinear transport in Hamiltonian pump-ratchet hybrids

    NASA Astrophysics Data System (ADS)

    Dittrich, Thomas; Medina Sánchez, Nicolás

    2018-02-01

    ‘Punchets’ are hybrids between ratchets and pumps, combining a spatially periodic static potential, typically asymmetric under space inversion, with a local driving that breaks time-reversal invariance, and are intended to model metal or semiconductor surfaces irradiated by a collimated laser beam. Their crucial feature is irregular driven scattering between asymptotic regions supporting periodic (as opposed to free) motion. With all binary spatio-temporal symmetries broken, scattering in punchets typically generates directed currents. We here study the underlying nonlinear transport mechanisms, from chaotic scattering to the parameter dependence of the currents, in three types of Hamiltonian models, (i) with spatially periodic potentials where only in the driven scattering region, spatial and temporal symmetries are broken, and (ii), spatially asymmetric (ratchet) potentials with a driving that only breaks time-reversal invariance. As more realistic models of laser-irradiated surfaces, we consider (iii), a driving in the form of a running wave confined to a compact region by a static envelope. In this case, the induced current can even run against the direction of wave propagation, drastically evidencing its nonlinear nature. Quantizing punchets is indicated as a viable research perspective.

  3. Powering a burnt bridges Brownian ratchet: a model for an extracellular motor driven by proteolysis of collagen.

    PubMed

    Saffarian, Saveez; Qian, Hong; Collier, Ivan; Elson, Elliot; Goldberg, Gregory

    2006-04-01

    Biased diffusion of collagenase on collagen fibrils may represent the first observed adenosine triphosphate-independent extracellular molecular motor. The magnitude of force generated by the enzyme remains unclear. We propose a propulsion mechanism based on a burnt bridges Brownian ratchet model with a varying degree of coupling of the free energy from collagen proteolysis to the enzyme motion. When constrained by experimental observations, our model predicts 0.1 pN stall force for individual collagenase molecules. A dimer, surprisingly, can generate a force in the range of 5 pN, suggesting that the motor can be of biological significance.

  4. Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model

    NASA Astrophysics Data System (ADS)

    Sánchez-Rey, Bernardo; Quintero, Niurka R.; Cuevas-Maraver, Jesús; Alejo, Miguel A.

    2014-10-01

    A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.

  5. Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model.

    PubMed

    Sánchez-Rey, Bernardo; Quintero, Niurka R; Cuevas-Maraver, Jesús; Alejo, Miguel A

    2014-10-01

    A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.

  6. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less

  7. Mesoscopic model of actin-based propulsion.

    PubMed

    Zhu, Jie; Mogilner, Alex

    2012-01-01

    Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  8. Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane Olsen

    2016-02-11

    A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that whenmore » the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less

  9. Gravity controlled anti-reverse rotation device

    DOEpatents

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  10. Exact probability distribution functions for Parrondo's games

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Saakian, David B.; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  11. Exact probability distribution functions for Parrondo's games.

    PubMed

    Zadourian, Rubina; Saakian, David B; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  12. Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system

    NASA Astrophysics Data System (ADS)

    Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing

    2015-09-01

    A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.

  13. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  14. 3-D sprag ratcheting tool

    NASA Technical Reports Server (NTRS)

    Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)

    2003-01-01

    A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.

  15. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  16. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less

  17. Ratchet baryogenesis and an analogy with the forced pendulum

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  18. Collective ratchet effects and reversals for active matter particles on quasi-one-dimensional asymmetric substrates.

    PubMed

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-10-19

    Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

  19. Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie

    2012-03-15

    Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less

  20. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives.

    PubMed

    Cole, David; Bending, Simon; Savel'ev, Sergey; Grigorenko, Alexander; Tamegai, Tsuyoshi; Nori, Franco

    2006-04-01

    Initially inspired by biological motors, new types of nanodevice have been proposed for controlling the motion of nanoparticles. Structures incorporating spatially asymmetric potential profiles (ratchet substrates) have been realized experimentally to manipulate vortices in superconductors, particles in asymmetric silicon pores, as well as charged particles through artificial pores and arrays of optical tweezers. Using theoretical ideas, we demonstrate experimentally how to guide flux quanta in layered superconductors using a drive that is asymmetric in time instead of being asymmetric in space. By varying the time-asymmetry of the drive, we are able experimentally to increase or decrease the density of magnetic flux at the centre of superconducting samples that have no spatial ratchet substrate. This is the first ratchet without a ratchet potential. The experimental results can be well described by numerical simulations considering the dragging effect of two types of vortices penetrating layered superconductors in tilted magnetic fields.

  1. Current inversion in the Lévy ratchet.

    PubMed

    Dybiec, Bartłomiej

    2008-12-01

    We study the motion of an overdamped test particle in a static periodic potential lacking spatial symmetry under the influence of periodically modulated alpha -stable (Lévy) type noise. Due to the nonthermal character of the driving noise, the particle exhibits a motion with a preferred direction. The additional periodic modulation of the noise asymmetry changes the behavior of the static "Lévy ratchet." For the fast rate of the noise asymmetry modulation, the Lévy ratchet behaves like the one driven by the symmetric alpha -stable noise. When the modulation period is larger, the nontrivial effects of the noise asymmetry on the behavior of the Lévy ratchet are visible. In particular, the current inversion is observed in the system at hand. The properties of the Lévy ratchet are studied by use of the robust measures of directionality, which are defined regardless of the type of the stochastic driving.

  2. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism

    PubMed Central

    Vecchiarelli, Anthony G.; Hwang, Ling Chin; Mizuuchi, Kiyoshi

    2013-01-01

    Increasingly diverse types of cargo are being found to be segregated and positioned by ParA-type ATPases. Several minimalistic systems described in bacteria are self-organizing and are known to affect the transport of plasmids, protein machineries, and chromosomal loci. One well-studied model is the F plasmid partition system, SopABC. In vivo, SopA ATPase forms dynamic patterns on the nucleoid in the presence of the ATPase stimulator, SopB, which binds to the sopC site on the plasmid, demarcating it as the cargo. To understand the relationship between nucleoid patterning and plasmid transport, we established a cell-free system to study plasmid partition reactions in a DNA-carpeted flowcell. We observed depletion zones of the partition ATPase on the DNA carpet surrounding partition complexes. The findings favor a diffusion-ratchet model for plasmid motion whereby partition complexes create an ATPase concentration gradient and then climb up this gradient toward higher concentrations of the ATPase. Here, we report on the dynamic properties of the Sop system on a DNA-carpet substrate, which further support the proposed diffusion-ratchet mechanism. PMID:23479605

  3. Influence of Asymmetric Cyclic Loading on Structural Evolution and Deformation Behavior of Cu-5 at.% Zr Alloy: An Atomistic Simulation-Based Study

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Dutta, Krishna; Bhardwaj, Ravindra; Yedla, Natraj; Karthik, V.; Pal, Snehanshu

    2017-11-01

    Molecular dynamics (MD) simulation-based studies of tensile test and structural evolution of Cu-5 at.% Zr alloy under asymmetric cyclic loading (i.e., ratcheting behavior) considering various stress ratios such as - 0.2, - 0.4 and - 0.6 for different temperatures, viz.≈ 100, 300 and 500 K have been performed using embedded atom model Finnis-Sinclair potential. According to obtained stress-strain response from MD calculation, Cu-5 at.% Zr alloy specimen is pristine in nature as sudden drop in stress just after yield stress and subsequent elastic type deformation are observed for this alloy. Predicted ratcheting strain by MD simulation for Cu-5 at.% Zr alloy varies from 4.5 to 5%. Significant increase in ratcheting strain has been observed with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed radial distribution function analysis and cluster analysis.

  4. A Ratchet Lens: Black Queer Youth, Agency, Hip Hop, and the Black Ratchet Imagination

    ERIC Educational Resources Information Center

    Love, Bettina L.

    2017-01-01

    This article explores the utilization of the theory of a Black ratchet imagination as a methodological perspective to examine the multiple intersections of Black and queer identity constructions within the space of hip hop. In particular, I argue for the need of a methodological lens that recognizes, appreciates, and struggles with the fluidity,…

  5. Molecular wires acting as quantum heat ratchets.

    PubMed

    Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter

    2009-12-01

    We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.

  6. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  7. Magnetization Ratchet in Cylindrical Nanowires.

    PubMed

    Bran, Cristina; Berganza, Eider; Fernandez-Roldan, Jose A; Palmero, Ester M; Meier, Jessica; Calle, Esther; Jaafar, Miriam; Foerster, Michael; Aballe, Lucia; Fraile Rodriguez, Arantxa; P Del Real, Rafael; Asenjo, Agustina; Chubykalo-Fesenko, Oksana; Vazquez, Manuel

    2018-05-31

    The unidirectional motion of information carriers such as domain walls in magnetic nanostrips is a key feature for many future spintronic applications based on shift registers. This magnetic ratchet effect has so far been achieved in a limited number of complex nanomagnetic structures, for example, by lithographically engineered pinning sites. Here we report on a simple remagnetization ratchet originated in the asymmetric potential from the designed increasing lengths of magnetostatically coupled ferromagnetic segments in FeCo/Cu cylindrical nanowires. The magnetization reversal in neighboring segments propagates sequentially in steps starting from the shorter segments, irrespective of the applied field direction. This natural and efficient ratchet offers alternatives for the design of three-dimensional advanced storage and logic devices.

  8. Inertial frictional ratchets and their load bearing efficiencies

    NASA Astrophysics Data System (ADS)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2018-03-01

    We investigate the performance of an inertial frictional ratchet in a sinusoidal potential driven by a sinusoidal external field. The dependence of the performance on the parameters of the sinusoidally varying friction, such as the mean friction coefficient and its phase difference with the potential, is studied in detail. Interestingly, under certain circumstances, the thermodynamic efficiency of the ratchet against an applied load shows a non-monotonic behaviour as a function of the mean friction coefficient. Also, in the large friction ranges, the efficiency is shown to increase with increasing applied load even though the corresponding ratchet current decreases as the applied load increases. These counterintuitive numerical results are explained in the text.

  9. Establishing a relationship between maximum torque production of isolated joints to simulate EVA ratchet push-pull maneuver: A case study

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara

    1993-01-01

    As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.

  10. Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study.

    PubMed

    Ding, Hongru; Peng, Guilong; Mo, Shenqiu; Ma, Dengke; Sharshir, Swellam Wafa; Yang, Nuo

    2017-12-14

    Vapor generation is of prime importance for a broad range of applications: domestic water heating, desalination and wastewater treatment, etc. However, slow and inefficient evaporation limits its development. In this study, a nano-ratchet, a multilayer graphene with cone-shaped nanopores (MGCN), to accelerate vapor generation has been proposed. By performing molecular dynamics simulation, we found that air molecules were spontaneously transported across MGCN and resulted in a remarkable pressure difference, 21 kPa, between the two sides of MGCN. We studied the dependence of the pressure difference on the ambient temperature and geometry of MGCN in detail. Through further analysis of the diffusive transport, we found that pressure difference depended on the competition between ratchet transport and Knudsen diffusion and it was further found that ratchet transport is dominant. The significant pressure difference could lead to a 15-fold or greater enhancement of vapor generation, which shows the wide applications of this nano-ratchet.

  11. Brownian motion and gambling: from ratchets to paradoxical games

    NASA Astrophysics Data System (ADS)

    Parrondo, J. M. R.; Dinís, Luis

    2004-02-01

    Two losing gambling games, when alternated in a periodic or random fashion, can produce a winning game. This paradox has been inspired by certain physical systems capable of rectifying fluctuations: the so-called Brownian ratchets. In this paper we review this paradox, from Brownian ratchets to the most recent studies on collective games, providing some intuitive explanations of the unexpected phenomena that we will find along the way.

  12. Revisiting Feynman's ratchet with thermoelectric transport theory.

    PubMed

    Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph

    2014-07-01

    We show how the formalism used for thermoelectric transport may be adapted to Smoluchowski's seminal thought experiment, also known as Feynman's ratchet and pawl system. Our analysis rests on the notion of useful flux, which for a thermoelectric system is the electrical current and for Feynman's ratchet is the effective jump frequency. Our approach yields original insight into the derivation and analysis of the system's properties. In particular we define an entropy per tooth in analogy with the entropy per carrier or Seebeck coefficient, and we derive the analog to Kelvin's second relation for Feynman's ratchet. Owing to the formal similarity between the heat fluxes balance equations for a thermoelectric generator (TEG) and those for Feynman's ratchet, we introduce a distribution parameter γ that quantifies the amount of heat that flows through the cold and hot sides of both heat engines. While it is well established that γ = 1/2 for a TEG, it is equal to 1 for Feynman's ratchet. This implies that no heat may be rejected in the cold reservoir for the latter case. Further, the analysis of the efficiency at maximum power shows that the so-called Feynman efficiency corresponds to that of an exoreversible engine, with γ = 1. Then, turning to the nonlinear regime, we generalize the approach based on the convection picture and introduce two different types of resistance to distinguish the dynamical behavior of the considered system from its ability to dissipate energy. We finally put forth the strong similarity between the original Feynman ratchet and a mesoscopic thermoelectric generator with a single conducting channel.

  13. Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface.

    PubMed

    Zhu, Lianhua; Guo, Zhaoli

    2017-02-01

    The nonequilibrium gas flow in a two-dimensional microchannel with a ratchet surface and a moving wall is investigated numerically with a kinetic method [Guo et al., Phys. Rev. E 91, 033313 (2015)]PLEEE81539-375510.1103/PhysRevE.91.033313. The presence of periodic asymmetrical ratchet structures on the bottom wall of the channel and the temperature difference between the walls of the channel result in a thermally induced flow, and hence a tangential propelling force on the wall. Such thermally induced propelling mechanism can be utilized as a model heat engine. In this article, the relations between the propelling force and the top wall moving velocity are obtained by solving the Boltzmann equation with the Shakhov model deterministically in a wide range of Knudsen numbers. The flow fields at both the static wall state and the critical state at which the thermally induced force cancels the drag force due to the active motion of the top wall are analyzed. A counterintuitive relation between the flow direction and the shear force is observed in the highly rarefied condition. The output power and thermal efficiency of the system working as a model heat engine are analyzed based on the momentum and energy transfer between the walls. The effects of Knudsen number, temperature difference, and geometric configurations are investigated. Guidance for improving the mechanical performance is discussed.

  14. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2017-01-01

    Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.

  15. Ratchet effect for nanoparticle transport in hair follicles.

    PubMed

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Near-Field, On-Chip Optical Brownian Ratchets.

    PubMed

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  17. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    NASA Astrophysics Data System (ADS)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  18. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    PubMed

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  19. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading

    PubMed Central

    Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-01-01

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278

  20. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    PubMed

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  1. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  2. Double-temperature ratchet model and current reversal of coupled Brownian motors

    NASA Astrophysics Data System (ADS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang

    2017-12-01

    On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

  3. Stabilizing multicellularity through ratcheting

    PubMed Central

    Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.

    2016-01-01

    The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522

  4. Structure of ratcheted ribosomes with tRNAs in hybrid states

    PubMed Central

    Julián, Patricia; Konevega, Andrey L.; Scheres, Sjors H. W.; Lázaro, Melisa; Gil, David; Wintermeyer, Wolfgang; Rodnina, Marina V.; Valle, Mikel

    2008-01-01

    During protein synthesis, tRNAs and mRNA move through the ribosome between aminoacyl (A), peptidyl (P), and exit (E) sites of the ribosome in a process called translocation. Translocation is accompanied by the displacement of the tRNAs on the large ribosomal subunit toward the hybrid A/P and P/E states and by a rotational movement (ratchet) of the ribosomal subunits relative to one another. So far, the structure of the ratcheted state has been observed only when translation factors were bound to the ribosome. Using cryo-electron microscopy and classification, we show here that ribosomes can spontaneously adopt a ratcheted conformation with tRNAs in their hybrid states. The peptidyl-tRNA molecule in the A/P state, which is visualized here, is not distorted compared with the A/A state except for slight adjustments of its acceptor end, suggesting that the displacement of the A-site tRNA on the 50S subunit is passive and is induced by the 30S subunit rotation. Simultaneous subunit ratchet and formation of the tRNA hybrid states precede and may promote the subsequent rapid and coordinated tRNA translocation on the 30S subunit catalyzed by elongation factor G. PMID:18971332

  5. Ratchet due to broken friction symmetry.

    PubMed

    Nordén, B; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must be provided with some internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary unidirectional motion of some swimming organisms in a liquid.

  6. Autonomous Agent-Based Systems and Their Applications in Fluid Dynamics, Particle Separation, and Co-evolving Networks

    NASA Astrophysics Data System (ADS)

    Graeser, Oliver

    This thesis comprises three parts, reporting research results in Fluid Dynamics (Part I), Particle Separation (Part II) and Co-evolving Networks (Part III). Part I deals with the simulation of fluid dynamics using the lattice-Boltzmann method. Microfluidic devices often feature two-dimensional, repetitive arrays. Flows through such devices are pressure-driven and confined by solid walls. We have defined new adaptive generalised periodic boundary conditions to represent the effects of outer solid walls, and are thus able to exploit the periodicity of the array by simulating the flow through one unit cell in lieu of the entire device. The so-calculated fully developed flow describes the flow through the entire array accurately, but with computational requirements that are reduced according to the dimensions of the array. Part II discusses the problem of separating macromolecules like proteins or DNA coils. The reliable separation of such molecules is a crucial task in molecular biology. The use of Brownian ratchets as mechanisms for the separation of such particles has been proposed and discussed during the last decade. Pressure-driven flows have so far been dismissed as possible driving forces for Brownian ratchets, as they do not generate ratchet asymmetry. We propose a microfluidic design that uses pressure-driven flows to create asymmetry and hence allows particle separation. The dependence of the asymmetry on various factors of the microfluidic geometry is discussed. We further exemplify the feasibility of our approach using Brownian dynamics simulations of particles of different sizes in such a device. The results show that ratchet-based particle separation using flows as the driving force is possible. Simulation results and ratchet theory predictions are in excellent agreement. Part III deals with the co-evolution of networks and dynamic models. A group of agents occupies the nodes of a network, which defines the relationship between these agents. The evolution of the agents is defined by the rules of the dynamic model and depends on the relationship between agents, i.e., the state of the network. In return, the evolution of the network depends on the state of the dynamic model. The concept is introduced through the adaptive SIS model. We show that the previously used criterion determining the critical infected fraction, i.e., the number of infected agents required to sustain the epidemic, is inappropriate for this model. We introduce a different criterion and show that the critical infected fraction so determined is in good agreement with results obtained by numerical simulations. We further discuss the concept of co-evolving dynamics using the Snowdrift Game as a model paradigm. Co-evolution occurs through agents cutting dissatisfied links and rewiring to other agents at random. The effect of co-evolution on the emergence of cooperation is discussed using a mean-field theory and numerical simulations. A transition between a connected and a disconnected, highly cooperative state of the system is observed, and explained using the mean-field model. Quantitative deviations regarding the level of cooperation in the disconnected regime can be fully resolved through an improved mean-field theory that includes the effect of random fluctuations into its model.

  7. Application of adobe flash media to optimize jigsaw learning model on geometry material

    NASA Astrophysics Data System (ADS)

    Imam, P.; Imam, S.; Ikrar, P.

    2018-05-01

    This study aims to determine and describe the effectiveness of the application of adobe flash media for jigsaw learning model on geometry material. In this study, the modified jigsaw learning with adobe flash media is called jigsaw-flash model. This research was conducted in Surakarta. The research method used is mix method research with exploratory sequential strategy. The results of this study indicate that students feel more comfortable and interested in studying geometry material taught by jigsaw-flash model. In addition, students taught using the jigsaw-flash model are more active and motivated than the students who were taught using ordinary jigsaw models. This shows that the use of the jigsaw-flash model can increase student participation and motivation. It can be concluded that the adobe flash media can be used as a solution to reduce the level of student abstraction in learning mathematics.

  8. Charge Requirements for Proton Gradient-driven Translocation of Anthrax Toxin*

    PubMed Central

    Brown, Michael J.; Thoren, Katie L.; Krantz, Bryan A.

    2011-01-01

    Anthrax lethal toxin is used as a model system to study protein translocation. The toxin is composed of a translocase channel, called protective antigen (PA), and an enzyme, called lethal factor (LF). A proton gradient (ΔpH) can drive LF unfolding and translocation through PA channels; however, the mechanism of ΔpH-mediated force generation, substrate unfolding, and establishment of directionality are poorly understood. One recent hypothesis suggests that the ΔpH may act through changes in the protonation state of residues in the substrate. Here we report the charge requirements of LF's amino-terminal binding domain (LFN) using planar lipid bilayer electrophysiology. We found that acidic residues are required in LFN to utilize a proton gradient for translocation. Constructs lacking negative charges in the unstructured presequence of LFN translocate independently of the ΔpH driving force. Acidic residues markedly increase the rate of ΔpH-driven translocation, and the presequence is optimized in its natural acidic residue content for efficient ΔpH-driven unfolding and translocation. We discuss a ΔpH-driven charge state Brownian ratchet mechanism for translocation, where glutamic and aspartic acid residues in the substrate are the “molecular teeth” of the ratchet. Our Brownian ratchet model includes a mechanism for unfolding and a novel role for positive charges, which we propose chaperone negative charges through the PA channel during ΔpH translocation. PMID:21507946

  9. Communication: Dominance of extreme statistics in a prototype many-body Brownian ratchet.

    PubMed

    Hohlfeld, Evan; Geissler, Phillip L

    2014-10-28

    Many forms of cell motility rely on Brownian ratchet mechanisms that involve multiple stochastic processes. We present a computational and theoretical study of the nonequilibrium statistical dynamics of such a many-body ratchet, in the specific form of a growing polymer gel that pushes a diffusing obstacle. We find that oft-neglected correlations among constituent filaments impact steady-state kinetics and significantly deplete the gel's density within molecular distances of its leading edge. These behaviors are captured quantitatively by a self-consistent theory for extreme fluctuations in filaments' spatial distribution.

  10. Photon ratchet intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Ekins-Daukes, N. J.; Farrell, D. J.; Phillips, C. C.

    2012-06-01

    In this paper, we propose an innovative concept for solar power conversion—the "photon ratchet" intermediate band solar cell (IBSC)—which may increase the photovoltaic energy conversion efficiency of IBSCs by increasing the lifetime of charge carriers in the intermediate state. The limiting efficiency calculation for this concept shows that the efficiency can be increased by introducing a fast thermal transition of carriers into a non-emissive state. At 1 sun, the introduction of a "ratchet band" results in an increase of efficiency from 46.8% to 48.5%, due to suppression of entropy generation.

  11. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of the investigated Al 7075 alloy.

  12. Mesoscale Modeling of Dynamic Failure of Ceramic Polycrystals

    DTIC Science & Technology

    2011-08-01

    Wu, R. Feng, 2005. Micromechanical investigation of heterogeneous microplasticity in ceramics deformed under high confining stresses. Mechanics of...Boyce, 2010. The effect of microstructural representation on simulations of microplastic ratcheting. International Journal of Plasticity 26: 617

  13. Applying PCI in Combination Swivel Head Wrench

    NASA Astrophysics Data System (ADS)

    Chen, Tsang-Chiang; Yang, Chun-Ming; Hsu, Chang-Hsien; Hung, Hsiang-Wen

    2017-09-01

    Taiwan’s traditional industries are subject to competition in the era of globalization and environmental change, the industry is facing economic pressure and shock, and now sustainable business can only continue to improve production efficiency and quality of technology, in order to stabilize the market, to obtain high occupancy. The use of process capability indices to monitor the quality of the ratchet wrench to find the key function of the dual-use ratchet wrench, the actual measurement data, The use of process capability Cpk index analysis, and draw Process Capability Analysis Chart model. Finally, this study explores the current situation of this case and proposes a lack of improvement and improvement methods to improve the overall quality and thereby enhance the overall industry.

  14. The validation of a human force model to predict dynamic forces resulting from multi-joint motions

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Maida, James C.; Aldridge, Ann M.; Hasson, Scott M.; Woolford, Barbara J.

    1992-01-01

    The development and validation is examined of a dynamic strength model for humans. This model is based on empirical data. The shoulder, elbow, and wrist joints were characterized in terms of maximum isolated torque, or position and velocity, in all rotational planes. This data was reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining torque as a function of position and velocity. The isolated joint torque equations were then used to compute forces resulting from a composite motion, in this case, a ratchet wrench push and pull operation. A comparison of the predicted results of the model with the actual measured values for the composite motion indicates that forces derived from a composite motion of joints (ratcheting) can be predicted from isolated joint measures. Calculated T values comparing model versus measured values for 14 subjects were well within the statistically acceptable limits and regression analysis revealed coefficient of variation between actual and measured to be within 0.72 and 0.80.

  15. Characterization of Thermal Stability and High-Temperature Tribological Behavior of Electroless Ni-B Coating

    NASA Astrophysics Data System (ADS)

    Pal, Soupitak; Sarkar, Rohit; Jayaram, Vikram

    2018-05-01

    A preliminary study has been conducted using sequences of isothermal heat treatments and unidirectional high-temperature wear test following ball-on-flat geometry against an alumina counterface, to assess thermal stability and high-temperature tribological properties of the crystalline electroless Ni-B coating, a potential candidate for high-temperature solid lubricant coating. Isothermal heat treatment of 450 °C/15 h causes a significant amount of B diffusion into the Fe substrate without altering the coating's through-thickness hardness and nanostructure. At room temperature, a very low wear rate is observed, which increases up to two orders of magnitude above a testing temperature of 100 °C. Room-temperature wear behavior is mostly governed by oxidative wear, where friction-induced heating produces a thick oxide scale on the wear track, which subsequently decreases the wear rate by preventing direct contact between the coating and counterface. In the case of wear tests above 100 °C, removal of the same oxide layer occurs through local plastic deformation, essentially plastic ratcheting at the contacting region by flow softening of the contacting surface layer due to a local rise in temperature. Worn track morphology shows similarity with the severe wear seen in steel-steel contacts. Experimental observations have been explained and validated using the concept of contact point flash temperature. A quantitative assessment of contact point flash temperature has been carried out adopting the methodology, proposed by Ashby et al. The effects of applied normal load, test geometry, choice of counterface material, and testing temperatures on the transition of wear mechanism are critically discussed.

  16. Tethering sockets and wrenches

    NASA Technical Reports Server (NTRS)

    Johnson, E. P.

    1990-01-01

    The tethering of sockets and wrenches was accomplished to improve the safety of working over motor segments. To accomplish the tethering of the sockets to the ratchets, a special design was implemented in which a groove was machined into each socket. Each socket was then fitted with a snap ring that can spin around the machined groove. The snap ring is tethered to the handle of the ratchet. All open end wrenches are also tethered to the ratchet or to the operator, depending upon the type. Tests were run to ensure that the modified tools meet torque requirements. The design was subsequently approved by Space Safety.

  17. Preliminary test results in support of integrated EPP and SMT design methods development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Jetter, Robert I.; Sham, T. -L.

    2016-02-09

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen.more » The second test concept is the two-bar thermal ratcheting tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. This report summaries the previous SMT results on Alloy 617, SS316H and SS304H and presents the recent development on SMT approach on Alloy 617. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed integrated EPP and SMT design methods development. The previous two-bar thermal ratcheting test results on Alloy 617 and SS316H are also summarized and the new results from two bar thermal ratcheting tests on SS316H at a lower temperature range are reported.« less

  18. A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases

    PubMed Central

    2011-01-01

    Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase. PMID:21699732

  19. Bacterial Translocation Ratchets: Shared Physical Principles with Different Molecular Implementations: How bacterial secretion systems bias Brownian motion for efficient translocation of macromolecules.

    PubMed

    Hepp, Christof; Maier, Berenike

    2017-10-01

    Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  20. Thermally induced gas flows in ratchet channels with diffuse and specular boundaries

    PubMed Central

    Shahabi, Vahid; Baier, Tobias; Roohi, Ehsan; Hardt, Steffen

    2017-01-01

    A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism. PMID:28128309

  1. Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao

    2015-01-01

    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490

  2. Helicity-Driven Ratchet Effect Enhanced by Plasmons

    NASA Astrophysics Data System (ADS)

    Rozhansky, I. V.; Kachorovskii, V. Yu.; Shur, M. S.

    2015-06-01

    We demonstrate that the ratchet effect—a radiation-induced direct current in periodically modulated structures with built-in asymmetry—is dramatically enhanced in the vicinity of the plasmonic resonances and has a nontrivial polarization dependence. For a circular polarization, the current component, perpendicular to the modulation direction, changes sign with the inversion of the radiation helicity. In the high-mobility structures, this component might increase by several orders of magnitude due to the plasmonic effects and exceed the current component in the modulation direction. Our theory also predicts that in the dirty systems, where the plasma resonances are suppressed, the ratchet current is controlled by the Maxwell relaxation.

  3. The nature of Stokes efficiency in a rocked ratchet

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Jayannavar, A. M.

    2017-05-01

    We have introduced the notion of stochastic Stokes efficiency in thermal ratchets or molecular motors. These ratchet systems comprise of Brownian particles in a nonequilibrium state and they show unidirectional currents in the absence of obvious bias. They convert nonequilibrium fluctuations into useful work. Our study reveals that the average stochastic Stokes efficiency can be very large, however, dominated by the thermal fluctuations. To this end we have obtained the full probability distribution of the stochastic Stokes efficiency, which exhibits novel behaviour as a function of the strength of the external drive. Stokes efficiency decreases as we go from adiabatic to the nonadiabatic regime.

  4. SLUG HANDLING DEVICES

    DOEpatents

    Gentry, J.R.

    1958-09-16

    A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

  5. Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-03-01

    The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.

  6. Investigation of Homogeneous Relaxation Model Parameters and their Implications for Gasoline Injectors

    DOE PAGES

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele

    2017-01-01

    Flash boiling is known to be a common phenomenon for gasoline direct injection (GDI) engine sprays. The Homogeneous Relaxation Model has been adopted in many recent numerical studies for predicting cavitation and flash boiling. The Homogeneous Relaxation Model is assessed in this study. Sensitivity analysis of the model parameters has been documented to infer the driving factors for the flash-boiling predictions. The model parameters have been varied over a range and the differences in predictions of the extent of flashing have been studied. Apart from flashing in the near nozzle regions, mild cavitation is also predicted inside the gasoline injectors.more » The variation in the predicted time scales through the model parameters for predicting these two different thermodynamic phenomena (cavitation, flash) have been elaborated in this study. Turbulence model effects have also been investigated by comparing predictions from the standard and Re-Normalization Group (RNG) k-ε turbulence models.« less

  7. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  8. "Know What to Do If You Encounter a Flash Flood": Mental Models Analysis for Improving Flash Flood Risk Communication and Public Decision Making.

    PubMed

    Lazrus, Heather; Morss, Rebecca E; Demuth, Julie L; Lazo, Jeffrey K; Bostrom, Ann

    2016-02-01

    Understanding how people view flash flood risks can help improve risk communication, ultimately improving outcomes. This article analyzes data from 26 mental models interviews about flash floods with members of the public in Boulder, Colorado, to understand their perspectives on flash flood risks and mitigation. The analysis includes a comparison between public and professional perspectives by referencing a companion mental models study of Boulder-area professionals. A mental models approach can help to diagnose what people already know about flash flood risks and responses, as well as any critical gaps in their knowledge that might be addressed through improved risk communication. A few public interviewees mentioned most of the key concepts discussed by professionals as important for flash flood warning decision making. However, most interviewees exhibited some incomplete understandings and misconceptions about aspects of flash flood development and exposure, effects, or mitigation that may lead to ineffective warning decisions when a flash flood threatens. These include important misunderstandings about the rapid evolution of flash floods, the speed of water in flash floods, the locations and times that pose the greatest flash flood risk in Boulder, the value of situational awareness and environmental cues, and the most appropriate responses when a flash flood threatens. The findings point to recommendations for ways to improve risk communication, over the long term and when an event threatens, to help people quickly recognize and understand threats, obtain needed information, and make informed decisions in complex, rapidly evolving extreme weather events such as flash floods. © 2015 Society for Risk Analysis.

  9. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    DOE PAGES

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-02-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less

  10. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish

    2013-08-01

    A molecular motor is made of either a single macromolecule or a macromolecular complex. Just like their macroscopic counterparts, molecular motors “transduce” input energy into mechanical work. All the nano-motors considered here operate under isothermal conditions far from equilibrium. Moreover, one of the possible mechanisms of energy transduction, called Brownian ratchet, does not even have any macroscopic counterpart. But, molecular motor is not synonymous with Brownian ratchet; a large number of molecular motors execute a noisy power stroke, rather than operating as Brownian ratchet. We review not only the structural design and stochastic kinetics of individual single motors, but also their coordination, cooperation and competition as well as the assembly of multi-module motors in various intracellular kinetic processes. Although all the motors considered here execute mechanical movements, efficiency and power output are not necessarily good measures of performance of some motors. Among the intracellular nano-motors, we consider the porters, sliders and rowers, pistons and hooks, exporters, importers, packers and movers as well as those that also synthesize, manipulate and degrade “macromolecules of life”. We review mostly the quantitative models for the kinetics of these motors. We also describe several of those motor-driven intracellular stochastic processes for which quantitative models are yet to be developed. In part I, we discuss mainly the methodology and the generic models of various important classes of molecular motors. In part II, we review many specific examples emphasizing the unity of the basic mechanisms as well as diversity of operations arising from the differences in their detailed structure and kinetics. Multi-disciplinary research is presented here from the perspective of physicists.

  11. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele

    Flash boiling is known to be a common phenomenon for gasoline direct injection (GDI) engine sprays. The Homogeneous Relaxation Model has been adopted in many recent numerical studies for predicting cavitation and flash boiling. The Homogeneous Relaxation Model is assessed in this study. Sensitivity analysis of the model parameters has been documented to infer the driving factors for the flash-boiling predictions. The model parameters have been varied over a range and the differences in predictions of the extent of flashing have been studied. Apart from flashing in the near nozzle regions, mild cavitation is also predicted inside the gasoline injectors.more » The variation in the predicted time scales through the model parameters for predicting these two different thermodynamic phenomena (cavitation, flash) have been elaborated in this study. Turbulence model effects have also been investigated by comparing predictions from the standard and Re-Normalization Group (RNG) k-ε turbulence models.« less

  13. On the simulation and theory of polymer dynamics in sieving media: Friction, molecular pulleys, Brownian ratchets and polymer scission

    NASA Astrophysics Data System (ADS)

    Kenward, Martin

    The study of single polymer dynamics has, in the past few years, undergone a resurgence. This has been spurred on by the emergence of the fields of micro- and nanofluidics and their associated applications, especially by their ability to promise revolutionary techniques to, for example: rapidly sequence DNA, analyze proteins, carry out large-scale laboratory techniques in centimeter sized devices (lab-on-a-chip) and test and verify fundamental concepts related to the statistical physics of single molecules in fluids. In particular, the study of (typically single, isolated) polymers and the development of theoretical methods and computational tools to examine these polymers in microfluidic environments is a key challenge. In this thesis, we examine several different phenomena related to the dynamics of polymers in either microfluidic environments or related applications to DNA sequencing or separation. A recurrent theme throughout this work is the use of Molecular Dynamics (MD) simulations with an explicit solvent. Explicit solvent is an important aspect of our simulations and contrasts much work in the current literature which either artificially includes solvent or neglects it all together. This explicit inclusion of solvent allows us to explore phenomena (related to hydrodynamics) that is not observable with, for example, Brownian (or Langevin) Dynamics or Monte Carlo simulations. Chapter 2 contains a primarily computational examination of the friction coefficients of uncharged polymers. We explore the effects of deforming polymer chains on their friction coefficients along with examining several fundamental concepts of polymer friction (including hydrodynamic permeability). A key result is a verification of the hydrodynamic coupling of polymer chains resulting from a net reduction in the friction of polymer chains in hairpin (or folded) conformations. We also show that polymers undergo frictional transitions as they are stretched by an external force applied to the middle of the molecules. In chapter 3 we use some of the concepts and results from chapters 1 and 2 to explore the problem of a polymer chain migrating under the influence of an external force (or fluid flow) through a molecular obstacle course. These polymers collide with either fixed obstacles (or other polymers) and can be trapped in meta-stable long-lived, pulley-like conformations. This method can be used to separate polymers by molecular weight. We use both MD simulations and a general classical theory for the collisions to explore several different collision regimes. We also show that a classic experimental result, the formation of so-called V-shaped states, can occur in single polymer collision events, contrary to the popular assumption that it was necessary for a polymer to collide with multiple polymers. In chapter 4 we build on the results and ideas from the first three chapters and examine another phenomenon related to polymer transport, that of (Brownian) ratchets. A ratchet is essentially a method to rectify the thermal noise in a system in order to perform work, for example, to generate net transport. We use our MD simulations to examine the behaviour of polymers in the presence of an asymmetric saw tooth ratchet potential. We also show that existing ratchet models, where the ratchet widths are on the order of a polymer gyration radius, neglect an important effect of chain relaxation and thus underestimate optimal operating parameters. We propose and derive equations illustrating a new operational mode for a ratchet which inherently uses the deformation of polymer chains induced by the application of a ratcheting potential. We present a simple mathematical expression to incorporate time-dependent diffusion coefficients D (t) into ratchets. The final chapter presents work done in collaboration with Annelise Barron's group at Northwestern University and examines the breaking of polymer chains in extensional flow fields as a method to systematically and predictably reduce the polydispersity (PDI) of polymer solutions. The experimental investigation, carried out by the Barron group illustrated that a dilute polymer solution, when passed through a narrow constriction at high pressure can systematically reduce the PDI of the polymer solution. My contribution to this work was to develop a statistical model which calculates polymer molecular weight distributions and which can predict the resulting degraded polymer distribution. Two key things resulted from this investigation, the first is that polymers can break multiple times during a single scission event (i.e., one pass through the experimental system). Secondly we showed that it is possible to predictably reproduce polymer distributions after multiple scission events.

  14. Transport of underdamped active particles in ratchet potentials.

    PubMed

    Ai, Bao-Quan; Li, Feng-Guo

    2017-03-29

    We study the rectified transport of underdamped active noninteracting particles in an asymmetric periodic potential. It is found that the ratchet effect of active noninteracting particles occurs in a single direction (along the easy direction of the substrate asymmetry) in the overdamped limit. However, when the inertia is considered, it is possible to observe reversals of the ratchet effect, where the motion is along the hard direction of the substrate asymmetry. By changing the friction coefficient or the self-propulsion force, the average velocity can change its direction several times. Therefore, by suitably tailoring the parameters, underdamped active particles with different self-propulsion forces can move in different directions and can be separated.

  15. FAST TRACK COMMUNICATION: Criticality-induced universality in ratchets

    NASA Astrophysics Data System (ADS)

    Chacón, Ricardo

    2010-08-01

    Conclusive mathematical arguments are presented supporting the ratchet conjecture (Chacón 2007 J. Phys. A: Math. Theor. 40 F413), i.e. the existence of a universal force waveform which optimally enhances directed transport by symmetry breaking. Specifically, such a particular waveform is shown to be unique for both temporal and spatial biharmonic forces, and general (non-perturbative) laws providing the dependence of the strength of directed transport on the force parameters are deduced for these forces. The theory explains previous results for a great diversity of systems subjected to such biharmonic forces and provides a universal quantitative criterion to optimize any application of the ratchet effect induced by symmetry breaking of temporal and spatial biharmonic forces.

  16. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE PAGES

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; ...

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  17. Resonant current in coupled inertial Brownian particles with delayed-feedback control

    NASA Astrophysics Data System (ADS)

    Gao, Tian-Fu; Zheng, Zhi-Gang; Chen, Jin-Can

    2017-12-01

    The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled "feet" that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-onand-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.

  18. Daily Physical Activity and Hot Flashes in the Study of Women's Health Across the Nation FLASHES Study

    PubMed Central

    Gibson, Carolyn; Matthews, Karen; Thurston, Rebecca

    2014-01-01

    Objective To examine the role of physical activity in menopausal hot flashes. Competing models conceptualize physical activity as a risk or protective factor for hot flashes. Few studies have examined this relationship prospectively using physiologic measures of hot flashes and physical activity. Design Over two 48 hour-periods, 51 participants wore a physiologic hot flash monitor and activity monitor, and reported their hot flashes in an electronic diary. Physiologic hot flashes, reported hot flashes and reported hot flashes without physiological corroboration were related to activity changes using hierarchical generalized linear modeling, adjusting for potential confounders. Setting Community. Patients Midlife women. Interventions None. Main Outcome Measures Physiologically-detected hot flashes and reported hot flashes with and without physiologic corroboration. Results Hot flash reports without physiologic corroboration were more likely after activity increases (OR 1.04, 95% CI: 1.00-1.10, p=.01), particularly among women with higher levels of depressive symptoms (interaction p=.02). No other types of hot flashes were related to physical activity. Conclusion Acute increases in physical activity were associated with increased reporting of hot flashes lacking physiologic corroboration, particularly among women with depressive symptoms. Clinicians should consider the role of symptom perception and reporting in relations between physical activity and hot flashes. PMID:24491454

  19. Gaussian white noise as a resource for work extraction.

    PubMed

    Dechant, Andreas; Baule, Adrian; Sasa, Shin-Ichi

    2017-03-01

    We show that uncorrelated Gaussian noise can drive a system out of equilibrium and can serve as a resource from which work can be extracted. We consider an overdamped particle in a periodic potential with an internal degree of freedom and a state-dependent friction, coupled to an equilibrium bath. Applying additional Gaussian white noise drives the system into a nonequilibrium steady state and causes a finite current if the potential is spatially asymmetric. The model thus operates as a Brownian ratchet, whose current we calculate explicitly in three complementary limits. Since the particle current is driven solely by additive Gaussian white noise, this shows that the latter can potentially perform work against an external load. By comparing the extracted power to the energy injection due to the noise, we discuss the efficiency of such a ratchet.

  20. Brownian ratchets: How stronger thermal noise can reduce diffusion

    NASA Astrophysics Data System (ADS)

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  1. Brownian ratchets: How stronger thermal noise can reduce diffusion.

    PubMed

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  2. Abdominal adiposity and hot flashes among midlife women.

    PubMed

    Thurston, Rebecca C; Sowers, MaryFran R; Sutton-Tyrrell, Kim; Everson-Rose, Susan A; Lewis, Tené T; Edmundowicz, Daniel; Matthews, Karen A

    2008-01-01

    Two competing hypotheses suggest how adiposity may affect menopausal hot flashes. The "thin hypothesis" asserts that aromatization of androgens to estrogens in body fat should be associated with decreased hot flashes. Conversely, thermoregulatory models argue that body fat should be associated with increased hot flashes. The study objective was to examine associations between abdominal adiposity and hot flashes, including the role of reproductive hormones in these associations. The Study of Women's Health Across the Nation Heart Study (2001-2003) is an ancillary study to the Study of Women's Health Across the Nation, a community-based cohort study. Participants were 461 women (35% African American, 65% white) ages 45 to 58 years with an intact uterus and at least one ovary. Measures included a computed tomography scan to assess abdominal adiposity; reported hot flashes over the previous 2 weeks; and a blood sample for measurement of follicle-stimulating hormone, estradiol, and sex hormone-binding globulin-adjusted estradiol (free estradiol index). Associations were evaluated within multivariable logistic and linear regression models. Every 1-SD increase in total (odds ratio [OR]=1.28; 95% CI: 1.06-1.55) and subcutaneous (OR=1.30; 95% CI: 1.07-1.58) abdominal adiposity was associated with increased odds of hot flashes in age- and site-adjusted models. Visceral adiposity was not associated with hot flashes. Associations were not reduced when models included reproductive hormone concentrations. Increased abdominal adiposity, particularly subcutaneous adiposity, is associated with increased odds of hot flashes, favoring thermoregulatory models of hot flashes. Body fat may not protect women from hot flashes as once thought.

  3. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  4. In situ realization of asymmetric ratchet structures within microchannels by directionally guided light transmission and their directional flow behavior.

    PubMed

    Bae, Won-Gyu; Kim, Sang Moon; Choi, Se-Jin; Oh, Sang Geun; Yoon, Hyunsik; Char, Kookheon; Suh, Kahp Y

    2014-05-01

    An asymmetric ratchet structure within microchannels is demonstrated by directionally guided light transmission for controlled liquid flow. A direct and facile method is presented to realize programmed asymmetric structures, which control the fluid direction and speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling Molecular Machinery

    ERIC Educational Resources Information Center

    Hunter, Christine

    2015-01-01

    Imagine a microscopic world filled with tiny motors, ratchets, switches, and pumps controlled by complex signaling and feedback systems. Now imagine that these parts can assemble themselves. This is the world presented to students in the protein structure unit of a genetic engineering course. Students learn how protein folding gives rise to the…

  6. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The prediction of the flash point for binary aqueous-organic solutions.

    PubMed

    Liaw, Horng-Jang; Chiu, Yi-Yu

    2003-07-18

    A mathematical model, which may be used for predicting the flash point of aqueous-organic solutions, has been proposed and subsequently verified by experimentally-derived data. The results reveal that this model is able to precisely predict the flash point over the entire composition range of binary aqueous-organic solutions by way of utilizing the flash point data pertaining to the flammable component. The derivative of flash point with respect to composition (solution composition effect upon flash point) can be applied to process safety design/operation in order to identify as to whether the dilution of a flammable liquid solution with water is effective in reducing the fire and explosion hazard of the solution at a specified composition. Such a derivative equation was thus derived based upon the flash point prediction model referred to above and then verified by the application of experimentally-derived data.

  8. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  9. Improving Flash Flood Prediction in Multiple Environments

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Troch, P. A.; Schaffner, M.; Unkrich, C.; Goodrich, D.; Wagener, T.; Yatheendradas, S.

    2009-12-01

    Flash flooding is a major concern in many fast responding headwater catchments . There are many efforts to model and to predict these flood events, though it is not currently possible to adequately predict the nature of flash flood events with a single model, and furthermore, many of these efforts do not even consider snow, which can, by itself, or in combination with rainfall events, cause destructive floods. The current research is aimed at broadening the applicability of flash flood modeling. Specifically, we will take a state of the art flash flood model that is designed to work with warm season precipitation in arid environments, the KINematic runoff and EROSion model (KINEROS2), and combine it with a continuous subsurface flow model and an energy balance snow model. This should improve its predictive capacity in humid environments where lateral subsurface flow significantly contributes to streamflow, and it will make possible the prediction of flooding events that involve rain-on-snow or rapid snowmelt. By modeling changes in the hydrologic state of a catchment before a flood begins, we can also better understand the factors or combination of factors that are necessary to produce large floods. Broadening the applicability of an already state of the art flash flood model, such as KINEROS2, is logical because flash floods can occur in all types of environments, and it may lead to better predictions, which are necessary to preserve life and property.

  10. Risk Factors for Extended Duration and Timing of Peak Severity of Hot Flashes

    PubMed Central

    Gallicchio, Lisa; Miller, Susan R.; Zacur, Howard A.; Flaws, Jodi A.

    2016-01-01

    Objective To identify risk factors associated with the duration of hot flashes and the time of peak hot flash severity in mid-life women. Methods A cohort of 647 women reporting hot flashes were followed for 1–7 years, with survey data and hormone measurements. Survival analysis determined the association of risk factors with the duration of hot flashes. Linear regression determined the association of risk factors with the time of peak severity. Final models were determined through stepwise model selection. Results Average hot flash duration was 2.5 years (range: 1–33), with peak severity on average at 2.96 years (range: 1–20). Duration of hot flashes was associated with race, education, menopause status, smoking history, BMI, alcohol consumption, leisure activity levels, and levels of estradiol and progesterone. In the final model, only race, alcohol consumption, leisure activity, and menopause were retained. White women had significantly shorter hot flash durations than non-white women. Women consuming at least 12 alcoholic drinks in the previous year had a significantly shorter duration of hot flashes with a smaller effect of hot flash duration on increasing in time to peak severity compared to those who consumed less than 12 alcoholic drinks in that year. Higher serum progesterone levels were associated with later peak severity if the duration of the hot flashes was less than 2 years and an earlier peak severity otherwise. Conclusions These results suggest that some behaviors (such as moderate alcohol consumption) are associated with shorter durations of hot flashes, and that progesterone was associated with the dynamics of hot flash severity. PMID:27149066

  11. Rare beneficial mutations can halt Muller's ratchet

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  12. Tests of the Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard; Attele, Rohan

    2011-01-01

    Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.

  13. Evolution of colloidal dispersions in novel time-varying optical potentials

    NASA Astrophysics Data System (ADS)

    Koss, Brian Alan

    Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of discrete spatially-symmetric potential wells, which are implemented with an array of HOTs.

  14. Report on FY15 Two-Bar Thermal Ratcheting Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Jetter, Robert I; Baird, Seth T

    2015-06-22

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits andmore » creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from ASME Code committees that the proposed EPP methodology should also apply to other Subsection NH materials throughout their allowed temperature range. To support these objectives, two suites of tests have been accomplished during this reporting period. One suite addresses the issue of the response of Alloy 617 at a lower temperature with tests in range of 500 800oC and a few at 350 650°C. The other suite addresses the response of SS316H up to its current maximum allowed temperature of 1500°F (815°C) In the two-bar test methodology, the two bars can be viewed as specimens taken out of a tubular component across the wall thickness representing the inner wall element and the outer wall element respectively. The two bars are alternately heated and cooled under sustained axial loading to generate ratcheting. A sustained hold time is introduced at the hot extreme of the cycle to capture the accelerated ratcheting and strain accumulation due to creep. Since the boundary conditions are a combination of strain control and load control it is necessary to use two coupled servo-controlled testing machines to achieve the key features of the two-bar representation of actual component behavior. Two-bar thermal ratcheting test results with combinations of applied mean stresses, transient temperature difference and heating and cooling rates were recorded. Tests performed at heating and cooling rates of 30°C/min are comparable to a strain rate of 10 ⁻⁵/sec. At high mean stresses in tension the direction of ratcheting was in-phase with the load, e.g. tensile strain ratcheting under high tensile loading; however, at lower loads, strain ratcheting in compression was observed under net tensile mean stresses. The strain accumulation was proportional to the applied thermal load. However, there was a narrow range of applied load in which the high applied thermal loading did not result in significant strain accumulation. Unfortunately, when the proposed EPP strain limit evaluation rules were applied to the loading history for the two-bar configuration, the predicted narrow range of low strain accumulation did not coincide with the experimental data. However, by the use of inelastic analysis in conjunction with an analytic experiment it was possible to show that the EPP strain limit code case rules could be applied to high temperature structures where the stress and temperature is not uniform throughout which is the general case. Interestingly, the suite of tests on Alloy 617 at the lower temperature range of 500°C to 800oC showed good agreement with the proposed EPP strain limit rules with a much wider band of applied load that exhibited minimal ratcheting. The four tests conducted at the lower temperature range of 350°C to 650°C showed no ratcheting. The suite of tests on SS316H at a temperature range of 515°C to 815°C resembled the results from the tests on Alloy 617 at 650°C to 950°C. Both exhibited a narrow band of applied load wher...« less

  15. Hydrodynamic interactions induce movement against an external load in a ratchet dimer Brownian motor.

    PubMed

    Fornés, José A

    2010-01-15

    We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.

  16. AC signal characterization for optimization of a CMOS single-electron pump

    NASA Astrophysics Data System (ADS)

    Murray, Roy; Perron, Justin K.; Stewart, M. D., Jr.; Zimmerman, Neil M.

    2018-02-01

    Pumping single electrons at a set rate is being widely pursued as an electrical current standard. Semiconductor charge pumps have been pursued in a variety of modes, including single gate ratchet, a variety of 2-gate ratchet pumps, and 2-gate turnstiles. Whether pumping with one or two AC signals, lower error rates can result from better knowledge of the properties of the AC signal at the device. In this work, we operated a CMOS single-electron pump with a 2-gate ratchet style measurement and used the results to characterize and optimize our two AC signals. Fitting this data at various frequencies revealed both a difference in signal path length and attenuation between our two AC lines. Using this data, we corrected for the difference in signal path length and attenuation by applying an offset in both the phase and the amplitude at the signal generator. Operating the device as a turnstile while using the optimized parameters determined from the 2-gate ratchet measurement led to much flatter, more robust charge pumping plateaus. This method was useful in tuning our device up for optimal charge pumping, and may prove useful to the semiconductor quantum dot community to determine signal attenuation and path differences at the device.

  17. Anxiogenic CO2 Stimulus Elicits Exacerbated Hot Flash-like Responses in a Rat Menopause Model and Hot Flashes in Menopausal Women

    PubMed Central

    Federici, Lauren M.; Roth, Sarah Dorsey; Krier, Connie; Fitz, Stephanie D.; Skaar, Todd; Shekhar, Anantha; Carpenter, Janet S.; Johnson, Philip L.

    2016-01-01

    Objective Since longitudinal studies determined that anxiety is a strong risk factor for hot flashes, we hypothesized that an anxiogenic stimulus that signals air hunger (hypercapnic, normoxic gas) would trigger an exacerbated hot flash-associated increase in tail skin temperature (TST) in a rat ovariectomy (OVEX) model of surgical menopause and hot flashes in symptomatic menopausal women. We also assessed TST responses in OVEX serotonin transporter (SERT)+/− rats that models a common polymorphism that is associated with increased climacteric symptoms in menopausal women and increases in anxiety traits. Methods OVEX and sham-OVEX rats (initial experiment) and wildtype and SERT+/− OVEX rats (subsequent experiment) were exposed to a 5 min infusion of 20%CO2 normoxic gas while measuring TST. Menopausal women were given brief 20% and 35%CO2 challenges, and hot flashes were self-reported and objectively verified. Results Compared to controls, OVEX rats had exacerbated increases in TST, and SERT+/− OVEX rats had prolonged TST increases following CO2. Most women reported mild/moderate hot flashes after CO2 challenges, and the hot flash severity to CO2 was positively correlated with daily hot flash frequency. Conclusions The studies demonstrate that this anxiogenic stimulus is capable of inducing cutaneous vasomotor responses in OVEX rats, and eliciting hot flashes in menopausal women. In rats, the severity of the response was mediated by loss of ovarian function and increased anxiety traits (SERT+/−), and, in women, by daily hot flash frequency. These findings may provide insights into anxiety related triggers and genetic risk factors for hot flashes in thermoneutral environments. PMID:27465717

  18. Physiologically assessed hot flashes and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P < 0.05) indicated that among the younger tertile of women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  19. Obtaining the Grobner Initialization for the Ground Flash Fraction Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Solakiewicz, R.; Attele, R.; Koshak, W.

    2011-01-01

    At optical wavelengths and from the vantage point of space, the multiple scattering cloud medium obscures one's view and prevents one from easily determining what flashes strike the ground. However, recent investigations have made some progress examining the (easier, but still difficult) problem of estimating the ground flash fraction in a set of N flashes observed from space In the study by Koshak, a Bayesian inversion method was introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function of three variables (one of which is the ground flash fraction) was minimized by a numerical method. This method has formed the basis of a Ground Flash Fraction Retrieval Algorithm (GoFFRA) that is being tested as part of GOES-R GLM risk reduction.

  20. Enhanced Droplet Control by Transition Boiling

    PubMed Central

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

  1. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  2. Designing Ratchets in Ultra-cold Atoms for the Advanced Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Hachtel, Andrew; Gillette, Matthew; Clements, Ethan; Zhong, Shan; Ducay, Rey; Bali, Samir

    2014-05-01

    We propose to perform ratchet experiments in cold Rubidium atoms using state-of-the-art home-built tapered amplifier and imaging systems. Our tapered amplifier system amplifies the output from home-built external cavity tunable diode lasers up to a factor 100 and costs less than 5,000, in contrast to commercial tapered amplifier systems, which cost upward of 20,000. We have developed an imaging system with LabVIEW integration, which allows for approximately 2 millisecond exposures and microsecond control of experimental parameters. Our imaging system also costs less than 5,000 in comparison to commercial options, which cost between 40-50,000. Progress toward implementation of a one-dimensional rocking ratchet is described. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.

  3. Enhanced Droplet Control by Transition Boiling

    NASA Astrophysics Data System (ADS)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  4. A molecular-sized tunnel-porous crystal with a ratchet gear structure and its one-way guest-molecule transportation property

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Yasumoto, Tetsuaki; Manabe, Yousuke; Sato, Hiroyasu; Yamano, Akihito; Katagiri, Toshimasa

    2013-01-01

    An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet.An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet. Electronic supplementary information (ESI) available. CCDC reference numbers 837539 and 837540. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30880k

  5. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; hide

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights.

  6. Analysis of shell type structures subjected to time dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model.

  7. Shock Initiation of Thermally Expanded TATB

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2011-06-01

    The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.

  8. Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.

    PubMed

    Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M

    2015-06-12

    In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.

  9. Deterministic particle transport in a ratchet flow.

    PubMed

    Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina

    2016-01-01

    This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.

  10. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  11. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation.

    PubMed

    Allen, William John; Corey, Robin Adam; Oatley, Peter; Sessions, Richard Barry; Baldwin, Steve A; Radford, Sheena E; Tuma, Roman; Collinson, Ian

    2016-05-16

    The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids.

  12. Ratchet motion induced by a correlated stochastic force

    NASA Astrophysics Data System (ADS)

    Cortés, Emilio

    2000-01-01

    We apply a rigorous formalism we have just worked out (Cortés and Espinosa, Physica A 267 (1999) 414) about escape rates and the Hamilton-Jacobi equation, to study the ratchet motion of a Brownian particle and calculate the probability current in a periodic non-symmetric potential subject to correlated fluctuations. We are able to obtain the current behaviour as a function of the correlation time parameter and compare with other results in the literature.

  13. Astronaut James Newman works with power ratchet tool in payload bay

    NASA Image and Video Library

    1993-09-16

    In Discovery's cargo bay, astronaut James H. Newman works with the power ratchet tool (PRT). Astronaut Carl E. Walz, who joined Newman for the lengthy period of extravehicular activity (EVA), is partially visible in the background. The two mission specialists devoted part of their EVA to evaluating tools and equipment expected to be used in the Hubble Space Telescope servicing. A desert area in Africa forms the backdrop for the 70mm scene.

  14. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    DOE PAGES

    Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...

    2016-05-31

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less

  15. Interactions of numerical and temporal stimulus characteristics on the control of response location by brief flashes of light.

    PubMed

    Fetterman, J Gregor; Killeen, P Richard

    2011-09-01

    Pigeons pecked on three keys, responses to one of which could be reinforced after 3 flashes of the houselight, to a second key after 6, and to a third key after 12. The flashes were arranged according to variable-interval schedules. Response allocation among the keys was a function of the number of flashes. When flashes were omitted, transitions occurred very late. Increasing flash duration produced a leftward shift in the transitions along a number axis. Increasing reinforcement probability produced a leftward shift, and decreasing reinforcement probability produced a rightward shift. Intermixing different flash rates within sessions separated allocations: Faster flash rates shifted the functions sooner in real time, but later in terms of flash count, and conversely for slower flash rates. A model of control by fading memories of number and time was proposed.

  16. Coupled Brownian motors: Anomalous hysteresis and zero-bias negative conductance

    NASA Astrophysics Data System (ADS)

    Reimann, P.; Kawai, R.; Van den Broeck, C.; Hänggi, P.

    1999-03-01

    We introduce a model of interacting Brownian particles in a symmetric, periodic potential that undergoes a noise-induced non-equilibrium phase transition. The associated spontaneous symmetry breaking entails a ratchet-like transport mechanism. In response to an external force we identify several novel features; among the most prominent being a zero-bias negative conductance and a prima facie counterintuitive, anomalous hysteresis.

  17. Biomechanically Induced and Controller Coupled Oscillations Experienced on the F-16XL Aircraft During Rolling Maneuvers

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Montgomery, Terry

    1996-01-01

    During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.

  18. Lightning NOx Production and Its Consequences for Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2005-01-01

    Cloud-resolving case-study simulations of convective transport and lightning NO production have yielded results which are directly applicable to the design of lightning parameterizations for global chemical transport models. In this work we have used cloud-resolving models (the Goddard Cumulus Ensemble Model (GCE) and MMS) to drive an off-line cloud-scale chemical transport model (CSCTM). The CSCTM, in conjunction with aircraft measurements of NO x in thunderstorms and ground-l;>ased lightning observations, has been used to constrain the amount of NO produced per flash. Cloud and chemistry simulations for several case studies of storms in different environments will be presented. Observed lightning flash rates have been incorporated into the CSCTM, and several scenarios of NO production per intracloud (IC) and per cloud-to-ground (CG) flash have been tested for each storm. The resulting NOx mixing ratios are compared with aircraft measurements taken within the storm (typically the anvil region) to determine the most likely NO production scenario. The range of values of NO production per flash (or per meter of lightning channel length) that have been deduced from the model will be shown and compared with values of production in the literature that have been deduced from observed NO spikes and from anvil flux calculations. Results show that on a per flash basis, IC flashes are nearly as productive of NO as CG flashes. This result simplifies the lightning parameterization for global models (ie., an algorithm for estimating the IC/CG ratio is not necessary). Vertical profiles of lightning NOx mass at the end of the 3-D storm simulations have been summarized to yield suggested profiles for use in global models. Estimates of mean NO production per flash vary by a factor of three from one simulated storm to another. When combined with the global flash rate of 44 flashes per second from NASA's Optical Transient Detector (OTD) measurements, these estimates and the results from other techniques yield global NO production rates of2-9 TgN/year. Simulations of the photochemistry over the 24 hours following a storm has been performed to determine the additional ozone production which can be attributed to lightning NO. Convective transport of HOx precursors leads to the generation of a HOx plume which substantially aids the downstream ozone production.

  19. Can vocal conditioning trigger a semiotic ratchet in marmosets?

    PubMed

    Turesson, Hjalmar K; Ribeiro, Sidarta

    2015-01-01

    The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.

  20. Can vocal conditioning trigger a semiotic ratchet in marmosets?

    PubMed Central

    Turesson, Hjalmar K.; Ribeiro, Sidarta

    2015-01-01

    The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders. PMID:26500583

  1. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  2. A first look at global flash drought: long term change and short term predictability

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Wang, Linying; Ji, Peng

    2017-04-01

    "Flash drought" became popular after the unexpected 2012 central USA drought, mainly due to its rapid development, low predictability and devastating impacts on water resources and crop yields. A pilot study by Mo and Lettenmaier (2015) found that flash drought, based on a definition of concurrent heat extreme, soil moisture deficit and evapotranspiration (ET) enhancement at pentad scale, were in decline over USA during recent 100 years. Meanwhile, a recent work indicated that the occurrence of flash drought in China was doubled during the past 30 years, where a severe flash drought in the summer of 2013 ravaged 13 provinces in southern China. As global warming increases the frequency of heat waves and accelerates the hydrological cycle, the flash drought is expected to increase in general, but its trend might also be affected by interannual to decadal climate oscillations. To consolidate the hotspots of flash drought and the effects of climate change on flash drought, a global inventory is being conducted by using multi-source observations (in-situ, satellite and reanalysis), CMIP5 historical simulations and future projections under different forcing scenarios, as well as global land surface hydrological modeling for key variables including surface air temperature, soil moisture and ET. In particular, a global picture of the flash drought distribution, the contribution of naturalized and anthropogenic forcings to global flash drought change, and the risk of global flash drought in the future, will be presented. Besides investigating the long-term change of flash drought, providing reliable early warning is also essential to developing adaptation strategies. While regional drought early warning systems have been emerging in recent decade, forecasting of flash drought is still at an exploratory stage due to limited understanding of flash drought predictability. Here, a set of sub-seasonal to seasonal (S2S) hindcast datasets are being used to assess the short term predictability of flash drought via a perfect model assumption.

  3. A parametric multivariate drought index and its application in the attribution and projection of flash drought change in China

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, L.; Zhang, M.

    2017-12-01

    Rainfall deficit in the crop growing seasons is usually accompanied by heat waves. Abnormally high temperature increases evapotranspiration and decreases soil moisture rapidly, and ultimately results in a type of drought with a rapid onset, short duration but devastating impact, which is called "Flash drought". With the increase in global temperature, flash drought is expected to occur more frequently. However, there is no consensus on the definition of flash drought so far. Moreover, large uncertainty exists in the estimation of the flash drought and its trend, and the underlying mechanism for its long-term change is not clear. In this presentation, a parametric multivariate drought index that characterizes the joint probability distribution of key variables of flash drought will be developed, and the historical changes in flash drought over China will be analyzed. In addition, a set of land surface model simulations driven by IPCC CMIP5 models with different forcings and future scenarios, will be used for the detection and attribution of flash drought change. This study is targeted at quantifying the influences of natural and anthropogenic climate change on the flash drought change, projecting its future change as well as the corresponding uncertainty, and improving our understanding of the variation of flash drought and its underlying mechanism in a changing climate.

  4. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip Montgomery; Wix, Steven D.

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less

  5. Ratchet effect in the quantum kicked rotor and its destruction by dynamical localization

    NASA Astrophysics Data System (ADS)

    Hainaut, Clément; Rançon, Adam; Clément, Jean-François; Garreau, Jean Claude; Szriftgiser, Pascal; Chicireanu, Radu; Delande, Dominique

    2018-06-01

    We study experimentally a quantum kicked rotor with broken parity symmetry, supporting a ratchet effect due to the presence of a classical accelerator mode. We show that the short-time dynamics is very well described by the classical dynamics, characterized by a strongly asymmetric momentum distribution with directed motion on one side, and an anomalous diffusion on the other. At longer times, quantum effects lead to dynamical localization, causing an asymptotic resymmetrization of the wave function.

  6. Thermal-inertial ratchet effects: negative mobility, resonant activation, noise-enhanced stability, and noise-weakened stability.

    PubMed

    Li, Jing-hui; Łuczka, Jerzy

    2010-10-01

    Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.

  7. Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions

    NASA Astrophysics Data System (ADS)

    Saber, Mohamed; Kamil Yilmaz, Koray

    2016-04-01

    Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.

  8. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  9. A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Attele, Rohan; Koshak, William

    2011-01-01

    A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.

  10. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure

    NASA Astrophysics Data System (ADS)

    Chitrphiromsri, Patirop; Kuznetsov, Andrey V.

    2005-01-01

    In this paper, a model of heat and moisture transport in firefighter protective clothing during a flash fire exposure is presented. The aim of this study is to investigate the effect of coupled heat and moisture transport on the protective performance of the garment. Computational results show the distribution of temperature and moisture content in the fabric during the exposure to the flash fire as well as during the cool-down period. Moreover, the duration of the exposure during which the garment protects the firefighter from getting second and third degree burns from the flash fire exposure is numerically predicted. A complete model for the fire-fabric-air gap-skin system is presented.

  11. Flash Floods Simulation Using a Physical based hydrological Model at the Eastern Nile Basin: Case studies; Wadi Assiut, Egypt and Wadi Gumara, Lake Tana, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Saber, M.; Sefelnasr, A.; Yilmaz, K. K.

    2015-12-01

    Flash flood is a natural hydrological phenomenon which affects many regions of the world. The behavior and effect of this phenomenon is different from one region to the other regions depending on several issues such as climatology and hydrological and topographical conditions at the target regions. Wadi assiut, Egypt as arid environment, and Gumara catchment, Lake Tana, Ethiopia, as humid conditions have been selected for application. The main target of this work is to simulate flash floods at both catchments considering the difference between them on the flash flood behaviors based on the variability of both of them. In order to simulate the flash floods, remote sensing data and a physical-based distributed hydrological model, Hydro-BEAM-WaS (Hydrological River Basin Environmental Assessment Model incorporating Wadi System) have been integrated used in this work. Based on the simulation results of flash floods in these regions, it was found that the time to reach the maximum peak is very short and consequently the warning time is very short as well. It was found that the flash floods starts from zero flow in arid environment, but on the contrary in humid arid, it starts from Base flow which is changeable based on the simulated events. Distribution maps of flash floods showing the vulnerable regions of these selected areas have been developed. Consequently, some mitigation strategies relying on this study have been introduced. The proposed methodology can be applied effectively for flash flood forecasting at different climate regions, however the paucity of observational data.

  12. PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B; Renger, G

    2011-02-01

    Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10s for all actinic flash energies (the maximum energy of 7.5 × 10¹⁶ photons/(cm²flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4×10¹⁴ photons/(cm²flash) to 7.5×10¹⁶ photons/(cm²flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (³Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe(-)) and P680(+) by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant. The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the higher plant) under varying illumination conditions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Partitioning the LIS/OTD Lightning Climatological Dataset into Separate Ground and Cloud Flash Distributions

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solarkiewicz, R. J.

    2009-01-01

    Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from lightning because lightning is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of lightning NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of lightning (Fig. 1) from the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of lightning NOx. Hence, the ability to partition the LIS/OTD lightning climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of lightning-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate predictions, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of lightning NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the LIS/OTD lightning climatology. In this study, we introduce a new technique for retrieving the ground flash fraction in a set of N lightning observed from space and that occur within a specific latitude/longitude bin. The method is briefly described and applied to CONUS lightning that have already been partitioned into ground and cloud flashes using independent ground-based observations, in order to assess the accuracy of the retrieval method. The retrieval errors are encouragingly small.

  14. The framework of a UAS-aided flash flood modeling system for coastal regions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Xu, H.

    2016-02-01

    Flash floods cause severe economic damage and are one of the leading causes of fatalities connected with natural disasters in the Gulf Coast region. Current flash flood modeling systems rely on empirical hydrological models driven by precipitation estimates only. Although precipitation is the driving factor for flash floods, soil moisture, urban drainage system and impervious surface have been recognized to have significant impacts on the development of flash floods. We propose a new flash flooding modeling system that integrates 3-D hydrological simulation with satellite and multi-UAS observations. It will have three advantages over existing modeling systems. First, it will incorporate 1-km soil moisture data through integrating satellite images from European SMOS mission and NASA's SMAP mission. The utilization of high-resolution satellite images will provide essential information to determine antecedent soil moisture condition, which is an essential control on flood generation. Second, this system is able to adjust flood forecasting based on real-time inundation information collected by multi-UAS. A group of UAS will be deployed during storm events to capture the changing extent of flooded areas and water depth at multiple critical locations simultaneously. Such information will be transmitted to a hydrological model to validate and improve flood simulation. Third, the backbone of this system is a state-of-the-art 3-D hydrological model that assimilates the hydrological information from satellites and multi-UAS. The model is able to address surface water-groundwater interactions and reflect the effects of various infrastructures. Using Web-GIS technologies, the modeling results will be available online as interactive flood maps accessible to the public. To support the development and verification of this modeling system, surface and subsurface hydrological observations will be conducted in a number of small watersheds in the Coastal Bend region. We envision this system will provide an innovative means to benefit the forecasting, evaluation and mitigation of flash floods in costal regions.

  15. On the efficiency of small air coil motors

    NASA Astrophysics Data System (ADS)

    Horowitz, P.

    1981-05-01

    The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.

  16. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism

    DOE PAGES

    Dangkulwanich, Manchuta; Ishibashi, Toyotaka; Liu, Shixin; ...

    2013-09-24

    During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limitingmore » steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation.« less

  17. Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor.

    PubMed

    Takano, Mitsunori; Terada, Tomoki P; Sasai, Masaki

    2010-04-27

    The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because of the experimental limitations. To provide a clue to resolve the controversy between the lever-arm mechanism and the Brownian ratchet-like mechanism, we here report an in silico single molecule experiment of an actomyosin motor. When we placed myosin on an actin filament and allowed myosin to move along the filament, we found that myosin exhibits a unidirectional Brownian motion along the filament. This unidirectionality was found to arise from the combination of a nonequilibrium condition realized by coupling to the ATP hydrolysis and a ratchet-like energy landscape inherent in the actin-myosin interaction along the filament, indicating that a Brownian ratchet-like mechanism contributes substantially to the energy conversion of this molecular motor.

  18. Ratcheting up the ratchet: on the evolution of cumulative culture

    PubMed Central

    Tennie, Claudio; Call, Josep; Tomasello, Michael

    2009-01-01

    Some researchers have claimed that chimpanzee and human culture rest on homologous cognitive and learning mechanisms. While clearly there are some homologous mechanisms, we argue here that there are some different mechanisms at work as well. Chimpanzee cultural traditions represent behavioural biases of different populations, all within the species’ existing cognitive repertoire (what we call the ‘zone of latent solutions’) that are generated by founder effects, individual learning and mostly product-oriented (rather than process-oriented) copying. Human culture, in contrast, has the distinctive characteristic that it accumulates modifications over time (what we call the ‘ratchet effect’). This difference results from the facts that (i) human social learning is more oriented towards process than product and (ii) unique forms of human cooperation lead to active teaching, social motivations for conformity and normative sanctions against non-conformity. Together, these unique processes of social learning and cooperation lead to humans’ unique form of cumulative cultural evolution. PMID:19620111

  19. Electric generation and ratcheted transport of contact-charged drops

    NASA Astrophysics Data System (ADS)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  20. Electric generation and ratcheted transport of contact-charged drops.

    PubMed

    Cartier, Charles A; Graybill, Jason R; Bishop, Kyle J M

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  1. Forespore engulfment mediated by a ratchet-like mechanism.

    PubMed

    Broder, Dan H; Pogliano, Kit

    2006-09-08

    A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the enzymatic removal of peptidoglycan, a process that does not require DMP. These results suggest the existence of two separate engulfment machineries that compensate for one another in intact cells, thereby rendering engulfment robust. Photobleaching analysis demonstrates that SpoIIQ assembles a stationary structure, suggesting that SpoIIQ and SpoIIIAH function as a ratchet that renders forward membrane movement irreversible. We suggest that ratchet-mediated engulfment minimizes the utilization of chemical energy during this dramatic cellular reorganization, which occurs during starvation.

  2. Translocation by T7 RNA polymerase: a sensitively poised Brownian ratchet.

    PubMed

    Guo, Qing; Sousa, Rui

    2006-04-21

    Studies of halted T7 RNA polymerase (T7RNAP) elongation complexes (ECs) or of T7RNAP transcription against roadblocks due to DNA-bound proteins indicate that T7RNAP translocates via a passive Brownian ratchet mechanism. Crystal structures of T7RNAP ECs suggest that translocation involves an active power-stroke. However, neither solution studies of halted or slowed T7RNAP ECs, nor crystal structures of static complexes, are necessarily relevant to how T7RNAP translocates during rapid elongation. A recent single molecule study of actively elongating T7RNAPs provides support for the Brownian ratchet mechanism. Here, we obtain additional evidence for the existence of a Brownian ratchet during active T7RNAP elongation by showing that both rapidly elongating and halted complexes are equally sensitive to pyrophosphate. Using chemical nucleases tethered to the polymerase we achieve sub-ångström resolution in measuring the average position of halted T7RNAP ECs and find that the positional equilibrium of the EC is sensitively poised between pre-translocated and post-translocated states. This may be important in maximizing the sensitivity of the polymerase to sequences that cause pausing or termination. We also confirm that a crystallographically observed disorder to order transition in a loop formed by residues 589-612 also occurs in solution and is coupled to pyrophosphate or NTP release. This transition allows the loop to make interactions with the DNA that help stabilize the laterally mobile, ligand-free EC against dissociation.

  3. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  4. A Wrf-Chem Flash Rate Parameterization Scheme and LNO(x) Analysis of the 29-30 May 2012 Convective Event in Oklahoma During DC3

    NASA Technical Reports Server (NTRS)

    Cummings, Kristin A.; Pickering, Kenneth E.; Barth, M.; Weinheimer, A.; Bela, M.; Li, Y.; Allen, D.; Bruning, E.; MacGorman, D.; Rutledge, S.; hide

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign in 2012 provided a plethora of aircraft and ground-based observations (e.g., trace gases, lightning and radar) to study deep convective storms, their convective transport of trace gases, and associated lightning occurrence and production of nitrogen oxides (NOx). Based on the measurements taken of the 29-30 May 2012 Oklahoma thunderstorm, an analysis against a Weather Research and Forecasting Chemistry (WRF-Chem) model simulation of the same event at 3-km horizontal resolution was performed. One of the main objectives was to include various flash rate parameterization schemes (FRPSs) in the model and identify which scheme(s) best captured the flash rates observed by the National Lightning Detection Network (NLDN) and Oklahoma Lightning Mapping Array (LMA). The comparison indicates how well the schemes predicted the timing, location, and number of lightning flashes. The FRPSs implemented in the model were based on the simulated thunderstorms physical features, such as maximum vertical velocity, cloud top height, and updraft volume. Adjustment factors were added to each FRPS to best capture the observed flash trend and a sensitivity study was performed to compare the range in model-simulated lightning-generated nitrogen oxides (LNOx) generated by each FRPS over the storms lifetime. Based on the best FRPS, model-simulated LNOx was compared against aircraft measured NOx. The trace gas analysis, along with the increased detail in the model specification of the vertical distribution of lightning flashes as suggested by the LMA data, provide guidance in determining the scenario of NO production per intracloud and cloud-to-ground flash that best matches the NOx mixing ratios observed by the aircraft.

  5. A WRF-Chem Flash Rate Parameterization Scheme and LNOx Analysis of the 29-30 May 2012 Convective Event in Oklahoma During DC3

    NASA Technical Reports Server (NTRS)

    Cummings, Kristin A.; Pickering, Kenneth E.; Barth, M.; Weinheimer, A.; Bela, M.; Li, Y.; Allen, D.; Bruning, E.; MacGorman, D.; Rutledge, S.; hide

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign in 2012 provided a plethora of aircraft and ground-based observations (e.g., trace gases, lightning and radar) to study deep convective storms, their convective transport of trace gases, and associated lightning occurrence and production of nitrogen oxides (NOx). Based on the measurements taken of the 29-30 May 2012 Oklahoma thunderstorm, an analysis against a Weather Research and Forecasting Chemistry (WRF-Chem) model simulation of the same event at 3-km horizontal resolution was performed. One of the main objectives was to include various flash rate parameterization schemes (FRPSs) in the model and identify which scheme(s) best captured the flash rates observed by the National Lightning Detection Network (NLDN) and Oklahoma Lightning Mapping Array (LMA). The comparison indicates how well the schemes predicted the timing, location, and number of lightning flashes. The FRPSs implemented in the model were based on the simulated thunderstorms physical features, such as maximum vertical velocity, cloud top height, and updraft volume. Adjustment factors were applied to each FRPS to best capture the observed flash trend and a sensitivity study was performed to compare the range in model-simulated lightning-generated nitrogen oxides (LNOx) generated by each FRPS over the storms lifetime. Based on the best FRPS, model-simulated LNOx was compared against aircraft measured NOx. The trace gas analysis, along with the increased detail in the model specification of the vertical distribution of lightning flashes as suggested by the LMA data, provide guidance in determining the scenario of NO production per intracloud and cloud-to-ground flash that best matches the NOx mixing ratios observed by the aircraft.

  6. Onset conditions for flash sintering of UO 2

    DOE PAGES

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; ...

    2017-06-22

    In this paper, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26°C) up to 600°C. The onset conditions for flash sintering were determined for three stoichiometries (UO 2.00, UO 2.08, and UO 2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. Finally, the results from this study highlight the effect of stoichiometry on the flash sintering behavior ofmore » uranium dioxide and will serve as the foundation for future studies on this material.« less

  7. Onset conditions for flash sintering of UO2

    NASA Astrophysics Data System (ADS)

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; Andersson, David A.; Uberuaga, Blas P.; Stanek, Christopher R.; McClellan, Kenneth J.

    2017-09-01

    In this work, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26 °C) up to 600 °C . The onset conditions for flash sintering were determined for three stoichiometries (UO2.00, UO2.08, and UO2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. The results from this study highlight the effect of stoichiometry on the flash sintering behavior of uranium dioxide and will serve as the foundation for future studies on this material.

  8. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Riff, R.

    1987-01-01

    A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads are developed. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratcheting. Thus, geometric as well as material type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.

  9. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1987-01-01

    A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process.

  10. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1990-01-01

    The development of a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-like structures under dynamic and/or static thermomechanical loads is examined. In the mathematical model, geometric as well as material-type of nonlinearities are considered. Traditional as well as novel approaches are reported and detailed applications are presented in the appendices. The emphasis for the mathematical model, the related solution schemes, and the applications, is on thermal viscoelastic and viscoplastic phenomena, which can predict creep and ratchetting.

  11. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.

    1991-01-01

    This report deals with the development of a general mathematical model and solution methodology for analyzing the structural response of thin, metallic shell-like structures under dynamic and/or static thermomechanical loads. In the mathematical model, geometric as well as the material-type of nonlinearities are considered. Traditional as well as novel approaches are reported and detailed applications are presented in the appendices. The emphasis for the mathematical model, the related solution schemes, and the applications, is on thermal viscoelastic and viscoplastic phenomena, which can predict creep and ratchetting.

  12. Determination of the Global-Average Charge Moment of a Lightning Flash Using Schumann Resonances and the LIS/OTD Lightning Data

    NASA Astrophysics Data System (ADS)

    Boldi, Robert; Williams, Earle; Guha, Anirban

    2018-01-01

    In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.

  13. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.

    PubMed

    Hamer, R D; Nicholas, S C; Tranchina, D; Liebman, P A; Lamb, T D

    2003-10-01

    Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca2+ feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca2+-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.

  14. Adverse Effects of Induced Hot Flashes on Objectively Recorded and Subjectively Reported Sleep: Results of a Gonadotropin-Releasing Hormone Agonist Experimental Protocol

    PubMed Central

    Joffe, Hadine; White, David P.; Crawford, Sybil L.; McCurnin, Kristin E.; Economou, Nicole; Connors, Stephanie; Hall, Janet E.

    2013-01-01

    Objectives The impact of hot flashes on sleep is of great clinical interest, but results are inconsistent, especially when both hot flashes and sleep are measured objectively. Using objective and subjective measurements, we examined the impact of hot flashes on sleep by inducing hot flashes with a gonadotropin-releasing hormone agonist (GnRHa). Methods The GnRHa leuprolide was administered to 20 healthy premenopausal volunteers without hot flashes or sleep disturbances. Induced hot flashes were assessed objectively (skin-conductance monitor) and subjectively (daily diary) during one-month follow-up. Changes from baseline in objective (actigraphy) and subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI]) were compared between women who did and did not develop objective hot flashes, and, in parallel analyses, subjective hot flashes. Results New-onset hot flashes were recorded in 14 (70%) and reported by 14 (70%) women (80% concordance). Estradiol was universally suppressed. Objective sleep efficiency worsened in women with objective hot flashes and improved in women without objective hot flashes (median decrease 2.6%, increase 4.2%, p=0.005). Subjective sleep quality worsened more in those with than without subjective hot flashes (median increase PSQI 2.5 vs. 1.0, p=0.03). Objective hot flashes were not associated with subjective sleep quality, nor were subjective symptoms linked to objective sleep measures. Conclusions This experimental model of induced hot flashes demonstrates a causal relationship between hot flashes and poor sleep quality. Objective hot flashes result in worse objective sleep efficiency, while subjective hot flashes worsen perceived sleep quality. PMID:23481119

  15. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    PubMed

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  16. All-season flash flood forecasting system for real-time operations

    USDA-ARS?s Scientific Manuscript database

    Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorologic observations and predictions, as well as calibrated hydrologic models in addition to extensive data handling. We have de...

  17. Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.

    2018-06-01

    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.

  18. Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet.

    PubMed

    Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E; Sols, Fernando; Carr, Lincoln D

    2018-06-08

    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.

  19. Giant transversal particle diffusion in a longitudinal magnetic ratchet.

    PubMed

    Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc

    2010-12-03

    We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4)  μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.

  20. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  1. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    NASA Astrophysics Data System (ADS)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference in designing such systems.

  2. Diffusion rate limitations in actin-based propulsion of hard and deformable particles.

    PubMed

    Dickinson, Richard B; Purich, Daniel L

    2006-08-15

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.

  3. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  4. Understanding processes that generate flash floods in the arid Judean Desert to the Dead Sea - a measurement network

    NASA Astrophysics Data System (ADS)

    Hennig, Hanna; Rödiger, Tino; Laronne, Jonathan B.; Geyer, Stefan; Merz, Ralf

    2016-04-01

    Flash floods in (semi-) arid regions are fascinating in their suddenness and can be harmful for humans, infrastructure, industry and tourism. Generated within minutes, an early warning system is essential. A hydrological model is required to quantify flash floods. Current models to predict flash floods are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where flash floods occur require consideration. In this study we present a monitoring approach to decipher different flash flood generating processes in the ephemeral Wadi Arugot on the western side of the Dead Sea. To understand rainfall input a dense rain gauge network was installed. Locations of rain gauges were chosen based on land use, slope and soil cover. The spatiotemporal variation of rain intensity will also be available from radar backscatter. Level pressure sensors located at the outlet of major tributaries have been deployed to analyze in which part of the catchment water is generated. To identify the importance of soil moisture preconditions, two cosmic ray sensors have been deployed. At the outlet of the Arugot water is sampled and level is monitored. To more accurately determine water discharge, water velocity is measured using portable radar velocimetry. A first analysis of flash flood processes will be presented following the FLEX-Topo concept .(Savenije, 2010), where each landscape type is represented using an individual hydrological model according to the processes within the three hydrological response units: plateau, desert and outlet. References: Savenije, H. H. G.: HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)", Hydrol. Earth Syst. Sci., 14, 2681-2692, doi:10.5194/hess-14-2681-2010, 2010.

  5. NIR small arms muzzle flash

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph; Kennerly, Stephen; Rede, Edward

    2010-04-01

    Utilization of Near-Infrared (NIR) spectral features in a muzzle flash will allow for small arms detection using low cost silicon (Si)-based imagers. Detection of a small arms muzzle flash in a particular wavelength region is dependent on the intensity of that emission, the efficiency of source emission transmission through the atmosphere, and the relative intensity of the background scene. The NIR muzzle flash signature exists in the relatively large Si spectral response wavelength region of 300 nm-1100 nm, which allows for use of commercial-off-the-shelf (COTS) Si-based detectors. The alkali metal origin of the NIR spectral features in the 7.62 × 39-mm round muzzle flash is discussed, and the basis for the spectral bandwidth is examined, using a calculated Voigt profile. This report will introduce a model of the 7.62 × 39-mm NIR muzzle flash signature based on predicted source characteristics. Atmospheric limitations based on NIR spectral regions are investigated in relation to the NIR muzzle flash signature. A simple signal-to-clutter ratio (SCR) metric is used to predict sensor performance based on a model of radiance for the source and solar background and pixel registered image subtraction.

  6. Social organization and the evolution of cumulative technology in apes and hominins.

    PubMed

    Pradhan, Gauri R; Tennie, Claudio; van Schaik, Carel P

    2012-07-01

    Culturally supported accumulation (or ratcheting) of technological complexity is widely seen as characterizing hominin technology relative to that of the extant great apes, and thus as representing a threshold in cultural evolution. To explain this divide, we modeled the process of cultural accumulation of technology, which we defined as adding new actions to existing ones to create new functional combinations, based on a model for great ape tool use. The model shows that intraspecific and interspecific variation in the presence of simple and cumulative technology among extant orangutans and chimpanzees is largely due to variation in sociability, and hence opportunities for social learning. The model also suggests that the adoption of extensive allomaternal care (cooperative breeding) in early Pleistocene Homo, which led to an increase in sociability and to teaching, and hence increased efficiency of social learning, was enough to facilitate technological ratcheting. Hence, socioecological changes, rather than advances in cognitive abilities, can account for the cumulative cultural changes seen until the origin of the Acheulean. The consequent increase in the reliance on technology could have served as the pacemaker for increased cognitive abilities. Our results also suggest that a more important watershed in cultural evolution was the rise of donated culture (technology or concepts), in which technology or concepts was transferred to naïve individuals, allowing them to skip many learning steps, and specialization arose, which allowed individuals to learn only a subset of the population's skills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo

    2017-11-01

    In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.

  8. Cascading disaster models in postburn flash flood

    Treesearch

    Fred May

    2007-01-01

    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  9. Investigation of interactions between limb-manipulator dynamics and effective vehicle roll control characteristics

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Mcruer, D. T.

    1986-01-01

    A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).

  10. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook

    2017-03-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.

  11. Ratchet flow of thin liquid films induced by a two-frequency tangential forcing

    NASA Astrophysics Data System (ADS)

    Sterman-Cohen, Elad; Bestehorn, Michael; Oron, Alexander

    2018-02-01

    A possibility of saturating Rayleigh-Taylor instability in a thin liquid film on the underside of a substrate in the gravity field by harmonic vibration of the substrate was recently investigated [E. Sterman-Cohen, M. Bestehorn, and A. Oron, Phys. Fluids 29, 052105 (2017); Erratum, Phys. Fluids 29, 109901 (2017)]. In the present work, we investigate the feasibility of creating a directional flow of the fluid in a film in the Rayleigh-Taylor configuration and controlling its flow rate by applying a two-frequency tangential forcing to the substrate. It is shown that in this situation, a ratchet flow develops, and the dependence of its flow rate on the vibration frequency, amplitude, its periodicity, and asymmetry level is investigated for water and silicone-oil films. A cause for the emergence of symmetry-breaking and an ensuing flow in a preferred direction is discussed. Some aspects of a ratchet flow in a liquid film placed on top of the substrate are discussed as well. A comparison with the case of a neglected fluid inertia is made, and the differences are explained.

  12. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  13. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Yu, X. Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.

    2014-03-01

    Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion—a particle-like object in which spins point in all directions to wrap a sphere—constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.

  14. Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor

    PubMed Central

    Takano, Mitsunori; Terada, Tomoki P.; Sasai, Masaki

    2010-01-01

    The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because of the experimental limitations. To provide a clue to resolve the controversy between the lever-arm mechanism and the Brownian ratchet-like mechanism, we here report an in silico single molecule experiment of an actomyosin motor. When we placed myosin on an actin filament and allowed myosin to move along the filament, we found that myosin exhibits a unidirectional Brownian motion along the filament. This unidirectionality was found to arise from the combination of a nonequilibrium condition realized by coupling to the ATP hydrolysis and a ratchet-like energy landscape inherent in the actin-myosin interaction along the filament, indicating that a Brownian ratchet-like mechanism contributes substantially to the energy conversion of this molecular motor. PMID:20385833

  15. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kim, Yong-Suk; Gabb, Timothy P.

    1989-01-01

    The high temperature fatigue behavior of a 9 vol percent, tungsten fiber reinforced copper matrix composite was investigated. Load-controlled isothermal fatigue experiments at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in phase and out of phase between 260 and 560 C, were performed. The stress-strain response displayed considerable inelasticity under all conditions. Also, strain ratcheting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratcheting was always in a tensile direction, continuing until failure. The ratcheting during the out-of-phase TMF test shifted from a tensile direction to a compressive direction. This behavior was thought to be associated with the observed bulging and the extensive cracking of the out-of-phase specimen. For all cases, the fatigue lives were found to be controlled by damage to the copper matrix. Grain boundary cavitation was the dominant damage mechanism of the matrix. On a stress basis, TMF loading reduced lives substantially, relative to isothermal cycling. In-phase cycling resulted in the shortest lives, and isothermal fatigue at 260 C, the longest.

  16. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  17. How self-reported hot flashes may relate to affect, cognitive performance and sleep.

    PubMed

    Regestein, Quentin; Friebely, Joan; Schiff, Isaac

    2015-08-01

    To explain the controversy about whether midlife women who self-report hot flashes have relatively increased affective symptoms, poor cognitive performance or worse sleep. Retrospective data from 88 women seeking relief from bothersome day and night hot flashes were submitted to mixed linear regression modeling to find if estimated hot flashes, as measured by Women's Health Questionnaire (WHQ) items, or diary-documented hot flashes recorded daily, were associated with each other, or with affective, cognitive or sleep measures. Subjects averaged 6.3 daytime diary-documented hot flashes and 2.4 nighttime diary-documented hot flashes per 24h. Confounder-controlled diary-documented hot flashes but not estimated hot flashes were associated with increased Leeds anxiety scores (F=4.9; t=2.8; p=0.01) and Leeds depression scores (3.4; 2.5; 0.02), decreased Stroop Color-Word test performance (9.4; 3.5; 0.001), increased subjective sleep disturbance (effect size=0.83) and increased objective sleep disturbance (effect size=0.35). Hot flash effects were small to moderate in size. Univariate but not multivariate analyses revealed that all hot flash measures were associated with all affect measures. Different measures of hot flashes associated differently with affect, cognition and sleep. Only nighttime diary-document hot flash consistently correlated with any affect measures in multivariate analyses. The use of differing measures for hot flashes, affect, cognition and sleep may account for the continually reported inconsistencies in menopause study outcomes. This problem impedes forging a consensus on whether hot flashes correlate with neuropsychological symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale.

    PubMed

    Inoue, Yasuhiro; Adachi, Taiji

    2011-07-01

    Membrane protrusion is a mechanochemical process of active membrane deformation driven by actin polymerization. Previously, Brownian ratchet (BR) was modeled on the basis of the underlying molecular mechanism. However, because the BR requires a priori load that cannot be determined without information of the cell shape, it cannot be effective in studies in which resultant shapes are to be solved. Other cellular-scale models describing the protrusion have also been suggested for modeling a whole cell; however, these models were not developed on the basis of coarse-grained physics representing the underlying molecular mechanism. Therefore, to express the membrane protrusion on the cellular scale, we propose a novel mathematical model, the coarse-grained BR (CBR), which is derived on the basis of nonequilibrium thermodynamics theory. The CBR can reproduce the BR within the limit of the quasistatic process of membrane protrusion and can estimate the protrusion velocity consistently with an effective elastic constant that represents the state of the energy of the membrane. Finally, to demonstrate the applicability of the CBR, we attempt to perform a cellular-scale simulation of migrating keratocyte in which the proposed CBR is used for the membrane protrusion model on the cellular scale. The results show that the experimentally observed shapes of the leading edge are well reproduced by the simulation. In addition, The trend of dependences of the protrusion velocity on the curvature of the leading edge, the temperature, and the substrate stiffness also agreed with the other experimental results. Thus, the CBR can be considered an appropriate cellular-scale model to express the membrane protrusion on the basis of its underlying molecular mechanism.

  19. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Jacoby, Yael; Navon, Shilo; Bet-Halachmi, Erez

    2009-07-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Validation was performed for a subsequent 5-year period for the same catchment and then for an entire 10-year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.

  20. Towards flash flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, E.; Jacoby, Y.; Navon, S.; Bet-Halachmi, E.

    2009-04-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model utilizing radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on five years of data for one of the catchments. Validation was performed for a subsequent five-year period for the same catchment and then for an entire ten year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood-warning model is feasible for catchments in the area studied.

  1. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  2. Evaluation of sub daily satellite rainfall estimates through flash flood modelling in the Lower Middle Zambezi Basin

    NASA Astrophysics Data System (ADS)

    Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson

    2018-05-01

    Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.

  3. Menopausal Hot Flashes and Carotid Intima Media Thickness Among Midlife Women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; Landsittel, Doug P; Santoro, Nanette; von Känel, Roland; Matthews, Karen A

    2016-12-01

    There has been a longstanding interest in the role of menopause and its correlates in the development of cardiovascular disease (CVD) in women. Menopausal hot flashes are experienced by most midlife women; emerging data link hot flashes to CVD risk indicators. We tested whether hot flashes, measured via state-of-the-art physiologic methods, were associated with greater subclinical atherosclerosis as assessed by carotid ultrasound. We considered the role of CVD risk factors and estradiol concentrations in these associations. A total of 295 nonsmoking women free of clinical CVD underwent ambulatory physiologic hot flash assessments; a blood draw; and carotid ultrasound measurement of intima media thickness and plaque. Associations between hot flashes and subclinical atherosclerosis were tested in regression models controlling for CVD risk factors and estradiol. More frequent physiologic hot flashes were associated with higher carotid intima media thickness (for each additional hot flash: β [SE]=0.004 [0.001]; P=0.0001; reported hot flash: β [SE]=0.008 [0.002]; P=0.002, multivariable) and plaque (eg, for each additional hot flash, odds ratio [95% confidence interval] plaque index ≥2=1.07 [1.003-1.14]; P=0.04, relative to no plaque, multivariable] among women reporting daily hot flashes; associations were not accounted for by CVD risk factors or by estradiol. Among women reporting hot flashes, hot flashes accounted for more variance in intima media thickness than most CVD risk factors. Among women reporting daily hot flashes, frequent hot flashes may provide information about a woman's vascular status beyond standard CVD risk factors and estradiol. Frequent hot flashes may mark a vulnerable vascular phenotype among midlife women. © 2016 American Heart Association, Inc.

  4. Menopausal Hot Flashes and Carotid Intima Media Thickness among Midlife Women

    PubMed Central

    Thurston, Rebecca C.; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J. Richard; Landsittel, Doug P.; Santoro, Nanette; von Känel, Roland; Matthews, Karen A.

    2016-01-01

    Background and Purpose There has been a longstanding interest in the role of menopause and its correlates in the development of cardiovascular disease (CVD) in women. Menopausal hot flashes are experienced by most midlife women; emerging data link hot flashes to CVD risk indicators. We tested whether hot flashes, measured via state-of-the-art physiologic methods, were associated with greater subclinical atherosclerosis as assessed by carotid ultrasound. We considered the role of CVD risk factors and estradiol concentrations in these associations. Methods 295 nonsmoking women free of clinical CVD underwent ambulatory physiologic hot flash assessments; a blood draw; and carotid ultrasound measurement of IMT and plaque. Associations between hot flashes and subclinical atherosclerosis were tested in regression models controlling for CVD risk factors and estradiol. Results More frequent physiologic hot flashes were associated with higher carotid intima media thickness [IMT; for each additional hot flash: beta (standard error)=.004(.001), p=.0001; reported hot flash: beta (standard error)=.008(.002), p=.002, multivariable] and plaque [e.g., for each additional hot flash, odds ratio (95% confidence interval) plaque index ≥2=1.07(1.003–1.14, p=.04), relative to no plaque, multivariable] among women reporting daily hot flashes; associations were not accounted for by CVD risk factors or by estradiol. Among women reporting hot flashes, hot flashes accounted for more variance in IMT than most CVD risk factors. Conclusions Among women reporting daily hot flashes, frequent hot flashes may provide information about a woman’s vascular status beyond standard CVD risk factors and estradiol. Frequent hot flashes may mark a vulnerable vascular phenotype among midlife women. PMID:27834746

  5. Production of NOx by Lightning and its Effects on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2009-01-01

    Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.

  6. Establishing a rainfall threshold for flash flood warnings based on the DFFG method in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.

    2017-12-01

    Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an appropriate threshold for flash flood warnings. Finally, the article highlights the importance of accurately simulating the hydrological processes and high-resolution satellite rainfall data on the accurate forecasting of rainfall triggered flash flood events.

  7. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.

    PubMed

    Park, Emily S; Duffy, Simon P; Ma, Hongshen

    2017-01-01

    Circulating tumor cells (CTCs) have been implicated as the seeds of cancer metastasis and therefore have the potential to provide significant prognostic and diagnostic values. Here, we describe a procedure for separating CTCs from whole blood based on size and deformability using the microfluidic ratchet device. This device leverages the ratcheting motion of single cells created as they are deformed through funnel-shaped constrictions using oscillatory flow in order to divert cells based on differences in size and deformability. Subsequent methods for CTC identification and enumeration using immunofluorescence after separation are also described.

  8. Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan; Wang, Xian-Ju; Liu, Guo-Tao; Wen, De-Hua; Xie, Hui-Zhang; Chen, Wei; Liu, Liang-Gang

    2003-12-01

    The efficiency of a Brownian particle moving in a periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that even on the quasistatic limit there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings [H. Kamegawa et al., Phys. Rev. Lett. 80, 5251 (1998)]. It is also found that the mutual interplay between temporal asymmetry and spatial asymmetry may induce optimized efficiency at finite temperatures. The ratchet is not most efficient when it gives maximum current.

  9. Understanding the complex relationships underlying hot flashes: a Bayesian network approach.

    PubMed

    Smith, Rebecca L; Gallicchio, Lisa M; Flaws, Jodi A

    2018-02-01

    The mechanism underlying hot flashes is not well-understood, primarily because of complex relationships between and among hot flashes and their risk factors. We explored those relationships using a Bayesian network approach based on a 2006 to 2015 cohort study of hot flashes among 776 female residents, 45 to 54 years old, in the Baltimore area. Bayesian networks were fit for each outcome (current hot flashes, hot flashes before the end of the study, hot flash severity, hot flash frequency, and age at first hot flashes) separately and together with a list of risk factors (estrogen, progesterone, testosterone, body mass index and obesity, race, income level, education level, smoking history, drinking history, and activity level). Each fitting was conducted separately on all women and only perimenopausal women, at enrollment and 4 years after enrollment. Hormone levels, almost always interrelated, were the most common variable linked to hot flashes; hormone levels were sometimes related to body mass index, but were not directly related to any other risk factors. Smoking was also frequently associated with increased likelihood of severe symptoms, but not through an antiestrogenic pathway. The age at first hot flashes was related only to race. All other factors were either not related to outcomes or were mediated entirely by race, hormone levels, or smoking. These models can serve as a guide for design of studies into the causal network underlying hot flashes.

  10. Inversions of synthetic umbral flashes: Effects of scanning time on the inferred atmospheres

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Socas-Navarro, H.; Przybylski, D.

    2018-06-01

    Context. The use of instruments that record narrowband images at selected wavelengths is a common approach in solar observations. They allow scanning of a spectral line by sampling the Stokes profiles with two-dimensional images at each line position, but require a compromise between spectral resolution and temporal cadence. The interpretation and inversion of spectropolarimetric data generally neglect changes in the solar atmosphere during the scanning of line profiles. Aims: We evaluate the impact of the time-dependent acquisition of various wavelengths on the inversion of spectropolarimetric profiles from chromospheric lines during umbral flashes. Methods: Numerical simulations of nonlinear wave propagation in a sunspot model were performed with the code MANCHA. Synthetic Stokes parameters in the Ca II 8542 Å line in NLTE were computed for an umbral flash event using the code NICOLE. Artificial profiles with the same wavelength coverage and temporal cadence from reported observations were constructed and inverted. The inferred atmospheric stratifications were compared with the original simulated models. Results: The inferred atmospheres provide a reasonable characterization of the thermodynamic properties of the atmosphere during most of the phases of the umbral flash. The Stokes profiles present apparent wavelength shifts and other spurious deformations at the early stages of the flash, when the shock wave reaches the formation height of the Ca II 8542 Å line. These features are misinterpreted by the inversion code, which can return unrealistic atmospheric models from a good fit of the Stokes profiles. The misguided results include flashed atmospheres with strong downflows, even though the simulation exhibits upflows during the umbral flash, and large variations in the magnetic field strength. Conclusions: Our analyses validate the inversion of Stokes profiles acquired by sequentially scanning certain selected wavelengths of a line profile, even in the case of rapidly changing chromospheric events such as umbral flashes. However, the inversion results are unreliable during a short period at the development phase of the flash.

  11. Menopausal Hot Flashes and White Matter Hyperintensities

    PubMed Central

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  12. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Riff, R.

    1988-01-01

    This research is performed to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.

  13. Additions and improvements to the high energy density physics capabilities in the FLASH code

    NASA Astrophysics Data System (ADS)

    Lamb, D.; Bogale, A.; Feister, S.; Flocke, N.; Graziani, C.; Khiar, B.; Laune, J.; Tzeferacos, P.; Walker, C.; Weide, K.

    2017-10-01

    FLASH is an open-source, finite-volume Eulerian, spatially-adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities exist in FLASH, which make it a powerful open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. We describe several non-ideal MHD capabilities that are being added to FLASH, including the Hall and Nernst effects, implicit resistivity, and a circuit model, which will allow modeling of Z-pinch experiments. We showcase the ability of FLASH to simulate Thomson scattering polarimetry, which measures Faraday due to the presence of magnetic fields, as well as proton radiography, proton self-emission, and Thomson scattering diagnostics. Finally, we describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at U. Chicago by DOE NNSA ASC through the Argonne Institute for Computing in Science under FWP 57789; DOE NNSA under NLUF Grant DE-NA0002724; DOE SC OFES Grant DE-SC0016566; and NSF Grant PHY-1619573.

  14. MobRISK: a model for assessing the exposure of road users to flash flood events

    NASA Astrophysics Data System (ADS)

    Shabou, Saif; Ruin, Isabelle; Lutoff, Céline; Debionne, Samuel; Anquetin, Sandrine; Creutin, Jean-Dominique; Beaufils, Xavier

    2017-09-01

    Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial-temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.

  15. Magnitude of the impact of hot flashes on sleep in perimenopausal women

    PubMed Central

    de Zambotti, Massimiliano; Colrain, Ian M.; Javitz, Harold S.; Baker, Fiona C.

    2014-01-01

    Objective To quantify the impact of objectively-recorded hot flashes on objective sleep in perimenopausal women. Design Cross-sectional study. Participants underwent 1–5 laboratory-based polysomnographic recordings for a total of 63 nights, including sternal skin conductance measures, from which 222 hot flashes were identified according to established criteria. Data were analyzed with hierarchical mixed-effect models and Spearman correlations. Setting Sleep laboratory. Patients 34 perimenopausal women (Age±SD:50.4±2.7y). Intervention None. Main Outcome Measures Perceived and polysomnographic sleep measures (sleep quality, amount of wake after sleep onset and number of awakenings). Subjective (frequency and bother) and objective (frequency and amount of hot flash-associated wake time) hot flash measures. Results Women had an average of 3.5 (95%CI:2.8–4.2, range=1– 9) objective hot flashes per night. 69.4% of hot flashes were associated with an awakening. Hot flash-associated wake time per night was, on average, 16.6 min (95%CI:10.8–22.4), which accounted for 27.2% (SD 27.1) of total wakefulness per night. Hot flash-associated wake, but not frequency, was negatively associated with sleep efficiency and positively associated with wake after sleep onset. Also, self-reported wakefulness correlated with hot flash-associated wake, suggesting that women’s estimates of wakefulness are influenced by the amount of time spent awake in association with hot flashes during the night. More perceived and bothersome hot flashes correlated with more perceived wakefulness and awakenings and more objective hot flash-associated wake time and hot flash frequency. Conclusions The presence of physiological hot flashes accounts for a significant proportion of total objective wakefulness during the night in perimenopausal women. PMID:25256933

  16. Evaluation of 1.5-T Cell Flash Memory Total Ionizing Dose Response

    NASA Astrophysics Data System (ADS)

    Clark, Lawrence T.; Holbert, Keith E.; Adams, James W.; Navale, Harshad; Anderson, Blake C.

    2015-12-01

    Flash memory is an essential part of systems used in harsh environments, experienced by both terrestrial and aerospace TID applications. This paper presents studies of COTS flash memory TID hardness. While there is substantial literature on flash memory TID response, this work focuses for the first time on 1.5 transistor per cell flash memory. The experimental results show hardness varying from about 100 krad(Si) to over 250 krad(Si) depending on the usage model. We explore the circuit and device aspects of the results, based on the extensive reliability literature for this flash memory type. Failure modes indicate both device damage and circuit marginalities. Sector erase failure limits, but read only operation allows TID exceeding 200 krad(Si). The failures are analyzed by type.

  17. Two simple models of classical heat pumps.

    PubMed

    Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek

    2007-03-01

    Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.

  18. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  19. Ion pump as Brownian motor: theory of electroconformational coupling and proof of ratchet mechanism for Na,K-ATPase action

    NASA Astrophysics Data System (ADS)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2003-04-01

    This article reviews some concepts of the Brownian Ratchet which are relevant to our discussion of mechanisms of action of Na,K-ATPase, a universal ion pump and an elemental motor protein of the biological cell. Under wide ranges of ionic compositions it can hydrolyze an ATP and use the γ-phosphorous bond energy of ATP to pump 3 Na + out of, and 2 K + into the cell, both being uphill transport. During the ATP-dependent pump cycle, the enzyme oscillates between E1 and E2 states. Our experiment replaces ATP with externally applied electric field of various waveforms, amplitudes, and frequencies. The field enforced-oscillation, or fluctuation of E1 and E2 states enables the enzyme to harvest energy from the applied field and convert it to the chemical gradient energy of cations. A theory of electroconformational coupling (TEC), which embodies all the essential features of the Brownian Ratchet, successfully simulates these experimental results. Our analysis based on a four-state TEC model indicates that the equilibrium and the rate constants of the transport system define the frequency and the amplitude of the field for the optimal activation. Waveform, frequency, and amplitude are three elements of signal. Thus, electric signal of the ion pump is found by TEC analysis of the experimental data. Electric noise (white) superimposed on an electric signal changes the pump efficiency and produces effects similar to the stochastic resonance reported in other biological systems. The TEC concept is compared with the most commonly used Michaelis-Menten enzyme mechanism (MME) for similarities and differences. Both MME and TEC are catalytic wheels, which recycle the catalyst in each turnover. However, a MME can only catalyze reaction of descending free energy while a TEC enzyme can catalyze reaction of ascending free energy by harvesting needed energy from an off-equilibrium electric noise. The TEC mechanism is shown to be applicable to other biological motors and engines, as well. Deterministic and non-deterministic noise is examined in reference to future extension of the TEC model for biological transduction of free energy.

  20. Impact Flash Physics: Modeling and Comparisons With Experimental Results

    NASA Astrophysics Data System (ADS)

    Rainey, E.; Stickle, A. M.; Ernst, C. M.; Schultz, P. H.; Mehta, N. L.; Brown, R. C.; Swaminathan, P. K.; Michaelis, C. H.; Erlandson, R. E.

    2015-12-01

    Hypervelocity impacts frequently generate an observable "flash" of light with two components: a short-duration spike due to emissions from vaporized material, and a long-duration peak due to thermal emissions from expanding hot debris. The intensity and duration of these peaks depend on the impact velocity, angle, and the target and projectile mass and composition. Thus remote sensing measurements of planetary impact flashes have the potential to constrain the properties of impacting meteors and improve our understanding of impact flux and cratering processes. Interpreting impact flash measurements requires a thorough understanding of how flash characteristics correlate with impact conditions. Because planetary-scale impacts cannot be replicated in the laboratory, numerical simulations are needed to provide this insight for the solar system. Computational hydrocodes can produce detailed simulations of the impact process, but they lack the radiation physics required to model the optical flash. The Johns Hopkins University Applied Physics Laboratory (APL) developed a model to calculate the optical signature from the hot debris cloud produced by an impact. While the phenomenology of the optical signature is understood, the details required to accurately model it are complicated by uncertainties in material and optical properties and the simplifications required to numerically model radiation from large-scale impacts. Comparisons with laboratory impact experiments allow us to validate our approach and to draw insight regarding processes that occur at all scales in impact events, such as melt generation. We used Sandia National Lab's CTH shock physics hydrocode along with the optical signature model developed at APL to compare with a series of laboratory experiments conducted at the NASA Ames Vertical Gun Range. The experiments used Pyrex projectiles to impact pumice powder targets with velocities ranging from 1 to 6 km/s at angles of 30 and 90 degrees with respect to horizontal. High-speed radiometer measurements were made of the time-dependent impact flash at wavelengths of 350-1100 nm. We will present comparisons between these measurements and the output of APL's model. The results of this validation allow us to determine basic relationships between observed optical signatures and impact conditions.

  1. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare to observed flash rates. For the 6 June storm, a preliminary analysis of aircraft observations of storm inflow and outflow is presented in order to place flash rates (and other lightning statistics) in the context of storm chemistry. An approach to a possibly improved LNOx parameterization scheme using different lightning metrics such as flash area will be discussed.

  2. Synchronized Electronic Shutter System (SESS) for Thermal Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.

    2001-01-01

    The purpose of this paper is to describe a new method for thermal nondestructive evaluation. This method uses a synchronized electronic shutter system (SESS) to remove the heat lamp's influence on the thermal data during and after flash heating. There are two main concerns when using flash heating. The first concern is during the flash when the photons are reflected back into the camera. This tends to saturate the detectors and potentially introduces unknown and uncorrectable errors when curve fitting the data to a model. To address this, an electronically controlled shutter was placed over the infrared camera lens. Before firing the flash lamps, the shutter is opened to acquire the necessary background data for offset calibration. During flash heating, the shutter is closed to prevent the photons from the high intensity flash from saturating the camera's detectors. The second concern is after the flash heating where the lamps radiate heat after firing. This residual cooling introduces an unwanted transient thermal response into the data. To remove this residual effect, a shutter was placed over the flash lamps to block the infrared heat radiating from the flash head after heating. This helped to remove the transient contribution of the flash. The flash lamp shutters were synchronized electronically with the camera shutter. Results are given comparing the use of the thermal inspection with and without the shutter system.

  3. Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women.

    PubMed

    Gibson, Carolyn J; Mendes, Wendy Berry; Schembri, Michael; Grady, Deborah; Huang, Alison J

    2017-07-01

    Abnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women. Autonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment. PEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04). Among perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes.

  4. Develop an early warning climate indicator to support the Nation's resilience to 'flash' droughts over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, D. N.; YANG, Z.; Solis, R.

    2013-12-01

    'Flash' droughts refer to those droughts that intensify rapidly in spring and summer, coupled with a strong increase of summer extreme temperatures, such as those that occurred over Texas in 2011 and the Great Plains in 2012. These droughts represent a great threat to North American water security. Climate models have failed to predict these 'flash' droughts and are ambiguous in projecting their future changes largely because of models' weaknesses in predicting summer rainfall and soil moisture feedbacks. By contrast, climate models are more reliable in simulating changes of large-scale circulation and warming of temperatures during the winter and spring seasons. We present a prototype of an early warning indicator for the risk of 'flash' droughts in summer by using the large-scale circulation and land surface conditions in winter and spring based on observed relationships between these conditions and their underlying physical mechanisms established by previous observations and numerical model simulations. This prototype 'flash' drought indicator (IFDW) currently uses global and regional reanalysis products (e.g., CFSR, MERRA, NLDAS products) in winter and spring to provide an assessment of summer drought severity similar to drought severity indices like PDSI (Palmer Drought Severity Index), SPI (Standard Precipitation Index) etc., provided by the National Integrated Drought Information Center (NIDIS) with additional information about uncertainty and past probability distributions of IFDW. Preliminary evaluation of hindcasts suggests that the indicator captures the occurrences of all the regional severe to extreme summer droughts during the past 63 years (1949-2011) over the US Great Plains, and 95% of the drought ending. This prototype IFDW has several advantages over the available drought indices that simply track local drought conditions in the past, present and future: 1) It mitigates the weakness of current climate models in predicting future summer droughts and takes advantage of model strengths and our understanding of the mechanisms that control 'flash' droughts; 2) It provides actionable drought risk information for stakeholders before droughts become fully developed in the current climate; 3) It can potentially link the future increase of temperatures in winter and spring to the risk of 'flash' droughts in summer. Such a link would make the projected changes of the 'flash' droughts more intuitive and compelling to high-level decision makers and the public.

  5. Active Flash: Out-of-core Data Analytics on Flash Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S

    2012-01-01

    Next generation science will increasingly come to rely on the ability to perform efficient, on-the-fly analytics of data generated by high-performance computing (HPC) simulations, modeling complex physical phenomena. Scientific computing workflows are stymied by the traditional chaining of simulation and data analysis, creating multiple rounds of redundant reads and writes to the storage system, which grows in cost with the ever-increasing gap between compute and storage speeds in HPC clusters. Recent HPC acquisitions have introduced compute node-local flash storage as a means to alleviate this I/O bottleneck. We propose a novel approach, Active Flash, to expedite data analysis pipelines bymore » migrating to the location of the data, the flash device itself. We argue that Active Flash has the potential to enable true out-of-core data analytics by freeing up both the compute core and the associated main memory. By performing analysis locally, dependence on limited bandwidth to a central storage system is reduced, while allowing this analysis to proceed in parallel with the main application. In addition, offloading work from the host to the more power-efficient controller reduces peak system power usage, which is already in the megawatt range and poses a major barrier to HPC system scalability. We propose an architecture for Active Flash, explore energy and performance trade-offs in moving computation from host to storage, demonstrate the ability of appropriate embedded controllers to perform data analysis and reduction tasks at speeds sufficient for this application, and present a simulation study of Active Flash scheduling policies. These results show the viability of the Active Flash model, and its capability to potentially have a transformative impact on scientific data analysis.« less

  6. Flash flood warning based on fully dynamic hydrology modelling

    NASA Astrophysics Data System (ADS)

    Pejanovic, Goran; Petkovic, Slavko; Cvetkovic, Bojan; Nickovic, Slobodan

    2016-04-01

    Numerical hydrologic modeling has achieved limited success in the past due to, inter alia, lack of adequate input data. Over the last decade, data availability has improved substantially. For modelling purposes, high-resolution data on topography, river routing, and land cover and soil features have meanwhile become available, as well as the observations such as radar precipitation information. In our study, we have implemented the HYPROM model (Hydrology Prognostic Model) to predict a flash flood event at a smaller-scale basin in Southern Serbia. HYPROM is based on the full set of governing equations for surface hydrological dynamics, in which momentum components, along with the equation of mass continuity, are used as full prognostic equations. HYPROM also includes a river routing module serving as a collector for the extra surface water. Such approach permits appropriate representation of different hydrology scales ranging from flash floods to flows of large and slow river basins. The use of full governing equations, if not appropriately parameterized, may lead to numerical instability systems when the surface water in a model is vanishing. To resolve these modelling problems, an unconditionally stable numerical scheme and a method for height redistribution avoiding shortwave height noise have been developed in HYPROM, which achieve numerical convergence of u, v and h when surface water disappears. We have applied HYPROM, driven by radar-estimated precipitation, to predict flash flooding occurred over smaller and medium-size river basins. Two torrential rainfall cases have been simulated to check the accuracy of the model: the exceptional flooding of May 2014 in Western Serbia, and the convective flash flood of January 2015 in Southern Serbia. The second episode has been successfully predicted by HYPROM in terms of timing and intensity six hours before the event occurred. Such flash flood warning system is in preparation to be operationally implemented in the Republic Hydrometeorological Service of Serbia.

  7. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  8. Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu

    2010-10-26

    The "asymmetric brownian ratchet model" is a variation of Feynman's ratchet and pawl system proposed. In this model, a system consisting of a motor and a rail has two binding states. One is the random brownian state, and the other is the asymmetric potential state. When the system is alternatively switched between these states, the motor can be driven in one direction. This model is believed to explain nanomotor behavior in biological systems. The feasibility of the model has been demonstrated using electrical and magnetic forces; however, switching of these forces is unlikely to be found in biological systems. In this paper, we propose an original mechanism of transition between states by bubble formation in a nanosized channel surrounded by hydrophobic atoms. This amounts to a nanoscale motor system using bubble propulsion. The motor system consists of a hydrophobic motor and a rail on which hydrophobic patterns are printed. Potential asymmetry can be produced by using a left-right asymmetric pattern shape. Hydrophobic interactions are believed to play an important role in the binding of biomolecules and molecular recognition. The bubble formation is controlled by changing the width of the channel by an atomic distance (∼0.1 nm). Therefore, the motor is potentially more efficient than systems controlled by other forces, in which a much larger change in the motor position is necessary. We have simulated the bubble-powered motor using dissipative particle dynamics and found behavior in good agreement with that of motor proteins. Energy efficiency is as high as 60%.

  9. Weather, Climate, and Society: New Demands on Science and Services

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A new algorithm has been constructed to estimate the path length of lightning channels for the purpose of improving the model predictions of lightning NOx in both regional air quality and global chemistry/climate models. This algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. Channel length distributions were also obtained for the different seasons.

  10. Microelectromechanical ratcheting apparatus

    DOEpatents

    Barnes, Stephen M.; Miller, Samuel L.; Jensen, Brian D.; Rodgers, M. Steven; Burg, Michael S.

    2001-01-01

    A microelectromechanical (MEM) ratcheting apparatus is disclosed which includes an electrostatic or thermal actuator that drives a moveable member in the form of a ring gear, stage, or rack. Motion is effected by one or more reciprocating pawls driven by the actuator in a direction that is parallel to, in line with, or tangential to the path. The reciprocating pawls engage indexing elements (e.g. teeth or pins) on the moveable member to incrementally move the member along a curved or straight path with the ability to precisely control and determine the position of the moveable member. The MEM apparatus can be formed on a silicon substrate by conventional surface micromachining methods.

  11. The mechano-chemistry of a monomeric reverse transcriptase

    PubMed Central

    Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei

    2017-01-01

    Abstract Retroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex. PMID:29165701

  12. Analysis of Three-Dimensional Roller Performance in a Micro-g Environment

    NASA Technical Reports Server (NTRS)

    Roberts, B.; Shook, L.; Hossaini, L.; Cohen, R.

    1999-01-01

    Approximately 960 hours of extravehicular activity (EVA), or spacewalks, are planned for the construction of the International Space Station over the next six years. This is over two-and-a-half times the total number of EVA hours accumulated by the National Aeronautics and Space Administration (NASA) in the past 35 years of U.S. spaceflight. Therefore, it is advantageous to explore ways to assist astronauts in being more efficient while working in space. The Space Systems Laboratory at the University of Maryland is investigating ways of improving conventional ratcheting tools that do not work effectively in confined spaces and have been seen to exhibit other limitations that restrict their use during EVA. By replacing the traditional ratchet mechanism with a NASA/Goddard Space Flight Center-developed three-dimensional (3-D) sprag and roller mechanism, ratcheting tools can be made more efficient. In October of 1998, a 3-D roller mechanism was flown on space shuttle mission STS-95 as part of the Space Experiment Module program. The goal of the experiment was to quantify the roller's performance when operating for an extended period in a micro-g environment. This paper discusses the design of the experiment, as well as the results obtained.

  13. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    NASA Astrophysics Data System (ADS)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  14. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  15. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    PubMed

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  16. THE AGWA – KINEROS2 SUITE OF MODELING TOOLS

    USDA-ARS?s Scientific Manuscript database

    A suite of modeling tools ranging from the event-based KINEROS2 flash-flood forecasting tool to the continuous (K2-O2) KINEROS-OPUS biogeochemistry tool. The KINEROS2 flash flood forecasting tool is being tested with the National Weather Service (NEW) is described. Tne NWS version assimilates Dig...

  17. Incorporating Lightning Flash Data into the WRF-CMAQ Modeling System: Algorithms and Evaluations

    EPA Science Inventory

    We describe the use of lightning flash data from the National Lightning Detection Network (NLDN) to constrain and improve the performance of coupled meteorology-chemistry models. We recently implemented a scheme in which lightning data is used to control the triggering of conve...

  18. Transmission fidelity is the key to the build-up of cumulative culture.

    PubMed

    Lewis, Hannah M; Laland, Kevin N

    2012-08-05

    Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as 'ratcheting', but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification.

  19. Mitigating Mitochondrial Genome Erosion Without Recombination.

    PubMed

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  20. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  1. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  2. Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.

    2017-12-01

    Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar vulnerability and with the same gauging conditions, the use of low-cost modelling strategy could represent a good risk management tool in these regions with low planning capabilities.

  3. Expectancy after the first treatment and response to acupuncture for menopausal hot flashes.

    PubMed

    Ee, Carolyn C; Thuraisingam, Sharmala; Pirotta, Marie V; French, Simon D; Xue, Charlie C; Teede, Helena J

    2017-01-01

    Evidence on the impact of expectancy on acupuncture treatment response is conflicting. This secondary analysis of a randomized sham-controlled trial on acupuncture for menopausal hot flashes investigated whether treatment expectancy score was associated with hot flash score at end-of-treatment. Secondary analyses investigated whether there were associations between other pre-specified factors and hot flash score. Women experiencing moderately-severe hot flashes were randomized to receive 10 sessions of real or sham acupuncture over eight weeks. Hot flash score was collected using a seven-day hot flash diary, and expectancy using the modified Credibility and Expectancy Questionnaire immediately after the first treatment. Linear mixed-effects models with random intercepts were used to identify associations between expectancy score and hot flash score at end-of-treatment. Regression was also used to identify associations between pre-specified factors of interest and hot flash score. Because there was no difference between real and sham acupuncture for the primary outcome of hot flash score, both arms were combined in the analysis. 285 women returned the Credibility and Expectancy Questionnaire, and 283 women completed both expectancy measures. We found no evidence for an association between expectancy and hot flash score at end-of-treatment for individual cases in either acupuncture or sham group. Hot flash scores at end-of-treatment were 8.1 (95%CI, 3.0 to 13.2; P = 0.002) points lower in regular smokers compared to those who had never smoked, equivalent to four fewer moderate hot flashes a day. In our study of acupuncture for menopausal hot flashes, higher expectancy after the first treatment did not predict better treatment outcomes. Future research may focus on other determinants of outcomes in acupuncture such as therapist attention. The relationship between smoking and hot flashes is poorly understood and needs further exploration.

  4. Towards a better knowledge of flash flood forecasting at the Three Gorges Region: Progress over the past decade and challenges ahead

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao

    2015-04-01

    The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.

  5. Assessment of Vulnerability to Extreme Flash Floods in Design Storms

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2011-01-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165

  6. Assessment of vulnerability to extreme flash floods in design storms.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  7. A place-based model for assessing the coherence of the flash floods and socio-economic vulnerability across the Contiguous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Moradkhani, H.

    2017-12-01

    Understanding socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and loss of life from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. Although the biophysical characteristics (e.g. climate, vegetation, and land use) are informative and useful for predicting spatial and temporal extent of flash floods, they have minimal bearing on predicting when and where flash floods are likely to influence people or damage valuable assets and resources. The socio-economic factors determine spatial and temporal scales of the regions affected by flash floods. In this study, we quantify the socio-economic vulnerability to flash floods across the Contiguous United States (CONUS). A socio-economic vulnerability index was developed, employing Bayesian principal components for each state in the CONUS. For this purpose, extensive sets of social and economic variables from US Census and the Bureau of Economic Analysis were used. We developed maps presenting the coincidence of socio-economic vulnerability and the flash floods records. This product can help inform flash flood prevention, mitigation and recovery planning, as well as reducing the flash flood hazards affecting vulnerable places and population.

  8. Modeling of Unit-Cells With Z-Pins Using FLASH: Pre-Processing and Post Processing

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2005-01-01

    Although the toughening properties of stitches, z-pins and similar structures have been studied extensively, investigations on the effect of z-pins on the in-plane properties of laminates are limited. A brief summary on the effect of z-pins on the in-plane tensile and compressive properties of composite laminates is presented together with a concise introduction into the finite element code FLASH. The remainder of the report illustrates the modeling aspect of unit cells with z-pins in FLASH and focuses on input and output data as well as post-processing of results.

  9. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation. Published by Elsevier Inc.

  10. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  11. The Association between Body Mass Index and Hot Flash in Midlife Women: A Meta-analysis.

    PubMed

    Shobeiri, Fatemeh; Jenabi, Ensiyeh; Poorolajal, Jalal; Hazavehei, Seyyed Mohammad Mahdi

    2016-04-01

    The association between body mass index (BMI) and hot flash risk has not been specifically clarifies yet. This meta-analysis was, therefore, conducted to estimate the association between overweight and obesity and hot flash risk. We searched PubMed, Web of Science, and Scopus for observational studies addressing the association between BMI and hot flash until August 2015. Data were independently extracted and analyzed using 95% odds ratio (OR), and confidence intervals (CI) based on the random-effects models. We identified 2,244 references and conducted seven studies with 4,219 participants. The association between hot flash and overweight was estimated 1.13 (95% CI: 0.97-1.32) and that of obesity was estimated 1.79 (95% CI: 1.52-2.11). No evidence of heterogeneity and publication bias was observed. This meta-analysis demonstrated that, though not to a great extent, obesity does increase the risk of hot flash. The findings from this meta-analysis indicated that obesity is associated with an increased risk of hot flash. Further large prospective cohort studies are required to provide convincing evidence as to whether or not BMI is associated with an increased risk of hot flashes.

  12. A WRF-Chem Analysis of Flash Rates, Lightning-NOx Production and Subsequent Trace Gas Chemistry of the 29-30 May 2012 Convective Event in Oklahoma During DC3

    NASA Technical Reports Server (NTRS)

    Cummings, Kristin A.; Pickering, Kenneth; Barth, Mary; Weinheimer, A.; Bela, M.; Li, Y; Allen, D.; Bruning, E.; MacGorman, D.; Rutledge, S.; hide

    2015-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign in 2012 provided a plethora of aircraft and ground-based observations (e.g., trace gases, lightning and radar) to study deep convective storms, their convective transport of trace gases, and associated lightning occurrence and production of nitrogen oxides (NOx). This is a continuation of previous work, which compared lightning observations (Oklahoma Lightning Mapping Array and National Lightning Detection Network) with flashes generated by various flash rate parameterization schemes (FRPSs) from the literature in a Weather Research and Forecasting Chemistry (WRF-Chem) model simulation of the 29-30 May 2012 Oklahoma thunderstorm. Based on the Oklahoma radar observations and Lightning Mapping Array data, new FRPSs are being generated and incorporated into the model. The focus of this analysis is on estimating the amount of lightning-generated nitrogen oxides (LNOx) produced per flash in this storm through a series of model simulations using different production per flash assumptions and comparisons with DC3 aircraft anvil observations. The result of this analysis will be compared with previously studied mid-latitude storms. Additional model simulations are conducted to investigate the upper troposphere transport, distribution, and chemistry of the LNOx plume during the 24 hours following the convective event to investigate ozone production. These model-simulated mixing ratios are compared against the aircraft observations made on 30 May over the southern Appalachians.

  13. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analytical modeling of flash-back phenomena. [premixed/prevaporized combustion system

    NASA Technical Reports Server (NTRS)

    Feng, C. C.

    1979-01-01

    To understand the flame flash-back phenomena more extensively, an analytical model was formed and a numerical program was written and tested to solve the set of differential equations describing the model. Results show that under a given set of conditions flame propagates in the boundary layer on a flat plate when the free stream is at or below 1.8 m/s.

  15. THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.

    2010-08-01

    We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for thesemore » stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.« less

  16. Flash-Bang Detector to Model the Attenuation of High-Energy Photons

    NASA Astrophysics Data System (ADS)

    Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.

    2015-12-01

    It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.

  17. Flood Simulation Using WMS Model in Small Watershed after Strong Earthquake -A Case Study of Longxihe Watershed, Sichuan province, China

    NASA Astrophysics Data System (ADS)

    Guo, B.

    2017-12-01

    Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.

  18. Controlling directed transport of matter-wave solitons using the ratchet effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, M.; Carretero-Gonzalez, R.; Chacon, R.

    2011-05-15

    We demonstrate that directed transport of bright solitons formed in a quasi-one-dimensional Bose-Einstein condensate can be reliably controlled by tailoring a weak optical lattice potential, biharmonic in both space and time, in accordance with the degree of symmetry breaking mechanism. By considering the regime where matter-wave solitons are narrow compared to the lattice period, (i) we propose an analytical estimate for the dependence of the directed soliton current on the biharmonic potential parameters that is in good agreement with numerical experiments, and (ii) we show that the dependence of the directed soliton current on the number of atoms is amore » consequence of the ratchet universality.« less

  19. Nanowire-based thermoelectric ratchet in the hopping regime

    NASA Astrophysics Data System (ADS)

    Bosisio, Riccardo; Fleury, Geneviève; Pichard, Jean-Louis; Gorini, Cosimo

    2016-04-01

    We study a thermoelectric ratchet consisting of an array of disordered nanowires arranged in parallel on top of an insulating substrate and contacted asymmetrically to two electrodes. Transport is investigated in the Mott hopping regime, when localized electrons can propagate through the nanowires via thermally assisted hops. When the electronic temperature in the nanowires is different from the phononic one in the substrate, we show that a finite electrical current is generated even in the absence of driving forces between the electrodes. We discuss the device performance both as an energy harvester, when an excess heat from the substrate is converted into useful power, and as a refrigerator, when an external power is supplied to cool down the substrate.

  20. Report on in-situ studies of flash sintering of uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, Alicia Marie

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamosmore » National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO 2. The critical field studies are complete for UO 2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to fabricate nuclear fuel. First, the pure UO 2-based system shows promising behavior with flash sintering, but composite systems are likely to show better sintering behavior with spark plasma sintering. Efforts to develop these methods should therefore be tailored towards the likelihood of success. Additionally, modeling is a rapidly developing aspect of current flash sintering research and should be used in parallel with experiments. Ultimately, ongoing flash sintering studies on various materials, like those summarized in this report, are rapidly contributing to the feasibility of controlling this method for use in the future.« less

  1. Multispectral signature analysis measurements of selected sniper rifles and small arms

    NASA Astrophysics Data System (ADS)

    Law, David B.; Carapezza, Edward M.; Csanadi, Christina J.; Edwards, Gerald D.; Hintz, Todd M.; Tong, Ronald M.

    1997-02-01

    During October 1995 - June 1996, the Naval Command, Control and Ocean Surveillance Center RDT&E Division (NRaD), under sponsorship from Defense Advanced Research Projects Agency (DARPA), conducted an intensive series of multi-spectral signature analyses of typical sniper weapons. Multi-spectral signatures of the muzzle flashes from rifles and pistols and some imagery of the bullets in flight were collected. Multi- spectral signatures of the muzzle flash were collected in the infrared (2.5 - 14.5 microns), visible -- near-IR (400 - 1200 nanometers), and the ultra-violet (185 - 400 nanometers) wavelength regions. These measurements consisted of high spectral resolution (0.0159 micron) measurements of the spectral radiance of the muzzle flash. A time history plot of the muzzle flash as it evolves just forward of the end of the muzzle is provided. These measurements were performed with a CI Systems Model SR5000 IR/Visible spectroradiometer and an Ocean Optics Model PC1000 UV spectroradiometer. Muzzle flash infrared imagery is provided to show the effect that specific muzzle breaks have on the resulting muzzle flash. The following set of sniper weapons were included in this test: AK-47, SKS, M16A2, M-14, FN-FAL, SMLE IIa, 03 Springfield, SVD Dragunov, 50 caliber McMillan, and a 45 caliber ACP pistol. The results of this signature analysis show that important measurable electro-optical differences do exist between all these weapons in terms of spectral radiance of the flash, spectral content of the gun powders, and spectral shapes/geometries of the muzzle flashes. These differences were sufficient such that, after a more complete data base is collected, it will be possible to develop a passive electro-optical weapon and ammunition identifier.

  2. Remote sensing of rainfall for flash flood prediction in the United States

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Vergara, H. J.; Clark, R. A.; Kirstetter, P.; Terti, G.; Hong, Y.; Howard, K.

    2015-12-01

    This presentation will briefly describe the Multi-Radar Multi-Sensor (MRMS) system that ingests all NEXRAD and Canadian weather radar data and produces accurate rainfall estimates at 1-km resolution every 2 min. This real-time system, which was recently transitioned for operational use in the National Weather Service, provides forcing to a suite of flash flood prediction tools. The Flooded Locations and Simulated Hydrographs (FLASH) project provides 6-hr forecasts of impending flash flooding across the US at the same 1-km grid cell resolution as the MRMS rainfall forcing. This presentation will describe the ensemble hydrologic modeling framework, provide an evaluation at gauged basins over a 10-year period, and show the FLASH tools' performance during the record-setting floods in Oklahoma and Texas in May and June 2015.

  3. Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald

    2017-10-01

    Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.

  4. Risk factors for hot flashes among women undergoing the menopausal transition: baseline results from the Midlife Women's Health Study

    PubMed Central

    Gallicchio, Lisa; Miller, Susan R.; Kiefer, Judith; Greene, Teresa; Zacur, Howard A.; Flaws, Jodi A.

    2015-01-01

    Objective The aim of this study was to examine the associations between demographic characteristics, health behaviors, hormone concentrations, and the experiencing of any, current, more severe, and more frequent midlife hot flashes. Methods Baseline data were analyzed from 732 women aged 45 to 54 years enrolled in the Midlife Women's Health Study. A clinic visit was conducted to collect blood samples for hormone assays and to measure ovarian volume using transvaginal ultrasound. A self-administered questionnaire ascertained information on demographic factors, health habits, and hot flashes history. Multivariable logistic regression was conducted to examine the associations between potential risk factors and the hot flashes outcomes. Results Approximately 45% of participants reported experiencing midlife hot flashes. In the covariate-adjusted models, older age, peri-menopausal status, current and former cigarette smoking, and depressive symptoms were significantly associated with increased odds of all of the hot flashes outcomes. In addition, history of oral contraceptive use was associated with increased odds of any hot flashes. In contrast, higher current alcohol intake was significantly associated with decreased odds of any, current, and more severe hot flashes. Higher estradiol and progesterone concentrations were significantly associated with decreased odds of all hot flashes outcomes. Conclusions Although the temporalities of such associations are not known due to the cross-sectional nature of the data, these observed relationships can help to identify women at risk for hot flashes. PMID:25783472

  5. On the effects of improved cross-section representation in one dimensional flow routing models applied to ephemeral rivers

    USDA-ARS?s Scientific Manuscript database

    Flash floods are an important component of the semi-arid hydrological cycle, and provide the potential for groundwater recharge as well as posing a dangerous natural hazard. A number of catchment models have been applied to flash flood prediction; however, in general they perform poorly. This study ...

  6. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  7. A Method for Retrieving Ground Flash Fraction from Satellite Lightning Imager Data

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2009-01-01

    A general theory for retrieving the fraction of ground flashes in N lightning observed by a satellite-based lightning imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global lightning climatology into separate ground and cloud flash climatologies will improve estimates of lightning nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model predictions.

  8. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan; Erlingis, Jessica; Smith, Travis; Ortega, Kiel; Hong, Yang

    2010-05-01

    Typically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe Hazards Analysis and Verification Experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This talk describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  9. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.

    PubMed

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook

    2017-01-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.

  10. An analytical approach to fluid ratcheting in oscillatory boundary layer

    NASA Astrophysics Data System (ADS)

    Yu, Jie

    2013-11-01

    It is well known that oscillatory flows close to a rigid or flexible boundary induces a steady streaming due to viscosity. Under progressive motions, this becomes a unidirectional streaming near the boundary (e.g. mass transport or peristaltic pumping in water waves). This mechanism is shared by the phenomenon of ratcheting fluid in a narrow channel by vibrating the channel walls that are lined with asymmetric corrugations (shown by a recent experiment BAPS.2010.DFD.HC.3). A theory is presented here to describe the ratcheting effects in such a channel. A conformal transformation method, developed for waves over arbitrary periodic topographies (Yu & Howard, J. Fluid Mech. 2012), is adapted to deal with large corrugations of the channel walls. Under the assumption that the wall oscillations are of small amplitude, the vorticity dynamics can be analyzed in the mapped plane, obtaining the solution that describes the steady streaming field due to nonlinear convective inertia. The results are discussed, regarding the dependency of the pumping direction on the oscillation frequency of the walls and the effects of the end position relative to the phase of corrugations in the case of a finite length channel. Preliminary experimental data will be presented if time permits. Support by NFS (Grant CBET-0845957) during the period of this work is gratefully acknowledged.

  11. Selecting a restoration technique to minimize OCR error.

    PubMed

    Cannon, M; Fugate, M; Hush, D R; Scovel, C

    2003-01-01

    This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.

  12. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields.

    PubMed

    Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R C; Nijhuis, Christian A; van Kan, Jeroen A

    2016-11-01

    Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51  μ m, 2.47  μ m, and 2.60  μ m superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules.

  13. Seasonality of Admissions for Mania: Results From a General Hospital Psychiatric Unit in Pondicherry, India

    PubMed Central

    Sarkar, Siddharth

    2015-01-01

    Introduction: Bipolar disorder is affected by variables that modulate circadian rhythm, including seasonal variations. There is evidence of a seasonal pattern of admissions of mania in various geographical settings, though its timing varies by region and climate. Variables such as age and gender have been shown to affect seasonality in some studies. Methodology: Data on monthly admission patterns for mania at a general hospital psychiatry unit in Pondicherry, India, were collected for 4 years (2010–2013) and analyzed for seasonality and seasonal peaks. The effects of age and gender were analyzed separately. Results: There was overall evidence of a seasonal pattern of admissions for mania (P < .01, Friedman test for seasonality), with a peak beginning during the rainy season and ending before summer (P < .0.1, Ratchet circular scan test). Male sex (P < .005, Ratchet circular scan test) and age > 25 years (P < .005, Ratchet circular scan test) were specifically associated with this seasonal peak. Discussion: The effect of seasons on mania is complex and is modulated by a variety of variables. Our study is consistent with earlier research findings: a greater degree of seasonality for mania in men. It is possible that climatic and individual variables interact to determine seasonal patterns in bipolar disorder in a given setting. PMID:26644962

  14. Ratchetting in pressurized pipes

    NASA Astrophysics Data System (ADS)

    Rider, R. J.; Harvey, S. J.; Charles, I. D.

    1994-04-01

    The plastic deformation of thin-walled cylinders has been experimentally examined for the loading conditions of +/- 1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low-carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5S(sub m), where S(sub m) is a stress value defined for each material. The results indicate that the limit of 1.5S(sub m) is excessively low for both materials and that in particular, the stainless steel could tolerate 5S(sub m). Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of +/- 1% axial strain range, for any value of internal pressure.

  15. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields

    PubMed Central

    Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R. C.; Nijhuis, Christian A.; van Kan, Jeroen A.

    2016-01-01

    Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μm, 2.47 μm, and 2.60 μm superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules. PMID:27917252

  16. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.

  17. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, Mark C.; Sham, Sam; Wang, Yanli

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT testmore » results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.« less

  18. Red clover for treatment of hot flashes and menopausal symptoms: A systematic review and meta-analysis.

    PubMed

    Ghazanfarpour, M; Sadeghi, R; Roudsari, R Latifnejad; Khorsand, I; Khadivzadeh, T; Muoio, B

    2016-01-01

    This study evaluated the efficacy of red clover to relieve hot flashes and menopausal symptoms in peri/postmenopausal women. Electronic databases (MEDLINE, Scopus and the Cochrane Library) were searched. The mean frequency of hot flashes in red clover groups was lower compared with that in the control groups (close to statistical significance). Difference in means (MD) of hot flashes frequency was - 1.99 (- 4.12-0.139; p = 0.067; heterogeneity P > 0.01; I(2) = 94.93%; Random effect model). Subjective (vaginal dryness) and objective (maturation value) symptoms of vaginal atrophy showed a significant improvement with 80-mg dose of red clover. Red clover showed less therapeutic effect on psychology status, sexual problems and sleeping disorders. Red clover consumption may decrease frequency of hot flashes, especially in women with severe hot flashes (≥ 5 per day). Red clover may reduce other menopausal symptoms. Further trials are needed to confirm the current systematic review findings.

  19. Modeling of internal and near-nozzle flow for a GDI fuel injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from the Engine Combustion Network (ECN). Simulations have been carried out for a fixed needle lift. Effects of turbulence, compressibility and non-condensable gases have been considered in this work. Standard k -ε turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture themore » phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative and flashing conditions. Noticeable hole-to-hole variations have been observed in terms of mass flow rates for all the holes under all the operating conditions considered in this study. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted when liquid fuel is subjected to superheated ambiance. Under favorable conditions considerable flashing has been observed in the near-nozzle regions. An enormous volume is occupied by the gasoline vapor, stantial computational cost. Volume-averaging instead of mass-averaging is observed to be more effective, especially for finer mesh resolutions.« less

  20. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2015-12-22

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  1. Studying the hydro-meteorological extremes. The benefits from the European Flash Flood research oriented HYDRATE project.

    NASA Astrophysics Data System (ADS)

    Tsanis, Ioannis K.; Koutroulis, Aristeidis G.; Daliakopoulos, Ioannis N.; Grillakis, Emmanouil G.

    2010-05-01

    The present paper summarizes the advances of flash flood research for the Greek case study, within the frame of HYDRATE EC funded project. As a first step, a collation of homogenous primary data on flash floods occurred in Greece based on various data sources resulted in 21 documented events, enriching the HYDRATE database. Specific major events were selected for further detailed data collation and analysis. A common intensive post event field survey was conducted by various researchers with different skills and experience, in order to document the 18th of September 2007, Western Slovenia flash flood event. The observation strategy and the lessons learned during this campaign were applied successfully for surveying an event in Crete. Two flash flood events occurred in Crete were selected for detailed analysis, the 13th of January 1994 event occurred in Giofiros basin and the 17th of October 2006 event occurred in Almirida basin. Several techniques, like distributed rainfall-runoff modelling, hydraulic modelling, indirect and empirical peak discharge estimation, were applied for the understanding of the dominant flash flood processes and the effect of initial conditions on peak discharge. In a more general framework, the seasonality of the hydrometeorologic characteristics of floods that occurred in Crete during the period 1990-2007 and the atmospheric circulation conditions during the flood events were examined. During the three and a half years research period, many lessons have learnt from a fruitful collaboration among the project partners. HYDRATE project improved the scientific basis of flash flood research and provided research knowledge on flood risk management.

  2. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.

  3. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco

    2018-03-01

    The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.

  4. The Effects of Lightning NO(x) Production during the July 21 EULINOX Storm studied with a 3-D Cloud-scale Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich

    2006-01-01

    The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production.

  5. Production of Lightning NO(x) and its Vertical Distribution Calculated from 3-D Cloud-scale Chemical Transport Model Simulations

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo

    2009-01-01

    A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.

  6. Effects of lightning NOx production during the 21 July European Lightning Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model

    NASA Astrophysics Data System (ADS)

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich

    2007-03-01

    The 21 July 1998 thunderstorm observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NOx production which uses observed flash rates as input. Estimates of lightning NOx production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N yr-1. Chemical reactions were included in the model to evaluate the impact of lightning NOx on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NOx, maximizing at approximately 5 ppbv day-1 at 5.5 km. Between 8 and 10.5 km, lightning NOx causes decreased net ozone production.

  7. Efficacy of a biobehavioral intervention for hot flashes: a randomized controlled pilot study.

    PubMed

    Barton, Debra L; Schroeder, Kelliann C Fee; Banerjee, Tanima; Wolf, Sherry; Keith, Timothy Z; Elkins, Gary

    2017-07-01

    The need for effective nonhormonal treatments for hot flash management without unwanted side effects continues. The primary aim of this pilot study was to evaluate the effect of combining a nonhormonal pharmacologic agent with a behavioral treatment for hot flash reduction. Seventy-one postmenopausal women were randomized to one of four groups: venlafaxine 75 mg + hypnosis (VH) versus venlafaxine 75 mg + sham hypnosis (VSH) versus a placebo pill + hypnosis (PH) versus placebo pill + sham hypnosis (PSH). Women recorded hot flash severity and frequency in a daily diary, in real time. The intrapatient difference in hot flash score (frequency × severity) at 8 weeks was analyzed using a General Estimating Equation model, using VSH as the referent arm, controlling for baseline hot flashes. The active arms including PH or VH were not statistically significantly different than VSH (P = 0.34, P = 0.05, respectively). Women in each active arm reported hot flash reductions of about 50%, with the PSH group reporting a 25% reduction. Women receiving the PSH reported statistically significantly smaller reductions in hot flash score than women in the referent VSH arm (P = 0.001). There were no significant negative side effects during the course of the study. Hypnosis alone reduced hot flashes equal to venlafaxine alone, but the combination of hypnosis and venlafaxine did not reduce hot flashes more than either treatment alone. More research is needed to clarify whether combining hypnosis with a different antidepressant would provide synergistic benefits.

  8. History of hot flashes and aortic calcification among postmenopausal women.

    PubMed

    Thurston, Rebecca C; Kuller, Lewis H; Edmundowicz, Daniel; Matthews, Karen A

    2010-03-01

    Menopausal hot flashes are considered largely a quality-of-life issue. However, emerging research also links hot flashes to cardiovascular risk. In some investigations, this risk is particularly apparent among women using hormone therapy. The aim of this study was to determine whether a longer history of reported hot flashes over the study period was associated with greater aortic and coronary artery calcification. Interactions with hormone therapy use were examined in an exploratory fashion. Participants included 302 women participating in the Healthy Women Study, a longitudinal study of cardiovascular risk during perimenopause and postmenopause, which was initiated in 1983. Hot flashes (any/none) were assessed when women were 1, 2, 5, and 8 years postmenopausal. Electron beam tomography measures of coronary artery calcification and aortic calcification were completed in 1997-2004. Associations between the number of visits with report of hot flashes, divided by the number of visits attended, and aortic or coronary artery calcification (transformed) were examined in linear regression models. Interactions by hormone therapy use were evaluated. Among women using hormone therapy, a longer history of reported hot flashes was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors (b = 2.87, SE = 1.21, P < 0.05). There were no significant associations between history of hot flashes and coronary artery calcification. Among postmenopausal women using hormone therapy, a longer history of reported hot flashes measured prospectively was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors. Hot flashes may signal adverse cardiovascular changes among certain postmenopausal women.

  9. Exploring stop-go decision zones at rural high-speed intersections with flashing green signal and insufficient yellow time in China.

    PubMed

    Tang, Keshuang; Xu, Yanqing; Wang, Fen; Oguchi, Takashi

    2016-10-01

    The objective of this study is to empirically analyze and model the stop-go decision behavior of drivers at rural high-speed intersections in China, where a flashing green signal of 3s followed by a yellow signal of 3s is commonly applied to end a green phase. 1, 186 high-resolution vehicle trajectories were collected at four typical high-speed intersection approaches in Shanghai and used for the identification of actual stop-go decision zones and the modeling of stop-go decision behavior. Results indicate that the presence of flashing green significantly changed the theoretical decision zones based on the conventional Dilemma Zone theory. The actual stop-go decision zones at the study intersections were thus formulated and identified based on the empirical data. Binary Logistic model and Fuzzy Logic model were then developed to further explore the impacts of flashing green on the stop-go behavior of drivers. It was found that the Fuzzy Logic model could produce comparably good estimation results as compared to the traditional Binary Logistic models. The findings of this study could contribute the development of effective dilemma zone protection strategies, the improvement of stop-go decision model embedded in the microscopic traffic simulation software and the proper design of signal change and clearance intervals at high-speed intersections in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermonuclear flashes on hydrogen/helium accreting carbon monoxide white dwarfs and structure of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Mitchell, Joseph P.

    We studied H-shell flashes on CO WDs accreting Hydrogen rich matter in regimes where they are believed to be on the border of stable accretion and of having dynamical mass loss. These systems are believed to be progenitors of SNe Ia, however, there is still some question of what range of accretion rates and WD masses allow for growth to the Chandrasekhar mass, if any do at all. Flashes that result in mass loss are also of interest as they enrich the Inter Stellar Medium. Use of an explicit hydro code has allowed for the observation of a new physical effect from wave dissipation. With our high time resolution, energy transport via waves, and detailed EOS, we found that at the onset of the flash, a reduction in the degeneracy pressure due to electron captures, results in a reduction of the total pressure. With a gravitational acceleration on the order of 108 in the shell, a reduction of the total pressure by 1% results in an in fall acceleration of 10 kms2 . With such a strong in fall, compressional heating results in a hotter flash, with results showing temperatures over a billion degrees in all models. These high temperatures had consequences on the nucleosynthesis, as they allowed for rp-breakout during the flash. The effect of a "double" flash was found in one model. This resulted when the flash stalled in the H-shell, resulting in high temperature burning in only a portion of the shell. Once the H was exhausted in the flash region, cooling occurred and there was contraction of the H exhausted region. This contraction caused an in fall of the un-exhausted region which via compressional heating resulted in the flash to occur in the un-exhausted region. Such an effect may happen in any progenitor system in which the flash stalls and compression afterwards is suitable for a re-start of the flash. This effect may be observable with the current generation of instruments. With the high temperatures found in the flashes, rp-breakout nucleosynthesis was found to occur. Occurrence of rp-nucleosynthesis in these objects may make important sources of the chemical enrichment of isotopes below the iron group that are not know to be synthesized in hydrostatic stellar burning. The existence of rp-breakout in the flashes, shows the importance of nuclear physics in these objects. More precise nuclear reaction rate data are needed for proper energy generation and chemical evolution. With the occurrence of rp-nucleosynthesis in our models, it is especially advantageous to study radioactive proton rich nuclei. These studies are not without many difficulties in the laboratory, as many of the studies require the use of low intensity radioactive beams making clean, high statistic studies difficult. To address this issue, the hybrid target technique was used. This target technique was found to be a great tool for studying resonant proton scattering with exotic beams. It has been used to measure elastic and inelastic excitation functions in the study of 8B via 7Be+p scattering, as well as 12N+p elastic scattering. With such success, the hybrid target technique can be a very useful tool for studying reactions that are important in the rp-process. We have studied the structure of the astrophysically important, radioactive isotope 8B. Three new resonances have been suggested, a 0+1,2+2 , and 1+2 which were predominantly in the inelastic channel and never before seen in previous studies. However, due to their high excitation energies and narrow width, none of the resonances are expected to effect the astrophysically important 7Be(p, gamma) reaction rate. Results were compared to continuum shell model as well as ab initio calculations and found to be in good agreement with both sets of predictions, with the notable exception of the 2+2 state. (Abstract shortened by UMI.)

  11. Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Gaume, E.; Andrieu, H.

    2010-04-01

    This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.

  12. Serum leptin levels, hormone levels, and hot flashes in midlife women.

    PubMed

    Alexander, Carolyn; Cochran, Chrissy J; Gallicchio, Lisa; Miller, Susan R; Flaws, Jodi A; Zacur, Howard

    2010-08-01

    To examine the associations between serum leptin levels, sex steroid hormone levels, and hot flashes in normal weight and obese midlife women. Cross-sectional study. University clinic. 201 Caucasian, nonsmoking women aged 45 to 54 years with a body mass index of <25 kg/m2 or >or=30 kg/m2. Questionnaire, fasting blood samples. Serum leptin and sex steroid hormone levels. Correlation and regression models were performed to examine associations between leptin levels, hormone levels, and hot flashes. Leptin levels were associated with BMI, with "ever experiencing hot flashes" (questionnaire), with hot flashes within the last 30 days, and with duration of hot flashes (>1 year, P=.03). Leptin was positively correlated with testosterone, free testosterone index, and free estrogen index and inversely associated with levels of sex hormone-binding globulin. In women with a body mass index>or=30 kg/m2, leptin levels no longer correlated with testosterone levels. Serum leptin levels are associated with the occurrence and duration of hot flashes in midlife women; however, no correlation was found between leptin and serum estradiol. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Powell, C. V.; Song, A. M.; Balocco, C.

    2014-12-01

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.

  14. Development of Cryogenic Filter Wheels for the HERSCHEL Photodetector Array Camera & Spectrometer (PACS)

    NASA Technical Reports Server (NTRS)

    Koerner, Christian; Kampf, Dirk; Poglitsch, Albrecht; Schubert, Josef; Ruppert, U.; Schoele, M.

    2014-01-01

    This paper describes the two PACS Filter Wheels that are direct-drive rotational mechanisms operated at a temperature below 5K inside the PACS focal plane unit of the Herschel Satellite. The purpose of the mechanisms is to switch between filters. The rotation axis is pivoted to the support structure via a slightly preloaded pair of ball bearings and driven by a Cryotorquer. Position sensing is realized by a pair of Hall effect sensors. Powerless positioning at the filter positions is achieved by a magnetic ratchet system. The key technologies are the Cryotorquer design and the magnetic ratchet design in the low temperature range. Furthermore, we will report on lessons learned during the development and qualification of the mechanism and the paint.

  15. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  16. Breaking evolutionary constraint with a tradeoff ratchet

    PubMed Central

    de Vos, Marjon G. J.; Dawid, Alexandre; Sunderlikova, Vanda; Tans, Sander J.

    2015-01-01

    Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype–environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor–operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. PMID:26567153

  17. Peptide probes reveal a hydrophobic steric ratchet in the anthrax toxin protective antigen translocase

    PubMed Central

    Colby, Jennifer M.; Krantz, Bryan A.

    2015-01-01

    Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor (LF) and edema factor (EF), into the host cytosol under the proton motive force (PMF). Protein translocation under a PMF is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between LF amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides; and while these steric interactions may make a peptide translocate poorly, in the context of folded domains they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. PMID:26363343

  18. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  19. Florida Thunderstorms: A Faucet of Reactive Nitrogen to the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ridley, B.; Ott, L.; Emmons, L.; Montzka, D.; Weinheimer, A.; Knapp, D.; Grahek, F.; Li, L.; Heymsfield, G.; McGill, M.

    2004-01-01

    During the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) enhanced mixing ratios of nitric oxide were measured in the anvils of thunderstorms and in clear air downwind of storm systems on flights of a Wl3-57F high-altitude aircraft. Mixing ratios greater than l0 - 20 times background were readily observed over distances of 25-120 km due to lightning activity. In many of the Florida storms deposition of NO occurred up to near the tropopause but major deposition usually occurred 1 - 2 km below the tropopause, or mostly within the visible anvil volume formed prior to storm decay. Observations from two storms of very different anvil size and electrical activity allowed estimates of the total mass of NO, vented to the middle and upper troposphere. Using the cloud-to ground (CG) flash accumulations from the National Lightning Detection Network, climatological intra-cloud (IC) to CG ratios, and assuming that CG and IC flashes were of equivalent efficiency for NO production, the ranges of production per flash for a moderate-sized and a large storm were (0.51 - 1.0) x l0(exp 26) and (2.3 - 3.1) x 10(exp 26) molecules NO/flash, respectively. Using the recently determined average global flash rate of 44 8, a gross extrapolation of these two storms to represent possible global annual production rates yield 1.6 - 3.2 and 7.3 - 9.9 Tg(N)/yr, respectively. If the more usual assumption is made that IC efficiency is l/l0th that of CG activity, the ranges of production for the moderate-sized and large storm were (1.3 - 2.7) x l0(exp 26) and (6.0 - 8.1) x l0(exp 26) molecules NO/CG flash, respectively. The estimates from the large storm may be high because there is indirect evidence that the IC/CG ratio was larger than would be derived from climatology. These two storms and others studied did not have flash rates that scaled as approx. H(sup 5) where H is the cloud top altitude. The observed CG flash accumulations and NO(x) mass production estimate for the month of July over the Florida area were compared with a representative 3D global Chemistry-Transport Model (CTMJ that uses the Price et al. lightning parameterization. For two land grid points representing the Florida peninsula the model compared well with the observations: CG flash rates were low by only a factor of approx. 2. When the model grid points included the coastal regions of Florida the flash accumulations were lower than observed by a factor of 3.4 - 4.6. It is recommended that models using the Price et al. parameterization allow any global coastal grid point to maintain the land rather than the marine flash rate parameterization. The convection in this CTM underestimated the actual cloud top heights over Florida by 1 - 2 km and thus the total lightning flash rates and the altitude range of reactive nitrogen deposition. Broad scale (20 - 120 km) median mixing ratios of NO within anvils over Florida were significantly larger than in storms previously investigated over Colorado and New Mexico.

  20. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Erlingis, J. M.; Smith, T. M.; Ortega, K. L.; Hong, Y.

    2010-11-01

    SummaryTypically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe hazards analysis and verification experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has also been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This paper describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies (i.e., US National Weather Service Storm Data reports) and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  1. Genetic polymorphisms, hormone levels, and hot flashes in midlife women.

    PubMed

    Schilling, Chrissy; Gallicchio, Lisa; Miller, Susan R; Langenberg, Patricia; Zacur, Howard; Flaws, Jodi A

    2007-06-20

    Hot flashes disrupt the lives of millions of women each year. Although hot flashes are a public health concern, little is known about risk factors that predispose women to hot flashes. Thus, the objective of this study was to examine whether sex steroid hormone levels and genetic polymorphisms in hormone biosynthesis and degradation enzymes are associated with the risk of hot flashes. In a cross-sectional study design, midlife women aged 45-54 years (n=639) were recruited from Baltimore and its surrounding counties. Participants completed a questionnaire and donated a blood sample for steroid hormone analysis and genotyping. The associations between genetic polymorphisms and hormone levels, as well as the associations between genetic polymorphisms, hormone levels, and hot flashes were examined using statistical models. A polymorphism in CYP1B1 was associated with lower dehydroepiandrosterone-sulfate (DHEA-S) and progesterone levels, while a polymorphism in CYP19 (aromatase) was associated with higher testosterone and DHEA-S levels. Lower progesterone and sex hormone binding globulin levels, lower free estradiol index, and a higher ratio of total androgens to total estrogens were associated with the experiencing of hot flashes. A polymorphism in CYP1B1 and a polymorphism in 3betaHSD were both associated with hot flashes. Some genetic polymorphisms may be associated with altered levels of hormones in midlife women. Further, selected genetic polymorphisms and altered hormone levels may be associated with the risk of hot flashes in midlife women.

  2. A finite element program for postbuckling calculations (PSTBKL)

    NASA Technical Reports Server (NTRS)

    Simitses, G. T.; Carlson, R. L.; Riff, R.

    1991-01-01

    The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications.

  3. Formulation of the nonlinear analysis of shell-like structures, subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, George J.; Carlson, Robert L.; Riff, Richard

    1991-01-01

    The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strain is clearly demonstrated, through the chosen applications.

  4. Directed transport as a mechanism for protein folding in vivo.

    PubMed

    González-Candela, Ernesto; Romero-Rochín, Víctor

    2010-01-21

    We propose a model for protein folding in vivo based on a Brownian ratchet mechanism in the multidimensional energy landscape space. The device is able to produce directed transport taking advantage of the assumed intrinsic asymmetric properties of the proteins and employing the consumption of energy provided by an external source. Through such a directed transport phenomenon, the polypeptide finds the native state starting from any initial state in the energy landscape with great efficacy and robustness, even in the presence of different types of obstacles. This model solves Levinthal's paradox without requiring biased transition probabilities but at the expense of opening the system to an external field.

  5. Development of an empirically based dynamic biomechanical strength model

    NASA Technical Reports Server (NTRS)

    Pandya, A.; Maida, J.; Aldridge, A.; Hasson, S.; Woolford, B.

    1992-01-01

    The focus here is on the development of a dynamic strength model for humans. Our model is based on empirical data. The shoulder, elbow, and wrist joints are characterized in terms of maximum isolated torque, position, and velocity in all rotational planes. This information is reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining the torque as a function of position and velocity. The isolated joint torque equations are then used to compute forces resulting from a composite motion, which in this case is a ratchet wrench push and pull operation. What is presented here is a comparison of the computed or predicted results of the model with the actual measured values for the composite motion.

  6. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning parameterizations for global chemical transport models. The range of mean values (factor of 3) of NO production per flash (or per meter of lightning channel length) that have been deduced from the model will be shown and compared with values of production in the literature that have been deduced using other methods, Results show that on a per flash basis, IC flashes are nearly as productive of NO as CG flashes. When combined with the global flash rate of 44 flashes per second from NASA's Optical Transient Detector (OTD) measurements, these estimates and the results from other techniques yield global NO production rates of 2-9 TgN/year. Vertical profiles of lightning NOx mass at the end of the 3-D storm simulations have been summarized to yield suggested profiles for use in global models. Simulations of the photochemistry over the 24 hours following a storm have been performed to determine the additional ozone production which can be attributed to lightning NO.

  7. The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1985-01-01

    The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.

  8. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  9. The Origin of the Optical Flashes: The Case Study of GRB 080319B and GRB 130427A

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Veres, P.

    2018-05-01

    Correlations between optical flashes and gamma-ray emissions in gamma-ray bursts (GRBs) have been searched in order to clarify the question of whether these emissions occur at internal and/or external shocks. Among the most powerful GRBs ever recorded are GRB 080319B and GRB 130427A, which at early phases presented bright optical flashes possibly correlated with γ-ray components. Additionally, both bursts were fortuitously located within the field of view of the TeV γ-ray Milagro and HAWC observatories, and although no statistically significant excess of counts were collected, upper limits were placed on the GeV–TeV emission. Considering the synchrotron self-Compton emission from internal shocks and requiring the GeV–TeV upper limits, we found that the optical flashes and the γ-ray components are produced by different electron populations. Analyzing the optical flashes together with the multiwavelength afterglow observation, we found that these flashes can be interpreted in the framework of the synchrotron reverse shock model when outflows have arbitrary magnetizations.

  10. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    NASA Astrophysics Data System (ADS)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  11. Midnight flash model of energetic neutral atom periodicities at Saturn

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Mitchell, D. G.

    2017-07-01

    The Ion Neutral Camera on the Cassini spacecraft made images of energetic H atoms (25-55 keV) over a 3 day span in 2017. The images were projected onto the equatorial plane of Saturn, and a keogram was made by interpolating the projections in local time at 9 RS (1 RS = 60268 km). The keogram intensities show strong periodicities near the 10.79 h period of Saturn's energetic particles and exhibit a slope commensurate with corotation at that period. These periodic fluxes intensify near midnight but are weaker near noon. A "midnight flash" model can explain this behavior in terms of a searchlight rotating at 10.79 h that intensifies in the midnight sector. The model can also describe similar activity in Saturn's kilometric radiation and magnetic fields, although the "flash" must be shifted to the dawn-to-noon sector.

  12. Statistical analysis of lightning electric field measured under Malaysian condition

    NASA Astrophysics Data System (ADS)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  13. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  14. Terrestrial solar spectral modeling. [SOLTRAN, BRITE, and FLASH codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, R.E.

    The utility of accurate computer codes for calculating the solar spectral irradiance under various atmospheric conditions was recognized. New absorption and extraterrestrial spectral data are introduced. Progress is made in radiative transfer modeling outside of the solar community, especially for space and military applications. Three rigorous radiative transfer codes SOLTRAN, BRITE, and FLASH are employed. The SOLTRAN and BRITE codes are described and results from their use are presented.

  15. Increased Expression of CCN2 in the Red Flashing Light-Induced Myopia in Guinea Pigs

    PubMed Central

    Wang, Hong; Zhuang, Kang; Gao, Lei; Zhang, Linna; Yang, Hongling

    2013-01-01

    Visual environment plays an important role in the occurrence of myopia. We previously showed that the different flashing lights could result in distinct effects on the ocular growth and development of myopia. CCN2 has been reported to regulate various cellular functions and biological processes. However, whether CCN2 signaling was involved in the red flashing light-induced myopia still remains unknown. In the present study, we investigated the effects of the red flashing lights exposure on the refraction and axial length of the eyes in vivo and then evaluated their effects on the expression of CCN2 and TGF-β in sclera tissues. Our data showed that the eyes exposed to the red flashing light became more myopic with a significant increase of the axial length and decrease of the refraction. Both CCN2 and TGF-β, as well as p38 MAPK and PI3K, were highly expressed in the sclera tissues exposed to the red flashing light. Both CCN2 and TGF-β were found to have the same gene expression profile in vivo. In conclusion, our findings found that CCN2 signaling pathway plays an important role in the red flashing light-induced myopia in vivo. Moreover, our study establishes a useful animal model for experimental myopia research. PMID:23936844

  16. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  17. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Powell, C. V.; Balocco, C., E-mail: claudio.balocco@durham.ac.uk

    2014-12-22

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our devicemore » not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.« less

  18. Software Support for Transiently Powered Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Woude, Joel Matthew

    With the continued reduction in size and cost of computing, power becomes an increasingly heavy burden on system designers for embedded applications. While energy harvesting techniques are an increasingly desirable solution for many deeply embedded applications where size and lifetime are a priority, previous work has shown that energy harvesting provides insufficient power for long running computation. We present Ratchet, which to the authors knowledge is the first automatic, software-only checkpointing system for energy harvesting platforms. We show that Ratchet provides a means to extend computation across power cycles, consistent with those experienced by energy harvesting devices. We demonstrate themore » correctness of our system under frequent failures and show that it has an average overhead of 58.9% across a suite of benchmarks representative for embedded applications.« less

  19. floodX: urban flash flood experiments monitored with conventional and alternative sensors

    NASA Astrophysics Data System (ADS)

    Moy de Vitry, Matthew; Dicht, Simon; Leitão, João P.

    2017-09-01

    The data sets described in this paper provide a basis for developing and testing new methods for monitoring and modelling urban pluvial flash floods. Pluvial flash floods are a growing hazard to property and inhabitants' well-being in urban areas. However, the lack of appropriate data collection methods is often cited as an impediment for reliable flood modelling, thereby hindering the improvement of flood risk mapping and early warning systems. The potential of surveillance infrastructure and social media is starting to draw attention for this purpose. In the floodX project, 22 controlled urban flash floods were generated in a flood response training facility and monitored with state-of-the-art sensors as well as standard surveillance cameras. With these data, it is possible to explore the use of video data and computer vision for urban flood monitoring and modelling. The floodX project stands out as the largest documented flood experiment of its kind, providing both conventional measurements and video data in parallel and at high temporal resolution. The data set used in this paper is available at https://doi.org/10.5281/zenodo.830513.

  20. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    PubMed

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-06-15

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because models tend to have more difficulty in correctly predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of cloud-allowing forecasts become available.

  2. Observations of bi-directional leader development in a triggered lightning flash

    NASA Technical Reports Server (NTRS)

    Laroche, P.; Idone, V.; Eybert-Berard, A.; Barret, L.

    1991-01-01

    Observations of a modified form of rocket triggered lightning are described. A flash triggered during the summer of 1989 is studied as part of an effort to model bidirectional discharge. It is suggested that the altitude triggering technique provides a realistic means of studying the attachment process.

  3. An efficient approach to the analysis of rail surface irregularities accounting for dynamic train-track interaction and inelastic deformations

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-11-01

    A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.

  4. CROSS CULTURAL ANALYSIS OF DETERMINANTS OF HOT FLASHES AND NIGHT SWEATS: LATIN-AMERICAN IMMIGRANTS TO MADRID AND THEIR SPANISH NEIGHBORS

    PubMed Central

    Pérez-Alcalá, Irene; Sievert, Lynnette Leidy; Obermeyer, Carla Makhlouf; Reher, David Sven

    2013-01-01

    Objective This study applies a biocultural perspective to better understand the determinants of hot flashes and night sweats within immigrant and local populations in Madrid, Spain. Methods A combined sample of 575 women from Madrid, aged 45 to 55, was drawn from two studies. The Spanish sample (n=274) participated in the Decisions at Menopause Study (DAMES) in 2000–2002. The Latin-American sample (n=301) was drawn from immigrants to Madrid in 2010–2011. Chi square analyses and logistic regression models were carried out among the combined controlling by origin of provenance. Results Forty four percent of the women reported hot flashes, 36% reported night sweats and 26% both symptoms. Compared to Spanish women, Latin-American women were less likely to report hot flashes (OR 0.7, 95% CI 0.4–0.9) after controlling for demographic variables and menopausal status. The same was not found for night sweats and for both symptoms combined. Determinants of hot flashes differed from determinants of night sweats. Conclusions Because determinants differed, hot flashes and night sweats should be queried and analyzed separately. Latin-American women were less likely to report hot flashes, but not night sweats or both symptoms combined. More research is needed to clarify the differences in reported hot flashes as the lesser report among immigrants could have been a cultural rather than a biological phenomenon. PMID:23571525

  5. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    PubMed Central

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    2015-01-01

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  6. Collective effects in models for interacting molecular motors and motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Menon, Gautam I.

    2006-12-01

    Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.

  7. A Comprehensive Method To Quantify Adaptations by Male and Female Mice With Hot Flashes Induced by the Neurokinin B Receptor Agonist Senktide.

    PubMed

    Krull, Ashley A; Larsen, Sarah A; Clifton, Donald K; Neal-Perry, Genevieve; Steiner, Robert A

    2017-10-01

    Vasomotor symptoms (VMS; or hot flashes) plague millions of reproductive-aged men and women who have natural or iatrogenic loss of sex steroid production. Many affected individuals are left without treatment options because of contraindications to hormone replacement therapy and the lack of equally effective nonhormonal alternatives. Moreover, development of safer, more effective therapies has been stymied by the lack of an animal model that recapitulates the hot-flash phenomenon and enables direct testing of hypotheses regarding the pathophysiology underlying hot flashes. To address these problems, we developed a murine model for hot flashes and a comprehensive method for measuring autonomic and behavioral thermoregulation in mice. We designed and constructed an instrument called a thermocline that produces a thermal gradient along which mice behaviorally adapt to a thermal challenge to their core body temperature set point while their thermal preference over time is tracked and recorded. We tested and validated this murine model for VMS by administration of a TRPV1 agonist and a neurokinin B receptor agonist, capsaicin and senktide, respectively, to unrestrained mice and observed their autonomic and behavioral responses. Following both treatments, the mice exhibited a VMS-like response characterized by a drop in core body temperature and cold-seeking behavior on the thermocline. Senktide also caused a rise in tail skin temperature and increased Fos expression in the median preoptic area, a hypothalamic temperature control center. This dynamic model may be used to fully explore the cellular and molecular bases for VMS and to develop and test new therapeutic options. Copyright © 2017 Endocrine Society.

  8. Real-Time Imaging Reveals Properties of Glutamate-Induced Arc/Arg 3.1 Translation in Neuronal Dendrites.

    PubMed

    Na, Youn; Park, Sungjin; Lee, Changhee; Kim, Dong-Kyu; Park, Joo Min; Sockanathan, Shanthini; Huganir, Richard L; Worley, Paul F

    2016-08-03

    The immediate early gene Arc (also Arg3.1) produces rapid changes in synaptic properties that are linked to de novo translation. Here we develop a novel translation reporter that exploits the rapid maturation and "flash" kinetics of Gaussia luciferase (Gluc) to visualize Arc translation. Following glutamate stimulation, discrete Arc-Gluc bioluminescent flashes representing sites of de novo translation are detected within 15 s at distributed sites in dendrites, but not spines. Flashes are episodic, lasting ∼20 s, and may be unitary or repeated at ∼minute intervals at the same sites. Analysis of flash amplitudes suggests they represent the quantal product of one or more polyribosomes, while inter-flash intervals appear random, suggesting they arise from a stochastic process. Surprisingly, glutamate-induced translation is dependent on Arc open reading frame. Combined observations support a model in which stalled ribosomes are reactivated to rapidly generate Arc protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The unlikely high efficiency of a molecular motor based on active motion

    NASA Astrophysics Data System (ADS)

    Ebeling, W.

    2015-07-01

    The efficiency of a simple model of a motor converting chemical into mechanical energy is studied analytically. The model motor shows interesting properties corresponding qualitatively to motors investigated in experiments. The efficiency increases with the load and may for low loss reach high values near to 100 percent in a narrow regime of optimal load. It is shown that the optimal load and the maximal efficiency depend by universal power laws on the dimensionless loss parameter. Stochastic effects decrease the stability of motor regimes with high efficiency and make them unlikely. Numerical studies show efficiencies below the theoretical optimum and demonstrate that special ratchet profiles my stabilize efficient regimes.

  10. Dynamic flashing yellow arrow (FYA): a study on variable left-turn mode operational and safety impacts phase II - model expansion and testing.

    DOT National Transportation Integrated Search

    2016-06-01

    The flashing yellow arrow (FYA) signal display creates an opportunity to enhance the left-turn phase with a : variable mode that can be changed on demand. The previously developed decision support system (DSS) in : phase I facilitated the selection o...

  11. A viscoplastic study of crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhao, L. G.; Tong, J.

    Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant Δ K-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks. A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.

  12. Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase.

    PubMed

    Colby, Jennifer M; Krantz, Bryan A

    2015-11-06

    Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor and edema factor, into the host cytosol under the proton motive force. Protein translocation under a proton motive force is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between the lethal factor amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide-clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides, and while these steric interactions may make a peptide translocate poorly, in the context of folded domains, they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. FlaME: Flash Molecular Editor - a 2D structure input tool for the web.

    PubMed

    Dallakian, Pavel; Haider, Norbert

    2011-02-01

    So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME). In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME) utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format. The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, getMol() and setMol(). In addition, structures can be copied to the system clipboard. A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application) and the HTML elements on a web page, using JavaScript functions.

  14. Total Ionizing Dose Influence on the Single Event Effect Sensitivity in Samsung 8Gb NAND Flash Memories

    NASA Astrophysics Data System (ADS)

    Edmonds, Larry D.; Irom, Farokh; Allen, Gregory R.

    2017-08-01

    A recent model provides risk estimates for the deprogramming of initially programmed floating gates via prompt charge loss produced by an ionizing radiation environment. The environment can be a mixture of electrons, protons, and heavy ions. The model requires several input parameters. This paper extends the model to include TID effects in the control circuitry by including one additional parameter. Parameters intended to produce conservative risk estimates for the Samsung 8 Gb SLC NAND flash memory are given, subject to some qualifications.

  15. Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.

    2017-12-01

    Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.

  16. Development of a precipitation-area curve for warning criteria of short-duration flash flood

    NASA Astrophysics Data System (ADS)

    Bae, Deg-Hyo; Lee, Moon-Hwan; Moon, Sung-Keun

    2018-01-01

    This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events. The quantitative criteria are calculated based on flash flood guidance (FFG), which is defined as the depth of rainfall of a given duration required to cause frequent flooding (1-2-year return period) at the outlet of a small stream basin and is estimated using threshold runoff (TR) and antecedent soil moisture conditions in all sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002-2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC (receiver operating characteristic) analysis was used to obtain optimum rainfall values and a generalized precipitation-area (P-A) curve was developed for flash flood warning thresholds. The threshold function was derived as a P-A curve because the precipitation threshold with a short duration is more closely related to basin area than any other variables. For a brief description of the P-A curve, generalized thresholds for flash flood warnings can be suggested for rainfall rates of 42, 32 and 20 mm h-1 in sub-basins with areas of 22-40, 40-100 and > 100 km2, respectively. The proposed P-A curve was validated based on observed flash flood events in different sub-basins. Flash flood occurrences were captured for 9 out of 12 events. This result can be used instead of FFG to identify brief flash flood (less than 1 h), and it can provide warning information to decision-makers or citizens that is relatively simple, clear and immediate.

  17. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-06-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  18. ORTHOPEDIC LEG BRACE

    NASA Technical Reports Server (NTRS)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  19. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  20. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-04-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  1. Investigation of multi-scale flash-weakening of rock surfaces during high speed slip

    NASA Astrophysics Data System (ADS)

    Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.

    2017-12-01

    A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.

  2. The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn

    NASA Astrophysics Data System (ADS)

    Akoshima, Megumi; Ogwa, Mitsue; Baba, Tetsuya; Mizuno, Mineo

    Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.

  3. Menopausal hot flashes and insulin resistance.

    PubMed

    Tuomikoski, Pauliina; Ylikorkala, Olavi; Mikkola, Tomi S

    2012-10-01

    Recent data have indicated that menopausal hot flashes may be a determinant for cardiovascular health. Therefore, we studied the impact of hot flashes on insulin resistance, one of the most powerful markers of cardiovascular health, in recently postmenopausal women. We studied 143 recently postmenopausal (amenorrhea 6-36 mo) healthy and normal-weight women without previous hormone therapy use. The women prospectively recorded the number and severity of hot flashes for 2 weeks, and a validated total symptom score, the hot flash weekly weighted score, was calculated for each woman. Insulin resistance was assessed from fasting blood levels of glucose and insulin with the homeostasis model assessment. In 12 women, the assessment of insulin (n = 11) or glucose (n = 1) failed, and they were excluded from further analysis. Thus, hot flashes were absent in 19, mild in 32, moderate in 27, and severe in 53 women. The levels of glucose or insulin, or HOMA showed no differences between these groups, nor was insulin resistance related to the number or severity of hot flashes or to the levels of C-reactive protein or sex hormone-binding globulin. Overall, insulin resistance showed a positive association with body mass index (mean difference, 0.058; 95% CI, 0.015-0.102; P = 0.009) and a negative association with level of estradiol (mean difference, -0.002; 95% CI, -0.003 to -0.001; P = 0.009). Insulin resistance may not be involved in hot flash-related changes in cardiovascular health. However, because of the small sample size, these findings need to be interpreted with caution.

  4. Modeling the Colorado Front Range Flood of 2013 with Coupled WRF and WRF-Hydro System

    NASA Astrophysics Data System (ADS)

    Unal, E.; Ramirez, J. A.

    2015-12-01

    Abstract. Flash floods are one of the most damaging natural disasters producing large socio-economic losses. Projected impacts of climate change include increases in the magnitude and the frequency of flash floods all around the world. Therefore, it is important to understand the physical processes of flash flooding to enhance our capacity for prediction, prevention, risk management, and recovery. However, understanding these processes is ambitious because of small spatial scale and sudden nature of flash floods, interactions with complex topography and land use, difficulty in defining initial soil moisture conditions, non-linearity of catchment response, and high space-time variability of storm characteristics. Thus, detailed regional case studies are needed, especially with respect to the interactions between the land surface and the atmosphere. One such flash flood event occurred recently in the Front Range of the Rocky Mountains of Colorado during September 9-15, 2013 causing 10 fatalities and $3B cost in damages. An unexpected persistent and moist weather pattern located over the mountains and produced seven-day extreme rainfall fed by moisture input from the Gulf of Mexico. We used a coupled WRF-WRF-Hydro modeling system to simulate this event for better understanding of the physical process and of the sensitivity of the hydrologic response to storm characteristics, initial soil moisture conditions, and watershed characteristics.

  5. Flash Mob Science - Increasing Seismic Hazard Awareness and Preparedness in Oregon

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Lownsbery, D. S.

    2015-12-01

    Living in a region of imminent threat of a magnitude-9.0 (M­­­w ≈ ­9) earthquake is a daily reality for the millions of people predicted to be directly affected by a full rupture of the Cascadia Subduction Zone (CSZ), a fault line extending for hundreds of miles off the western coast of North America. Many coastal residents and visitors will also be affected by the tsunami caused by the rupture. How can the scientific community effectively communicate with those who are unaware of the threat and unprepared to respond? We are studying the effects of a novel approach to science outreach we have called Flash Mob Science. You have probably seen examples of flash mobs staging dynamic musical and dance routines to unsuspecting audiences. Similarly, Flash Mob Science takes the challenging (and often avoided) topic of earthquake and tsunami awareness and preparedness to unsuspecting audiences. However, Flash Mob Science seeks to move beyond having an audience of observers by engaging others as participants who enact important roles in an unfolding drama. We simulate the effects of seismic and tsunami events (e.g., prolonged surface shaking, falling debris, repeated tsunami surges) and model best practices in response (e.g., "Drop, Cover, Hold On" and moving quickly to high ground). True to the general flash mob model, when the Cascadia event inevitably does occur, it will come suddenly, and everyone affected will unavoidably be involved as actors in a real-life drama of immense scale. We seek to embed the learning of basic understandings and practices for an actual Cascadia event in a very small-scale, memorable, and sometimes even humorous, dramatization. We present here the lessons we have learned in the background, planning, and implementation of Flash Mob Science. We highlight the successes, limitations, and preliminary results evaluating the effectiveness of this outreach in developing learners' understandings and preparedness in an Oregon community affected by the CSZ.

  6. The Ground Flash Fraction Retrieval Algorithm Employing Differential Evolution: Simulations and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2012-01-01

    The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error plots are provided for both the simulations and actual data analyses.

  7. Acquisition of a socially learned tool use sequence in chimpanzees: Implications for cumulative culture

    PubMed Central

    Vale, Gillian L.; Davis, Sarah J.; Lambeth, Susan P.; Schapiro, Steven J.; Whiten, Andrew

    2017-01-01

    Cumulative culture underpins humanity’s enormous success as a species. Claims that other animals are incapable of cultural ratcheting are prevalent, but are founded on just a handful of empirical studies. Whether cumulative culture is unique to humans thus remains a controversial and understudied question that has far-reaching implications for our understanding of the evolution of this phenomenon. We investigated whether one of human’s two closest living primate relatives, chimpanzees, are capable of a degree of cultural ratcheting by exposing captive populations to a novel juice extraction task. We found that groups (N = 3) seeded with a model trained to perform a tool modification that built upon simpler, unmodified tool use developed the seeded tool method that allowed greater juice returns than achieved by groups not exposed to a trained model (non-seeded controls; N = 3). One non-seeded group also discovered the behavioral sequence, either by coupling asocial and social learning or by repeated invention. This behavioral sequence was found to be beyond what an additional control sample of chimpanzees (N = 1 group) could discover for themselves without a competent model and lacking experience with simpler, unmodified tool behaviors. Five chimpanzees tested individually with no social information, but with experience of simple unmodified tool use, invented part, but not all, of the behavioral sequence. Our findings indicate that (i) social learning facilitated the propagation of the model-demonstrated tool modification technique, (ii) experience with simple tool behaviors may facilitate individual discovery of more complex tool manipulations, and (iii) a subset of individuals were capable of learning relatively complex behaviors either by learning asocially and socially or by repeated invention over time. That chimpanzees learn increasingly complex behaviors through social and asocial learning suggests that humans’ extraordinary ability to do so was built on such prior foundations. PMID:29333058

  8. Establishment of a Data Repository Establishment for Cognitive Modeling

    DTIC Science & Technology

    2012-09-02

    was abandoning Flash in favor of HTML5 . The implications of this for CMR are that, although the submission pages will work fine for a couple of years...all browsers will continue to support flash for the time being), the software will eventually become obsolete. The sooner this part of CMR is rewritten in HTML5 , the better.

  9. Flash Mixing on the White-Dwarf Cooling Curve: Understanding Hot Horizontal Branch Anomalies in NGC 2808

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Sweigart, Allen V.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present an ultraviolet color-magnitude diagram (CMD) spanning the hot horizontal branch (HB), blue straggler, and white dwarf populations of the globular cluster NGC 2808. These data, obtained with the Space Telescope Imaging Spectrograph (STIS), demonstrate that NGC 2808 harbors a significant population of hot subluminous HB stars, an anomaly only previously reported for the globular cluster omega Cen. Our theoretical modeling indicates that the location of these subluminous stars in the CMD, as well as the high temperature gap along the HB of NGC 2808, can be explained if these stars underwent a late helium-core flash while descending the white dwarf cooling curve. We show that the convective zone produced by such a late helium flash will penetrate into the hydrogen envelope, thereby mixing hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the "born again" scenario for producing hydrogen-deficient stars following a late helium-shell flash. The flash mixing of the envelope greatly enhances the envelope helium and carbon abundances that, in turn, leads to a discontinuous increase in the HB effective temperatures. We argue that the hot HB gap is associated with this theoretically predicted dichotomy in the HB properties. Moreover, the changes in the emergent spectral energy distribution caused by these abundance changes are primarily responsible for explaining the hot subluminous HB stars. Although further evidence is needed to confirm that a late helium-core flash can account for the subluminous HB stars and the hot HB gap, we demonstrate that an understanding of these stars requires the use of appropriate theoretical models for their evolution, atmospheres, and spectra.

  10. Towards a Quantitative Understanding of Single-Gene Transcription

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid

    2008-03-01

    The transcription of the genetic information in DNA into RNA is the first step in protein synthesis. This process is highly regulated and is carried out by RNA polymerase (RNAP), a complex molecular motor. Here we discuss some of the consequences of a Brownian ratchet model of transcription, which incorporates internal structural degrees of freedom of RNAP and kinetic barriers to backtracking of RNAP resulting from steric clashes with co-transcriptionally folded RNA. This approach was previously used (a) to successfully predict sequence dependent positions of pauses during the elongation process [1,2]; (b) to study the behavior of a number of mutants of RNAP, with different elongation behaviors, believed to involve different internal motions of the enzyme [3]; and (c) to gain insight into the interpretation of single-molecule transcription elongation experiments [2]. The same model can be used to characterize the stability of the elongation complex at specific termination sequences, places along DNA where, with high probability, RNAP releases the RNA transcript and disengages from the template. Recent experimental results on termination reinforce a picture of the elongation complex as a flexible structure, not a rigid body [4]. In more general terms, some of the modeling to be presented raises fundamental issues related to ``model comparison'' and ``model selection,'' the problem of identifying and characterizing quantitative models on the basis of limited sets of experimental data [5]. [1] Tadigotla V. R., 'O Maoil'eidigh D., Sengupta A. M., Epshtein V., Ebright R. H., Nudler E., Ruckenstein A. E., Thermodynamic and Kinetic Modeling of Transcriptional Pausing. Proc Natl Acad Sci U S A,03:4439-4444 (2006). [2] D. 'O Maoil'eidigh, Ph.D. Thesis, Rutgers University, 2006 [3] Bar-Nahum, G., Epshtein, V., Ruckenstein, A. E., Rafikov, R., Mustaev, A. and Nudler E., A Ratchet Mechanism of Transcription Elongation and its Control. Cell, 120:183-193 (2005). [4] Epshtein, V., Cardinale, C.J., Ruckenstein, A.E., Borukhov, S., and Nudler, E., An Allosteric Path to Transcription Termination. Mol. Cell,28; 991-1001 (2007). [5] Vasisht R. Tadigotla, Ph.D. Thesis, Rutgers University, 2006

  11. Flash signal evolution in Photinus fireflies: character displacement and signal exploitation in a visual communication system.

    PubMed

    Stanger-Hall, Kathrin F; Lloyd, James E

    2015-03-01

    Animal communication is an intriguing topic in evolutionary biology. In this comprehensive study of visual signal evolution, we used a phylogenetic approach to study the evolution of the flash communication system of North American fireflies. The North American firefly genus Photinus contains 35 described species with simple ON-OFF visual signals, and information on habitat types, sympatric congeners, and predators. This makes them an ideal study system to test hypotheses on the evolution of male and female visual signal traits. Our analysis of 34 Photinus species suggests two temporal pattern generators: one for flash duration and one for flash intervals. Reproductive character displacement was a main factor for signal divergence in male flash duration among sympatric Photinus species. Male flash pattern intervals (i.e., the duration of the dark periods between signals) were positively correlated with the number of sympatric Photuris fireflies, which include predators of Photinus. Females of different Photinus species differ in their response preferences to male traits. As in other communication systems, firefly male sexual signals seem to be a compromise between optimizing mating success (sexual selection) and minimizing predation risk (natural selection). An integrative model for Photinus signal evolution is proposed. © 2015 The Author(s).

  12. Optical observations of electrical activity in cloud discharges

    NASA Astrophysics Data System (ADS)

    Vayanganie, S. P. A.; Fernando, M.; Sonnadara, U.; Cooray, V.; Perera, C.

    2018-07-01

    Temporal variation of the luminosity of seven natural cloud-to-cloud lightning channels were studied, and results were presented. They were recorded by using a high-speed video camera with the speed of 5000 fps (frames per second) and the pixel resolution of 512 × 512 in three locations in Sri Lanka in the tropics. Luminosity variation of the channel with time was obtained by analyzing the image sequences. Recorded video frames together with the luminosity variation were studied to understand the cloud discharge process. Image analysis techniques also used to understand the characteristics of channels. Cloud flashes show more luminosity variability than ground flashes. Most of the time it starts with a leader which do not have stepping process. Channel width and standard deviation of intensity variation across the channel for each cloud flashes was obtained. Brightness variation across the channel shows a Gaussian distribution. The average time duration of the cloud flashes which start with non stepped leader was 180.83 ms. Identified characteristics are matched with the existing models to understand the process of cloud flashes. The fact that cloud discharges are not confined to a single process have been further confirmed from this study. The observations show that cloud flash is a basic lightning discharge which transfers charge between two charge centers without using one specific mechanism.

  13. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  14. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  15. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    PubMed Central

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104

  16. Flash/crazing effects on simulator pursuit tracking performance

    NASA Astrophysics Data System (ADS)

    Stamper, D. A.; Lund, D. J.; Levine, R. R.; Molchany, J. W.; Best, P.

    1986-03-01

    Day sights which are purposefully or inadvertently irradiated with laser radiation may become nonfunctional due to cracking or crazing of the optical glass. The degree of performance degradation may be related to the amount of damage to the glass and possible flash blindness from reradiation. Thirty-two male enlisted men and officers tracked a scale model tank through a constant arc at a simulated distance of 1 km, using a laboratory constructed viscous-damped tracking device. There were four crazing groups (4 men/group) under bright and dim ambient light conditions for a total of eight groups. Each man tracked the target during three flash/crazing and three crazing only trials, which were randomly presented during 30 trials. The simulated countermeasure which included the flash and crazing had dramatic effects on tracking performance, even under daylight conditions. Under the most severe degree of crazing, tracking performance was not possible under either ambient light condition. The relatively small amounts of laser radiation used to craze the BK-7 glass used in this study, which lead to significant performance decrements, demonstrates the potential impact of flash/crazing effects on operators of day sights.

  17. FlaME: Flash Molecular Editor - a 2D structure input tool for the web

    PubMed Central

    2011-01-01

    Background So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME). In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME) utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format. Implementation The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, getMol() and setMol(). In addition, structures can be copied to the system clipboard. Conclusion A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application) and the HTML elements on a web page, using JavaScript functions. PMID:21284863

  18. Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model

    NASA Astrophysics Data System (ADS)

    Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan

    2016-10-01

    Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.

  19. Teachers and Students' Conceptions of Computer-Based Models in the Context of High School Chemistry: Elicitations at the Pre-intervention Stage

    NASA Astrophysics Data System (ADS)

    Waight, Noemi; Gillmeister, Kristina

    2014-04-01

    This study examined teachers' and students' initial conceptions of computer-based models—Flash and NetLogo models—and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry classrooms. Individual in-depth interviews were conducted with 32 students and 6 teachers. Findings revealed an interplay of complex factors that functioned as opportunities and obstacles in the implementation of technologies in science classrooms. Students revealed preferences for the Flash models as opposed to the open-ended NetLogo models. Altogether, due to lack of content and modeling background knowledge, students experienced difficulties articulating coherent and blended understandings of multiple representations. Concurrently, while the aesthetic and interactive features of the models were of great value, they did not sustain students' initial curiosity and opportunities to improve understandings about chemistry phenomena. Most teachers recognized direct alignment of the Flash model with their existing curriculum; however, the benefits were relegated to existing procedural and passive classroom practices. The findings have implications for pedagogical approaches that address the implementation of computer-based models, function of models, models as multiple representations and the role of background knowledge and cognitive load, and the role of teacher vision and classroom practices.

  20. Why Flash Type Matters: A Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Mecikalski, Retha M.; Bitzer, Phillip M.; Carey, Lawrence D.

    2017-09-01

    While the majority of research only differentiates between intracloud (IC) and cloud-to-ground (CG) flashes, there exists a third flash type, known as hybrid flashes. These flashes have extensive IC components as well as return strokes to ground but are misclassified as CG flashes in current flash type analyses due to the presence of a return stroke. In an effort to show that IC, CG, and hybrid flashes should be separately classified, the two-sample Kolmogorov-Smirnov (KS) test was applied to the flash sizes, flash initiation, and flash propagation altitudes for each of the three flash types. The KS test statistically showed that IC, CG, and hybrid flashes do not have the same parent distributions and thus should be separately classified. Separate classification of hybrid flashes will lead to improved lightning-related research, because unambiguously classified hybrid flashes occur on the same order of magnitude as CG flashes for multicellular storms.

  1. The kinematic and microphysical control of lightning rate, extent, and NOX production

    NASA Astrophysics Data System (ADS)

    Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.

    2016-07-01

    This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.

  2. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour at 20th of June 2012, based on open data sources of geology, soil and land use. The aim of FFRM is to provide an estimation of the damage risk caused by flash-floods for the whole of Upper Austria. To address the hazard, inundation depths were calculated with the extended 2D-model using design rains with an 100-year return period provided by the Environmental Ministry [7]. The potential damage was calculated using damage functions, which were derived from our experience from damage surveys of past events in Austria and according to guidelines for determination of cost-benefit-ratios for flood protection measures [8]. The greatest difficulty was to get appropriate data for the distribution of houses and industrial plants. Zoning plans provide good information on spatial distribution of residential, commercial and industrial areas, but does not contain information on the kind of industry, which is essential for estimating absolute damage values. To get a first idea detailed information from surveyed areas was intersected with the zoning plan, which provides an average damage in the respective zones. The first results can be found on www.waterviewer.com and will be updated with the further development of the project. [1] URBAS, risk management of extreme flooding events - prediction and management of flash floods in urban areas, www.urbanesturzfluten.de, prompted on 13th of November 2014 [2] Società Meteorologica Italiana (SMI), http://www.nimbus.it/eventi/2013/130624flashfloodRimini.pdf, prompted on 13th of November 2014 [3]Newspaper "Österreich", http://www.oe24.at/oesterreich/chronik/Sturzflut-Regen-legt-Ost-Oesterreich-lahm/1509113, prompted on 13th of November 2014 [4] Newspaper "Oberösterreichische Nachrichten", http://www.nachrichten.at/oberoesterreich/Unwetter-Mure-riss-Strasse-mit-Wohnhaus-in-Gosau-gefaehrdet;art4,911288 , prompted on 13th of November 2014 [5] Sharing Water-related Information to Tackle Changes in the Hydrosphere - for Operational Needs (SWITCH-ON), http://water-switch-on.eu [6] European Commission, directive 2007/60/EC of the European Parliament and the Council of 23rd October 2007 on the assessment and management of flood risks: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:288:0027:0034:en:PDF [7] http://ehyd.gv.at [8] Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management: „Kosten-Nutzen-Untersuchungen im Schutzwaserbau", July 2009

  3. Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators

    NASA Astrophysics Data System (ADS)

    Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu

    2012-01-01

    We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.

  4. A Simple Method to Measure Nematodes' Propulsive Thrust and the Nematode Ratchet.

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Yuan, Jinzhou; Raizen, David

    2015-11-01

    Since the propulsive thrust of micro organisms provides a more sensitive indicator of the animal's health and response to drugs than motility, a simple, high throughput, direct measurement of the thrust is desired. Taking advantage of the nematode C. elegans being heavier than water, we devised a simple method to determine the propulsive thrust of the animals by monitoring their velocity when swimming along an inclined plane. We find that the swimming velocity is a linear function of the sin of the inclination angle. This method allows us to determine, among other things, the animas' propulsive thrust as a function of genotype, drugs, and age. Furthermore, taking advantage of the animals' inability to swim over a stiff incline, we constructed a sawteeth ratchet-like track that restricts the animals to swim in a predetermined direction. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  5. Reply to "Comment on 'Ratchet universality in the presence of thermal noise' ".

    PubMed

    Martínez, Pedro J; Chacón, Ricardo

    2013-12-01

    The Comment by Quintero et al. [preceding Comment, Phys. Rev. E 88, 066101 (2013)] does not dispute the central result of our paper [Martínez and Chacón, Phys. Rev. E 87, 062114 (2013)], which is a theory explaining the interplay between thermal noise and symmetry breaking in the ratchet transport of a Brownian particle moving on a periodic substrate subjected to a temporal biharmonic excitation γ[ηsin(ωt)+α(1-η)sin(2ωt+φ)]. In the Comment, the authors claim, on the sole basis of their numerical simulations for the particular case α=2, that "there is no such universal force waveform and that the evidence obtained by the authors otherwise is due to their particular choice of parameters." Here we demonstrate by means of theoretical arguments and additional numerical simulations that all the conclusions of our original article are preserved.

  6. Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Nan; Kang, Yan-Mei

    2018-06-01

    In this paper, we investigate the effect of alpha stable Lévy noise with alpha stability index α (0 < α ≤ 2) on stochastic resonance (SR) in underdamped periodic potential systems by the non-perturbative expansion moment method and stochastic simulation. Using the spectral amplification factor as a quantifying index, we find that SR can occur in both sinusoidal potentials and ratchet potentials when α is close to 2, while the resonant effect becomes weaker as the stability index decreases. By means of massive numerical statistics, we ascribe this trend to the typical jumps of non-Gaussian Lévy noise (0 < α < 2), which play a destructive role on the periodicity of the long time mean response. We also disclose that the skewness parameter of Lévy noise has a more notable impact on the resonant effect of the asymmetric ratchet potential than that of the symmetric sinusoidal potential because of symmetry breaking.

  7. Combining lightning leader and relativistic feedback discharge models of terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2016-12-01

    Lightning leader models of terrestrial gamma-ray flashes (TGFs) are based on the observations that leaders emit bursts of hard x-rays. These x-rays are thought to be generated by runaway electrons created in the high-field regions associated with the leader tips and/or streamers heads. Inside a thunderstorm, it has been proposed that these runaway electrons may experience additional relativistic runaway electron avalanche (RREA) multiplication, increasing the number and the average energy of the electrons, and possibly resulting in a TGF. When modeling TGFs it is important to include the discharge currents resulting from the ionization produced by the runaway electrons, since these currents may alter the electric fields and affect the TGF. In addition, relativistic feedback effects, caused by backward propagating positrons and backscattered x-rays, need to be included, since relativistic feedback limits the size of the electric field and the amount of a RREA multiplication that may occur. In this presentation, a lightning leader model of terrestrial gamma-ray flashes that includes the effects of the discharge currents and relativistic feedback will be described and compared with observations.

  8. Storm Physics and Lightning Properties over Northern Alabama during DC3

    NASA Astrophysics Data System (ADS)

    Matthee, R.; Carey, L. D.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep moist convection (DMC) and the production of nitrogen oxides (NOx) via lightning (LNOx). The focus of this study will be to examine integrated storm microphysics and lightning properties of DMC across northern Alabama (NA) during the DC3 campaign through use of polarimetric radar [UAHuntsville's Advanced Radar for Meteorological and Operational Radar (ARMOR)] and lightning mapping [National Aeronautical and Space Administration's (NASA) north Alabama Lightning Mapping Array (NA LMA)] platforms. Specifically, ARMOR and NA LMA are being used to explore the ability of radar inferred microphysical (e.g., ice mass, graupel volume) measurements to parameterize flash rates (F) and flash area for estimation of LNOX production in cloud resolving models. The flash area was calculated by using the 'convex hull' method. This method essentially draws a polygon around all the sources that comprise a flash. From this polygon, the convex hull area that describes the minimum polygon that circumscribes the flash extent is calculated. Two storms have been analyzed so far; one on 21 May 2012 (S1) and another on 11 June 2012 (S2), both of which were aircraft-penetrated during DC3. For S1 and S2, radar reflectivity (Z) estimates of precipitation ice mass (M) within the mixed-phase zone (-10°C to -40°C) were well correlated to the trend of lightning flash rate. However, a useful radar-based F parameterization must provide accurate quantification of rates in addition to proper trends. The difference reflectivity was used to estimate Z associated with ice and then a single Z-M relation was employed to calculate M in the mixed-phase zone. Using this approach it was estimated that S1 produced an order of magnitude greater M, but produced about a third of the total amount of flashes compared to S2. Expectations based on the non-inductive charging (NIC) theory suggest that the M-to-F ratio (M/F) should be stable from storm-to-storm, amongst other factors, all else being equal. Further investigation revealed that the mean mixed-phase Z was 11 dB higher in S1 compared to S2, suggesting larger diameters and lower concentrations of ice particles in S1. Reduction by an order of magnitude of the intercept parameter (N0) of an assumed exponential ice particle size distribution within the Z-M relation for S1 resulted in a proportional reduction in S1's inferred M and therefore a more comparable M/F ratio between the storms. Flash statistics between S1 and S2 revealed the following: S1 produced 1.92 flashes/minute and a total of 102 flashes, while S2 produced 3.45 flashes/minute and a total of 307 flashes. On average, S1 (S2) produced 212 (78) sources per flash and an average flash area of 89.53 km2 (53.85 km2). Thus, S1 produced fewer flashes, a lower F, but more sources per flash and larger flash areas as compared to S2. Ongoing analysis is exploring the tuning of N0 within the Z-M relation by the mean Z in the mixed-phase zone. The suitability of various M estimates and other radar properties (graupel volume, ice fluxes, anvil ice mass) for parameterizing F, flash area and LNOX will be investigated on different storm types across NA.

  9. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  10. Muscle contraction: A mechanical perspective.

    PubMed

    Marcucci, L; Truskinovsky, L

    2010-08-01

    In this paper we present a purely mechanical analog of the conventional chemo-mechanical modeling of muscle contraction. We abandon the description of kinetics of the power stroke in terms of jump processes and instead resolve the continuous stochastic evolution on an appropriate energy landscape. In general physical terms, we replace hard spin chemical variables by soft spin variables representing mechanical snap-springs. This allows us to treat the case of small and even disappearing barriers and, more importantly, to incorporate the mechanical representation of the power stroke into the theory of Brownian ratchets. The model provides the simplest non-chemical description for the main stages of the biochemical Lymn-Taylor cycle and may be used as a basis for the artificial micro-mechanical reproduction of the muscle contraction mechanism.

  11. Quantitative comparison of the application accuracy between NDI and IGT tracking systems

    NASA Astrophysics Data System (ADS)

    Li, Qinghang; Zamorano, Lucia J.; Jiang, Charlie Z. W.; Gong, JianXing; Diaz, Fernando

    1999-07-01

    The application accuracy is a crucial factor for the stereotactic surgical localization system in which space digitization system is one of the most important part of equipment. In this study we compared the application accuracy of using the OPTOTRAK space digitization system (OPTOTRAK 3020, Northern Digital, Waterloo, CAN) and FlashPoint Model 3000 and 5000 3-D digitizer systems (FlashPoint Model 3000 and 5000, Image Guided Surgery Technology Inc., Boulder, CO 80301, USA) for interactive localization of intracranial lesions. A phantom was mounted with the implantable frameless marker system (Fischer- Leibinger, Freiburg, Germany) which randomly distributed markers on the surface of the phantom. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points were used as the deviation from the `true point'. The mean square root was calculated to show the sum of vectors. A paired t-test was used to analyze results. The results of the phantom showed that the mean square roots were 0.76 +/- 0.54 mm for the OPTOTRAK system and 1.23 +/- 0.53 mm for FlashPoint Model 3000 3-D digitizer system and 1.00 +/- 0.42 mm for FlashPoint Model 3000 3-D digitizer system in the 1 mm sections of CT scan. This preliminary results showed that there is no significant difference between two tracking systems. Both of them can be used for image guided surgery procedure.

  12. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter

    NASA Technical Reports Server (NTRS)

    Dyudine, U. A.; Ingersoll, Andrew P.

    2002-01-01

    We study lightning on Jupiter and the clouds illuminated by the lightning using images taken by the Galileo orbiter. The Galileo images have a resolution of 25 km/pixel and axe able to resolve the shape of the single lightning spots in the images, which have full widths at half the maximum intensity in the range of 90-160 km. We compare the measured lightning flash images with simulated images produced by our ED Monte Carlo light-scattering model. The model calculates Monte Carlo scattering of photons in a ED opacity distribution. During each scattering event, light is partially absorbed. The new direction of the photon after scattering is chosen according to a Henyey-Greenstein phase function. An image from each direction is produced by accumulating photons emerging from the cloud in a small range (bins) of emission angles. Lightning bolts are modeled either as points or vertical lines. Our results suggest that some of the observed scattering patterns axe produced in a 3-D cloud rather than in a plane-parallel cloud layer. Lightning is estimated to occur at least as deep as the bottom of the expected water cloud. For the six cases studied, we find that the clouds above the lightning are optically thick (tau > 5). Jovian flashes are more regular and circular than the largest terrestrial flashes observed from space. On Jupiter there is nothing equivalent to the 30-40-km horizontal flashes which axe seen on Earth.

  13. Visualization on triangle concept using Adobe Flash Professional SC6

    NASA Astrophysics Data System (ADS)

    Sagita, Laela; Ratih Kusumarini, Adha

    2017-12-01

    The purpose of this paper is to develop teaching aids using Adobe Flash Professional CS6 emphasize on Triangle concept. A new alternative way to deliver a basic concept in geometry with visualization is software Adobe Flash Professional CS 6. Research method is research and development with 5 phase of Ploom’s model, namely (1) preliminary, (2) design, (3) realization/ construction, (4) test, evaluation and revision, and 5) implementation. The results showed that teaching aids was valid, practice, and effective. Validity: expert judgement for material score is 3.95 and media expert judgement produce an average score of 3,2, both in the category are valid. Practically: the average of questionnaire response is 4,04 (good). Effectiveness: n-gain test value is 0,36 (medium). It concluded that developed of teaching aids using Adobe Flash CS6 on triangle can improve student achievement.

  14. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    NASA Technical Reports Server (NTRS)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.

  15. Medium range forecasting of Hurricane Harvey flash flooding using ECMWF and social vulnerability data

    NASA Astrophysics Data System (ADS)

    Pillosu, F. M.; Jurlina, T.; Baugh, C.; Tsonevsky, I.; Hewson, T.; Prates, F.; Pappenberger, F.; Prudhomme, C.

    2017-12-01

    During hurricane Harvey the greater east Texas area was affected by extensive flash flooding. Their localised nature meant they were too small for conventional large scale flood forecasting systems to capture. We are testing the use of two real time forecast products from the European Centre for Medium-range Weather Forecasts (ECMWF) in combination with local vulnerability information to provide flash flood forecasting tools at the medium range (up to 7 days ahead). Meteorological forecasts are the total precipitation extreme forecast index (EFI), a measure of how the ensemble forecast probability distribution differs from the model-climate distribution for the chosen location, time of year and forecast lead time; and the shift of tails (SOT) which complements the EFI by quantifying how extreme an event could potentially be. Both products give the likelihood of flash flood generating precipitation. For hurricane Harvey, 3-day EFI and SOT products for the period 26th - 29th August 2017 were used, generated from the twice daily, 18 km, 51 ensemble member ECMWF Integrated Forecast System. After regridding to 1 km resolution the forecasts were combined with vulnerable area data to produce a flash flood hazard risk area. The vulnerability data were floodplains (EU Joint Research Centre), road networks (Texas Department of Transport) and urban areas (Census Bureau geographic database), together reflecting the susceptibility to flash floods from the landscape. The flash flood hazard risk area forecasts were verified using a traditional approach against observed National Weather Service flash flood reports, a total of 153 reported flash floods have been detected in that period. Forecasts performed best for SOT = 5 (hit ratio = 65%, false alarm ratio = 44%) and EFI = 0.7 (hit ratio = 74%, false alarm ratio = 45%) at 72 h lead time. By including the vulnerable areas data, our verification results improved by 5-15%, demonstrating the value of vulnerability information within natural hazard forecasts. This research shows that flash flooding from hurricane Harvey was predictable up to 4 days ahead and that filtering the forecasts to vulnerable areas provides a more focused guidance to civil protection agencies planning their emergency response.

  16. Practices and risks associated with operation of tie-down lashings in the vehicle transport industry.

    PubMed

    Fraysse, François; Milanese, Steven; Thewlis, Dominic

    2016-12-01

    Load restraint systems in automobile transport utilise tie-down lashings placed over the car's tyres, which are tensioned manually by the operator using a ratchet assembly. This process has been identified as a significant manual handling injury risk. The aim of this study was to gain insight on the current practices associated with tie-down lashings operation, and identify the gaps between current and optimal practice. We approached this with qualitative and quantitative assessments and one numerical simulation to establish: (i) insight into the factors involved in ratcheting; (ii) the required tension to hold the car on the trailer; and (iii) the tension achieved by drivers in practice and associated joint loads. We identified that the method recommended to the drivers was not used in practice. Drivers instead tensioned the straps to the maximum of their capability, leading to over-tensioning and mechanical overload at the shoulder and elbow. We identified the postures and strategies that resulted in the lowest loads on the upper body during ratcheting (using both hands and performing the task with their full body). This research marks the first step towards the development of a training programme aiming at changing practice to reduce injury risks associated with the operation of tie-down lashings in the automobile transport industry. Practitioner Summary: The study investigated current practice associated with the operation of tie-down lashings through qualitative (interviews) and quantitative (biomechanical analysis) methods. Operators tended to systematically over-tension the lashings and consequently overexert, increasing injury risks.

  17. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE PAGES

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.; ...

    2016-09-06

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  18. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  19. Comparative estimation and assessment of initial soil moisture conditions for Flash Flood warning in Saxony

    NASA Astrophysics Data System (ADS)

    Luong, Thanh Thi; Kronenberg, Rico; Bernhofer, Christian; Janabi, Firas Al; Schütze, Niels

    2017-04-01

    Flash Floods are known as highly destructive natural hazards due to their sudden appearance and severe consequences. In Saxony/Germany flash floods occur in small and medium catchments of low mountain ranges which are typically ungauged. Besides rainfall and orography, pre-event moisture is decisive, as it determines the available natural retention in the catchment. The Flash Flood Guidance concept according to WMO and Prof. Marco Borga (University of Padua) will be adapted to incorporate pre-event moisture in real-time flood forecast within the ESF EXTRUSO project (SAB-Nr. 100270097). To arrive at pre-event moisture for the complete area of the low mountain range with flash flood potential, a widely applicable, accurate but yet simple approach is needed. Here, we use radar precipitation as input time series, detailed orographic, land-use and soil information and a lumped parameter model to estimate the overall catchment soil moisture and potential retention. When combined with rainfall forecast and its intrinsic uncertainty, the approach allows to find the point in time when precipitation exceeds the retention potential of the catchment. Then, spatially distributed and complex hydrological modeling and additional measurements can be initiated. Assuming reasonable rainfall forecasts of 24 to 48hrs, this part can start up to two days in advance of the actual event. The lumped-parameter model BROOK90 is used and tested for well observed catchments. First, physical meaningful parameters (like albedo or soil porosity) a set according to standards and second, "free" parameters (like percentage of lateral flow) were calibrated objectively by PEST (Model-Independent Parameter Estimation and Uncertainty Analysis) with the target on evapotranspiration and soil moisture which both have been measured at the study site Anchor Station Tharandt in Saxony/Germany. Finally, first results are presented for the Wernersbach catchment in Tharandt forest for main flood events in the 50-year gauging period since 1968.

  20. Misaligned Image Integration With Local Linear Model.

    PubMed

    Baba, Tatsuya; Matsuoka, Ryo; Shirai, Keiichiro; Okuda, Masahiro

    2016-05-01

    We present a new image integration technique for a flash and long-exposure image pair to capture a dark scene without incurring blurring or noisy artifacts. Most existing methods require well-aligned images for the integration, which is often a burdensome restriction in practical use. We address this issue by locally transferring the colors of the flash images using a small fraction of the corresponding pixels in the long-exposure images. We formulate the image integration as a convex optimization problem with the local linear model. The proposed method makes it possible to integrate the color of the long-exposure image with the detail of the flash image without causing any harmful effects to its contrast, where we do not need perfect alignment between the images by virtue of our new integration principle. We show that our method successfully outperforms the state of the art in the image integration and reference-based color transfer for challenging misaligned data sets.

  1. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  2. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH

    NASA Astrophysics Data System (ADS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-08-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  3. Rectification of light refraction in curved waveguide arrays.

    PubMed

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  4. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and... of slippage of the metal cap of the jack, a wood block shall be placed between the cap and the load...

  5. Efficacy of Crocus sativus (saffron) in treatment of major depressive disorder associated with post-menopausal hot flashes: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Kashani, Ladan; Esalatmanesh, Sophia; Eftekhari, Farzaneh; Salimi, Samrand; Foroughifar, Tahereh; Etesam, Farnaz; Safiaghdam, Hamideh; Moazen-Zadeh, Ehsan; Akhondzadeh, Shahin

    2018-03-01

    Due to concerns regarding the side effects of hormone therapy, many studies have focused on the development of non-hormonal agents for treatment of hot flashes. The aim of this study was to evaluate the efficacy and safety of saffron (stigma of Crocus sativus) in treatment of major depressive disorder associated with post-menopausal hot flashes. Sixty women with post-menopausal hot flashes participated in this study. The patients randomly received either saffron (30 mg/day, 15 mg twice per day) or placebo for 6 weeks. The patients were assessed using the Hot Flash-Related Daily Interference Scale (HFRDIS), Hamilton Depression Rating Scale (HDRS) and the adverse event checklist at baseline and also at the second, fourth, and sixth weeks of the study. Fifty-six patients completed the trial. Baseline characteristics of the participants did not differ significantly between the two groups. General linear model repeated measures demonstrated significant effect for time × treatment interaction on the HFRDIS score [F (3, 162) = 10.41, p = 0.0001] and HDRS score [F (3, 162) = 5.48, p = 0.001]. Frequency of adverse events was not significantly different between the two groups. Results from this study revealed that saffron is a safe and effective treatment in improving hot flashes and depressive symptoms in post-menopausal healthy women. On the other hand, saffron, with fewer side effects, may provide a non-hormonal and alternative herbal medicine option in treatment of women with hot flashes.

  6. An evaluation of the potential of Sentinel 1 for improving flash flood predictions via soil moisture-data assimilation

    NASA Astrophysics Data System (ADS)

    Cenci, Luca; Pulvirenti, Luca; Boni, Giorgio; Chini, Marco; Matgen, Patrick; Gabellani, Simone; Squicciarino, Giuseppe; Pierdicca, Nazzareno

    2017-11-01

    The assimilation of satellite-derived soil moisture estimates (soil moisture-data assimilation, SM-DA) into hydrological models has the potential to reduce the uncertainty of streamflow simulations. The improved capacity to monitor the closeness to saturation of small catchments, such as those characterizing the Mediterranean region, can be exploited to enhance flash flood predictions. When compared to other microwave sensors that have been exploited for SM-DA in recent years (e.g. the Advanced SCATterometer - ASCAT), characterized by low spatial/high temporal resolution, the Sentinel 1 (S1) mission provides an excellent opportunity to monitor systematically soil moisture (SM) at high spatial resolution and moderate temporal resolution. The aim of this research was thus to evaluate the impact of S1-based SM-DA for enhancing flash flood predictions of a hydrological model (Continuum) that is currently exploited for civil protection applications in Italy. The analysis was carried out in a representative Mediterranean catchment prone to flash floods, located in north-western Italy, during the time period October 2014-February 2015. It provided some important findings: (i) revealing the potential provided by S1-based SM-DA for improving discharge predictions, especially for higher flows; (ii) suggesting a more appropriate pre-processing technique to be applied to S1 data before the assimilation; and (iii) highlighting that even though high spatial resolution does provide an important contribution in a SM-DA system, the temporal resolution has the most crucial role. S1-derived SM maps are still a relatively new product and, to our knowledge, this is the first work published in an international journal dealing with their assimilation within a hydrological model to improve continuous streamflow simulations and flash flood predictions. Even though the reported results were obtained by analysing a relatively short time period, and thus should be supported by further research activities, we believe this research is timely in order to enhance our understanding of the potential contribution of the S1 data within the SM-DA framework for flash flood risk mitigation.

  7. Statistical patterns in the location of natural lightning

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Inan, U. S.

    2013-01-01

    Lightning discharges are nature's way of neutralizing the electrical buildup in thunderclouds. Thus, if an individual discharge destroys a substantial fraction of the cloud charge, the probability of a subsequent flash is reduced until the cloud charge separation rebuilds. The temporal pattern of lightning activity in a localized region may thus inherently be a proxy measure of the corresponding timescales for charge separation and electric field buildup processes. We present a statistical technique to bring out this effect (as well as the subsequent recovery) using lightning geo-location data, in this case with data from the National Lightning Detection Network (NLDN) and from the GLD360 Network. We use this statistical method to show that a lightning flash can remove an appreciable fraction of the built up charge, affecting the neighboring lightning activity for tens of seconds within a ˜ 10 km radius. We find that our results correlate with timescales of electric field buildup in storms and suggest that the proposed statistical tool could be used to study the electrification of storms on a global scale. We find that this flash suppression effect is a strong function of flash type, flash polarity, cloud-to-ground flash multiplicity, the geographic location of lightning, and is proportional to NLDN model-derived peak stroke current. We characterize the spatial and temporal extent of the suppression effect as a function of these parameters and discuss various applications of our findings.

  8. Theoretical investigation of flash vaporisation in a screw expander

    NASA Astrophysics Data System (ADS)

    Vasuthevan, Hanushan; Brümmer, Andreas

    2017-08-01

    In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.

  9. I-process Nucleosynthesis and Mass Retention Efficiency in He-shell Flash Evolution of Rapidly Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.; Herwig, Falk; Battino, Umberto; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Paxton, Bill

    2017-01-01

    Based on stellar evolution simulations, we demonstrate that rapidly accreting white dwarfs (WDs) in close binary systems are an astrophysical site for the intermediate neutron-capture process. During recurrent and very strong He-shell flashes in the stable H-burning accretion regime H-rich material enters the He-shell flash convection zone. {}12{{C}}(p,γ ){}13{{N}} reactions release enough energy to potentially impact convection, and I process is activated through the {}13{{C}}{(α ,{{n}})}16{{O}} reaction. The H-ingestion flash may not cause a split of the convection zone as it was seen in simulations of He-shell flashes in post-AGB and low-Z asymptotic giant branch (AGB) stars. We estimate that for the production of first-peak heavy elements this site can be of similar importance for galactic chemical evolution as the s-process production by low-mass AGB stars. The He-shell flashes result in the expansion and, ultimately, ejection of the accreted and then I-process enriched material, via super-Eddington-luminosity winds or Roche-lobe overflow. The WD models do not retain any significant amount of the accreted mass, with a He retention efficiency of ≲ 10 % depending on mass and convective boundary mixing assumptions. This makes the evolutionary path of such systems to supernova Ia explosion highly unlikely.

  10. Theoretical and experimental study of the formation conditions of stepped leaders in negative flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shijun, E-mail: sj-xie@163.com; State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084; Zeng, Rong

    2015-08-15

    Natural lightning flashes are stochastic and uncontrollable, and thus, it is difficult to observe the formation process of a downward negative stepped leader (NSL) directly and in detail. This situation has led to some dispute over the actual NSL formation mechanism, and thus has hindered improvements in the lightning shielding analysis model. In this paper, on the basis of controllable long air gap discharge experiments, the formation conditions required for NSLs in negative flashes have been studied. First, a series of simulation experiments on varying scales were designed and carried out. The NSL formation processes were observed, and several ofmore » the characteristic process parameters, including the scale, the propagation velocity, and the dark period, were obtained. By comparing the acquired formation processes and the characteristic parameters with those in natural lightning flashes, the similarity between the NSLs in the simulation experiments and those in natural flashes was proved. Then, based on the local thermodynamic equation and the space charge estimation method, the required NSL formation conditions were deduced, and the space background electric field (E{sub b}) was proposed as the primary parameter for NSL formation. Finally, the critical value of E{sub b} required for the formation of NSLs in natural flashes was determined to be approximately 75 kV/m by extrapolation of the results of the simulation experiments.« less

  11. A Flash Flood Study on the Small Montaneous River Catchments in Western Romania

    NASA Astrophysics Data System (ADS)

    Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël

    2013-04-01

    The present study focuses on flash flood modeling on several mountaneous catchments situated in Western Romania by the use of two methodologies, when rainfall and catchment characteristics are known. Hence, the Soil Conservation Service (SCS) Method and the Rational Method will be employed for the generation of the 1%, 2% and 10% historical flash flood hydrographs on the basis of data spanning from 1989-2009. The SCS Method has been applied on the three gauged catchments in the study area: Petris, Troas and Monorostia making use of the existing interconnection between GIS and the rainfall-runoff models. The DEM, soil data and land use preprocessing in GIS allowed a determination of the hydrologic parameters needed for the rainfall-runoff model, with special emphasis on determining the time of concentration, Lag time and the weighted Curve Number according to Antecedent Moisture Conditions II, adapted for the Romanian territory. HEC-HMS rainfall-runoff model (Hydrologic Engineering Center- Hydrologic Modeling System) facilitates the historical 1%, 2% and 10% flash flood hydrograph generation for the three afore mentioned watersheds. The model is calibrated against measured streamflow data from the three existing gauging stations. The results show a good match between the resulted hydrographs and the observed hydrographs under the form of the Peak Weighted Error RMS values. The hydrographs generated by surface runoff on the ungauged catchments in the area is based on an automation of a workflow in GIS, built with ArcGIS Model Builder graphical interface, as a large part of the functions needed were available as ArcGIS tools. The several components of this model calculate: the runoff depth in mm, the runoff coefficient, the travel time and finally the discharge module which is an application of the rational method, allowing the discharge computation for every cell within the catchment. The result consists of discharges for each isochrones that will be subsequently interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

  12. Measuring hot flash phenomenonology using ambulatory prospective digital diaries

    PubMed Central

    Fisher, William I.; Thurston, Rebecca C.

    2016-01-01

    Objective This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. Methods This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of 3 consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Results Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the on the face (78.9%), neck (74.7%), and chest (61.3%). Prickly skin was reported concurrently with 32% of hot flashes, 7% with anxiety and 5% with nausea. A novel finding, 38% of hot flashes were accompanied by a premonitory aura. Conclusion A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly employed retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience. PMID:27404030

  13. Measuring hot flash phenomenonology using ambulatory prospective digital diaries.

    PubMed

    Fisher, William I; Thurston, Rebecca C

    2016-11-01

    This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of three consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the face (78.9%), neck (74.7%), and chest (61.3%). Of all reported hot flashes, 32% occurred concurrently with prickly skin, 7% with anxiety, and 5% with nausea. A novel finding from the study was that 38% of hot flashes were accompanied by a premonitory aura. A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly used retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci, and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience.

  14. Vortex motion and dynamical states in Josephson arrays

    NASA Astrophysics Data System (ADS)

    Trias, Enrique

    Underdamped Josephson junction arrays are used as model systems to study novel nonlinear effects. A combination of experiments, numerical simulations, and analytical analysis is used to probe different nonlinear behavior such as intrinsic localized modes, resonances in fully frustrated arrays, Meissner-like states, and vortex ratchets. Circuit models of Josephson networks are also developed, and applied to the design and measurement of parallel array oscillators. Ladder arrays have been used for an experimental study of intrinsic localized modes, or discrete breathers. Measurements of breather stability indicate that the maximum allowable bias current is proportional to the array depinning current while the minimum current is related to a junction retrapping mechanism. This retrapping instability usually leads to the formation of multi-site breathers. Collisions between the two nonlinear excitations in ladder arrays, discrete breathers and vortices, have also been numerically investigated. Discrete breathers act as pinning centers to vortex motion and the collisions can be modeled by an energy barrier activation process. When vortices are thermally induced over this barrier, a two-site breather is created. Experiments also reveal remarkable similarities among the do current-voltage characteristics of several kinds of square and triangular arrays, where two resonant voltages are observed. Simulations indicate that at full frustration a dynamical checkerboard state underlies these similarities. For such a traveling solution, the governing equations of the arrays are reduced to three coupled pendulum equations that have two characteristic resonant frequencies. Finally, a kink ratchet potential has been designed using a parallel array of Josephson junctions with alternating cell inductances and junctions areas. Experiments show that the depinning current depends on the direction of the applied current. Other properties of the depinning current versus applied field, such as a long period and a lack of reflection symmetry, have been observed and explained analytically. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  15. Triggered lightning strikes to aircraft and natural intracloud discharges

    NASA Technical Reports Server (NTRS)

    Mazur, Vladislav

    1989-01-01

    The physical model of Mazur (1989) for triggering lightning strikes by aircraft was used to interpret the initiation of intracloud flashes observed by the French UHF-VHF interferometric system. It is shown that both the intracloud discharges and airplane-triggered lightning strikes were initiated by simultaneous bidirectional development of the negative stepped leader and the positive leader-continous current process. However, the negative stepped leader phase in triggered flashes is of shorter duration (tens of milliseconds), than that in intracloud flashes (usually hundreds of milliseconds). This is considered to be due to the fact that, on the aircraft there is a single initiation process, versus the numerous initiation processes that occur inside the cloud.

  16. 77 FR 30048 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... built as 40-foot steel frame cars to carry logs. Their exact ages are unknown but they are thought to... only be manually applied when the cars are at rest, using a ratchet lever at the end of the frame. CASS...

  17. An experimental operative system for shallow landslide and flash flood warning based on rainfall thresholds and soil moisture modelling

    NASA Astrophysics Data System (ADS)

    Brigandı, G.; Aronica, G. T.; Basile, G.; Pasotti, L.; Panebianco, M.

    2012-04-01

    On November 2011 a thunderstorms became almost exceptional over the North-East part of the Sicily Region (Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The storm was concentrated on the Tyrrhenian sea coast near the city of Barcellona within the Longano catchment. Main focus of the paper is to present an experimental operative system for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds, soil moisture indexes and quantitative precipitation forecasting. As matter of fact, shallow landslide and flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. It is well known how the triggering of shallow landslides is strongly influenced by the initial soil moisture conditions of catchments. Therefore, the early warning system here applied is based on the combined use of rainfall thresholds, derived both for flash flood and for landslide, and soil moisture conditions; the system is composed of several basic component related to antecedent soil moisture conditions, real-time rainfall monitoring and antecedent rainfall. Soil moisture conditions were estimated using an Antecedent Precipitation Index (API), similar to this widely used for defining soil moisture conditions via Antecedent Moisture conditions index AMC. Rainfall threshold for landslides were derived using historical and statistical analysis. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. After the implementation and calibration of the model, a testing phase was carried out by using real data collected for the November 2001 event in the Longano catchment. Moreover, in order to test the capability of the system to forecast thise event, Quantitative Precipitation Forecasting provided by the SILAM (Sicily Limited Area Model), a meteorological model run by SIAS (Sicilian Agrometeorological Service) with a forecast horizon up to 144 hours, have been used to run the system.

  18. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  19. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  20. A radar-based hydrological model for flash flood prediction in the dry regions of Israel

    NASA Astrophysics Data System (ADS)

    Ronen, Alon; Peleg, Nadav; Morin, Efrat

    2014-05-01

    Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.

  1. Adaptive P300 based control system

    PubMed Central

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2015-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877

  2. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor.

    PubMed

    Jing, Peng; Burris, Benjamin; Zhang, Rong

    2016-07-12

    In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Constitutive relationships and physical basis of fault strength due to flash heating

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Goldsby, D.L.

    2008-01-01

    We develop a model of fault strength loss resulting from phase change at asperity contacts due to flash heating that considers a distribution of contact sizes and nonsteady state evolution of fault strength with displacement. Laboratory faulting experiments conducted at high sliding velocities, which show dramatic strength reduction below the threshold for bulk melting, are well fit by the model. The predicted slip speed for the onset of weakening is in the range of 0.05 to 2 m/s, qualitatively consistent with the limited published observations. For this model, earthquake stress drops and effective shear fracture energy should be linearly pressure-dependent, whereas the onset speed may be pressure-independent or weakly pressure-dependent. On the basis of the theory, flash weakening is expected to produce large dynamic stress drops, small effective shear fracture energy, and undershoot. Estimates of the threshold slip speed, stress drop, and fracture energy are uncertain due to poor knowledge of the average ontact dimension, shear zone thickness and gouge particle size at seismogenic depths. Copyright 2008 by the American Geophysical Union.

  4. Supernova shock breakout through a wind

    NASA Astrophysics Data System (ADS)

    Balberg, Shmuel; Loeb, Abraham

    2011-06-01

    The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.

  5. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.

    PubMed

    Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens

    2009-11-01

    In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

  6. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  7. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  8. Hand tool permits shrink sizing of assembled tubing

    NASA Technical Reports Server (NTRS)

    Millett, A.; Odor, M.

    1966-01-01

    Portable tool sizes tubing ends without disassembling the tubing installation. The shrink sizing tool is clamped to the tubing and operated by a ratchet wrench. A gear train forces the tubing end against an appropriate die or mandrel to effect the sizing.

  9. Nonequilibrium Chromosome Looping via Molecular Slip Links

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  10. A case study of the Thunderstorm Research International Project storm of July 11, 1978. I - Analysis of the data base

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.; Barnard, Theresa A.; Forbes, Gregory S.; Krider, E. Philip; Lhermitte, Roger

    1990-01-01

    The data obtained at the time of the Thunderstorm Research International Project storm at the Kennedy Space Center on July 11, 1978 are analyzed in a model-independent manner. The data base included data from three Doppler radars, a lightning detection and ranging system and a network of 25 electric field mills, and rain gages. Electric field measurements were used to analyze the charge moments transferred by lightning flashes, and the data were fitted to Weibull distributions; these were used to estimate statistical parameters of the lightning for both intracloud and cloud-to-ground flashes and to estimate the fraction of the flashes which were below the observation threshold. The displacement and the conduction current densities were calculated from electric field measurements between flashes. These values were used to derive the magnitudes and the locations of dipole and monopole generators by least squares fitting the measured Maxwell current densities to the displacement-dominated equations.

  11. Opacplot2: Enabling tabulated EoS and opacity compatibility for HEDLP simulations with the FLASH code

    NASA Astrophysics Data System (ADS)

    Laune, Jordan; Tzeferacos, Petros; Feister, Scott; Fatenejad, Milad; Yurchak, Roman; Flocke, Norbert; Weide, Klaus; Lamb, Donald

    2017-10-01

    Thermodynamic and opacity properties of materials are necessary to accurately simulate laser-driven laboratory experiments. Such data are compiled in tabular format since the thermodynamic range that needs to be covered cannot be described with one single theoretical model. Moreover, tabulated data can be made available prior to runtime, reducing both compute cost and code complexity. This approach is employed by the FLASH code. Equation of state (EoS) and opacity data comes in various formats, matrix-layouts, and file-structures. We discuss recent developments on opacplot2, an open-source Python module that manipulates tabulated EoS and opacity data. We present software that builds upon opacplot2 and enables easy-to-use conversion of different table formats into the IONMIX format, the native tabular input used by FLASH. Our work enables FLASH users to take advantage of a wider range of accurate EoS and opacity tables in simulating HELP experiments at the National Laser User Facilities.

  12. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  13. Flash sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  14. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  15. A microstructure sensitive study of rolling contact fatigue in bearing steels: A numerical and experimental approach

    NASA Astrophysics Data System (ADS)

    Pandkar, Anup Surendra

    Bearings are an integral part of machine components that transmit rotary power such as cars, motors, engines etc. Safe bearing operation is essential to avoid serious failures and accidents, which necessitates their timely replacement. This calls for an accurate bearing life prediction methods. Based on the Lundberg-Palmgen (LP) model, current life models consistently under predict bearings lives. Improvement in life prediction requires understanding of the bearing failure mechanism i.e. Rolling Contact Fatigue (RCF). The goal of this research is to develop a mechanistic framework required for an improved bearing life prediction model. Such model should account for metal plasticity, influence of microstructural features and cyclically evolving stressstrain fields induced during RCF. To achieve this, elastic-plastic finite element (FE) study is undertaken to investigate the response of M50-NiL bearing steel during RCF. Specifically, a microstructure sensitive study of the influence of non-metallic inclusions on RCF response of bearings is presented. M50-NiL microstructure consists of carbides which are orders of magnitude smaller than bearing dimensions. To account for this size difference, a multi-scale FE modeling approach is employed. The FE results reveal that hard carbide particles act as local stress risers, alter surrounding stressstrain fields and cause micro-scale yielding of steel matrix. Moreover, they introduce a shear stress cycle with non-zero mean stress, which promotes micro-plastic strain accumulation via ratcheting mechanism. Localized ratcheting is primarily responsible for cyclic hardening within the RCF affected region. Such evolution of subsurface hardness can be used to quantify RCF induced damage. To investigate this further, cyclic hardening response of the RCF affected region is simulated. The results show good agreement with the experimental observations. The cyclic stress-strain fields obtained from these simulations and the knowledge of hardness evolution can prove useful for future improvements to life models. The material parameters required for FE simulations are not available for many bearing steels. A novel method is presented to estimate these parameters for M50-NiL using the experimental results. Based on logical assumptions, this method provides meaningful estimates of material parameters. Modeling techniques and conclusions drawn from this research are helpful for improvements in life models.

  16. Simulations of Tidally Driven Formation of Binary Planet Systems

    NASA Astrophysics Data System (ADS)

    Murray, R. Zachary P.; Guillochon, James

    2018-01-01

    In the last decade there have been hundreds of exoplanets discovered by the Kepler, CoRoT and many other initiatives. This wealth of data suggests the possibility of detecting exoplanets with large satellites. This project seeks to model the interactions between orbiting planets using the FLASH hydrodynamics code developed by The Flash Center for Computational Science at University of Chicago. We model the encounters in a wide variety of encounter scenarios and initial conditions including variations in encounter depth, mass ratio, and encounter velocity and attempt to constrain what sorts of binary planet configurations are possible and stable.

  17. A Hot Downflowing Model Atmosphere for Umbral Flashes and the Physical Properties of Their Dark Fibrils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriques, V. M. J.; Mathioudakis, M.; Socas-Navarro, H.

    We perform non-LTE inversions in a large set of umbral flashes, including the dark fibrils visible within them, and in the quiescent umbra by using the inversion code NICOLE on a set of full Stokes high-resolution Ca ii λ 8542 observations of a sunspot at disk center. We find that the dark structures have Stokes profiles that are distinct from those of the quiescent and flashed regions. They are best reproduced by atmospheres that are more similar to the flashed atmosphere in terms of velocities, even if with reduced amplitudes. We also find two sets of solutions that finely fitmore » the flashed profiles: a set that is upflowing, featuring a transition region that is deeper than in the quiescent case and preceded by a slight dip in temperature, and a second solution with a hotter atmosphere in the chromosphere but featuring downflows close to the speed of sound at such heights. Such downflows may be related, or even dependent, on the presence of coronal loops, rooted in the umbra of sunspots, as is the case in the region analyzed. Similar loops have been recently observed to have supersonic downflows in the transition region and are consistent with the earlier “sunspot plumes,” which were invariably found to display strong downflows in sunspots. Finally, we find, on average, a magnetic field reduction in the flashed areas, suggesting that the shock pressure is moving field lines in the upper layers.« less

  18. A study on flash sintering and related phenomena in titania and its composite with alumina

    NASA Astrophysics Data System (ADS)

    Shikhar

    In 2010, Cologna et. al. [1] reported that with a help of small electric field 120 Vcm-1, the sintering temperature of 3 mol % yittria stabilized zirconia could be brought down to 850°C from 1450°C. On top of reducing the temperature requirements, the green sample could be sintered from starting density of 50% to near full density in mere 5 seconds, a sintering rate three orders of magnitude higher than conventional methods. This discovery led to the emergence of a new field of enhanced sintering with electric field, named "Flash Sintering". The objective of this thesis is to understand the phenomenological behavior of flash-sintering and related phenomena on titania and its composites with alumina at elevated temperature. The possible mechanisms to explain flash sintering are discussed: Joule heating and the avalanche of defect generation [2], both induced by the rapid rise in conductivity just before the onset of the flash. Apparently, both mechanisms play a role. The thesis covers the response of pure titania and composites of titania-alumina under flash and compared with conventional sintering. We start with the sintering behavior of pure titania and observe lowering of sintering temperature requirements with higher applied electric field. The conductivity of titania during flash is also measured, and compared with the nominal conductivity of titania at equivalent temperatures. The conductivity during flash is determined to be have a different activation energy. For the composites of titania-alumina, effect of flash on the constrained sintering was studied. It is a known fact that sintering of one component of composite slows down when the other component of a different densification rate is added to it, called constrained sintering. In our case, large inclusions of alumina particles were added to nano-grained titania green compact that hindered its densification. Flash sintering was found to be overcoming this problem and near full densification was achieved. In another experiment, effect of high current density and hold time under flash on the chemical reaction (phase transformation) of titania and alumina to form Al2TiO5 is studied. It was found that not only flash enhances the kinetics of reaction when compared with conventional heating at equivalent temperatures, but also brought down the phase transformation temperature for this spinel formation, as reported by the phase diagram. In-situ X-ray diffraction experiments were performed at the synchrotron facility in Argonne National Laboratory. The specimen temperature were measured during the experiment on the basis of peak shift with temperature and were found to be matching with our predicted values by Black-Body-Radiation model. We also observed the instant evolution of texture in grain orientation of pure titania under flash and their disappearance as the fields were switched off. Study on chemical kinetics between titania and alumina were also performed which supported our findings of in-house experiments.

  19. On the generation of umbral flashes and running penumbral waves.

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1973-01-01

    From a review of the observed properties of umbral flashes and running penumbral waves it is proposed that the source of these periodic phenomena is the oscillatory convection which Danielson and Savage (1968) and Savage (1969) have shown is likely to occur in the superadiabatic subphotospheric layers of sunspot umbras. Periods and growth rates are computed for oscillatory modes arising in a simple two-layer model umbra. The results suggest that umbral flashes result from disturbances produced by oscillatory convection occurring in the upper subphotospheric layer of the umbra, where the superadiabatic temperature gradient is much enhanced over that in lower layers, while running penumbral waves are due to oscillations in a layer just below this upper layer.

  20. Establishing a rainfall threshold for flash flood warnings in China's mountainous areas based on a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Miao, Qinghua; Yang, Dawen; Yang, Hanbo; Li, Zhe

    2016-10-01

    Flash flooding is one of the most common natural hazards in China, particularly in mountainous areas, and usually causes heavy damage and casualties. However, the forecasting of flash flooding in mountainous regions remains challenging because of the short response time and limited monitoring capacity. This paper aims to establish a strategy for flash flood warnings in mountainous ungauged catchments across humid, semi-humid and semi-arid regions of China. First, we implement a geomorphology-based hydrological model (GBHM) in four mountainous catchments with drainage areas that ranges from 493 to 1601 km2. The results show that the GBHM can simulate flash floods appropriately in these four study catchments. We propose a method to determine the rainfall threshold for flood warning by using frequency analysis and binary classification based on long-term GBHM simulations that are forced by historical rainfall data to create a practically easy and straightforward approach for flash flood forecasting in ungauged mountainous catchments with drainage areas from tens to hundreds of square kilometers. The results show that the rainfall threshold value decreases significantly with increasing antecedent soil moisture in humid regions, while this value decreases slightly with increasing soil moisture in semi-humid and semi-arid regions. We also find that accumulative rainfall over a certain time span (or rainfall over a long time span) is an appropriate threshold for flash flood warnings in humid regions because the runoff is dominated by excess saturation. However, the rainfall intensity (or rainfall over a short time span) is more suitable in semi-humid and semi-arid regions because excess infiltration dominates the runoff in these regions. We conduct a comprehensive evaluation of the rainfall threshold and find that the proposed method produces reasonably accurate flash flood warnings in the study catchments. An evaluation of the performance at uncalibrated interior points in the four gauged catchments provides results that are indicative of the expected performance at ungauged locations. We also find that insufficient historical data lengths (13 years with a 5-year flood return period in this study) may introduce uncertainty in the estimation of the flood/rainfall threshold because of the small number of flood events that are used in binary classification. A data sample that contains enough flood events (10 events suggested in the present study) that exceed the threshold value is necessary to obtain acceptable results from binary classification.

  1. STC synthesis of transportation funding sources and alternatives in the southeastern states now and in the future.

    DOT National Transportation Integrated Search

    2015-03-01

    In recent years, the demand for reliable transportation access has increased, but this has been : accompanied by rising uncertainty over funding availability. The precarious fiscal situation : facing many states has ratcheted up pressure on transport...

  2. Lockwasher Strongly Resists Disassembly

    NASA Technical Reports Server (NTRS)

    Jeffers, Stephanie Z.

    1991-01-01

    Lockwasher designed to prevent counter-rotation and loosening of machine screw once screw tightened. Tabs engage slots in pawl-and-ratchet fashion. Features similar to those of "childproof" cap on pill bottle. Intended to replace cup-washer-and-screwhead combination exposed to high-speed, turbulent flow in turbomachinery.

  3. Two-dimensional scanner apparatus. [flaw detector in small flat plates

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.; Bankston, B. F. (Inventor)

    1984-01-01

    An X-Y scanner utilizes an eddy current or ultrasonic current test probe to detect surface defects in small flat plates and the like. The apparatus includes a scanner which travels on a pair of slide tubes in the X-direction. The scanner, carried on a carriage which slides in the Y-direction, is driven by a helix shaft with a closed-loop helix groove in which a follower pin carried by scanner rides. The carriage is moved incrementally in the Y-direction upon the completion of travel of the scanner back and forth in the X-direction by means of an indexing actuator and an indexing gear. The actuator is in the form of a ratchet which engages ratchet gear upon return of the scanner to the indexing position. The indexing gear is rotated a predetermined increment along a crack gear to move carriage incrementally in the Y-direction. Thus, simplified highly responsive mechanical motion may be had in a small lightweight portable unit for accurate scanning of small area.

  4. Reply to ``Comment on `Ratchet universality in the presence of thermal noise' ''

    NASA Astrophysics Data System (ADS)

    Martínez, Pedro J.; Chacón, Ricardo

    2013-12-01

    The Comment by Quintero [preceding Comment, Phys. Rev. E10.1103/PhysRevE.88.066101 88, 066101 (2013)] does not dispute the central result of our paper [Martínez and Chacón, Phys. Rev. E10.1103/PhysRevE.87.062114 87, 062114 (2013)], which is a theory explaining the interplay between thermal noise and symmetry breaking in the ratchet transport of a Brownian particle moving on a periodic substrate subjected to a temporal biharmonic excitation γ[ηsin(ωt)+α(1-η)sin(2ωt+φ)]. In the Comment, the authors claim, on the sole basis of their numerical simulations for the particular case α=2, that “there is no such universal force waveform and that the evidence obtained by the authors otherwise is due to their particular choice of parameters.” Here we demonstrate by means of theoretical arguments and additional numerical simulations that all the conclusions of our original article are preserved.

  5. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  6. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  7. Implementing Parrondo's paradox with two-coin quantum walks

    NASA Astrophysics Data System (ADS)

    Rajendran, Jishnu; Benjamin, Colin

    2018-02-01

    Parrondo's paradox is ubiquitous in games, ratchets and random walks. The apparent paradox, devised by J. M. R. Parrondo, that two losing games A and B can produce a winning outcome has been adapted in many physical and biological systems to explain their working. However, proposals on demonstrating Parrondo's paradox using quantum walks failed for a large number of steps. In this work, we show that instead of a single coin if we consider a two-coin initial state which may or may not be entangled, we can observe a genuine Parrondo's paradox with quantum walks. Furthermore, we focus on reasons for this and pin down the asymmetry in initial two-coin state or asymmetry in shift operator, either of which is necessary for observing a genuine Parrondo's paradox. We extend our work to a three-coin initial state too with similar results. The implications of our work for observing quantum ratchet-like behaviour using quantum walks are also discussed.

  8. Implementing Parrondo’s paradox with two-coin quantum walks

    PubMed Central

    Rajendran, Jishnu

    2018-01-01

    Parrondo’s paradox is ubiquitous in games, ratchets and random walks. The apparent paradox, devised by J. M. R. Parrondo, that two losing games A and B can produce a winning outcome has been adapted in many physical and biological systems to explain their working. However, proposals on demonstrating Parrondo’s paradox using quantum walks failed for a large number of steps. In this work, we show that instead of a single coin if we consider a two-coin initial state which may or may not be entangled, we can observe a genuine Parrondo’s paradox with quantum walks. Furthermore, we focus on reasons for this and pin down the asymmetry in initial two-coin state or asymmetry in shift operator, either of which is necessary for observing a genuine Parrondo’s paradox. We extend our work to a three-coin initial state too with similar results. The implications of our work for observing quantum ratchet-like behaviour using quantum walks are also discussed. PMID:29515873

  9. Nanoscale magnetic ratchets based on shape anisotropy

    NASA Astrophysics Data System (ADS)

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  10. Advanced Stirling receiver development program, phase 1

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1990-01-01

    Critical technology experiments were designed and developed to evaluate the Stirling cavity heat pipe receiver for a space solar power system. Theoretical criteria were applied to the design of a module for containing energy storage phase change material while avoiding thermal ratcheting. Zero-g drop tower tests, without phase change, were conducted to affirm that the bubble location required to avoid ratcheting could be achieved without the use of container materials that are wetted by the phase change material. A full scale module was fabricated, but not tested. A fabrication method was successfully developed for the sodium evaporator dome, with a sintered screen wick, to be used as the focal point for the receiver. Crushing of the screen during hydroforming was substantially reduced over the results of other researchers by using wax impregnation. Superheating of the sodium in the wick under average flux conditions is expected to be under 10K. A 2000K furnace which will simulate solar flux conditions for testing the evaporator dome was successfully built and tested.

  11. Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S

    2012-01-01

    In this abstract, we study the performance and energy tradeoffs involved in migrating data analysis into the flash device, a process we refer to as Active Flash. The Active Flash paradigm is similar to 'active disks', which has received considerable attention. Active Flash allows us to move processing closer to data, thereby minimizing data movement costs and reducing power consumption. It enables true out-of-core computation. The conventional definition of out-of-core solvers refers to an approach to process data that is too large to fit in the main memory and, consequently, requires access to disk. However, in Active Flash, processing outsidemore » the host CPU literally frees the core and achieves real 'out-of-core' analysis. Moving analysis to data has long been desirable, not just at this level, but at all levels of the system hierarchy. However, this requires a detailed study on the tradeoffs involved in achieving analysis turnaround under an acceptable energy envelope. To this end, we first need to evaluate if there is enough computing power on the flash device to warrant such an exploration. Flash processors require decent computing power to run the internal logic pertaining to the Flash Translation Layer (FTL), which is responsible for operations such as address translation, garbage collection (GC) and wear-leveling. Modern SSDs are composed of multiple packages and several flash chips within a package. The packages are connected using multiple I/O channels to offer high I/O bandwidth. SSD computing power is also expected to be high enough to exploit such inherent internal parallelism within the drive to increase the bandwidth and to handle fast I/O requests. More recently, SSD devices are being equipped with powerful processing units and are even embedded with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz max frequency Tensilica core). Efforts that take advantage of the available computing cycles on the processors on SSDs to run auxiliary tasks other than actual I/O requests are beginning to emerge. Kim et al. investigate database scan operations in the context of processing on the SSDs, and propose dedicated hardware logic to speed up scans. Also, cluster architectures have been explored, which consist of low-power embedded CPUs coupled with small local flash to achieve fast, parallel access to data. Processor utilization on SSD is highly dependent on workloads and, therefore, they can be idle during periods with no I/O accesses. We propose to use the available processing capability on the SSD to run tasks that can be offloaded from the host. This paper makes the following contributions: (1) We have investigated Active Flash and its potential to optimize the total energy cost, including power consumption on the host and the flash device; (2) We have developed analytical models to analyze the performance-energy tradeoffs for Active Flash, by treating the SSD as a blackbox, this is particularly valuable due to the proprietary nature of the SSD internal hardware; and (3) We have enhanced a well-known SSD simulator (from MSR) to implement 'on-the-fly' data compression using Active Flash. Our results provide a window into striking a balance between energy consumption and application performance.« less

  12. A Bayesian Network approach for flash flood risk assessment

    NASA Astrophysics Data System (ADS)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes' theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation. Key words: Flash flood forecasting - Uncertainty modelling - flood risk management -Bayesian Networks.

  13. An Analysis of Total Lightning Flash Rates Over Florida

    NASA Astrophysics Data System (ADS)

    Mazzetti, Thomas O.; Fuelberg, Henry E.

    2017-12-01

    Although Florida is known as the "Sunshine State", it also contains the greatest lightning flash densities in the United States. Flash density has received considerable attention in the literature, but lightning flash rate has received much less attention. We use data from the Earth Networks Total Lightning Network (ENTLN) to produce a 5 year (2010-2014) set of statistics regarding total flash rates over Florida and adjacent regions. Instead of tracking individual storms, we superimpose a 0.2° × 0.2° grid over the study region and count both cloud-to-ground (CG) and in-cloud (IC) flashes over 5 min intervals. Results show that the distribution of total flash rates is highly skewed toward small values, whereas the greatest rate is 185 flashes min-1. Greatest average annual flash rates ( 3 flashes min-1) are located near Orlando. The southernmost peninsula, North Florida, and the Florida Panhandle exhibit smaller average annual flash rates ( 1.5 flashes min-1). Large flash rates > 100 flashes min-1 can occur during any season, at any time during the 24 h period, and at any location within the domain. However, they are most likely during the afternoon and early evening in East Central Florida during the spring and summer months.

  14. Progress in development of HEDP capabilities in FLASH's Unsplit Staggered Mesh MHD solver

    NASA Astrophysics Data System (ADS)

    Lee, D.; Xia, G.; Daley, C.; Dubey, A.; Gopal, S.; Graziani, C.; Lamb, D.; Weide, K.

    2011-11-01

    FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31-42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

  15. Development of a mobile app for flash flood alerting and data cataloging

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Nguyen, M.

    2016-12-01

    No matter how accurate and specific a forecast of flash flooding is made, there are local nuances with the communities related to the built environment that often dictate the locations and magnitudes of impacts. These are difficult, if not impossible, to identify, classify, and measure using remote sensing methods. This presentation presents a Thriving Earth Exchange project that is developing a mobile app that serves two purposes. First, it will provide detailed forecasts of flash flooding down to the 1-km pixel scale with 10-min updates using the state-of-the-science hydrologic forecasting system called FLASH. The display of model outputs on an app will greatly facilitate their use and can potentially increase first responders' reactions to the specific locations of impending disasters. Then, the first responders will have the capability of reporting the geotagged impacts they are witnessing, including those local "trouble spots". Over time, we will catalog the trouble spots for the community so that they can be flagged in future events. If proven effective, the app will then be advertised in other flood-prone communities and the database will be expanded accordingly. In summary, we are engaging local communities to provide information that can inform and improve future forecasts of flash flood, ultimately reducing their impacts and saving lives.

  16. Behavioral weight loss for the management of menopausal hot flashes: a pilot study.

    PubMed

    Thurston, Rebecca C; Ewing, Linda J; Low, Carissa A; Christie, Aimee J; Levine, Michele D

    2015-01-01

    Although adiposity has been considered to be protective against hot flashes, newer data suggest positive relationships between hot flashes and adiposity. No studies have been specifically designed to test whether weight loss reduces hot flashes. This pilot study aimed to evaluate the feasibility, acceptability, and initial efficacy of behavioral weight loss in reducing hot flashes. Forty overweight or obese women with hot flashes (≥ 4 hot flashes/d) were randomized to either behavioral weight loss intervention or wait-list control. Hot flashes were assessed before and after intervention via physiologic monitoring, diary, and questionnaire. Comparisons of changes in hot flashes and anthropometrics between conditions were performed via Wilcoxon tests. Study retention (83%) and intervention satisfaction (93.8%) were high. Most women (74.1%) reported that hot flash reduction was a major motivator for losing weight. Women randomized to the weight loss intervention lost more weight (-8.86 kg) than did women randomized to control (+0.23 kg; P < 0.0001). Women randomized to weight loss also showed greater reductions in questionnaire-reported hot flashes (2-wk hot flashes, -63.0) than did women in the control group (-28.0; P = 0.03)-a difference not demonstrated in other hot flash measures. Reductions in weight and hot flashes were significantly correlated (eg, r = 0.47, P = 0.006). This pilot study shows a behavioral weight loss program that is feasible, acceptable, and effective in producing weight loss among overweight or obese women with hot flashes. Findings indicate the importance of a larger study designed to test behavioral weight loss for hot flash reduction. Hot flash management could motivate women to engage in this health-promoting behavior.

  17. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

    PubMed Central

    Sellers, Eric W.; Wang, Xingyu

    2013-01-01

    Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331

  18. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Perram, Glen P.; Gross, Kevin C.

    2012-07-01

    Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800-6000 cm-1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm-1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ˜100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20-40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ˜1400 K, areas of greater than 32 m2, low soot emissivity of ˜0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ˜1000 K, areas of ˜5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1-2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ˜1550 K, optically thick plume core and ˜2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ˜5 MJ/kg.

  19. Modeling the Diffuse Cloud-Top Optical Emissions from Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Koshak, William

    2008-01-01

    A number of studies have indicated that the diffuse cloud-top optical emissions from intra-cloud (IC) lightning are brighter than that from normal negative cloud-to-ground (CG) lightning, and hence would be easier to detect from a space-based sensor. The primary reason provided to substantiate this claim has been that the IC is at a higher altitude within the cloud and therefore is less obscured by the cloud multiple scattering medium. CGs at lower altitudes embedded deep within the cloud are more obscured, so CG detection is thought to be more difficult. However, other authors claim that because the CG source current (and hence luminosity) is typically substantially larger than IC currents, the greater CG source luminosity is large enough to overcome the effects of multiple scattering. These investigators suggest that the diffuse cloud top emissions from CGs are brighter than from ICs, and hence are easier to detect from space. Still other investigators claim that the detection efficiency of CGs and ICs is about the same because modern detector sensitivity is good enough to "see" either flash type no matter which produces a brighter cloud top emission. To better assess which of these opinions should be accepted, we introduce an extension of a Boltzmann lightning radiative transfer model previously developed. It considers characteristics of the cloud (geometry, dimensions, scattering properties) and specific lightning channel properties (length, geometry, location, current, optical wave front propagation speed/direction). As such, it represents the most detailed modeling effort to date. At least in the few cases studied thus far, it was found that IC flashes appear brighter at cloud top than the lower altitude negative ground flashes, but additional model runs are to be examined before finalizing our general conclusions.

  20. Testing a structural model for viral DNA packaging motor function by optical tweezers measurements, site directed mutagenesis, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas A.; Migliori, Amy D.; Arya, Gaurav; Rao, Venigalla B.; Smith, Douglas E.

    2013-09-01

    Many double-stranded DNA viruses employ a molecular motor to package DNA into preformed capsid shells. Based on structures of phage T4 motor proteins determined by X-ray crystallography and cryo-electron microscopy, Rao, Rossmann and coworkers recently proposed a structural model for motor function. They proposed that DNA is ratcheted by a large conformational change driven by electrostatic interactions between charged residues at an interface between two globular domains of the motor protein. We have conducted experiments to test this model by studying the effect on packaging under applied load of site-directed changes altering these residues. We observe significant impairment of packaging activity including reductions in packaging rate, percent time packaging, and time active under high load. We show that these measured impairments correlate well with alterations in free energies associated with the conformational change predicted by molecular dynamics simulations.

  1. Ratcheting in a nonlinear viscoelastic adhesive

    NASA Astrophysics Data System (ADS)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  2. Spatial-temporal characteristics of lightning flash size in a supercell storm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  3. Flash memory management system and method utilizing multiple block list windows

    NASA Technical Reports Server (NTRS)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  4. Kinematic and Microphysical Control of Lightning Flash Rate over Northern Alabama

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Bain, Anthony L.; Matthee, Retha; Schultz, Christopher J.; Schultz, Elise V.; Deierling, Wiebke; Petersen, Walter A.

    2015-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep convection and the production of nitrogen oxides (NO (sub x)) via lightning (LNO (sub x)). A critical step in estimating LNO (sub x) production in a cloud-resolving model (CRM) without explicit lightning is to estimate the flash rate from available model parameters that are statistically and physically correlated. As such, the objective of this study is to develop, improve and evaluate lightning flash rate parameterizations in a variety of meteorological environments and storm types using radar and lightning mapping array (LMA) observations taken over Northern Alabama from 2005-2012, including during DC3. UAH's Advanced Radar for Meteorological and Operational Research (ARMOR) and the Weather Surveillance Radar - 1988 Doppler (WSR 88D) located at Hytop (KHTX) comprises the dual-Doppler and polarimetric radar network, which has been in operation since 2004. The northern Alabama LMA (NA LMA) in conjunction with Vaisala's National Lightning Detection Network (NLDN) allow for a detailed depiction of total lightning during this period. This study will integrate ARMOR-KHTX dual Doppler/polarimetric radar and NA LMA lightning observations from past and ongoing studies, including the more recent DC3 results, over northern Alabama to form a large data set of 15-20 case days and over 20 individual storms, including both ordinary multicell and supercell convection. Several flash rate parameterizations will be developed and tested, including those based on 1) graupel/small hail volume; 2) graupel/small hail mass, and 3) convective updraft volume. Sensitivity of the flash rate parameterizations to storm intensity, storm morphology and environmental conditions will be explored.

  5. Perceived control and hot flashes in treatment-seeking breast cancer survivors and menopausal women.

    PubMed

    Carpenter, Janet S; Wu, Jingwei; Burns, Debra S; Yu, Menggang

    2012-01-01

    Lower perceived control over hot flashes has been linked to fewer coping strategies, more catastrophizing, and greater hot flash severity and distress in midlife women, yet this important concept has not yet been studied in breast cancer survivors. The aim of this study was to explore perceived control over hot flashes and hot flashes in breast cancer survivors compared with midlife women without cancer. Ninety-nine survivors and 138 midlife women completed questionnaires and a prospective, electronic hot flash diary. All data were collected at a baseline assessment before randomization in a behavioral intervention study. Both groups had moderate perceived control over hot flashes. Control was not significantly related to hot flash frequency but was significantly related to hot flash severity, bother, and interference in both groups. A significantly stronger association between control and hot flash interference was found for survivors than for midlife women. Survivors using hot flash treatments perceived less control than did survivors not using hot flash treatments, whereas the opposite was true in midlife women. Findings extend our knowledge of perceived control over hot flashes in both survivors and midlife women. Findings emphasize the importance of continued menopausal symptom assessment and management, support the importance of continuing nursing care even for survivors who are already using hot flash treatment, and suggest that nursing interventions aimed at improving perceived control over hot flashes may be more helpful for survivors than for midlife women.

  6. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463

  7. Jacks--A Study of Simple Machines.

    ERIC Educational Resources Information Center

    Parsons, Ralph

    This vocational physics individualized student instructional module on jacks (simple machines used to lift heavy objects) contains student prerequisites and objectives, an introduction, and sections on the ratchet bumper jack, the hydraulic jack, the screw jack, and load limitations. Designed with a laboratory orientation, each section consists of…

  8. Tubing cutter for tight spaces

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  9. Synoptic-scale atmospheric conditions associated with flash flooding in watersheds of the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Teale, N. G.; Quiring, S. M.

    2015-12-01

    Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.

  10. Inevitability of Genetic Parasites

    PubMed Central

    Iranzo, Jaime; Puigbò, Pere; Lobkovsky, Alexander E.; Wolf, Yuri I.

    2016-01-01

    Abstract Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller’s ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller’s ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms. PMID:27503291

  11. Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundberg, Mattias, E-mail: mattias.lundberg@liu.se

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclicmore » behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.« less

  12. Performance on perceptual word identification is mediated by discrete states.

    PubMed

    Swagman, April R; Province, Jordan M; Rouder, Jeffrey N

    2015-02-01

    We contrast predictions from discrete-state models of all-or-none information loss with signal-detection models of graded strength for the identification of briefly flashed English words. Previous assessments have focused on whether ROC curves are straight or not, which is a test of a discrete-state model where detection leads to the highest confidence response with certainty. We along with many others argue this certainty assumption is too constraining, and, consequently, the straight-line ROC test is too stringent. Instead, we assess a core property of discrete-state models, conditional independence, where the pattern of responses depends only on which state is entered. The conditional independence property implies that confidence ratings are a mixture of detect and guess state responses, and that stimulus strength factors, the duration of the flashed word in this report, affect only the probability of entering a state and not responses conditional on a state. To assess this mixture property, 50 participants saw words presented briefly on a computer screen at three variable flash durations followed by either a two-alternative confidence ratings task or a yes-no confidence ratings task. Comparable discrete-state and signal-detection models were fit to the data for each participant and task. The discrete-state models outperformed the signal detection models for 90 % of participants in the two-alternative task and for 68 % of participants in the yes-no task. We conclude discrete-state models are viable for predicting performance across stimulus conditions in a perceptual word identification task.

  13. Multi-scale hydrometeorological observation and modelling for flash flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-09-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.

  14. Multi-scale hydrometeorological observation and modelling for flash-flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-02-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.

  15. Hot Flashes and Quality of Life Among Breast Cancer Patients

    DTIC Science & Technology

    2006-08-01

    hot flashes, 40.7% report at baseline, having used HRT and 26.8% used exercise to control hot flashes. The 12-month data indicates that 26.5% of the...entire sample who are experiencing hot flashes, tried or are using some form of HRT to control hot flashes with exercise still the most frequently...used approach to manage hot flashes with 44.2% of sample currently exercising . 15. SUBJECT TERMS Breast Cancer, Hot Flashes, Quality of Life

  16. A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel

    A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.

  17. Numerical model of a single nanocrystal devoted to the study of disordered nanocrystal floating gates of new flash memories

    NASA Astrophysics Data System (ADS)

    Leroy, Yann; Armeanu, Dumitru; Cordan, Anne-Sophie

    2011-05-01

    The improvement of our model concerning a single nanocrystal that belongs to a nanocrystal floating gate of a flash memory is presented. In order to extend the gate voltage range applicability of the model, the 3D continuum of states of either metallic or semiconducting electrodes is discretized into 2D subbands. Such an approach gives precise information about the mechanisms behind the charging or release processes of the nanocrystal. Then, the self-energy and screening effects of an electron within the nanocrystal are evaluated and introduced in the model. This enables a better determination of the operating point of the nanocrystal memory. The impact of those improvements on the charging or release time of the nanocrystal is discussed.

  18. Behavioral Weight Loss for the Management of Menopausal Hot Flashes: A Pilot Study

    PubMed Central

    Thurston, Rebecca C.; Ewing, Linda J.; Low, Carissa A.; Christie, Aimee J.; Levine, Michele D.

    2014-01-01

    Objective Although adiposity has been considered protective against hot flashes, newer data suggest positive relations between flashes and adiposity. No studies have been specifically designed to test whether weight loss reduces hot flashes. This pilot study aimed to evaluate the feasibility, acceptability, and initial efficacy of behavioral weight loss to reduce hot flashes. Methods Forty overweight/obese women with hot flashes (≥4/day) were randomized to a behavioral weight loss intervention or to wait list control. Hot flashes were assessed pre- and post-intervention via physiologic monitor, diary, and questionnaire. Comparisons of changes in hot flashes and anthropometrics between conditions were tested via Wilcoxon tests. Results Study retention (83%) and intervention satisfaction (93.8%) were high. Most women (74.1%) reported that hot flash reduction was a main motivator to lose weight. Women randomized to the weight loss intervention lost more weight (-8.86 kg) than did women randomized to control (+0.23 kg, p<.0001). Women randomized to weight loss also showed greater reductions in questionnaire-reported hot flashes (2-week hot flashes: −63.0) than did women in the control (−28.0, p=.03), a difference not demonstrated in other hot flash measures. Reductions in weight and hot flashes were significantly correlated (e.g., r=.47, p=.006). Conclusions This pilot study showed a behavioral weight loss program to be feasible, acceptable, and effective in producing weight loss among overweight/obese women with hot flashes. Findings indicate the importance of a larger study designed to test behavioral weight loss for hot flash reduction. Hot flash management could motivate women to engage in this health-promoting behavior. PMID:24977456

  19. Small-scale (flash) flood early warning in the light of operational requirements: opportunities and limits with regard to user demands, driving data, and hydrologic modeling techniques

    NASA Astrophysics Data System (ADS)

    Philipp, Andy; Kerl, Florian; Büttner, Uwe; Metzkes, Christine; Singer, Thomas; Wagner, Michael; Schütze, Niels

    2016-05-01

    In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving flash flood related early warning products are investigated. This is to clarify the feasibility and the limits of envisaged early warning procedures for small catchments, hit by flashy heavy rain events. Early warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required reaction-time needs of the stakeholders involved in flood risk management) needs to take into account not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction context. First, the user demands (with respect to desired/required warning products, preparation times, etc.) are investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative precipitation forecasts are verified. Third, considering the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies, employing deterministic, data-driven, and simple scoring methods.

  20. Karst flash floods: an example from the Dinaric karst (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T.

    2006-03-01

    Flash floods constitute one of the deadliest and costliest natural disasters worldwide. This paper explains the karst flash flood phenomenon, which represents a special kind of flash flood. As the majority of flash floods karst flash floods are caused by intensive short-term precipitation in an area whose surface rarely exceeds a few square kilometres. The characteristics of all flash floods are their short duration, small areal extent, high flood peaks and rapid flows, and heavy loss of life and property. Karst flash floods have specific characteristics due to special conditions for water circulation, which exist in karst terrains. During karst flash floods a sudden rise of groundwater levels occurs, which causes the appearance of numerous, unexpected, abundant and temporary karst springs. This paper presents in detail an example of a karst flash flood in the Marina bay (Dinaric karst region of Croatia), which occurred in December 2004.

Top