Sample records for flat anisotropic models

  1. A conformally flat realistic anisotropic model for a compact star

    NASA Astrophysics Data System (ADS)

    Ivanov, B. V.

    2018-04-01

    A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.

  2. Anisotropic ghost dark energy cosmological model with hybrid expansion law

    NASA Astrophysics Data System (ADS)

    Mahanta, Chandra Rekha; Sarma, Nitin

    2017-11-01

    In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.

  3. Upper mantle anisotropy beneath Peru from SKS splitting: Constraints on flat slab dynamics and interaction with the Nazca Ridge

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando

    2015-02-01

    The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.

  4. Solving the flatness problem with an anisotropic instanton in Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Bramberger, Sebastian F.; Coates, Andrew; Magueijo, João; Mukohyama, Shinji; Namba, Ryo; Watanabe, Yota

    2018-02-01

    In Hořava-Lifshitz gravity a scaling isotropic in space but anisotropic in spacetime, often called "anisotropic scaling," with the dynamical critical exponent z =3 , lies at the base of its renormalizability. This scaling also leads to a novel mechanism of generating scale-invariant cosmological perturbations, solving the horizon problem without inflation. In this paper we propose a possible solution to the flatness problem, in which we assume that the initial condition of the Universe is set by a small instanton respecting the same scaling. We argue that the mechanism may be more general than the concrete model presented here. We rely simply on the deformed dispersion relations of the theory, and on equipartition of the various forms of energy at the starting point.

  5. Study of conformally flat polytropes with tilted congruence

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sadiq, Sobia

    This paper is aimed to study the modeling of spherically symmetric spacetime in the presence of anisotropic dissipative fluid configuration. This is accomplished for an observer moving relative to matter content using two cases of polytropic equation-of-state under conformally flat condition. We formulate the corresponding generalized Tolman-Oppenheimer-Volkoff equation, mass equation, as well as energy conditions for both cases. The conformally flat condition is imposed to find an expression for anisotropy which helps to study spherically symmetric polytropes. Finally, Tolman mass is used to analyze stability of the resulting models.

  6. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  7. Explicit formulation of an anisotropic Allman/DKT 3-node thin triangular flat shell elements

    NASA Astrophysics Data System (ADS)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular, flat shell element in global coordinates is presented. An Allman triangle is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending triangle. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, membrane and bending strain-displacement matrices.

  8. Rigorous vector wave propagation for arbitrary flat media

    NASA Astrophysics Data System (ADS)

    Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.

    2017-08-01

    Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.

  9. Blue spectra of Kalb-Ramond axions and fully anisotropic string cosmologies

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    1999-03-01

    The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop outside the horizon, the growing modes leading, ultimately, to logarithmic energy spectra which are ``red'' in frequency and increase at large distance scales. We show that this conclusion can be avoided not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be ``blue'' in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to blue (or flat) logarithmic energy spectra for axionic fluctuations are likely to be isotropized by the effect of string tension corrections.

  10. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE PAGES

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  11. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  12. Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Imperiale, Alexandre; Demaldent, Edouard; Le Bourdais, Florian; Calmon, Pierre; Dominguez, Nicolas

    2018-04-01

    Models for the simulation of ultrasonic inspections of flat and curved plate-like composite structures, as well as stiffeners, are available in the CIVA-COMPOSITE module released in 2016. A first modelling approach using a ray-based model is able to predict the ultrasonic propagation in an anisotropic effective medium obtained after having homogenized the composite laminate. Fast 3D computations can be performed on configurations featuring delaminations, flat bottom holes or inclusions for example. In addition, computations on ply waviness using this model will be available in CIVA 2017. Another approach is proposed in the CIVA-COMPOSITE module. It is based on the coupling of CIVA ray-based model and a finite difference scheme in time domain (FDTD) developed by AIRBUS. The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Alternatively, a high order finite element approach is currently developed at CEA but not yet integrated in CIVA. The advantages of this approach will be discussed and first simulation results on Carbon Fiber Reinforced Polymers (CFRP) will be shown. Finally, the application of these modelling tools to the construction of metamodels is discussed.

  13. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    NASA Astrophysics Data System (ADS)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  14. Anisotropic cosmologies in warped DGP braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe

    2009-10-15

    The DGP braneworld scenario explains accelerated expansion of the Universe via leakage of gravity to extra dimensions without any need for dark energy. We study the behavior of homogeneous and anisotropic cosmologies on a warped DGP brane with perfect fluid as a matter source. Taking a conformally flat bulk, we obtain the general solutions of the field equations in an exact parametric form for Bianchi type I space-time with a pressureless fluid. Finally, the behavior of the observationally important parameters like shear, anisotropy, and the deceleration parameter is considered in detail. We find that isotropization can proceed slower in themore » warped DGP model than the generalized Randall-Sundrum II model.« less

  15. Application of a new K-tau model to near wall turbulent flows

    NASA Technical Reports Server (NTRS)

    Thangam, S.; Abid, R.; Speziale, Charles G.

    1991-01-01

    A recently developed K-tau model for near wall turbulent flows is applied to two severe test cases. The turbulent flows considered include the incompressible flat plate boundary layer with the adverse pressure gradients and incompressible flow past a backward facing step. Calculations are performed for this two-equation model using an anisotropic as well as isotropic eddy-viscosity. The model predictions are shown to compare quite favorably with experimental data.

  16. Inhomogeneous anisotropic cosmology

    DOE PAGES

    Kleban, Matthew; Senatore, Leonardo

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  17. Inhomogeneous anisotropic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleban, Matthew; Senatore, Leonardo

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  18. Inflation in anisotropic scalar-tensor theories

    NASA Technical Reports Server (NTRS)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  19. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  20. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  1. Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).

  2. Flat (0 0 1) surfaces of II-VI semiconductors: a lattice gas model

    NASA Astrophysics Data System (ADS)

    Ahr, Martin; Biehl, Michael

    2002-05-01

    We present a two-dimensional lattice gas with anisotropic interactions which model the known properties of the surface reconstructions of CdTe and ZnSe. In contrast to an earlier publication [M. Biehl, M. Ahr, W. Kinzel, M. Sokolowski, T. Volkmann, Europhys. Lett. 53 (2001) 169] the formation of anion dimers is considered. This alters the behaviour of the model considerably. We determine the phase diagram of this model by means of transfer matrix calculations and Monte Carlo simulations. We find qualitative agreement with the results of various experimental investigations.

  3. The Features of Self-Assembling Organic Bilayers Important to the Formation of Anisotropic Inorganic Materials in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    1999-01-01

    There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.

  4. Ductile Fracture Initiation of Anisotropic Metal Sheets

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; He, Ji

    2017-07-01

    The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.

  5. Balancing anisotropic curvature with gauge fields in a class of shear-free cosmological models

    NASA Astrophysics Data System (ADS)

    Thorsrud, Mikjel

    2018-05-01

    We present a complete list of general relativistic shear-free solutions in a class of anisotropic, spatially homogeneous and orthogonal cosmological models containing a collection of n independent p-form gauge fields, where p\\in\\{0, 1, 2, 3\\} , in addition to standard ΛCDM matter fields modelled as perfect fluids. Here a (collection of) gauge field(s) balances anisotropic spatial curvature on the right-hand side of the shear propagation equation. The result is a class of solutions dynamically equivalent to standard FLRW cosmologies, with an effective curvature constant Keff that depends both on spatial curvature and the energy density of the gauge field(s). In the case of a single gauge field (n  =  1) we show that the only spacetimes that admit such solutions are the LRS Bianchi type III, Bianchi type VI0 and Kantowski–Sachs metric, which are dynamically equivalent to open (Keff<0 ), flat (Keff=0 ) and closed (Keff>0 ) FLRW models, respectively. With a collection of gauge fields (n  >  1) also Bianchi type II admits a shear-free solution (Keff>0 ). We identify the LRS Bianchi type III solution to be the unique shear-free solution with a gauge field Hamiltonian bounded from below in the entire class of models.

  6. Anisotropic deformations of spatially open cosmology in massive gravity theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazuet, Charles; Volkov, Mikhail S.; Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr

    We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards amore » fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.« less

  7. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    PubMed

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  8. Stability of the sectored morphology of polymer crystallites

    NASA Astrophysics Data System (ADS)

    Alageshan, Jaya Kumar; Hatwalne, Yashodhan; Muthukumar, Murugappan

    2016-09-01

    When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless anisotropic line tension parameter α =γa n/√{h4Kϕ } (γa n = anisotropic line tension, h4 = fold energy parameter, Kϕ = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends on the size of the square.

  9. Light radiation pressure upon an optically orthotropic surface

    NASA Astrophysics Data System (ADS)

    Nerovny, Nikolay A.; Lapina, Irina E.; Grigorjev, Anton S.

    2017-11-01

    In this paper, we discuss the problem of determination of light radiation pressure force upon an anisotropic surface. The optical parameters of such a surface are considered to have major and minor axes, so the model is called an orthotropic model. We derive the equations for force components from emission, absorption, and reflection, utilizing a modified Maxwell's specular-diffuse model. The proposed model can be used to model a flat solar sail with wrinkles. By performing Bayesian analysis for example of a wrinkled surface, we show that there are cases in which an orthotropic model of the optical parameters of a surface may be more accurate than an isotropic model.

  10. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  11. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.

    2016-06-01

    Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.

  12. Magnetic intermittency of solar wind turbulence in the dissipation range

    NASA Astrophysics Data System (ADS)

    Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua

    2016-04-01

    The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.

  13. Squeeze-film flow between a flat impermeable bearing and an anisotropic porous bed

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2018-04-01

    We consider a theoretical model of the squeeze film in the presence of a porous bed. The gap between the porous bed and the bearing is assumed to be filled with a Newtonian fluid. We use the Navier-Stokes equation in the fluid region and the Darcy equation in the fluid filled porous region. Lubrication approximation is used to derive the corresponding evolution equation for the film thickness. We use G. S. Beavers and D. D. Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid. Mech. 30, 197-207 (1967)] and M. Le Bars and M. G. Worster ["Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification," J. Fluid. Mech. 550, 149-173 (2006)] condition at the liquid porous interface and present a detailed analysis on the corresponding impact. We assume that the porous bed is anisotropic in nature with permeabilities K2 and K1 along the principal axes. Accordingly, the anisotropic angle ϕ is taken as the angle between the horizontal direction and principal axis with permeability K2. We show that the anisotropic permeability ratio and the anisotropic angle make a significant influence on the contact time, flux, velocity, etc. Contact time to meet the porous bed when a bearing approaches under a constant prescribed load is estimated. We present some important findings (relevant to the knee joint) based on the anisotropic properties of the human cartilage. For a prescribed constant load, we have estimated the time duration, during which a healthy human knee remains fluid lubricated.

  14. Classical dimer model with anisotropic interactions on the square lattice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi

    2009-07-01

    We discuss phase transitions and the phase diagram of a classical dimer model with anisotropic interactions defined on a square lattice. For the attractive region, the perturbation of the orientational order parameter introduced by the anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a dimer-liquid to columnar phases. According to the discussion by Nomura and Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we proffer criteria to determine transition points and also universal level-splitting conditions. Subsequently, we perform numerical diagonalization calculations of the nonsymmetric real transfer matrices up to linear dimension specified by L=20 and determine the global phase diagram. For the repulsive region, we find the boundary between the dimer-liquid and the strong repulsion phases. Based on the dispersion relation of the one-string motion, which exhibits a twofold “zero-energy flat band” in the strong repulsion limit, we give an intuitive account for the property of the strong repulsion phase.

  15. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    NASA Astrophysics Data System (ADS)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  16. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    NASA Astrophysics Data System (ADS)

    Berryman, James G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.

  17. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less

  18. Detached Eddy Simulation of Film Cooling over a GE Flat Plate

    NASA Technical Reports Server (NTRS)

    Roy, Subrata

    2005-01-01

    The detached eddy simulation of film cooling has been utilized for a proprietary GE plate-pipe configuration. The blowing ratio was 2.02, the velocity ratio was 1.26, and the temperature ratio was 1.61. Results indicate that the mixing processes downstream of the hole are highly anisotropic. DES solution shows its ability to depict the dynamic nature of the flow and capture the asymmetry present in temperature and velocity distributions. Further, comparison between experimental and DES time-averaged effectiveness is satisfactory. Numerical values of span-averaged effectiveness show better prediction of the experimental values at downstream locations than a steady state Glenn HT solution. While the DES method shows obvious promise, there are several issues that need further investigation. Despite an accurate prediction in the hole vicinity, the simulation still falls short in the region x = 10d to 100d. This should be investigated. Also the model used flat plate. Actual turbine blade should be modeled in the future if additional finding is available.

  19. A microfabricated gecko-inspired controllable and reusable dry adhesive

    NASA Astrophysics Data System (ADS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  20. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation functionmore » in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.« less

  1. Tracing Geophysical Indicators of Fluid-Induced Serpentinization in the Pampean Flat Slab Subduction Region of Chile

    NASA Astrophysics Data System (ADS)

    Bourke, J. R.; Nikulin, A.; Park, J. J.

    2016-12-01

    An activity gap in the Andean volcanic arc in the Pampean section of the subduction zone in Chile ( 28°-33°S) marks a section of flat-slab subduction. Past studies connected this change in geometry to the collision and subduction of the Juan Fernandez Ridge and the resulting migration of both the thrust front and magmatism eastward to the Sierras Pampeanas. The fate of fluids released from the subducting Nazca slab remains uncertain and the degree of their interaction with the basal layer of the continental lithosphere is poorly understood. We present initial results of a receiver-function investigation and forward-modeling effort at station GO03 operated by the Chilean National Seismic Network. Receiver function analysis of 75 well-recorded teleseismic earthquake events recorded at GO03 allow us to constrain the position of the subducting Nazca slab and to address the physical properties of the interplate contact zone. Critically, our analysis indicates presence of a highly-anisotropic zone of low velocities directly above the subucting Nazca slab. We point out a remarkable similarity in geophysical characteristics between the observed seismic anomaly at GO03 and a volume of proposed serpentinization in an area of sub-horizontal subduction above the Juan de Fuca slab in Cascadia. This interpretation is further supported by forward-modeling receiver functions at GO03 relying on a velocity model that incorporates a serpentinized interplate region. The newly-identified low-velocity highly-anisotropic layer may extend beyond the GO03 area and act as a mineral reservoir that captures and, possibly, transports fluids derived from the dehydrating Nazca Plate as it subducts below South America. It is likely that there is a relationship between this feature and the lack of volcanic activity in the Pampean flat slab region. Figure Caption: A) Backazimuth sweep of receiver functions recorded at station GO03 with predicted phase arrivals plotted for 55 km, 65 km, 75 km and 85 km. B) Depth-migrated receiver functions for station GO03 relying on AK-135 velocity model and local seismicity (Mw>4.5) plotted within 15km of a 100km profile centered on GO03 along the dominant direction of subduction (74°).

  2. The imbalanced surfing-life of humanity to survival in the global changes

    NASA Astrophysics Data System (ADS)

    Kontar, V. A.

    2013-12-01

    We have written many times about the imbalance of Nature as the cause of the global change. Here, we offer some method for the humanity survival in the face of global change of the imbalanced anisotropic real Nature. There are two logics of understanding the real Nature: the traditional balanced, and the new imbalanced. The balanced logic presupposes that Nature is balanced, isotropic, etc. The imbalanced logic presupposes opposite that Nature is imbalanced, anisotropic, etc. Respectively can be two styles of the people life: balanced and imbalanced. The image of the flat earth corresponds well with the balanced lifestyle of people. On the balanced life people spend activities to achieve the balance by reducing the change, stabilization, leveling any level changes, etc. If there is a mountain on the road, it must be align the track or make the tunnel. If there is a ravine on the road, then it need backfilled or to build a bridge. If someone is in restless, it must be calm, etc. As example of the happiness in the balanced life is the stability, balance, and therefore the global changes of Nature are perceived as a catastrophe. In the balanced lifestyle people can easily decide to use force, especially if there is not enough knowledge. But Nature has power which in billions times greater than the forces of humanity. Therefore, humanity will beaten in struggle with Nature and disappear. The imbalanced lifestyle is the fundamentally different. The imbalanced lifestyle complies with the surface of the ocean, which always changes, but sometimes can be and flat. But the flat calm ocean surface is inconvenient for the imbalanced life. You need to pull boat yourself because is no wind in the sails. The anisotropic imbalanced Nature has gradients in all parameters. At a certain level of knowledge and experience, people can use this multi-dimensional gradient essence of the real Nature for human's discretion. The imbalanced life is like a surfing. If properly understood Nature, you can find a route slip through the waves of Nature, which will bring closer the person to the desired goals. Of course, the changeable ocean is much more complicated than a flat surface. The imbalanced logic also is much more complex than the simplified balanced logic. As the calm ocean is like the flat surface, so same the balanced logic solutions are sometimes looks like as the truth, but only in the calm weather. At the normal ocean weather the balanced solutions are incorrect and mislead people. The river can be as image of the imbalanced surfing life. The river starts as small stream and running through all the obstacles to ocean. The water of river is flowing at the bottom of the potential trench of the Earth gravity and the Coriolis acceleration. For the imbalanced surfing life is most important not a steamroller of force, but the knowledge and perseverance in the search for the best path to the desirable goals. The example of happiness in the surfing imbalanced life can be joy from successfully usage the suitable trends of the anisotropic imbalanced real Nature. At the imbalanced surfing life should be the main guide: Nature doesn't have the bad weather. The global changes it is not catastrophe, but the normal state of the real anisotropic imbalanced Nature. Just everybody has to choose the weather which will be good for their personal surfing.

  3. Elastic wave field computation in multilayered nonplanar solid structures: a mesh-free semianalytical approach.

    PubMed

    Banerjee, Sourav; Kundu, Tribikram

    2008-03-01

    Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.

  4. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guole; Wu, Shuang; Zhang, Tingting

    2016-08-01

    Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps atmore » liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.« less

  5. Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    Whitlock, Charles H.; LeCroy, Stuart R.; Wheeler, Robert J.

    1994-01-01

    Results from helicopter measurements of the angular properties of surface reflectance for the alkali flats regions of the White Sands Missile Range are presented for the wavelength interval of 0.4 to 0.85 microns. This work was performed to allow accurate radiative transfer calculations over the region. Detailed tables and interpolation equations are given that permit other investigators to perform satellite calibrations over the alkali flats site. The effects of wavelength and soil moisture on narrowband angular reflectance are also investigated. Although there is a spectral variation in surface albedo, there is little spectral effect in Anisotropic Factor except in the forward scattering peak at solar zenith angles greater than 60 deg. The magnitude of the forward-scattering peak is also sensitive to soil moisture, with wet conditions causing a larger peak. The significance of this result is that angular reflectance properties at the center of the alkali flats usually will be different than those at the flats edge because moisture differences typically exist.

  6. The effect of pits of different sizes on ultrasonic shear wave signals

    NASA Astrophysics Data System (ADS)

    Howard, Richard; Cegla, Frederic

    2018-04-01

    The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.

  7. Conformally non-flat spacetime representing dense compact objects

    NASA Astrophysics Data System (ADS)

    Singh, Ksh. Newton; Bhar, Piyali; Rahaman, Farook; Pant, Neeraj; Rahaman, Mansur

    2017-06-01

    A new conformally non-flat interior spacetime embedded in five-dimensional (5D) pseudo Euclidean space is explored in this paper. We proceed our calculation with the assumption of spherically symmetric anisotropic matter distribution and Karmarkar condition (necessary condition for class one). This solution is free from geometrical singularity and well-behaved in all respects. We ansatz a new type of metric potential g11 and solve for the metric potential g00 via Karmarkar condition. Further, all the physical parameters are determined from Einstein’s field equations using the two metric potentials. All the constants of integration are determined using boundary conditions. Due to its conformally non-flat character, it can represent bounded configurations. Therefore, we have used it to model two compact stars Vela X-1 and Cyg X-2. Indeed, the obtained masses and radii of these two objects from our solution are well matched with those observed values given in [T. Gangopadhyay et al., Mon. Not. R. Astron. Soc. 431, 3216 (2013)] and [J. Casares et al., Mon. Not. R. Astron. Soc. 401, 2517 (2010)]. The equilibrium of the models is investigated from generalized TOV-equation. We have adopted [L. Herrera’s, Phys. Lett. A 165, 206 (1992)] method and static stability criterion of Harisson-Zeldovich-Novikov [B. K. Harrison et al., Gravitational Theory and Gravitational Collapse (University of Chicago Press, 1965); Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1, Stars and Relativity (University of Chicago Press, 1971)] to analyze the stability of the models.

  8. Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles

    NASA Astrophysics Data System (ADS)

    Froltsov, V. A.; Likos, C. N.; Löwen, H.; Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.

    2005-03-01

    Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane component of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural anisotropy of the crystal.

  9. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  10. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores a useful application of having thermally labile DNA duplexes bound to anisotropic nanoparticles -- the selective photothermal heating and release of hybridized oligonucleotides via a plasmon excitation-based mechanism. The final chapter presents a brief summary of the seminal findings of this thesis and provides an outlook covering future directions and remaining challenges for the field. A comprehensive review covering methods to synthesize and assemble noble metal nanostructures is included in the appendix as an additional resource. All experimental chapters are organized similarly; they begin with an abstract or introduction to motivate and contextualize the work, present the main results and discussion with brief experimental details, and conclude with more detailed, supplementary information for the interested reader. As a whole, this work establishes fundamental understanding and new experimental methods for exploiting nanoscale shape anisotropy to manipulate the chemical and physical properties of matter.

  11. Buckling analysis for anisotropic laminated plates under combined inplane loads

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.

    1974-01-01

    The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.

  12. Structurally Efficient Anisotropic Organized Reticulated structures for Cooling of Electronics and Sensors

    DTIC Science & Technology

    2006-08-31

    Chang and You [19971 and Mukherjee and Mudawar [20031. For each experiment, data is collected by varying the heat flux from high to low. This is...Science", Vol. 20, 1965, pp. 237-246. Mukherjee, S., and Mudawar , I., 2003, "Smart Pumpless Loop for Micro-Channel Electronic Cooling Using Flat and

  13. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  14. Efficient flat metasurface lens for terahertz imaging.

    PubMed

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

  15. Regional body wave tomography of the Peruvian flat slab

    NASA Astrophysics Data System (ADS)

    Young, B. E.; Wagner, L. S.; Knezevic Antonijevic, S.; Kumar, A.; Beck, S. L.; Long, M. D.; Tavera, H.

    2013-12-01

    Local travel time data from the PerU Lithosphere and Slab Experiment (PULSE) were used to create three dimensional tomographic models of Vp and Vs above the flat slab in southern Peru. In the flat slab subduction regions of Peru and central Chile/Argentina, the Nazca plate subducts normally to a depth of ~100 km and then bends and progresses subhorizontally for several hundreds of kilometers before it resumes steep subduction. The Peruvian flat slab segment, located between 3°S and 15°S, corresponds to a gap in the volcanic arc and far-field thick-skinned deformation in the Eastern Cordillera. Despite ongoing research, there is still little consensus on the causes and consequences of flat slab subduction. In western North American, it has been suggested that flat subduction may have been responsible for the formation of the Rocky Mountains and ignimbrite flare-up during the Laramide orogeny. Preliminary tomography results show high shear wave velocities above the slab for a region that coincides with the location of the Nazca ridge, a 200 km wide bathymetric high that is currently subducting at ~15°S. Meanwhile, P wave velocities appear to be relatively normal. North of the ridge location, shear wave velocities can be separated into sublinear high (near the coast) and low (inland) velocity zones oriented approximately parallel to the trench. This geometry corresponds well with the organization of geotectonic and morphological terrains in Peru. High shear wave velocities above the slab are consistent with results from the 2000-2002 CHARGE deployment in central Chile/Argentina. This could indicate the presence of silica enriched, dry continental lithosphere, or it may be due to the presence of an anisotropic layer of hydrous phases directly above the slab. Future comparisons with results from Rayleigh wave tomography aim to address the role of anisotropy in observed shear wave velocities above flat slabs.

  16. Weak annihilation cusp inside the dark matter spike about a black hole.

    PubMed

    Shapiro, Stuart L; Shelton, Jessie

    2016-06-15

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.

  17. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, Fadi; Medlin, Douglas; Zimmerman, Jonathan; Hattar, Khalid; Foiles, Stephen

    Incorporating anisotropy into thermodynamic treatments of interfaces dates back to over a century ago. For a given orientation of two abutting grains in a pure metal, depressions in the grain boundary (GB) energy may exist as a function of GB inclination, defined by the plane normal. Therefore, an initially flat GB may facet resulting in a hill-and-valley structure. Herein, we present a diffuse interface model of GB faceting that is capable of capturing anisotropic GB energies and mobilities, and accounting for the excess energy due to facet junctions and their non-local interactions. The hallmark of our approach is the ability to independently examine the role of each of the interface properties on the faceting behavior. As a demonstration, we consider the Σ 5 < 001 > tilt GB in iron, where faceting along the { 310 } and { 210 } planes was experimentally observed. Linear stability analysis and numerical examples highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. On the whole, our modeling approach provides a general framework to examine the spatio-temporal evolution of highly anisotropic GBs in polycrystalline metals. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Strongly anisotropic RKKY interaction in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Zare, Moslem; Parhizgar, Fariborz; Asgari, Reza

    2018-06-01

    We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in two-dimensional black phosphorus, phosphorene. The RKKY interaction enhances significantly for the low levels of hole doping owing to the nearly valence flat band. Remarkably, for the hole-doped phosphorene, the highest RKKY interaction occurs when two impurities located along the zigzag direction and it tends to a minimum value with changing the direction from the zigzag to the armchair direction. We show that the interaction is highly anisotropic and the magnetic ground-state of two magnetic adatoms can be tuned by changing the rotational configuration of impurities. Owing to the anisotropic band dispersion, the oscillatory behavior with respect to the angle of the rotation and the distance of two magnetic impurities, R is well-described by sin (2kF R) , where the Fermi wavelength kF changes in different directions. We also find that the tail of the RKKY oscillations falls off as 1 /R2 at large distances.

  19. Dynamic wormhole solutions in Einstein-Cartan gravity

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Ziaie, Amir Hadi

    2017-12-01

    In the present work, we investigate evolving wormhole configurations described by a constant redshift function in Einstein-Cartan theory. The matter content consists of a Weyssenhoff fluid along with an anisotropic matter which together generalize the anisotropic energy momentum tensor in general relativity in order to include the effects of intrinsic angular momentum (spin) of particles. Using a generalized Friedmann-Robertson-Walker spacetime, we derive analytical evolving wormhole geometries by assuming a particular equation of state for energy density and pressure profiles. We introduce exact asymptotically flat and anti-de Sitter spacetimes that admit traversable wormholes and respect energy conditions throughout the spacetime. The rate of expansion of these evolving wormholes is determined only by the Friedmann equation in the presence of spin effects.

  20. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    NASA Astrophysics Data System (ADS)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  1. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.

  2. Pore geometry as a control on rock strength

    NASA Astrophysics Data System (ADS)

    Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.

    2017-01-01

    The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.

  3. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  4. Spin-to-Orbital Angular Momentum Mapping of Polychromatic Light

    NASA Astrophysics Data System (ADS)

    Rafayelyan, Mushegh; Brasselet, Etienne

    2018-05-01

    Reflective geometric phase flat optics made from chiral anisotropic media recently unveiled a promising route towards polychromatic beam shaping. However, these broadband benefits are strongly mitigated by the fact that flipping the incident helicity does not ensure geometric phase reversal. Here we overcome this fundamental limitation by a simple and robust add-on whose advantages are emphasized in the context of spin-to-orbital angular momentum mapping.

  5. Modelling welded material for ultrasonic testing using MINA: Theory and applications

    NASA Astrophysics Data System (ADS)

    Moysan, J.; Corneloup, G.; Chassignole, B.; Gueudré, C.; Ploix, M. A.

    2012-05-01

    Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure that causes difficulties in the ultrasonic testing. Increasing the material knowledge is a long term research field for LCND laboratory and EDF Les Renardières in France. A specific model has been developed: the MINA model (Modelling an Isotropy from Notebook of Arc welding). Welded material is described in 2D for flat position arc welding with shielded electrode (SMAW) at a functional scale for UT modeling. The grain growth is the result of three physical phenomena: epitaxial growth, influence of temperature gradient, and competition between the grains. The model uses phenomenological rules to combine these three phenomena. A limited number of parameters is used to make the modelling possible from the information written down in a notebook of arc welding. We present all these principles with 10 years' hindsight. To illustrate the model's use, we present conclusions obtained with two recent applications. In conclusion we give also insights on other research topics around this model : inverse problem using a F.E.M. code simulating the ultrasonic propagation, in position welding, 3D prospects, GTAW.

  6. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  7. Anisotropic tomography of the European lithospheric structure from surface wave studies

    NASA Astrophysics Data System (ADS)

    Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul

    2016-06-01

    We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.

  8. Electron flat-top distributions and cross-scale wave modulations observed in the current sheet of geomagnetic tail

    NASA Astrophysics Data System (ADS)

    Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong

    2017-08-01

    We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.

  9. Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance

    PubMed Central

    Ye, Jun; He, Wei; Wu, Qiong; Liu, Hao-Liang; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2013-01-01

    The epitaxial growth of ultrathin Fe film on Si(111) surface provides an excellent opportunity to investigate the contribution of magnetic anisotropy to magnetic behavior. Here, we present the anisotropic magnetoresistance (AMR) effect of Fe single crystal film on vicinal Si(111) substrate with atomically flat ultrathin p(2 × 2) iron silicide as buffer layer. Owing to the tiny misorientation from Fe(111) plane, the symmetry of magnetocrystalline anisotropy energy changes from the six-fold to a superposition of six-fold, four-fold and a weakly uniaxial contribution. Furthermore, the magnitudes of various magnetic anisotropy constants were derived from torque curves on the basis of AMR results. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of various magnetic anisotropy constants. PMID:23828508

  10. Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.

  11. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  12. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation

    PubMed Central

    Jeong, Y.; Iadicola, M.A.; Gnäupel-Herold, T.; Creuziger, A.

    2017-01-01

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment. PMID:28690400

  13. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation.

    PubMed

    Jeong, Y; Iadicola, M A; Gnäupel-Herold, T; Creuziger, A

    2016-06-15

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment.

  14. Application of the anisotropic phase-field crystal model to investigate the lattice systems of different anisotropic parameters and orientations

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; Ajmal Choudhary, Muhammad

    2017-07-01

    In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.

  15. Superconductivity in Li-intercalated bilayer arsenene and hole-doped monolayer arsenene: a first-principles prediction

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Ge, Yanfeng; Zhou, Wenzhe; Peng, Mengqi; Pan, Jiangling; Ouyang, Fangping

    2018-06-01

    Using first-principles calculations, we find Li-intercalated bilayer arsenene with AB stacking is dynamically stable, which is different from pristine bilayer with AA stacking. Electron–phonon coupling of the stable Li-intercalated bilayer arsenene are dominated by the low frequency vibrational modes (E″(1), (1), E‧(1) and acoustic modes) and lead to an superconductivity with T c  =  8.68 K with isotropical Eliashberg function. Small biaxial tensile strain (2%) can improve T c to 11.22 K due to the increase of DOS and phonon softening. By considering the fully anisotropic Migdal–Eliashberg theory, T c are found to be enhanced by 50% and exhibits a single anisotropic gap nature. In addition, considering its nearly flat top valence band which is favorable for high temperature superconductivity, we also explore the superconducting properties of hole-doped monolayer arsenene under different strains. the unstrained monolayer arsenene superconducts at T c  =  0.22 K with 0.1 hole/cell doping. By applying 3% biaxial strain, T c can be lifted up strikingly to 6.69 K due to a strong Fermi nesting of the nearly flat band. Then T c decreases slowly with strain. Our findings provide another insight to realize 2D superconductivity and suggest that the strain is crucial to further enhance the transition temperature.

  16. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au.

    PubMed

    Capelli, R; Mahne, N; Koshmak, K; Giglia, A; Doyle, B P; Mukherjee, S; Nannarone, S; Pasquali, L

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  17. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capelli, R.; Koshmak, K.; Giglia, A.

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of themore » film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.« less

  18. A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity

    NASA Astrophysics Data System (ADS)

    Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan

    2018-02-01

    The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.

  19. Cyclic mixmaster universes

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Ganguly, Chandrima

    2017-04-01

    We investigate the behavior of bouncing Bianchi type IX "mixmaster" universes in general relativity. This generalizes all previous studies of the cyclic behavior of closed spatially homogeneous universes with and without an entropy increase. We determine the behavior of models containing radiation by analytic and numerical integration and show that an increase of radiation entropy leads to an increasing cycle size and duration. We introduce a null energy condition violating ghost field to create a smooth, nonsingular bounce of finite size at the end of each cycle and compute the evolution through many cycles with and without an entropy increase injected at the start of each cycle. In the presence of increasing entropy, we find that the cycles grow larger and longer and the dynamics approach flatness, as in the isotropic case. However, successive cycles become increasingly anisotropic at the expansion maxima which is dominated by the general-relativistic effects of anisotropic 3-curvature. When the dynamics are significantly anisotropic, the 3-curvature is negative. However, it becomes positive after continued expansion drives the dynamics close enough to isotropy for the curvature to become positive and for gravitational collapse to ensue. In the presence of a positive cosmological constant, radiation, and a ghost field, we show that, for a very wide range of cosmological constant values, the growing oscillations always cease and the dynamics subsequently approach those of the isotropic de Sitter universe at late times. This model is not included in the scope of earlier cosmic no-hair theorems because the 3-curvature can be positive. In the case of a negative cosmological constant, radiation, and an ultrastiff field (to create nonsingular bounces), we show that a sequence of chaotic oscillations also occurs, with sensitive dependence on initial conditions. In all cases, we follow the oscillatory evolution of the scale factors, the shear, and the 3-curvature from cycle to cycle.

  20. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-10-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  1. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    PubMed Central

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892

  2. Small-scale anisotropic intermittency in magnetohydrodynamic turbulence at low magnetic Reynolds numbers.

    PubMed

    Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie

    2014-03-01

    Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.

  3. Two-dimensional and three-dimensional Coulomb clusters in parabolic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'yachkov, L. G., E-mail: dyachk@mail.ru; Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; Petrov, O. F.

    2014-09-15

    We consider the shell structure of Coulomb clusters in an axially symmetric parabolic trap exhibiting a confining potential U{sub c}(ρ,z)=(mω{sup 2}/2)(ρ{sup 2}+αz{sup 2}). Assuming an anisotropic parameter α = 4 (corresponding to experiments employing a cusp magnetic trap under microgravity conditions), we have calculated cluster configurations for particle numbers N = 3 to 30. We have shown that clusters with N ≤ 12 initially remain flat, transitioning to three-dimensional configurations as N increases. For N = 8, we have calculated the configurations of minimal potential energy for all values of α and found the points of configuration transitions. For N = 13 and 23, we discuss the influence of bothmore » the shielding and anisotropic parameter on potential energy, cluster size, and shell structure.« less

  4. An anisotropic elastoplasticity model implemented in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Miles Allen; Canfield, Thomas R.

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less

  5. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    NASA Astrophysics Data System (ADS)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  6. Orientation-dependent deformation mechanisms of bcc niobium nanoparticles

    NASA Astrophysics Data System (ADS)

    Bian, J. J.; Yang, L.; Niu, X. R.; Wang, G. F.

    2018-07-01

    Nanoparticles usually exhibit pronounced anisotropic properties, and a close insight into the atomic-scale deformation mechanisms is of great interest. In present study, atomic simulations are conducted to analyse the compression of bcc nanoparticles, and orientation-dependent features are addressed. It is revealed that surface morphology under indenter predominantly governs the initial elastic response. The loading curve follows the flat punch contact model in [1 1 0] compression, while it obeys the Hertzian contact model in [1 1 1] and [0 0 1] compressions. In plastic deformation regime, full dislocation gliding is dominated in [1 1 0] compression, while deformation twinning is prominent in [1 1 1] compression, and these two mechanisms coexist in [0 0 1] compression. Such deformation mechanisms are distinct from those in bulk crystals under nanoindentation and nanopillars under compression, and the major differences are also illuminated. Our results provide an atomic perspective on the mechanical behaviours of bcc nanoparticles and are helpful for the design of nanoparticle-based components and systems.

  7. Buckling as an origin of ordered cuticular patterns in flower petals

    PubMed Central

    Antoniou Kourounioti, Rea L.; Band, Leah R.; Fozard, John A.; Hampstead, Anthony; Lovrics, Anna; Moyroud, Edwige; Vignolini, Silvia; King, John R.; Jensen, Oliver E.; Glover, Beverley J.

    2013-01-01

    The optical properties of plant surfaces are strongly determined by the shape of epidermal cells and by the patterning of the cuticle on top of the cells. Combinations of particular cell shapes with particular nanoscale structures can generate a wide range of optical effects. Perhaps most notably, the development of ordered ridges of cuticle on top of flat petal cells can produce diffraction-grating-like structures. A diffraction grating is one of a number of mechanisms known to produce ‘structural colours’, which are more intense and pure than chemical colours and can appear iridescent. We explore the concept that mechanical buckling of the cuticle on the petal epidermis might explain the formation of cuticular ridges, using a theoretical model that accounts for the development of compressive stresses in the cuticle arising from competition between anisotropic expansion of epidermal cells and isotropic cuticle production. Model predictions rationalize cuticle patterns, including those with long-range order having the potential to generate iridescence, for a range of different flower species. PMID:23269848

  8. Glass transition of charged particles in two-dimensional confinement.

    PubMed

    Yazdi, Anoosheh; Heinen, Marco; Ivlev, Alexei; Löwen, Hartmut; Sperl, Matthias

    2015-05-01

    The glass transition of mesoscopic charged particles in two-dimensional confinement is studied by mode-coupling theory. We consider two types of effective interactions between the particles, corresponding to two different models for the distribution of surrounding ions that are integrated out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-Hückel (Yukawa)-type effective interaction. The second, experimentally more relevant system is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma current toward the electrode gives rise to an anisotropic effective interaction potential between the particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that covers the typical range of experimentally accessible plasma conditions, we calculate and compare the mode-coupling predictions for the glass transition in both kinds of systems.

  9. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Cruz, Norman

    2018-01-01

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω =p/ρ , whose range belongs to quintessence or even phantom matter.

  10. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  11. A new multiscale air quality transport model (Fluidity, 4.1.9) using fully unstructured anisotropic adaptive mesh technology

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-06-01

    A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been setup for two-dimensional (2-D) transport phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes.

  12. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  13. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  14. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-07-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  15. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  16. Relativistic Modelling of Stable Anisotropic Super-Dense Star

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Jasim, M. K.

    2015-08-01

    In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al. [1] algorithm. The anisotropic fluid solutions so obtained join continuously to the Schwarzschild exterior solution across the pressure-free boundary. It is observed that most of the new anisotropic solutions are well-behaved and are used to construct the super-dense star models such as neutron stars and pulsars.

  17. Gravitational decoupled anisotropies in compact stars

    NASA Astrophysics Data System (ADS)

    Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos

    2018-05-01

    Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.

  18. Upper mantle seismic anisotropy beneath Northern Peru from shear wave splitting analysis.

    NASA Astrophysics Data System (ADS)

    Franca, G. S.; Condori, C.; Tavera, H.; Eakin, C. M.; Beck, S. L.

    2017-12-01

    Beneath much of Peru lies the largest region of flat-slab subduction in the world today. The origins and dynamics of the Peruvian flat-slab however remain elusive, particularly in the north away from the Nazca Ridge. Studies of seismic anisotropy can potentially provide us with insight into the dynamics of recent and past deformational processes in the upper mantle. In this study, we conduct shear wave splitting to investigate seismic anisotropy across the northern extent of the Peruvian flat-slab for the first time. For the analysis, we used arrivals of SKS, SKKS and PKS phases from teleseismic events (88° > Δ < 150°) recorded at 30 broadband seismic stations from the Peruvian permanent and portable seismic networks, and international networks (CTBTO and RSBR-Brazil). The preliminary results reveal a complex anisotropy pattern with variations along strike. In the northernmost region, the average delay times range between 1.0 s and 1.2 s, with fast directions predominantly ENE-WSW oriented in a direction approximately perpendicular to the trench, parallel with subduction of the Nazca plate. Meanwhile towards the central region of Peru, the predominant fast direction changes to SE-NW oblique with the trench, but consistent with the pattern seen previously over the southern extent of the flat-slab by Eakin et al. (2013, 2015). These characteristics suggest a fundamental difference between the anisotropic structures, and therefore underlying mantle processes, beneath the northern and central portions of the Peruvian flat-slab.

  19. A harmonic analysis approach to joint inversion of P-receiver functions and wave dispersion data in high dense seismic profiles

    NASA Astrophysics Data System (ADS)

    Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.

    2017-12-01

    Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.

  20. Advances in ultrasonic testing of austenitic stainless steel welds. Towards a 3D description of the material including attenuation and optimisation by inversion

    NASA Astrophysics Data System (ADS)

    Moysan, J.; Gueudré, C.; Ploix, M.-A.; Corneloup, G.; Guy, Ph.; Guerjouma, R. El; Chassignole, B.

    In the case of multi-pass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Anisotropy results from the metal solidification and is correlated with the grain orientation. A precise description of the material is one of the key points to obtain reliable results with wave propagation codes. A first advance is the model MINA which predicts the grain orientations in multi-pass 316-L steel welds. For flat position welding, good predictions of the grains orientations were obtained using 2D modelling. In case of welding in position the resulting grain structure may be 3D oriented. We indicate how the MINA model can be improved for 3D description. A second advance is a good quantification of the attenuation. Precise measurements are obtained using plane waves angular spectrum method together with the computation of the transmission coefficients for triclinic material. With these two first advances, the third one is now possible: developing an inverse method to obtain the material description through ultrasonic measurements at different positions.

  1. Modeling of charged anisotropic compact stars in general relativity

    NASA Astrophysics Data System (ADS)

    Dayanandan, Baiju; Maurya, S. K.; T, Smitha T.

    2017-06-01

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e^{λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model.

  2. Theory of fluorescence polarization in magnetically oriented photosynthetic systems.

    PubMed Central

    Knox, R S; Davidovich, M A

    1978-01-01

    Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration. Images FIGURE 4 FIGURE 5 PMID:737283

  3. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    NASA Technical Reports Server (NTRS)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  4. Multiband super-resolution imaging of graded-index photonic crystal flat lens

    NASA Astrophysics Data System (ADS)

    Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun

    2018-05-01

    Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.

  5. The symmetry and coupling properties of solutions in general anisotropic multilayer waveguides.

    PubMed

    Hernando Quintanilla, F; Lowe, M J S; Craster, R V

    2017-01-01

    Multilayered plate and shell structures play an important role in many engineering settings where, for instance, coated pipes are commonplace such as in the petrochemical, aerospace, and power generation industries. There are numerous demands, and indeed requirements, on nondestructive evaluation (NDE) to detect defects or to measure material properties using guided waves; to choose the most suitable inspection approach, it is essential to know the properties of the guided wave solutions for any given multilayered system and this requires dispersion curves computed reliably, robustly, and accurately. Here, the circumstances are elucidated, and possible layer combinations, under which guided wave solutions, in multilayered systems composed of generally anisotropic layers in flat and cylindrical geometries, have specific properties of coupling and parity; the partial wave decomposition of the wave field is utilised to unravel the behaviour. A classification into five families is introduced and the authors claim that this is the fundamental way to approach generally anisotropic waveguides. This coupling and parity provides information to be used in the design of more efficient and robust dispersion curve tracing algorithms. A critical benefit is that the analysis enables the separation of solutions into categories for which dispersion curves do not cross; this allows the curves to be calculated simply and without ambiguity.

  6. Optic phonons and anisotropic thermal conductivity in hexagonal Ge 2Sb 2Te 5

    DOE PAGES

    Mukhopadhyay, Saikat; Lindsay, Lucas R.; Singh, David

    2016-11-16

    The lattice thermal conductivity ($κ$) of hexagonal Ge 2Sb 2Tesub>5 (h-GST) is studied via direct first-principles calculations. We find significant intrinsic anisotropy of ( $κ$ a/$κ$ c~2) of $κ$ in bulk h-GST along different transport directions. The dominant contribution to$κ$ is from optic phonons, ~75%. This is extremely unusual as the acoustic phonon modes carry most of the heat in typical semiconductors and insulators with small unit cells. Very recently, Lee et. al. observed anisotropic in GST thin films and attributed this to thermal resistance of amorphous regions near grain boundaries. However, our results suggest an additional strong intrinsic anisotropymore » for the pure hexagonal phase. This derives from bonding anisotropy along different crystal directions, specifically from weak interlayer coupling, which gives anisotropic phonon dispersions. The phonon spectrum of h-GST has very dispersive optic branches with higher group velocities along the a-axis as compared to flat optic bands along the c-axis. The importance of optic mode contributions for the thermal conductivity in low-$κ$ h-GST is unusual, and development of fundamental physical understanding of these contributions may be critical to better understanding of thermal conduction in other complex layered materials.« less

  7. Angle-domain common-image gathers from anisotropic Gaussian beam migration and its application to anisotropy-induced imaging errors analysis

    NASA Astrophysics Data System (ADS)

    Han, Jianguang; Wang, Yun; Yu, Changqing; Chen, Peng

    2017-02-01

    An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calculated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above, we further investigate the effects of anisotropy on GB-PSDM, where the corresponding ADCIGs are extracted to assess the quality of migration images. The test results of the VTI syncline model and the TTI thrust sheet model show that anisotropic parameters ɛ, δ, and tilt angle 𝜃, have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one of them will cause obvious imaging errors. The anisotropic GB-PSDM with the true anisotropic parameters can obtain more accurate seismic images of subsurface structures in anisotropic media.

  8. Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals

    DTIC Science & Technology

    2015-02-01

    include [35–37]. The phase field description of fracture should be con- trasted with continuum damage mechanics descriptions such as [38,39] that do not...ARL-RP-0518 ● FEBRUARY 2015 US Army Research Laboratory Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals...0518 ● FEBRUARY 2015 US Army Research Laboratory Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals by JD Clayton

  9. Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2017-08-01

    We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.

  10. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  11. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  12. Propagation of a Gaussian-beam wave in general anisotropic turbulence

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Phillips, R. L.; Crabbs, R.

    2014-10-01

    Mathematical models for a Gaussian-beam wave propagating through anisotropic non-Kolmogorov turbulence have been developed in the past by several researchers. In previous publications, the anisotropic spatial power spectrum model was based on the assumption that propagation was in the z direction with circular symmetry maintained in the orthogonal xy-plane throughout the path. In the present analysis, however, the anisotropic spectrum model is no longer based on a single anisotropy parameter—instead, two such parameters are introduced in the orthogonal xyplane so that circular symmetry in this plane is no longer required. In addition, deviations from the 11/3 power-law behavior in the spectrum model are allowed by assuming power-law index variations 3 < α < 4 . In the current study we develop theoretical models for beam spot size, spatial coherence, and scintillation index that are valid in weak irradiance fluctuation regimes as well as in deep turbulence, or strong irradiance fluctuation regimes. These new results are compared with those derived from the more specialized anisotropic spectrum used in previous analyses.

  13. Adhesion modification of neural stem cells induced by nanoscale ripple patterns

    NASA Astrophysics Data System (ADS)

    Pedraz, P.; Casado, S.; Rodriguez, V.; Giordano, M. C.; Buatier de Mongeot, F.; Ayuso-Sacido, A.; Gnecco, E.

    2016-03-01

    We have studied the influence of anisotropic nanopatterns (ripples) on the adhesion and morphology of mouse neural stem cells (C17.2) on glass substrates using cell viability assay, optical microscopy and atomic force microscopy. The ripples were produced by defocused ion beam sputtering with inert Ar ions, which physically remove atoms from the surface at the energy of 800 eV. The ripple periodicity (∼200 nm) is comparable to the thickness of the cytoplasmatic microspikes (filopodia) which link the stem cells to the substrate. All methods show that the cell adhesion is significantly lowered compared to the same type of cells on flat glass surfaces. Furthermore, the AFM analysis reveals that the filopodia tend to be trapped parallel or perpendicular to the ripples, which limits the spreading of the stem cell on the rippled substrate. This opens the perspective of controlling the micro-adhesion of stem cells and the orientation of their filopodia by tuning the anisotropic substrate morphology without chemical reactions occurring at the surface.

  14. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  15. Potential application of a homogeneous and anisotropic slab as an angle insensitive absorbing material

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Chang; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Qin, Jiayong

    2017-06-01

    In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.

  16. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes

    NASA Astrophysics Data System (ADS)

    Niu, Jian; Wang, Dong; Qin, Haili; Xiong, Xiong; Tan, Pengli; Li, Youyong; Liu, Rui; Lu, Xuxing; Wu, Jian; Zhang, Ting; Ni, Weihai; Jin, Jian

    2014-02-01

    Hydrogels are generally thought to be formed by nano- to micrometre-scale fibres or polymer chains, either physically branched or entangled with each other to trap water. Although there are also anisotropic hydrogels with apparently ordered structures, they are essentially polymer fibre/discrete polymer chains-based network without exception. Here we present a type of polymer-free anisotropic lamellar hydrogels composed of 100-nm-thick water layers sandwiched by two bilayer membranes of a self-assembled nonionic surfactant, hexadecylglyceryl maleate. The hydrogels appear iridescent as a result of Bragg’s reflection of visible light from the periodic lamellar plane. The particular lamellar hydrogel with extremely wide water spacing was used as a soft two-dimensional template to synthesize single-crystalline nanosheets in the confined two-dimensional space. As a consequence, flexible, ultrathin and large area single-crystalline gold membranes with atomically flat surface were produced in the hydrogel. The optical and electrical properties were detected on a single gold membrane.

  17. Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures

    NASA Astrophysics Data System (ADS)

    Freed, Shaun; Blackshire, James L.; Na, Jeong K.

    2016-02-01

    Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.

  18. Instantons in Lifshitz field theories

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshiaki; Nitta, Muneto

    2015-10-01

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for "the superpotential" defining "the detailed balance condition". The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4 + 1 dimensions, for which we take the Chern-Simons term as the superpotential.

  19. Two fluid anisotropic dark energy models in a scale invariant theory

    NASA Astrophysics Data System (ADS)

    Tripathy, S. K.; Mishra, B.; Sahoo, P. K.

    2017-09-01

    Some anisotropic Bianchi V dark energy models are investigated in a scale invariant theory of gravity. We consider two non-interacting fluids such as dark energy and a bulk viscous fluid. Dark energy pressure is considered to be anisotropic in different spatial directions. A dynamically evolving pressure anisotropy is obtained from the models. The models favour phantom behaviour. It is observed that, in presence of dark energy, bulk viscosity has no appreciable effect on the cosmic dynamics.

  20. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-raymore » views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.« less

  1. The family of anisotropically scaled equatorial waves

    NASA Astrophysics Data System (ADS)

    RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo

    2011-04-01

    In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.

  2. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less

  3. Cracking on anisotropic neutron stars

    NASA Astrophysics Data System (ADS)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  4. Anisotropic charged stellar models in Generalized Tolman IV spacetime

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan; Fatema, Saba

    2015-01-01

    With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.

  5. Models as an Aid to Courses in Crystallography and Mineralogy.

    ERIC Educational Resources Information Center

    Brady, K. T.

    1983-01-01

    Three models used in teaching crystallography/mineralogy at the University of Technology (Papua, New Guinea) are described. These include stereographic projection model, optical indicatrix models for Istropic/Anisotropic minerals, and model showing effect of anisotropic minerals under crossed polars. Photographs of the models are also included.…

  6. Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution.

    PubMed

    Bangera, Nitin B; Schomer, Donald L; Dehghani, Nima; Ulbert, Istvan; Cash, Sydney; Papavasiliou, Steve; Eisenberg, Solomon R; Dale, Anders M; Halgren, Eric

    2010-12-01

    Forward solutions with different levels of complexity are employed for localization of current generators, which are responsible for the electric and magnetic fields measured from the human brain. The influence of brain anisotropy on the forward solution is poorly understood. The goal of this study is to validate an anisotropic model for the intracranial electric forward solution by comparing with the directly measured 'gold standard'. Dipolar sources are created at known locations in the brain and intracranial electroencephalogram (EEG) is recorded simultaneously. Isotropic models with increasing level of complexity are generated along with anisotropic models based on Diffusion tensor imaging (DTI). A Finite Element Method based forward solution is calculated and validated using the measured data. Major findings are (1) An anisotropic model with a linear scaling between the eigenvalues of the electrical conductivity tensor and water self-diffusion tensor in brain tissue is validated. The greatest improvement was obtained when the stimulation site is close to a region of high anisotropy. The model with a global anisotropic ratio of 10:1 between the eigenvalues (parallel: tangential to the fiber direction) has the worst performance of all the anisotropic models. (2) Inclusion of cerebrospinal fluid as well as brain anisotropy in the forward model is necessary for an accurate description of the electric field inside the skull. The results indicate that an anisotropic model based on the DTI can be constructed non-invasively and shows an improved performance when compared to the isotropic models for the calculation of the intracranial EEG forward solution.

  7. Seismic signature of the Alpine indentation, evidence from the Eastern Alps

    PubMed Central

    Bianchi, I.; Bokelmann, G.

    2014-01-01

    The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps. PMID:26525181

  8. Inhomogeneous anisotropic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  9. Seismic signature of the Alpine indentation, evidence from the Eastern Alps.

    PubMed

    Bianchi, I; Bokelmann, G

    2014-12-01

    The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps.

  10. A two-dimensional hybrid method for modeling seismic waves propagation in laterally-varying anisotropic media and its application to central Tibet

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wen, L.

    2009-12-01

    The shear wave splitting measurements provide important information on mantle flow, deformation and mineralogy. They are now routinely made using the method developed by Silver and Chan (1994). More and more dense regional observations also begin to reveal sharp spatial variations of seismic anisotropy which could not be explained by simplified horizontal homogeneous anisotropic structures. To better constrain the mantle anisotropy beneath those regions, we developed a two-dimensional hybrid method for simulating seismic wave propagation in laterally-varying anisotropic media [Zhao et al., 2008]. In this presentation, we apply the method to study anisotropic structures beneath central Tibet by waveform modeling the teleseismic SKS phases recorded in the International Deep Profiling of Tibet and the Himalayas project (INDEPTH) III. Using data from two events that were selected such that the stations and sources can be approximated as a two-dimensional profile, we derived an optimal model for the anisotropic structures of the upper mantle beneath the study region: a 50-70 km thick anisotropic layer with a fast direction trending N95°E beneath the Qiangtang block, a 150 km thick and 60 km wide anisotropic segment with an axis trending N95°E beneath the northernmost Lhasa block, and a ~30 km wide transition zone in between within which the fast direction trends N45°E and the depth extent of anisotropy decreases northward sharply. Synthetic waveform modeling further suggests that an anisotropic model with a horizontal symmetry axis can explain the observations better than that with a dipping symmetry, and a low velocity zone possibly underlies or mixes with the anisotropic structures in the northern portion of the region. The optimal model yields synthetic seismograms that are in good agreement with the observations in both amplitudes and relative arrival times of SKS phases. Synthetic tests also indicate that different elastic constants, source parameters and depth extents of anisotropy adopted in the calculations do not affect the general conclusions, although trade-offs exist between the model parameters. Our modeling results suggest that, if the complex seismic structures in central Tibet are associated with the underthrusting of the Indian lithosphere beneath the Asian lithosphere, the inferred horizontal symmetry of anisotropy was likely generated during the collision because an inherited anisotropy would have a dipping angle of symmetry axis that is parallel to the underthrusting direction. References Silver, P. G., and M. K. Savage (1994), The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int., 119, 949-963. Zhao L., L.X. Wen, L. Chen, T.Y. Zheng (2008). A two-dimensional hybrid method for modeling seismic wave propagation in anisotropic media, J. Geophys. Res., 113, B12307, doi:10.1029/2008JB005733.

  11. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    DOE PAGES

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; ...

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magneticmore » field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.« less

  12. Topographic coupling of surface and internal Kelvin waves. [of ocean

    NASA Technical Reports Server (NTRS)

    Chao, S.-Y.

    1980-01-01

    An analysis is presented for computing the diffraction of barotropic Kelvin waves by a localized topographical irregularity on flat-bottom ocean with an arbitrary vertical stratification. It was shown that all baroclinic Kelvin waves will be generated downstream of the bump, with the first baroclinic mode having the largest amplitude. The Poincare waves predominate in the lowest modes, and are more directionally anisotropic. It was concluded that baroclinic Poincare waves radiating offshore from the bump topography could contribute to the internal wave field in the open ocean and provide an alternative mechanism to dissipate the barotropic tides.

  13. Multifractal Analysis of the Small Time-Scale Boundary-Layer Characteristics of the Wind: the Anisotropy and Extremes

    NASA Astrophysics Data System (ADS)

    Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2012-12-01

    Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain anisotropic over high frequencies, where u1 most scales as Bolgiano-Obukhov and u2 scales as Kolmogorov. The scaling law of the vertical shears of the horizontal wind in the array varied from Kolmogorov to Bolgiano-Obukhov with height depending on the condition of stability. We interpret the results with the UM anisotropic model that greatly enhances our understanding of the ABL structure. Comparing the two case studies we found in both cases the multifractality parameter of about 1.6, which remains close to the estimates obtained for the free atmosphere. From the UM parameters, the exponent of the power law of the distribution of the extremes can be predicted. Over small scales, this exponent is of about 7.5 for the wind velocity, which is a crucial result for applications within the field of wind energy.

  14. Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion.

    PubMed

    Meca, Esteban; Shenoy, Vivek B; Lowengrub, John

    2013-11-01

    In the present article, we introduce a phase-field model for thin-film growth with anisotropic step energy, attachment kinetics, and diffusion, with second-order (thin-interface) corrections. We are mainly interested in the limit in which kinetic anisotropy dominates, and hence we study how the expected shape of a crystallite, which in the long-time limit is the kinetic Wulff shape, is modified by anisotropic diffusion. We present results that prove that anisotropic diffusion plays an important, counterintuitive role in the evolving crystal shape, and we add second-order corrections to the model that provide a significant increase in accuracy for small supersaturations. We also study the effect of different crystal symmetries and discuss the influence of the deposition rate.

  15. Leith diffusion model for homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan

    2017-06-01

    Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less

  16. Broadband boundary effects on Brownian motion.

    PubMed

    Mo, Jianyong; Simha, Akarsh; Raizen, Mark G

    2015-12-01

    Brownian motion of particles in confined fluids is important for many applications, yet the effects of the boundary over a wide range of time scales are still not well understood. We report high-bandwidth, comprehensive measurements of Brownian motion of an optically trapped micrometer-sized silica sphere in water near an approximately flat wall. At short distances we observe anisotropic Brownian motion with respect to the wall. We find that surface confinement not only occurs in the long time scale diffusive regime but also in the short time scale ballistic regime, and the velocity autocorrelation function of the Brownian particle decays faster than that of a particle in bulk fluid. Furthermore, at low frequencies the thermal force loses its color due to the reflected flow from the no-slip boundary. The power spectrum of the thermal force on the particle near a no-slip boundary becomes flat at low frequencies. This detailed understanding of boundary effects on Brownian motion opens a door to developing a 3D microscope using particles as remote sensors.

  17. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet

    NASA Astrophysics Data System (ADS)

    Cui, Jianxun; Adams, John G. M.; Zhu, Yong

    2018-05-01

    Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.

  18. Photo-responsive surface topology in chiral nematic media

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  19. Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution

    PubMed Central

    Schomer, Donald L.; Dehghani, Nima; Ulbert, Istvan; Cash, Sydney; Papavasiliou, Steve; Eisenberg, Solomon R.; Dale, Anders M.; Halgren, Eric

    2010-01-01

    Forward solutions with different levels of complexity are employed for localization of current generators, which are responsible for the electric and magnetic fields measured from the human brain. The influence of brain anisotropy on the forward solution is poorly understood. The goal of this study is to validate an anisotropic model for the intracranial electric forward solution by comparing with the directly measured ‘gold standard’. Dipolar sources are created at known locations in the brain and intracranial electroencephalogram (EEG) is recorded simultaneously. Isotropic models with increasing level of complexity are generated along with anisotropic models based on Diffusion tensor imaging (DTI). A Finite Element Method based forward solution is calculated and validated using the measured data. Major findings are (1) An anisotropic model with a linear scaling between the eigenvalues of the electrical conductivity tensor and water self-diffusion tensor in brain tissue is validated. The greatest improvement was obtained when the stimulation site is close to a region of high anisotropy. The model with a global anisotropic ratio of 10:1 between the eigenvalues (parallel: tangential to the fiber direction) has the worst performance of all the anisotropic models. (2) Inclusion of cerebrospinal fluid as well as brain anisotropy in the forward model is necessary for an accurate description of the electric field inside the skull. The results indicate that an anisotropic model based on the DTI can be constructed non-invasively and shows an improved performance when compared to the isotropic models for the calculation of the intracranial EEG forward solution. Electronic supplementary material The online version of this article (doi:10.1007/s10827-009-0205-z) contains supplementary material, which is available to authorized users. PMID:20063051

  20. Induction log responses to layered, dipping, and anisotropic formations: Induction log shoulder-bed corrections to anisotropic formations and the effect of shale anisotropy in thinly laminated sand/shale sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Teruhiko

    1996-12-31

    Induction log responses to layered, dipping, and anisotropic formations are examined analytically. The analytical model is especially helpful in understanding induction log responses to thinly laminated binary formations, such as sand/shale sequences, that exhibit macroscopically anisotropic: resistivity. Two applications of the analytical model are discussed. In one application we examine special induction log shoulder-bed corrections for use when thin anisotropic beds are encountered. It is known that thinly laminated sand/shale sequences act as macroscopically anisotropic: formations. Hydrocarbon-bearing formations also act as macroscopically anisotropic formations when they consist of alternating layers of different grain-size distributions. When such formations are thick, inductionmore » logs accurately read the macroscopic conductivity, from which the hydrocarbon saturation in the formations can be computed. When the laminated formations are not thick, proper shoulder-bed corrections (or thin-bed corrections) should be applied to obtain the true macroscopic formation conductivity and to estimate the hydrocarbon saturation more accurately. The analytical model is used to calculate the thin-bed effect and to evaluate the shoulder-bed corrections. We will show that the formation resistivity and hence the hydrocarbon saturation are greatly overestimated when the anisotropy effect is not accounted for and conventional shoulder-bed corrections are applied to the log responses from such laminated formations.« less

  1. Modeling of layered anisotropic composite material based on effective medium theory

    NASA Astrophysics Data System (ADS)

    Bao, Yang; Song, Jiming

    2018-04-01

    In this paper, we present an efficient method to simulate multilayered anisotropic composite material with effective medium theory. Effective permittivity, permeability and orientation angle for a layered anisotropic composite medium are extracted with this equivalent model. We also derive analytical expressions for effective parameters and orientation angle with low frequency (LF) limit, which will be shown in detail. Numerical results are shown in comparing extracted effective parameters and orientation angle with analytical results from low frequency limit. Good agreements are achieved to demonstrate the accuracy of our efficient model.

  2. Filter size definition in anisotropic subgrid models for large eddy simulation on irregular grids

    NASA Astrophysics Data System (ADS)

    Abbà, Antonella; Campaniello, Dario; Nini, Michele

    2017-06-01

    The definition of the characteristic filter size to be used for subgrid scales models in large eddy simulation using irregular grids is still an unclosed problem. We investigate some different approaches to the definition of the filter length for anisotropic subgrid scale models and we propose a tensorial formulation based on the inertial ellipsoid of the grid element. The results demonstrate an improvement in the prediction of several key features of the flow when the anisotropicity of the grid is explicitly taken into account with the tensorial filter size.

  3. Development and application of an exchange model for anisotropic water diffusion in the microporous MOF aluminum fumarate

    NASA Astrophysics Data System (ADS)

    Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank

    2018-06-01

    Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.

  4. A Study for Anisotropic Wavefield Analysis with Elastic Layered Models

    NASA Astrophysics Data System (ADS)

    Yoneki, R.; Mikada, H.; Takekawa, J.

    2015-12-01

    Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.

  5. Magnetized anisotropic stars

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian; Dariescu, Marina-Aura; Dariescu, Ciprian

    2018-05-01

    We extend a known solution-generating technique for isotropic fluids in order to construct more general models of anisotropic stars with poloidal magnetic fields. In particular, we discuss the magnetized versions of some well-known exact solutions describing anisotropic stars and dark energy stars, and we describe some of their properties.

  6. Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

    PubMed

    Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung

    2016-04-21

    A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.

  7. Planck 2013 results. XXVI. Background geometry and topology of the Universe

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance χrec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ℛi of the largest sphere inscribed in topological domain (at log-likelihood-ratio Δln ℒ > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ℛi> 0.92χrec for the T3 cubic torus; ℛi> 0.71χrec for the T2 chimney; ℛi> 0.50χrec for the T1 slab; and in a positively curved Universe, ℛi> 1.03χrec for the dodecahedral space; ℛi> 1.0χrec for the truncated cube; and ℛi> 0.89χrec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is ℛi> 0.94χrec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (ω/H)0< 8.1 × 10-10 (95% confidence level).

  8. The Geometry and Origin of Ultra-diffuse Ghost Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2017-04-01

    The geometry and intrinsic ellipticity distribution of ultra-diffuse galaxies (UDG) is determined from the line-of-sight distribution of axial ratios q of a large sample of UDGs, detected by Koda et al. in the Coma cluster. With high significance, the data rules out an oblate, disk-like geometry, characterized by major axes a = b > c. The data is, however, in good agreement with prolate shapes, corresponding to a = b < c. This indicates that UDGs are not thickened, rotating, axisymmetric disks, puffed up by violent processes. Instead, they are anisotropic elongated cigar- or bar-like structures, similar to the prolate dwarf spheroidal galaxy population of the Local Group. The intrinsic distribution of axial ratios of the Coma UDGs is flat in the range of 0.4 ≤ a/c ≤ 0.9 with a mean value of < a/c> =0.65+/- 0.14. This might provide important constraints for theoretical models of their origin. Formation scenarios that could explain the extended prolate nature of UDGs are discussed.

  9. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT.

  10. Prediction of fracture initiation in square cup drawing of DP980 using an anisotropic ductile fracture criterion

    NASA Astrophysics Data System (ADS)

    Park, N.; Huh, H.; Yoon, J. W.

    2017-09-01

    This paper deals with the prediction of fracture initiation in square cup drawing of DP980 steel sheet with the thickness of 1.2 mm. In an attempt to consider the influence of material anisotropy on the fracture initiation, an uncoupled anisotropic ductile fracture criterion is developed based on the Lou—Huh ductile fracture criterion. Tensile tests are carried out at different loading directions of 0°, 45°, and 90° to the rolling direction of the sheet using various specimen geometries including pure shear, dog-bone, and flat grooved specimens so as to calibrate the parameters of the proposed fracture criterion. Equivalent plastic strain distribution on the specimen surface is computed using Digital Image Correlation (DIC) method until surface crack initiates. The proposed fracture criterion is implemented into the commercial finite element code ABAQUS/Explicit by developing the Vectorized User-defined MATerial (VUMAT) subroutine which features the non-associated flow rule. Simulation results of the square cup drawing test clearly show that the proposed fracture criterion is capable of predicting the fracture initiation with sufficient accuracy considering the material anisotropy.

  11. Modeling Cometary Coma with a Three Dimensional, Anisotropic Multiple Scattering Distributed Processing Code

    NASA Technical Reports Server (NTRS)

    Luchini, Chris B.

    1997-01-01

    Development of camera and instrument simulations for space exploration requires the development of scientifically accurate models of the objects to be studied. Several planned cometary missions have prompted the development of a three dimensional, multi-spectral, anisotropic multiple scattering model of cometary coma.

  12. 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-01-01

    We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.

  13. Spatio-volumetric hazard estimation in the Auckland volcanic field

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  14. Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang

    2018-05-01

    We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.

  15. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.

    PubMed

    Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui

    2018-06-01

    The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.

  16. Comment on ``Multicritical behavior of a square-lattice-gas model with anisotropic repulsive interactions: A transfer-matrix scaling study''

    NASA Astrophysics Data System (ADS)

    Caflisch, Robert G.

    1988-09-01

    An argument is given that the model of Buda, Florio, and Giaquinta (BFG)[Phys. Rev. B 35, 2021 (1987)] for anisotropic molecules on a square lattice is inappropriate in that context, because it confuses anisotropy of the lattice with the anisotropy of the molecule. The importance of this is made clear by noting the absence (in BFG) of a dilute isotropic phase. Such a phase is unavoidable on very general grounds. Comments are made about an alternative realization of their results and an alternative class of models for anisotropic molecules.

  17. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  18. Model-size reduction for the buckling and vibration analyses of anisotropic panels

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Whitworth, S. L.

    1986-01-01

    A computational procedure is presented for reducing the size of the model used in the buckling and vibration analyses of symmetric anisotropic panels to that of the corresponding orthotropic model. The key elements of the procedure are the application of an operator splitting technique through the decomposition of the material stiffness matrix of the panel into the sum of orthotropic and nonorthotropic (anisotropic) parts and the use of a reduction method through successive application of the finite element method and the classical Rayleigh-Ritz technique. The effectiveness of the procedure is demonstrated by numerical examples.

  19. Some factors determining the effective resistance between strands in flat cables (or superconducting filaments in tapes)

    NASA Astrophysics Data System (ADS)

    Takács, S.; Iwakuma, M.; Funaki, K.

    2000-04-01

    Two effects are considered which can influence the effective resistance between crossing strands on flat cables or filaments in twisted tapes. As analogous cases, the one-layer Rutherford-type cable with classical superconductors and the tapes with twisted BSCCO filaments in a silver matrix in perpendicular magnetic fields are considered as a model. At first, the amount of the central core between the strands and the silver matrix between the filaments increases the effective conductance compared with the direct current paths, which is supposed to be proportional to the touching area of filaments. The increase factor is about two and can be easily suppressed by other effects, such as the contact resistance between the superconductor and the matrix. However, due to the strong anisotropy of critical parameters for high temperature superconductors, this effect can partially compensate the influence of the usually weaker critical current density perpendicular to the tape. The second effect is connected with the existence of the induced voltage between any points of crossing filaments. This leads to an additional effective conductance, proportional to the square of the total number of the filaments. This contribution is prevailing for the anisotropic superconductors. Therefore, to obtain low ac coupling losses in BSCCO tapes, structures with smaller filament number are required. This case is analogous to round structures, leading to ac losses proportional to the square of the layer number in the field direction.

  20. Modeling Geodynamic Mobility of Anisotropic Lithosphere

    NASA Astrophysics Data System (ADS)

    Perry-Houts, J.; Karlstrom, L.

    2016-12-01

    The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.

  1. User manual for VICONOPT: An exact analysis and optimum design program covering the buckling and vibration of prismatic assemblies of flat in-plane loaded, anisotropic plates, with approximations for discrete supports, and transverse stiffeners

    NASA Technical Reports Server (NTRS)

    Williams, F. W.; Anderson, M. S.; Kennedy, D.; Butler, R.; Aston, G.

    1990-01-01

    A computer program which is designed for efficient, accurate buckling and vibration analysis and optimum design of composite panels is described. The capabilities of the program are given along with detailed user instructions. It is written in FORTRAN 77 and is operational on VAX, IBM, and CDC computers and should be readily adapted to others. Several illustrations of the various aspects of the input are given along the example problems illustrating the use and application of the program.

  2. Influence of Yield Stress Determination in Anisotropic Hardening Model on Springback Prediction in Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bong, H. J.; Ha, J.; Choi, J.; Barlat, F.; Lee, M.-G.

    2018-05-01

    In this study, a numerical sensitivity analysis of the springback prediction was performed using advanced strain hardening models. In particular, the springback in U-draw bending for dual-phase 780 steel sheets was investigated while focusing on the effect of the initial yield stress determined from the cyclic loading tests. The anisotropic hardening models could reproduce the flow stress behavior under the non-proportional loading condition for the considered parametric cases. However, various identification schemes for determining the yield stress of the anisotropic hardening models significantly influenced the springback prediction. The deviations from the measured springback varied from 4% to 13.5% depending on the identification method.

  3. Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.

    2008-01-01

    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.

  4. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  5. Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel

    2015-12-01

    The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.

  6. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  7. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  8. Anisotropic extension of Finch and Skea stellar model

    NASA Astrophysics Data System (ADS)

    Sharma, Ranjan; Das, Shyam; Thirukkanesh, S.

    2017-12-01

    In this paper, the spacetime geometry of Finch and Skea [Class. Quantum Gravity 6:467, 1989] has been utilized to obtain closed-form solutions for a spherically symmetric anisotropic matter distribution. By examining its physical admissibility, we have shown that the class of solutions can be used as viable models for observed pulsars. In particular, a specific class of solutions can be used as an `anisotropic switch' to examine the impact of anisotropy on the gross physical properties of a stellar configuration. Accordingly, the mass-radius relationship has been analyzed.

  9. Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study

    DOE PAGES

    Yang, Zhaoqing; Wang, Taiping

    2015-08-25

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less

  10. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  11. Forming limit prediction by an evolving non-quadratic yield criterion considering the anisotropic hardening and r-value evolution

    NASA Astrophysics Data System (ADS)

    Lian, Junhe; Shen, Fuhui; Liu, Wenqi; Münstermann, Sebastian

    2018-05-01

    The constitutive model development has been driven to a very accurate and fine-resolution description of the material behaviour responding to various environmental variable changes. The evolving features of the anisotropic behaviour during deformation, therefore, has drawn particular attention due to its possible impacts on the sheet metal forming industry. An evolving non-associated Hill48 (enHill48) model was recently proposed and applied to the forming limit prediction by coupling with the modified maximum force criterion. On the one hand, the study showed the significance to include the anisotropic evolution for accurate forming limit prediction. On the other hand, it also illustrated that the enHill48 model introduced an instability region that suddenly decreases the formability. Therefore, in this study, an alternative model that is based on the associated flow rule and provides similar anisotropic predictive capability is extended to chapter the evolving effects and further applied to the forming limit prediction. The final results are compared with experimental data as well as the results by enHill48 model.

  12. Effects of anisotropy on the two-dimensional inversion procedure

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Pous, Jaume

    2001-12-01

    In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.

  13. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.

    PubMed

    Swan, Amanda; Hillen, Thomas; Bowman, John C; Murtha, Albert D

    2018-05-01

    Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.

  14. Anisotropic elastic moduli reconstruction in transversely isotropic model using MRE

    NASA Astrophysics Data System (ADS)

    Song, Jiah; In Kwon, Oh; Seo, Jin Keun

    2012-11-01

    Magnetic resonance elastography (MRE) is an elastic tissue property imaging modality in which the phase-contrast based MRI imaging technique is used to measure internal displacement induced by a harmonically oscillating mechanical vibration. MRE has made rapid technological progress in the past decade and has now reached the stage of clinical use. Most of the research outcomes are based on the assumption of isotropy. Since soft tissues like skeletal muscles show anisotropic behavior, the MRE technique should be extended to anisotropic elastic property imaging. This paper considers reconstruction in a transversely isotropic model, which is the simplest case of anisotropy, and develops a new non-iterative reconstruction method for visualizing the elastic moduli distribution. This new method is based on an explicit representation formula using the Newtonian potential of measured displacement. Hence, the proposed method does not require iterations since it directly recovers the anisotropic elastic moduli. We perform numerical simulations in order to demonstrate the feasibility of the proposed method in recovering a two-dimensional anisotropic tensor.

  15. Dynamic Multi-Axial Loading Response and Constitutive/Damage Modeling of Titanium and Titanium Alloys

    DTIC Science & Technology

    2006-06-24

    crystals and assume same yield stress in tension and compression. Some anisotropic models have been proposed and used in the literature for HCP poly...2006), etc. These criteria dealt with the modeling of cubic crystals and assume same yield stress in tension an compression. Some anisotropic...Constitutive/Damage Modeling of Titanium and Titanium Alloys Principal Investigator: Akhtar S. Khan

  16. Deformation modeling and constitutive modeling for anisotropic superalloys

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.

  17. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGES

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  18. Finite-volume scheme for anisotropic diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  19. Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory

    NASA Astrophysics Data System (ADS)

    Lanir, Yoram

    2017-10-01

    Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.

  20. A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing

    DTIC Science & Technology

    2014-09-01

    A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL VARIATION MODEL FOR IMAGE PROCESSING YIFEI LOU∗, TIEYONG ZENG† , STANLEY OSHER‡ , AND JACK...grants DMS-0928427 and DMS-1222507. † Department of Mathematics, Hong Kong Baptist University, Kowloon Tong , Hong Kong. Email: zeng@hkbu.edu.hk. TZ is

  1. Wormholes with fluid sources: A no-go theorem and new examples

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Baleevskikh, K. A.; Skvortsova, M. V.

    2017-12-01

    For static, spherically symmetric space-times in general relativity (GR), a no-go theorem is proved: it excludes the existence of wormholes with flat and/or anti-de Sitter asymptotic regions on both sides of the throat if the source matter is isotropic, i.e., the radial and tangential pressures coincide. It explains why in all previous attempts to build such solutions it was necessary to introduce boundaries with thin shells that manifestly violate the isotropy of matter. Under a simple assumption on the behavior of the spherical radius r (x ), we obtain a number of examples of wormholes with isotropic matter and one or both de Sitter asymptotic regions, allowed by the no-go theorem. We also obtain twice asymptotically flat wormholes with anisotropic matter, both symmetric and asymmetric with respect to the throat, under the assumption that the scalar curvature is zero. These solutions may be on equal grounds interpreted as those of GR with a traceless stress-energy tensor and as vacuum solutions in a brane world. For such wormholes, the traversability conditions and gravitational lensing properties are briefly discussed. As a byproduct, we obtain twice asymptotically flat regular black hole solutions with up to four Killing horizons. As another byproduct, we point out intersection points in families of integral curves for the function A (x )=gt t, parametrized by its values on the throat.

  2. Two-Fold Anisotropy Governs Morphological Evolution and Stress Generation in Sodiated Black Phosphorus for Sodium Ion Batteries.

    PubMed

    Chen, Tianwu; Zhao, Peng; Guo, Xu; Zhang, Sulin

    2017-04-12

    Phosphorus represents a promising anode material for sodium ion batteries owing to its extremely high theoretical capacity. Recent in situ transmission electron microscopy studies evidenced anisotropic swelling in sodiated black phosphorus, which may find an origin from the two intrinsic anisotropic properties inherent to the layered structure of black phosphorus: sodium diffusional directionality and insertion strain anisotropy. To understand the morphological evolution and stress generation in sodiated black phosphorus, we develop a chemo-mechanical model by incorporating the intrinsic anisotropic properties into the large elasto-plastic deformation. Our modeling results reveal that the apparent morphological evolution in sodiated black phosphorus is critically controlled by the coupled effect of the two intrinsic anisotropic properties. In particular, sodium diffusional directionality generates sharp interphases along the [010] and [001] directions, which constrain anisotropic development of the insertion strain. The coupled effect renders distinctive stress-generation and fracture mechanisms when sodiation starts from different crystal facets. In addition to providing a powerful modeling framework for sodiation and lithiation of layered structures, our findings shed significant light on the sodiation-induced chemo-mechanical degradation of black phosphorus as a promising anode for the next-generation sodium ion batteries.

  3. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.

  4. Damping of gravitational waves by matter

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Patil, Subodh P.; Pethick, C. J.

    2017-10-01

    We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by matter, incorporating collisions. We identify two physically distinct damping mechanisms—collisional and Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for cosmological expansion. In the first regime, maximal collisional damping of a gravitational wave, independent of the details of the collisions in the matter is, as we show, significant only when its wavelength is comparable to the size of the horizon. Thus damping by intergalactic or interstellar matter for all but primordial gravitational radiation can be neglected. Although collisions in matter lead to a shear viscosity, they also act to erase anisotropic stresses, thus suppressing the damping of gravitational waves. Damping of primordial gravitational waves remains possible. We generalize Weinberg's calculation of gravitational wave damping, now including collisions and particles of finite mass, and interpret the collisionless limit in terms of Landau damping. While Landau damping of gravitational waves cannot occur in flat spacetime, the expansion of the universe allows such damping by spreading the frequency of a gravitational wave of given wave vector.

  5. Common reflection point migration and velocity analysis for anisotropic media

    NASA Astrophysics Data System (ADS)

    Oropeza, Ernesto V.

    An efficient Kirchhoff-style prestack depth migration, called 'parsimonious' migration was developed a decade ago for isotropic 2D and 3D media. The common-reflection point (CRP) migration velocity analysis (MVA) was developed later for isotropic media. The isotropic parsimonious migration produces incorrect images when the media is actually anisotropic. Similarly, isotropic CRP MVA produces incorrect inversions when the medium is anisotropic. In this study both parsimonious depth migration and common-reflection point migration velocity analysis are extended for application to 2D tilted transversely isotropic (TTI) media and illustrated with synthetic P-wave data. While the framework of isotropic parsimonious migration may be retained, the extension to TTI media requires redevelopment of each of the numerical components, including calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle and anisotropic shooting ray-trace algorithm to replace the isotropic one. The 2D model parameterization consists of Thomsen's parameters (Vpo, epsilon, delta) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi-2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The common-reflection point migration velocity analysis for TTI media for P-waves includes (and inverts for) Vpo, epsilon, and delta. The orientation of the anisotropic symmetry axis have to be constrained. If it constrained orthogonal to the layer bottom (as it conventionally is), it is estimated at each CRP and updated at each iteration without intermediate picking. The extension to TTI media requires development of a new inversion procedure to include Vpo, epsilon, and delta in the perturbations. The TTI CRP MVA is applied to a single layer to demonstrate its feasibility. Errors in the estimation of the orientation of the symmetry axis larger that 5 degrees affect the inversion of epsilon and delta while Vpo is less sensitive to this parameter. The TTI CRP MVA is also applied to a version of the TTI BP model by layer stripping so one group of CRPs are used do to inversion top to bottom, constraining the model parameter after each previous group of CRPs converges. Vpo, delta and the orientation of the anisotropic symmetry axis (constrained orthogonal to the local reflector orientation) are successfully inverted. epsilon is less well constrained by the small acquisition aperture in the data .

  6. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  7. Time-independent Anisotropic Plastic Behavior by Mechanical Subelement Models

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1983-01-01

    The paper describes a procedure for modelling the anisotropic elastic-plastic behavior of metals in plane stress state by the mechanical sub-layer model. In this model the stress-strain curves along the longitudinal and transverse directions are represented by short smooth segments which are considered as piecewise linear for simplicity. The model is incorporated in a finite element analysis program which is based on the assumed stress hybrid element and the iscoplasticity-theory.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less

  9. Analyzing a suitable elastic geomechanical model for Vaca Muerta Formation

    NASA Astrophysics Data System (ADS)

    Sosa Massaro, Agustin; Espinoza, D. Nicolas; Frydman, Marcelo; Barredo, Silvia; Cuervo, Sergio

    2017-11-01

    Accurate geomechanical evaluation of oil and gas reservoir rocks is important to provide design parameters for drilling, completion and predict production rates. In particular, shale reservoir rocks are geologically complex and heterogeneous. Wells need to be hydraulically fractured for stimulation and, in complex tectonic environments, it is to consider that rock fabric and in situ stress, strongly influence fracture propagation geometry. This article presents a combined wellbore-laboratory characterization of the geomechanical properties of a well in El Trapial/Curamched Field, over the Vaca Muerta Formation, located in the Neuquén Basin in Argentina. The study shows the results of triaxial tests with acoustic measurements in rock plugs from outcrops and field cores, and corresponding dynamic to static correlations considering various elastic models. The models, with increasing complexity, include the Isotropic Elastic Model (IEM), the Anisotropic Elastic Model (AEM) and the Detailed Anisotropic Elastic Model (DAEM). Each model shows advantages over the others. An IEM offers a quick overview, being easy to run without much detailed data for heterogeneous and anisotropic rocks. The DAEM requires significant amounts of data, time and a multidisciplinary team to arrive to a detailed model. Finally, an AEM suits well to an anisotropic and realistic rock without the need of massive amounts of data.

  10. Anisotropic charged generalized polytropic models

    NASA Astrophysics Data System (ADS)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  11. Generalized migration in frequency-wavenumber domain (MGF-K) in anisotropic media

    NASA Astrophysics Data System (ADS)

    Kostecki, Andrzej; Półchłopek, Anna

    2013-06-01

    In this paper, the background of MGF-K migration in dual domain (wavenumber-frequency K-F and space-time) in anisotropic media is presented. Algorithms for poststack (zero-offset) and prestack migration are based on downward extrapolation of acoustic wavefield by shift-phase with correction filter for lateral variability of medium's parameters. In anisotropic media, the vertical wavenumber was determined from full elastic wavefield equations for two dimensional (2D) tilted transverse isotropy (TTI) model. The method was tested on a synthetic wavefield for TTI anticlinal model (zero-offset section) and on strongly inhomogeneous vertical transverse isotropy (VTI) Marmousi model. In both cases, the proper imaging of assumed media was obtained.

  12. Coupled anisotropic and isotropic tomography of the upper mantle beneath northern Fennoscandia - Application of a novel code AniTomo

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi; Vecsey, Ludek; Babuska, Vladislav

    2017-04-01

    Seismological investigations of the continental mantle lithosphere, particularly its anisotropic structure, advance our understanding of plate tectonics and formation of continents. Orientation of the anisotropic fabrics reflects stress fields during the lithosphere origin and its later deformations. To contribute to studies of the large-scale upper-mantle anisotropy, we have developed code AniTomo for regional anisotropic tomography. AniTomo allows a simultaneous inversion of relative travel time residuals of teleseismic P waves for 3D distribution of isotropic-velocity perturbations and anisotropy in the upper mantle. Weak hexagonal anisotropy with symmetry axis oriented generally in 3D is assumed. The code was successfully tested on a large series of synthetic datasets and synthetic structures. In this contribution we present results of the first application of novel code AniTomo to real data, i.e., relative travel-time residuals of teleseismic P waves recorded during passive seismic experiment LAPNET in the northern Fennoscandia between 2007 and 2009. The region of Fennoscandia is a suitable choice for the first application of the new code. This Precambrian region is tectonically stable and has a thick anisotropic mantle lithosphere (Plomerova and Babuska, Lithos 2010) without significant thermal heterogeneities. In the resulting anisotropic model of the upper mantle beneath the northern Fennoscandia, the strongest anisotropy and the largest velocity perturbations concentrate in the mantle lithosphere. We delimit regions of laterally and vertically consistent anisotropy in the mantle-lithospheric part of the model. In general, the identified anisotropic regions correspond to domains detected by joint interpretation of lateral variations of the P- and SKS-wave anisotropic parameters (Plomerova et al., Solid Earth 2011). Particularly, the mantle lithosphere in the western part of the volume studied exhibits a distinct and uniform fabric that is sharply separated from the surrounding regions. The eastern boundary of this region gradually shifts westward with increasing depth in the tomographic model. We connect the retrieved domain-like anisotropic structure of the mantle lithosphere in the northern Fennoscandia with preserved fossil fabrics of the Archean micro-plates, accreted during the Precambrian orogenic processes.

  13. Polarization of photons in matter–antimatter annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskaliuk, S.S.

    2015-03-10

    In this work we demonstrate the possibility of generation of linear polarization of the electromagnetic field (EMF) due to the quantum effects in matter-antimatter annihilation process for anisotropic space of the I type according to Bianchi. We study the dynamics of this process to estimate the degree of polarisation of the EMF in the external gravitational field of the anisotropic Bianchi I model. It has been established that the quantum effects in matter-antimatter annihilation process in the external gravitational field of the anisotropic Bianchi I model provide contribution to the degree of polarisation of the EMF in quadrupole harmonics.

  14. Anisotropic contraction of hydrogel reinforced by aligned fibers

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Liu, Shuangping

    Hydrogel reinforced by aligned fibers can have strong anisotropic contraction or swelling behavior triggered by external stimuli, which has been largely employed in realizing soft actuators for artificial muscles as well as many biological systems. In this work, we investigate how this anisotropic behavior is controlled by the dimension of the embedded fibers and their reinforcement to the surrounding hydrogel. We describe the anisotropic contraction of hydrogels with rigid fibers using the Flory-Rehner thermodynamic model under periodic boundary conditions. It is found that a hydrogel reinforced by aligned fibers exhibits larger anisotropy when it is pre-stretched before contraction. Using finite element method, we further observe that the anisotropic contraction is dampened by reducing the fiber-fiber distance due to the finite size of the fibers.

  15. Hot accretion flow with anisotropic viscosity

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Bu, De-Fu; Gan, Zhao-Ming; Yuan, Ye-Fei

    2017-12-01

    In extremely low accretion rate systems, the ion mean-free path can be much larger than the gyroradius. Therefore, gas pressure is anisotropic with respect to magnetic field lines. The effects of pressure anisotropy can be modeled by an anisotropic viscosity with respect to magnetic field lines. Angular momentum can be transferred by anisotropic viscosity. In this paper, we investigate hot accretion flow with anisotropic viscosity. We consider the case that anisotropic viscous stress is much larger than Maxwell stress. We find that the flow is convectively unstable. We also find that the mass inflow rate decreases towards a black hole. Wind is very weak; its mass flux is 10-15% of the mass inflow rate. The inward decrease of inflow rate is mainly due to convective motions. This result may be useful to understand the accretion flow in the Galactic Center Sgr A* and M 87 galaxy.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; Gao, Kai; Huang, Lianjie

    Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquiredmore » at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.« less

  17. δ M formalism and anisotropic chaotic inflation power spectrum

    NASA Astrophysics Data System (ADS)

    Talebian-Ashkezari, A.; Ahmadi, N.

    2018-05-01

    A new analytical approach to linear perturbations in anisotropic inflation has been introduced in [A. Talebian-Ashkezari, N. Ahmadi and A.A. Abolhasani, JCAP 03 (2018) 001] under the name of δ M formalism. In this paper we apply the mentioned approach to a model of anisotropic inflation driven by a scalar field, coupled to the kinetic term of a vector field with a U(1) symmetry. The δ M formalism provides an efficient way of computing tensor-tensor, tensor-scalar as well as scalar-scalar 2-point correlations that are needed for the analysis of the observational features of an anisotropic model on the CMB. A comparison between δ M results and the tedious calculations using in-in formalism shows the aptitude of the δ M formalism in calculating accurate two point correlation functions between physical modes of the system.

  18. PP/PS anisotropic stereotomography

    NASA Astrophysics Data System (ADS)

    Nag, Steinar; Alerini, Mathias; Ursin, Bjørn

    2010-04-01

    Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V. G.; Kirtley, J. R.

    Here, it is of interest to determine the exit angle of a vortex from a superconductor surface, since this affects the intervortex interactions and their consequences. Two ways to determine this angle are to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In this work we evaluate the field h(x,y,z) above a flat superconducting surface x,y and the currents J(x,y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the isotropic and anisotropic cases. In principle, these results can be used to determine themore » vortex exit tilt angle from analyses of magnetic field imaging or density of states data.« less

  20. Lateral-drag propulsion forces induced by anisotropy.

    PubMed

    Nefedov, Igor S; Rubi, J Miguel

    2017-07-21

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  1. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays.

    PubMed

    Yoshida, Shunsuke

    2016-06-13

    A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present.

  2. Nano-cone resistive memory for ultralow power operation.

    PubMed

    Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2017-03-24

    SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.

  3. A Model with Ellipsoidal Scatterers for Polarimetric Remote Sensing of Anisotropic Layered Media

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.

    1993-01-01

    This paper presents a model with ellipsoidal scatterers for applications to polarimetric remote sensing of anisotropic layered media at microwave frequencies. The physical configuration includes an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a preferential vertical alignment and random azimuthal orientations. Effective permittivities of the scattering media are calculated with the strong fluctuation theory extended to account for the nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave theory, dyadic Green's functions for layered media are used to derive polarimetric backscattering coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise to nonzero cross-polarized returns from the untilted anisotropic medium in the first-order approximation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of polarimetric backscattering coefficients with respect to correlation lengths representing the geometry of brine inclusions. Polarimetric signatures of bare and snow-covered sea ice are also simulated based on the model to investigate effects of different scattering mechanisms.

  4. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  5. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of transducer shots. AE of the rock during the whole experiment recorded by the surrounding transducers were investigated by location methods developed for anisotropic heterogeneous medium where, the M-shape fracture pattern was observed. AE events occurred in the vicinity of the dilation pseudo-boundaries where, a relatively large velocity gradient was formed and along parallel fractures in the σ1/σ2 plane. This research is contributing to enhanced AE interpretation of fracture growth processes in the rock under laboratory true-triaxial stress conditions.

  6. Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Tung; Réthoré, Julien; Yvonnet, Julien; Baietto, Marie-Christine

    2017-08-01

    A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.

  7. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  8. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model.

    PubMed

    Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi

    2018-02-01

    Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  9. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  10. Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilya Tsvankin; Kenneth L. Larner

    2004-11-17

    Within the framework of this collaborative project with the Lawrence Livermore National Laboratory (LLNL) and Stanford University, the Colorado School of Mines (CSM) group developed and implemented a new efficient approach to the inversion and processing of multicomponent, multiazimuth seismic data in anisotropic media. To avoid serious difficulties in the processing of mode-converted (PS) waves, we devised a methodology for transforming recorded PP- and PS-wavefields into the corresponding SS-wave reflection data that can be processed by velocity-analysis algorithms designed for pure (unconverted) modes. It should be emphasized that this procedure does not require knowledge of the velocity model and canmore » be applied to data from arbitrarily anisotropic, heterogeneous media. The azimuthally varying reflection moveouts of the PP-waves and constructed SS-waves are then combined in anisotropic stacking-velocity tomography to estimate the velocity field in the depth domain. As illustrated by the case studies discussed in the report, migration of the multicomponent data with the obtained anisotropic velocity model yields a crisp image of the reservoir that is vastly superior to that produced by conventional methods. The scope of this research essentially amounts to building the foundation of 3D multicomponent, anisotropic seismology. We have also worked with the LLNL and Stanford groups on relating the anisotropic parameters obtained from seismic data to stress, lithology, and fluid distribution using a generalized theoretical treatment of fractured, poroelastic rocks.« less

  11. A comparative study on the forming limit diagram prediction between Marciniak-Kuczynski model and modified maximum force criterion by using the evolving non-associated Hill48 plasticity model

    NASA Astrophysics Data System (ADS)

    Shen, Fuhui; Lian, Junhe; Münstermann, Sebastian

    2018-05-01

    Experimental and numerical investigations on the forming limit diagram (FLD) of a ferritic stainless steel were performed in this study. The FLD of this material was obtained by Nakajima tests. Both the Marciniak-Kuczynski (MK) model and the modified maximum force criterion (MMFC) were used for the theoretical prediction of the FLD. From the results of uniaxial tensile tests along different loading directions with respect to the rolling direction, strong anisotropic plastic behaviour was observed in the investigated steel. A recently proposed anisotropic evolving non-associated Hill48 (enHill48) plasticity model, which was developed from the conventional Hill48 model based on the non-associated flow rule with evolving anisotropic parameters, was adopted to describe the anisotropic hardening behaviour of the investigated material. In the previous study, the model was coupled with the MMFC for FLD prediction. In the current study, the enHill48 was further coupled with the MK model. By comparing the predicted forming limit curves with the experimental results, the influences of anisotropy in terms of flow rule and evolving features on the forming limit prediction were revealed and analysed. In addition, the forming limit predictive performances of the MK and the MMFC models in conjunction with the enHill48 plasticity model were compared and evaluated.

  12. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    PubMed

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an applied rate of ramp loading is G 0,max aniso =15.38kPa. Derived mechanical model parameters constitute a basis for complex skin interaction simulation. Copyright © 2017. Published by Elsevier Ltd.

  13. Acoustic frequency filter based on anisotropic topological phononic crystals.

    PubMed

    Chen, Ze-Guo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-11-08

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  14. Casimir forces on a bi-anisotropic absorbing magneto-dielectric slab between two parallel conducting plates

    NASA Astrophysics Data System (ADS)

    Amooshahi, Majid; Shoughi, Ali

    2018-05-01

    A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab is demonstrated. The electric and the magnetic polarization densities of the magneto-dielectric slab are defined in terms of the dynamical variables modeling the slab and the coupling tensors that couple the electromagnetic field to the slab. The four susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple an electromagnetic field to the slab. It is shown that the four susceptibility tensors of the bi-anisotropic magneto-dielectric slab satisfy Kramers-Kronig relations. The Maxwell’s equations are exactly solved in the presence of the bi-anisotropic magneto-dielectric slab. The tangential and the normal components of the Casimir forces exerted on the bi-anisotropic magnet-dielectric slab exactly are calculated in the vacuum state and thermal state of the total system. It is shown that the tangential components of the Casimir forces vanish when the bi-anisotropic slab is converted to an isotropic slab.

  15. Anisotropic Velocities of Gas Hydrate-Bearing Sediments in Fractured Reservoirs

    USGS Publications Warehouse

    Lee, Myung W.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-01), one of the richest marine gas hydrate accumulations was discovered at drill site NGHP-01-10 in the Krishna-Godavari Basin, offshore of southeast India. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Gas hydrate saturations estimated from P- and S-wave velocities, assuming that gas hydrate-bearing sediments (GHBS) are isotropic, are much higher than those estimated from the pressure cores. To reconcile this difference, an anisotropic GHBS model is developed and applied to estimate gas hydrate saturations. Gas hydrate saturations estimated from the P-wave velocities, assuming high-angle fractures, agree well with saturations estimated from the cores. An anisotropic GHBS model assuming two-component laminated media - one component is fracture filled with 100-percent gas hydrate, and the other component is the isotropic water-saturated sediment - adequately predicts anisotropic velocities at the research site.

  16. Method of moving frames to solve time-dependent Maxwell's equations on anisotropic curved surfaces: Applications to invisible cloak and ELF propagation

    NASA Astrophysics Data System (ADS)

    Chun, Sehun

    2017-07-01

    Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.

  17. Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.

    PubMed

    Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko

    2013-08-01

    Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

  18. Anisotropic inflation with derivative couplings

    NASA Astrophysics Data System (ADS)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  19. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-03-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  20. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  1. Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland

    NASA Technical Reports Server (NTRS)

    Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.

  2. High-Fidelity Geometric Modeling and Mesh Generation for Mechanics Characterization of Polycrystalline Materials

    DTIC Science & Technology

    2014-10-26

    From the parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow...field-based method [7, 12] to generate adaptive and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline ...parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based

  3. What Do Kinematic Models Imply About the Constitutive Properties of Rocks Deformed in Flat-Ramp-Flat Folds?

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.

    2017-10-01

    Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.

  4. On Pokrovskii's anisotropic gap equations in superconductivity theory

    NASA Astrophysics Data System (ADS)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  5. AniTomo - New Anisotropic Teleseismic Body-Wave Tomography Code to Unravel Structure of the Upper Mantle: Impact of Inversion Settings on Inferences of the Output Model

    NASA Astrophysics Data System (ADS)

    Munzarova, H.; Plomerova, J.; Kissling, E. H.

    2015-12-01

    Consideration of only isotropic wave propagation and neglecting anisotropy in tomography studies is a simplification obviously incongruous with current understanding of mantle-lithosphere plate dynamics. Both fossil anisotropy in the mantle lithosphere and anisotropy due to the present-day flow in the asthenosphere may significantly influence propagation of seismic waves. We present a novel code for anisotropic teleseismic tomography (AniTomo) that allows to invert relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. We have modified frequently-used isotropic teleseismic tomography code Telinv by assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D to be, together with heterogeneities, a source of the observed P-wave travel-time residuals. Careful testing of the new code with synthetics, concentrating on strengths and limitations of the inversion method, is a necessary step before AniTomo is applied to real datasets. We examine various aspects of anisotropic tomography and particularly influence of ray coverage on resolvability of individual model parameters and of initial models on the result. Synthetic models are designed to schematically represent heterogeneous and anisotropic structures in the upper mantle. Several synthetic tests mimicking a real tectonic setting, e.g. the lithosphere subduction in the Northern Apennines in Italy (Munzarova et al., G-Cubed, 2013), allow us to make quantitative assessments of the well-known trade-off between effects of seismic anisotropy and heterogeneities. Our results clearly document that significant distortions of imaged velocity heterogeneities may result from neglecting anisotropy.

  6. Effect of Anisotropic Yield Function Evolution on Estimation of Forming Limit Diagram

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.; Basak, S.; Choi, H. J.; Panda, S. K.; Lee, M. G.

    2017-09-01

    In case of theoretical prediction of the FLD, the variations in yield stress and R-values along different material directions, were long been implemented to enhance the accuracy. Although influences of different yield models and hardening laws on formability were well addressed, anisotropic evolution of yield loci under monotonic loading with different deformation modes is yet to be explored. In the present study, Marciniak-Kuckzinsky (M-K) model was modified to incorporate the change in the shape of the initial yield function with evolution due to anisotropic hardening. Swift’s hardening law along with two different anisotropic yield criteria, namely Hill48 and Yld2000-2d were implemented in the model. The Hill48 yield model was applied with non-associated flow rule to comprehend the effect of variations in both yield stress and R-values. The numerically estimated FLDs were validated after comparing with FLD evaluated through experiments. A low carbon steel was selected, and hemispherical punch stretching test was performed for FLD evaluation. Additionally, the numerically estimated FLDs were incorporated in FE simulations to predict limiting dome heights for validation purpose. Other formability performances like strain distributions over the deformed cup surface were validated with experimental results.

  7. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  8. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  9. A New Method of Assessing Uncertainty of the Cross-Convolution Method of Shear Wave Splitting Measurement

    NASA Astrophysics Data System (ADS)

    Schutt, D.; Breidt, J.; Corbalan Castejon, A.; Witt, D. R.

    2017-12-01

    Shear wave splitting is a commonly used and powerful method for constraining such phenomena as lithospheric strain history or asthenospheric flow. However, a number of challenges with the statistics of shear wave splitting have been noted. This creates difficulties in assessing whether two separate measurements are statistically similar or are indicating real differences in anisotropic structure, as well as for created proper station averaged sets of parameters for more complex situations such as multiple or dipping layers of anisotropy. We present a new method for calculating the most likely splitting parameters using the Menke and Levin [2003] method of cross-convolution. The Menke and Levin method is used because it can more readily be applied to a wider range of anisotropic scenarios than the commonly used Silver and Chan [1991] technique. In our approach, we derive a formula for the spectral density of a function of the microseismic noise and the impulse response of the correct anisotropic model that holds for the true anisotropic model parameters. This is compared to the spectral density of the observed signal convolved with the impulse response for an estimated set of anisotropic parameters. The most likely parameters are found when the former and latter spectral densities are the same. By using the Whittle likelihood to compare the two spectral densities, a likelihood grid for all possible anisotropic parameter values is generated. Using bootstrapping, the uncertainty and covariance between the various anisotropic parameters can be evaluated. We will show this works with a single layer of anisotropy and a vertically incident ray, and discuss the usefulness for a more complex case. The method shows great promise for calculating multiple layer anisotropy parameters with proper assessment of uncertainty. References: Menke, W., and Levin, V. 2003. The cross-convolution method for interpreting SKS splitting observations, with application to one and two-layer anisotropic earth models. Geophysical Journal International, 154: 379-392. doi:10.1046/j.1365-246X.2003.01937.x. Silver, P.G., and Chan, W.W. 1991. Shear Wave Splitting and Sub continental Mantle Deformation. Journal of Geophysical Research, 96: 429-454. doi:10.1029/91JB00899.

  10. An engineered anisotropic nanofilm with unidirectional wetting properties.

    PubMed

    Malvadkar, Niranjan A; Hancock, Matthew J; Sekeroglu, Koray; Dressick, Walter J; Demirel, Melik C

    2010-12-01

    Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.

  11. Anisotropic singularities in modified gravity models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueiro, Michele Ferraz; Saa, Alberto; Departamento de Matematica Aplicada, IMECC-UNICAMP, C.P. 6065, 13083-859 Campinas, SP

    2009-09-15

    We show that the common singularities present in generic modified gravity models governed by actions of the type S={integral}d{sup 4}x{radical}(-g)f(R,{phi},X), with X=-(1/2)g{sup ab}{partial_derivative}{sub a}{phi}{partial_derivative}{sub b}{phi}, are essentially the same anisotropic instabilities associated to the hypersurface F({phi})=0 in the case of a nonminimal coupling of the type F({phi})R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface ({partial_derivative}f/{partial_derivative}R)=0 is attained. Some examples are explicitly discussed.

  12. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model

    NASA Astrophysics Data System (ADS)

    Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong

    2012-11-01

    To establish safe and efficient transcranial direct current stimulation (tDCS), it is of particular importance to understand the electrical effects of tDCS in the brain. Since the current density (CD) and electric field (EF) in the brain generated by tDCS depend on various factors including complex head geometries and electrical tissue properties, in this work, we investigated the influence of anisotropic conductivity in the skull and white matter (WM) on tDCS via a 3D anatomically realistic finite element head model. We systematically incorporated various anisotropic conductivity ratios into the skull and WM. The effects of anisotropic tissue conductivity on the CD and EF were subsequently assessed through comparisons to the conventional isotropic solutions. Our results show that the anisotropic skull conductivity significantly affects the CD and EF distribution: there is a significant reduction in the ratio of the target versus non-target total CD and EF on the order of 12-14%. In contrast, the WM anisotropy does not significantly influence the CD and EF on the targeted cortical surface, only on the order of 1-3%. However, the WM anisotropy highly alters the spatial distribution of both the CD and EF inside the brain. This study shows that it is critical to incorporate anisotropic conductivities in planning of tDCS for improved efficacy and safety.

  13. Anisotropic elastic scattering of stripe/line-shaped scatters to two-dimensional electron gas: Model and illustrations in a nonpolar AlGaN/GaN hetero-junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinfeng, E-mail: jfzhang@xidian.edu.cn; Li, Yao; Yan, Ran

    In a semiconductor hetero-junction, the stripe/line-shaped scatters located at the hetero-interface lead to the anisotropic transport of two-dimensional electron gas (2DEG). The elastic scattering of infinitely long and uniform stripe/line-shaped scatters to 2DEG is theoretically investigated based on a general theory of anisotropic 2DEG transport [J. Schliemann and D. Loss, Phys. Rev. B 68(16), 165311 (2003)], and the resulting 2DEG mobility along the applied electrical field is modeled to be a function of the angle between the field and the scatters. The anisotropy of the scattering and the mobility originate in essence from that the stripe/line-shaped scatters act upon themore » injecting two-dimensional wave vector by changing only its component perpendicular to the scatters. Three related scattering mechanisms in a nonpolar AlGaN/GaN hetero-junction are discussed as illustrations, including the striated morphology caused interface roughness scattering, and the polarization induced line charge dipole scattering and the misfit dislocation scattering at the AlGaN/GaN interface. Different anisotropic behaviors of the mobility limited by these scattering mechanisms are demonstrated, but analysis shows that all of them are determined by the combined effects of the anisotropic bare scattering potential and the anisotropic dielectric response of the 2DEG.« less

  14. Finite-Difference Modeling of Seismic Reflection Data in a Hard Rock Environment: An Example from the Mineralized Otago Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Leslie, A.; Gorman, A. R.

    2004-12-01

    The interpretation of seismic reflection data in non-sedimentary environments is problematic. In the Macraes Flat region near Dunedin (South Island, New Zealand), ongoing mining of mineralized schist has prompted the development of a seismic interpretation scheme that is capable of imaging a gold-bearing shear zone and associated mineralized structures accurately to the meter scale. The anisotropic and complex structural nature of this geological environment necessitates a cost-effective computer-based modeling technique that can provide information on the physical characteristics of the schist. Such a method has been tested on seismic data acquired in 1993 over a region that has since been excavated and logged. Correlation to measured structural data permits a direct comparison between the seismic data and the actual geology. Synthetic modeling utilizes a 2D visco-elastic finite difference routine to constrain the interpretation of observed seismic characteristics, including the velocity, anisotropy, and contrast, of the shear zone structures. Iterative refinements of the model result in a more representative synthetic model that most closely matches the seismic response. The comparison between the actual and synthetic seismic sections provides promising results that will be tested by new data acquisition over the summer of 2004/2005 to identify structures and zones of potential mineralization. As a downstream benefit, this research could also contribute to earthquake risk assessment analyses at active faults with similar characteristics.

  15. Structural characterization and viscoelastic constitutive modeling of skin.

    PubMed

    Sherman, Vincent R; Tang, Yizhe; Zhao, Shiteng; Yang, Wen; Meyers, Marc A

    2017-04-15

    A fascinating material, skin has a tensile response which exhibits an extended toe region of minimal stress up to nominal strains that, in some species, exceed 1, followed by significant stiffening until a roughly linear region. The large toe region has been attributed to its unique structure, consisting of a network of curved collagen fibers. Investigation of the structure of rabbit skin reveals that it consists of layers of wavy fibers, each one with a characteristic orientation. Additionally, the existence of two preferred layer orientations is suggested based on the results of small angle X-ray scattering. These observations are used to construct a viscoelastic model consisting of collagen in two orientations, which leads to an in-plane anisotropic response. The structure-based model presented incorporates the elastic straightening and stretching of fibrils, their rotation towards the tensile axis, and the viscous effects which occur in the matrix of the skin due to interfibrillar and interlamellar sliding. The model is shown to effectively capture key features which dictate the mechanical response of skin. Examination by transmission and scanning electron microscopy of rabbit dermis enabled the identification of the key elements in its structure. The organization of collagen fibrils into flat fibers was identified and incorporated into a constitutive model that reproduces the mechanical response of skin. This enhanced quantitative predictive capability can be used in the design of synthetic skin and skin-like structures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Research on the forward modeling of controlled-source audio-frequency magnetotellurics in three-dimensional axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong

    2017-11-01

    Controlled-source audio-frequency magnetotellurics (CSAMT) has developed rapidly in recent years and are widely used in the area of mineral and oil resource exploration as well as other fields. The current theory, numerical simulation, and inversion research are based on the assumption that the underground media have resistivity isotropy. However a large number of rock and mineral physical property tests show the resistivity of underground media is generally anisotropic. With the increasing application of CSAMT, the demand for probe accuracy of practical exploration to complex targets continues to increase. The question of how to evaluate the influence of anisotropic resistivity to CSAMT response is becoming important. To meet the demand for CSAMT response research of resistivity anisotropic media, this paper examines the CSAMT electric equations, derives and realizes a three-dimensional (3D) staggered-grid finite difference numerical simulation method of CSAMT resistivity axial anisotropy. Through building a two-dimensional (2D) resistivity anisotropy geoelectric model, we validate the 3D computation result by comparing it to the result of controlled-source electromagnetic method (CSEM) resistivity anisotropy 2D finite element program. Through simulating a 3D resistivity axial anisotropy geoelectric model, we compare and analyze the responses of equatorial configuration, axial configuration, two oblique sources and tensor source. The research shows that the tensor source is suitable for CSAMT to recognize the anisotropic effect of underground structure.

  17. Boundary conditions for gas flow problems from anisotropic scattering kernels

    NASA Astrophysics Data System (ADS)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline

    2015-10-01

    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  18. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  19. Inhomogeneous initial data and small-field inflation

    NASA Astrophysics Data System (ADS)

    Marsh, M. C. David; Barrow, John D.; Ganguly, Chandrima

    2018-05-01

    We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point models, even small-amplitude inhomogeneities present at the would-be onset of inflation at τ = τi can disrupt the accelerated expansion. In this paper, we parametrise and evolve the inhomogeneities from an earlier time τIC at which the initial data were imprinted, and show that for a broad range of inflationary and pre-inflationary models, inflection-point inflation withstands initial inhomogeneities. We consider three classes of perturbative pre-inflationary solutions (corresponding to energetic domination by the scalar field kinetic term, a relativistic fluid, and isotropic negative curvature), and two classes of exact solutions to Einstein's equations with large inhomogeneities (corresponding to a stiff fluid with cylindrical symmetry, and anisotropic negative curvature). We derive a stability condition that depends on the Hubble scales H(τi) and H(τIC), and a few properties of the pre-inflationary cosmology. For initial data imprinted at the Planck scale, the absence of an inhomogeneous initial data problem for inflection-point inflation leads to a novel, lower limit on the tensor-to-scalar ratio.

  20. Reduction technique for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1995-01-01

    A reduction technique and a computational procedure are presented for predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of the reduction technique, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface.

  1. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  2. Modeling of the financial market using the two-dimensional anisotropic Ising model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-09-01

    We have used the two-dimensional classical anisotropic Ising model in an external field and with an ion single anisotropy term as a mathematical model for the price dynamics of the financial market. The model presented allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents with respect to the facts of financial markets. We have obtained the mean price in terms of the strong of the site anisotropy term Δ which reinforces the sensitivity of the agent's sentiment to external news.

  3. Passive microwave remote sensing of an anisotropic random-medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.

  4. Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Chad A.; Stanley, Ethan

    2011-10-15

    We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we obtain an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the Friedmann-Robertson-Walker field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective Friedmann-Robertson-Walker field equations. We examine the effective field equations inmore » the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric function and cannot, in general, be inverted to yield an analytical expression for the 3D scale factor as a function of time. When the hypergeometric function is expanded for small and large arguments, we obtain a generalized treatment of the dynamical compactification scenario of Mohammedi [Phys. Rev. D 65, 104018 (2002)] and the 5D vacuum solution of Chodos and Detweiler [Phys. Rev. D 21, 2167 (1980)], respectively. By expanding the hypergeometric function near a branch point, we obtain the perturbative solution for the 3D scale factor in the small time regime. This solution exhibits accelerated expansion, which, remarkably, is independent of the value of the 4D equation of state parameter w. This early-time epoch of accelerated expansion arises naturally out of the anisotropic evolution of 5D spacetime when the pressure in the extra dimension is negative and offers a possible alternative to scalar field inflationary theory.« less

  5. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  6. Determining the vortex tilt relative to a superconductor surface

    DOE PAGES

    Kogan, V. G.; Kirtley, J. R.

    2017-11-20

    Here, it is of interest to determine the exit angle of a vortex from a superconductor surface, since this affects the intervortex interactions and their consequences. Two ways to determine this angle are to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In this work we evaluate the field h(x,y,z) above a flat superconducting surface x,y and the currents J(x,y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the isotropic and anisotropic cases. In principle, these results can be used to determine themore » vortex exit tilt angle from analyses of magnetic field imaging or density of states data.« less

  7. Biological synthesis of triangular gold nanoprisms

    NASA Astrophysics Data System (ADS)

    Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2004-07-01

    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

  8. Imaging the Eastern Trans-Mexican Volcanic Belt and the Veracruz Basin with Ambient Seismic noise and Earthquake Body Waves

    NASA Astrophysics Data System (ADS)

    Castillo, J.; Clayton, R. W.

    2017-12-01

    The Trans-Mexican Volcanic Belt (TMVB) is a prominent and enigmatic feature of the subduction system in Mexico. Its volcanic style diversity and oblique orientation to the trench are explained by the large along-strike variations in the subduction parameters of the Rivera and Cocos plates. However, the abrupt termination of the TMVB on its eastern end with the Pico de Orizaba volcano is puzzling as the current slab model suggests that the transition of the Cocos flat-slab geometry to normal subduction is smooth through this region. There is evidence that suggests that a tear in the slab might be developing, but it is unclear how this feature can support the unusually large topographic gradient that connects the volcanic high peaks with the Veracruz basin just south of the volcanic front. To provide further insight into the transition anatomy of this portion of the slab, and its relation with surface topography, we present a detailed and unified model of the structure of the crust and uppermost mantle built from fundamental-mode Rayleigh and Love surface waves, and high-quality arrival-time data of regional and teleseismic earthquakes. The anisotropic behavior of the subsurface of this region and its relation with present and past flow of material is also quantified and integrated into the model to explain the tectonic evolution of this area.

  9. Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures

    NASA Astrophysics Data System (ADS)

    Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en

    2015-08-01

    Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.

  10. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  11. Imaging the Earth's anisotropic structure with Bayesian Inversion of fundamental and higher mode surface-wave dispersion data

    NASA Astrophysics Data System (ADS)

    Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas

    2017-04-01

    We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.

  12. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  13. Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.

  14. Optimal damping profile ratios for stabilization of perfectly matched layers in general anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-11-13

    Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less

  15. Optimal damping profile ratios for stabilization of perfectly matched layers in general anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less

  16. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Chen, Qi-Dai; Yao, Jia; Guan, Yong-Chao; Wang, Jian-Nan; Niu, Li-Gang; Fang, Hong-Hua; Sun, Hong-Bo

    2010-02-01

    The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μm. This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves' height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

  17. Ellipticities of Elliptical Galaxies in Different Environments

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  18. Illuminating heterogeneous anisotropic upper mantle: testing a new anisotropic teleseismic body-wave tomography code - part II: Inversion mode

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi

    2015-04-01

    Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.

  19. Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents

    NASA Astrophysics Data System (ADS)

    Kushch, Volodymyr I.; Sevostianov, Igor; Giraud, Albert

    2017-11-01

    An accurate semi-analytical solution of the conductivity problem for a composite with anisotropic matrix and arbitrarily oriented anisotropic ellipsoidal inhomogeneities has been obtained. The developed approach combines the superposition principle with the multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and reduces the boundary value problem to an infinite system of linear algebraic equations for the induced multipole moments of inhomogeneities. A complete full-field solution is obtained for the multi-particle models comprising inhomogeneities of diverse shape, size, orientation and properties which enables an adequate account for the microstructure parameters. The solution is valid for the general-type anisotropy of constituents and arbitrary orientation of the orthotropy axes. The effective conductivity tensor of the particulate composite with anisotropic constituents is evaluated in the framework of the generalized Maxwell homogenization scheme. Application of the developed method to composites with imperfect ellipsoidal interfaces is straightforward. Their incorporation yields probably the most general model of a composite that may be considered in the framework of analytical approach.

  20. Radiometric spectral and band rendering of targets using anisotropic BRDFs and measured backgrounds

    NASA Astrophysics Data System (ADS)

    Hilgers, John W.; Hoffman, Jeffrey A.; Reynolds, William R.; Jafolla, James C.

    2000-07-01

    Achievement of ultra-high fidelity signature modeling of targets requires a significant level of complexity for all of the components required in the rendering process. Specifically, the reflectance of the surface must be described using the bi-directional distribution function (BRDF). In addition, the spatial representation of the background must be high fidelity. A methodology and corresponding model for spectral and band rendering of targets using both isotropic and anisotropic BRDFs is presented. In addition, a set of tools will be described for generating theoretical anisotropic BRDFs and for reducing data required for a description of an anisotropic BRDF by 5 orders of magnitude. This methodology is hybrid using a spectrally measured panoramic of the background mapped to a large hemisphere. Both radiosity and ray-tracing approaches are incorporated simultaneously for a robust solution. In the thermal domain the spectral emission is also included in the solution. Rendering examples using several BRDFs will be presented.

  1. Quantum fluctuations in anisotropic triangular lattices with ferromagnetic and antiferromagnetic exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Thalmeier, Peter

    2014-05-01

    The Heisenberg model on a triangular lattice is a prime example of a geometrically frustrated spin system. However most experimentally accessible compounds have spatially anisotropic exchange interactions. As a function of this anisotropy, ground states with different magnetic properties can be realized. Motivated by recent experimental findings on Cs2CuCl4-xBrx, we discuss the full phase diagram of the anisotropic model with two exchange constants J1 and J2, including possible ferromagnetic exchange. Furthermore a comparison with the related square lattice model is carried out. We discuss the zero-temperature phase diagram, ordering vector, ground-state energy, and ordered moment on a classical level and investigate the effect of quantum fluctuations within the framework of spin-wave theory. The field dependence of the ordered moment is shown to be nonmonotonic with field and control parameter.

  2. Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Ricardo de Sousa, J.; Araújo, Ijanílio G.

    1999-07-01

    We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.

  3. Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime (Postprint)

    DTIC Science & Technology

    2012-01-19

    specific dislocation reactions. Rae et al .[4,5,7] proposed micromechanisms for primary creep caused by SF shearing of c0 precipitates by ah112i...near the [0 0 1] was done by Matan et al .[3] They proposed a phenomenological creep model, which was adopted from Gilman’s dislocation density model...the original loading orientation). MacLachlan et al .[18 21] proposed a series of creep models for anisotropic creep of single-crystal superalloys. Their

  4. GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.

    2016-06-20

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less

  5. High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization

    NASA Astrophysics Data System (ADS)

    Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco

    2017-04-01

    Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.

  6. High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization.

    PubMed

    Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco

    2017-04-18

    Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.

  7. Computational Methods for Frictional Contact With Applications to the Space Shuttle Orbiter Nose-Gear Tire

    NASA Technical Reports Server (NTRS)

    Tanner, John A.

    1996-01-01

    A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.

  8. Computational methods for frictional contact with applications to the Space Shuttle orbiter nose-gear tire: Comparisons of experimental measurements and analytical predictions

    NASA Technical Reports Server (NTRS)

    Tanner, John A.

    1996-01-01

    A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.

  9. A novel 2.5D finite difference scheme for simulations of resistivity logging in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zeng, Shubin; Chen, Fangzhou; Li, Dawei; Chen, Ji; Chen, Jiefu

    2018-03-01

    The objective of this study is to develop a method to model 3D resistivity well logging problems in 2D formation with anisotropy, known as 2.5D modeling. The traditional 1D forward modeling extensively used in practice lacks the capability of modeling 2D formation. A 2.5D finite difference method (FDM) solving all the electric and magnetic field components simultaneously is proposed. Compared to other previous 2.5D FDM schemes, this method is more straightforward in modeling fully anisotropic media and easy to be implemented. Fourier transform is essential to this FDM scheme, and by employing Gauss-Legendre (GL) quadrature rule the computational time of this step can be greatly reduced. In the numerical examples, we first demonstrate the validity of the FDM scheme with GL rule by comparing with 1D forward modeling for layered anisotropic problems, and then we model a complicated 2D formation case and find that the proposed 2.5D FD scheme is much more efficient than 3D numerical methods.

  10. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  11. Scleral anisotropy and its effects on the mechanical response of the optic nerve head

    PubMed Central

    Coudrillier, Baptiste; Boote, Craig; Quigley, Harry A.

    2012-01-01

    This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe the anisotropic elastic behavior of the sclera. The model directly incorporated wide angle x-ray scattering measurements of the anisotropic collagen structure. The converged solution of the inverse method was used in micromechanical studies of the mechanical anisotropy of the sclera at different scales. The effects of the scleral collagen fiber structure on the ONH deformation were evaluated by progressively filtering out local anisotropic features. It was found that the majority of the midposterior sclera could be described as isotropic without significantly affecting the mechanical response of the tissues of the ONH. In contrast, removing local anisotropic features in the peripapillary sclera produced significant changes in scleral canal expansion, and lamina cribrosa deformation. Local variations in the collagen structure of the peripapillary sclera significantly influenced the mechanical response of the ONH. PMID:23188256

  12. Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids

    NASA Astrophysics Data System (ADS)

    Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.

  13. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    PubMed

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  14. Constraints on Non-flat Cosmologies with Massive Neutrinos after Planck 2015

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Ratra, Bharat; Biesiada, Marek; Li, Song; Zhu, Zong-Hong

    2016-10-01

    We investigate two dark energy cosmological models (I.e., the ΛCDM and ϕCDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕCDM model the scalar field possesses an inverse power-law potential, V(ϕ) ∝ ϕ -α (α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H 0 prior, are jointly employed to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σm ν < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕCDM model, we find Σm ν < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σm ν and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σm ν based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕCDM models; however, the corresponding differences are larger in the non-flat case.

  15. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Kun-Peng; Tan, Han-Dong

    2017-12-01

    Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.

  16. Bianchi-V string cosmological model with dark energy anisotropy

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  17. Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu

    2018-04-01

    A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.

  18. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean

    NASA Astrophysics Data System (ADS)

    Tang, Miaomiao; Zhao, Daomu

    2014-02-01

    Based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, the spectral changes of stochastic anisotropic electromagnetic beams propagating through oceanic turbulence are revealed. As an example, some numerical calculations are illustrated for an anisotropic electromagnetic Gaussian Schell-model beam propagating in a homogeneous and isotropic turbulent ocean. It is shown that, under the influence of oceanic turbulence, the on-axis spectrum is always blue-shifted along with the propagation distance, however, for the off-axis positions, red-blue spectral switch can be found.

  19. Texture-induced anisotropy and high-strain rate deformation in metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1990-01-01

    We have used crystallographic texture calculations to model anisotropic yielding behavior for polycrystalline materials with strong preferred orientations and strong plastic anisotropy. Fitted yield surfaces were incorporated into an explicit Lagrangian finite-element code. We consider different anisotropic orientations, as well as different yield-surface forms, for Taylor cylinder impacts of hcp metals such as titanium and zirconium. Some deformed shapes are intrinsic to anisotropic response. Also, yield surface curvature, as distinct from strength anisotropy, has a strong influence on plastic flow. 13 refs., 5 figs.

  20. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  1. Consistency of anisotropic inflation during rapid oscillations with Planck 2015 data

    NASA Astrophysics Data System (ADS)

    Saleem, Rabia

    2018-07-01

    This paper is aimed to study the compelling issue of cosmic inflation during rapid oscillations using the framework of non-minimal derivative coupling. To this end, an anisotropic and homogeneous Bianchi I background is considered. In this context, I developed the formalism of anisotropic oscillatory inflation and found some constraints for the existence of inflation. In this era, the parameters related to cosmological perturbations are evaluated, further, their graphical trajectories are presented to check the compatibility of the model with the observational data (Planck 2015 probe).

  2. Comparisons of seismic and electromagnetic structures of the MELT area

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.

  3. High-Fidelity Geometric Modeling and Mesh Generation for Mechanics Characterization of Polycrystalline Materials

    DTIC Science & Technology

    2015-01-07

    and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality...shade-off. Halos are bright or dark thin regions around the boundary of the sample. These false edges around the object make many segmentation

  4. Interaction of anisotropic dark energy fluid with perfect fluid in the presence of cosmological term Λ

    NASA Astrophysics Data System (ADS)

    Singh, S. Surendra

    2018-05-01

    Considering the locally rotationally symmetric (LRS) Bianchi type-I metric with cosmological constant Λ, Einstein’s field equations are discussed based on the background of anisotropic fluid. We assumed the condition A = B 1 m for the metric potentials A and B, where m is a positive constant to obtain the viable model of the Universe. It is found that Λ(t) is positive and inversely proportional to time. The values of matter-energy density Ωm, dark energy density ΩΛ and deceleration parameter q are found to be consistent with the values of WMAP observations. State finder parameters and anisotropic deviation parameter are also investigated. It is also observed that the derived model is an accelerating, shearing and non-rotating Universe. Some of the asymptotic and geometrical behaviors of the derived models are investigated with the age of the Universe.

  5. Holographic models with anisotropic scaling

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  6. Simulation of anisotropic fracture behaviour of polycrystalline round blank tungsten using cohesive zone model

    NASA Astrophysics Data System (ADS)

    Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir

    2018-04-01

    The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.

  7. Mechanical response of the herniated human abdomen to the placement of different prostheses.

    PubMed

    Hernández-Gascón, Belén; Peña, Estefanía; Grasa, Jorge; Pascual, Gemma; Bellón, Juan M; Calvo, Begoña

    2013-05-01

    This paper describes a method designed to model the repaired herniated human abdomen just after surgery and examine its static mechanical response to the maximum intra-abdominal pressure provoked by a physiological movement (standing cough). The model is based on the real geometry of the human abdomen bearing a large incisional hernia with several anatomical structures differentiated by MRI. To analyze the outcome of hernia repair, the surgical procedure was simulated by modeling a prosthesis placed over the hernia. Three surgical meshes with different mechanical properties were considered: an isotropic heavy-weight mesh (Surgipro®), a slightly anisotropic light-weight mesh (Optilene®), and a highly anisotropic medium-weight mesh (Infinit®). Our findings confirm that anisotropic implants need to be positioned such that the most compliant axis of the mesh coincides with the craneo-caudal direction of the body.

  8. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  9. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  10. Subgrid-scale models for large-eddy simulation of rotating turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel

    2016-11-01

    This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.

  11. Modeling the effect of orientation on the shock response of a damageable composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-10-01

    A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.

  12. Transmural variation in elastin fiber orientation distribution in the arterial wall.

    PubMed

    Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang

    2018-01-01

    The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and should be considered in constitutive modeling of an artery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  14. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Corke, Thomas; Hoffman, Anthony

    2017-11-01

    Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.

  16. Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.

    2015-11-01

    Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.

  17. Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling.

    PubMed

    Elías-Wolff, Federico; Lindén, Martin; Lyubartsev, Alexander P; Brandt, Erik G

    2018-03-13

    Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane-associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.

  18. A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

    2006-01-01

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  19. NMR properties of 3He-A in biaxially anisotropic aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. V.; Krasnikhin, D. A.; Senin, A. A.; Yudin, A. N.

    2012-12-01

    Theoretical model of G.E. Volovik for A-like phase of 3He in aerogel suggests formation of Larkin-Imry-Ma state of Anderson-Brinkmann-Morel order parameter. Most of results of NMR studies of A-like phase are in a good agreement with this model in assumption of uniaxial anisotropy, except for some of experiments in weakly anisotropic aerogel samples. We demonstrate that these results can be described in frames of the same model in assumption of biaxial anisotropy. Parameters of anisotropy in these experiments can be determined from the NMR data.

  20. Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Pal, Sridip; Banerjee, Narayan

    2018-06-01

    The present work shows that the mathematical equivalence of the Jordan frame and its conformally transformed version, the Einstein frame, so as far as Brans-Dicke theory is concerned, survives a quantization of cosmological models, arising as solutions to the Brans-Dicke theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples. We effectively show that the transformation from the Jordan to the Einstein frame is a canonical one and hence two frames furnish equivalent description of same physical scenario.

  1. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  2. Channel capacity of OAM based FSO communication systems with partially coherent Bessel-Gaussian beams in anisotropic turbulence

    NASA Astrophysics Data System (ADS)

    Peng, Juan; Zhang, Li; Zhang, Kecheng; Ma, Junxian

    2018-07-01

    Based on the Rytov approximation theory, the transmission model of an orbital angular momentum (OAM)-carrying partially coherent Bessel-Gaussian (BG) beams propagating in weak anisotropic turbulence is established. The corresponding analytical expression of channel capacity is presented. Influences of anisotropic turbulence parameters and beam parameters on channel capacity of OAM-based free-space optical (FSO) communication systems are discussed in detail. The results indicate channel capacity increases with increasing of almost all of the parameters except for transmission distance. Raising the values of some parameters such as wavelength, propagation altitude and non-Kolmogorov power spectrum index, would markedly improve the channel capacity. In addition, we evaluate the channel capacity of Laguerre-Gaussian (LG) beams and partially coherent BG beams in anisotropic turbulence. It indicates that partially coherent BG beams are better light sources candidates for mitigating the influences of anisotropic turbulence on channel capacity of OAM-based FSO communication systems.

  3. Switchable focus using a polymeric lenticular microlens array and a polarization rotator.

    PubMed

    Ren, Hongwen; Xu, Su; Liu, Yifan; Wu, Shin-Tson

    2013-04-08

    We demonstrate a flat polymeric lenticular microlens array using a mixture of rod-like diacrylate monomer and positive dielectric anisotropy nematic liquid crystal (LC). To create gradient refractive index profile in one microlens, we generate fringing fields from a planar top electrode and two striped bottom electrodes. After UV stabilization, the film is optically anisotropic and can stand alone. We then laminate this film on a 90° twisted-nematic LC cell, which works as a dynamic polarization rotator. The static polymeric lenticular lens exhibits focusing effect only to the extraordinary ray, but no optical effect to the ordinary ray. Such an integrated lens system offers several advantages, such as low voltage, fast response time, and temperature insensitivity, and can be used for switchable 2D/3D displays.

  4. Young-Laplace equation for liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  5. Bounce universe and black holes from critical Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong

    2017-11-01

    We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.

  6. Vibrations of single-crystal gold nanorods and nanowires

    NASA Astrophysics Data System (ADS)

    Saviot, L.

    2018-04-01

    The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant in Raman scattering experiments. A comprehensive description of the vibrations of nanorods is proposed by determining their symmetry, comparing with standing waves in the corresponding nanowires, and estimating their Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure, the presence of faceted lateral surfaces, and the shape of the ends of the nanorods is evaluated. Elastic anisotropy is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.

  7. Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Shipunov, G. S.; Voronkov, A. A.; Shardakov, I. N.

    2017-12-01

    This work presents the experimental results on the effect of temperature on the spectrum of fiber Bragg grating (FBG) sensors embedded in a polymer composite material manufactured by the prepreg method. The tests are carried out for flat bar specimens made of fiberglass with five embedded FBG sensors. For measuring the reflected wave power, the ASTRO X322 Interrogator is used. It is shown that embedding leads to the occurrence of an additional power peak and decreases the reflection spectrum signal by 10-12 dB. This is due to the effect of transverse compression force and the anisotropic character of the thermal expansion coefficient of the material. In heating, the reflected spectrum is close to the initial state of the material, but it has a less power.

  8. On asymptotic behavior of anisotropic branes with induced gravity inspired by L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2010-12-01

    The DGP brane-world scenario provides the accelerated expansion of the universe at late-time by large-distance modification of general relativity without any need for dark energy. Using the method in reference [33], we investigate the asymptotic behavior of homogeneous and anisotropic cosmologies on a generalization of DGP scenario where the effective theory of gravity induced on the brane is given by a L(R) term. We show that for a constant induced curvature term on the brane all Bianchi models except type IX isotropize, like general relativity, if the effective energy density and E{sub ab} term satisfy some energy conditions. Finally, wemore » compare the result of the model with the result of anisotropic DGP branes and general relativity.« less

  9. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.

    PubMed

    Hilton, Harry H

    2012-01-18

    Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  10. Stability of anisotropic self-gravitating fluids

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Jami, A. Rehman; Mughal, M. Z.

    2018-06-01

    The aim of this paper is to study the stability as well as the existence of self-gravitating anisotropic fluids in Λ-dominated era. Taking a cylindrically symmetric and static spacetime, we computed the corresponding equations of motion in the background of anisotropic fluid distributions. The realistic formulation of energy momentum tensor as well as theoretical model of the scale factors are considered in order to describe some physical properties of the anisotropic fluids. To find the stability of the compact star, we have used Herrera’s technique which is based on finding the radial and the transverse components of the speed of sound. Moreover, the behaviors of other physical quantities are also discussed like anisotropy, matching conditions of interior metric and exterior metric and compactness of the compact structures are also discussed.

  11. Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beau, Mathieu, E-mail: mbeau@stp.dias.ie; Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com

    2014-05-15

    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. Formore » such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.« less

  12. Capturing the Flatness of a peer-to-peer lending network through random and selected perturbations

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis D.; Singh, Pramesh; Uparna, Jayaram; Horvat, Emoke-Agnes; Szymanski, Boleslaw K.; Korniss, Gyorgy; Bakdash, Jonathan Z.; Uzzi, Brian

    Null models are established tools that have been used in network analysis to uncover various structural patterns. They quantify the deviance of an observed network measure to that given by the null model. We construct a null model for weighted, directed networks to identify biased links (carrying significantly different weights than expected according to the null model) and thus quantify the flatness of the system. Using this model, we study the flatness of Kiva, a large international crownfinancing network of borrowers and lenders, aggregated to the country level. The dataset spans the years from 2006 to 2013. Our longitudinal analysis shows that flatness of the system is reducing over time, meaning the proportion of biased inter-country links is growing. We extend our analysis by testing the robustness of the flatness of the network in perturbations on the links' weights or the nodes themselves. Examples of such perturbations are event shocks (e.g. erecting walls) or regulatory shocks (e.g. Brexit). We find that flatness is unaffected by random shocks, but changes after shocks target links with a large weight or bias. The methods we use to capture the flatness are based on analytics, simulations, and numerical computations using Shannon's maximum entropy. Supported by ARL NS-CTA.

  13. Investigation of the mechanical behaviour of the foot skin.

    PubMed

    Fontanella, C G; Carniel, E L; Forestiero, A; Natali, A N

    2014-11-01

    The aim of this work was to provide computational tools for the characterization of the actual mechanical behaviour of foot skin, accounting for results from experimental testing and histological investigation. Such results show the typical features of skin mechanics, such as anisotropic configuration, almost incompressible behaviour, material and geometrical non linearity. The anisotropic behaviour is mainly determined by the distribution of collagen fibres along specific directions, usually identified as cleavage lines. To evaluate the biomechanical response of foot skin, a refined numerical model of the foot is developed. The overall mechanical behaviour of the skin is interpreted by a fibre-reinforced hyperelastic constitutive model and the orientation of the cleavage lines is implemented by a specific procedure. Numerical analyses that interpret typical loading conditions of the foot are performed. The influence of fibres orientation and distribution on skin mechanics is outlined also by a comparison with results using an isotropic scheme. A specific constitutive formulation is provided to characterize the mechanical behaviour of foot skin. The formulation is applied within a numerical model of the foot to investigate the skin functionality during typical foot movements. Numerical analyses developed accounting for the actual anisotropic configuration of the skin show lower maximum principal stress fields than results from isotropic analyses. The developed computational models provide reliable tools for the investigation of foot tissues functionality. Furthermore, the comparison between numerical results from anisotropic and isotropic models shows the optimal configuration of foot skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. IMAGING CSEM DATA IN THE PRESENCE OF ELECTRICAL ANISOTROPY (Invited)

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Commer, M.; Carazzone, J. J.

    2009-12-01

    Formation anisotropy should be incorporated into the analysis of controlled source electromagnetic (CSEM) data because failure to do so can produce serious artifacts in the resulting resistivity images for certain data configurations of interest. This finding is demonstrated in model and case studies. Sensitivity to horizontal resistivity will be strongest in the broadside electric field data where detectors are offset from the tow line. Sensitivity to the vertical resistivity is strongest for over flight data where the transmitting antenna passes directly over the detecting antenna. Consequently, consistent treatment of both over flight and broadside electric field measurements requires an anisotropic modeling assumption. To produce a consistent resistivity model for such data we employ a 3D CSEM imaging algorithm that treats transverse anisotropy. Here we demonstrate the anisotropic imaging process on model and field data sets from the North Sea and offshore Brazil. We also verify that isotropic imaging of over flight data alone produces an image generally consistent with the vertical resistivity. However, superior data fits are obtained when the same over flight data are analyzed assuming an anisotropic resistivity model.

  15. A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1996-11-01

    Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.

  16. Anisotropic-Scale Junction Detection and Matching for Indoor Images.

    PubMed

    Xue, Nan; Xia, Gui-Song; Bai, Xiang; Zhang, Liangpei; Shen, Weiming

    Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.

  17. High frequency material issues in scattering of sound by objects in water

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher

    Ray theoretic models were shown to predict scattering enhancements from laboratory scale cylindrical targets in water. Synthetic aperture sonar and acoustical holographic images were constructed from bistatic scattering. Targets of increasing complexity from material properties were investigated. Models range from simple ray optic style to corrections for transversely isotropic materials. To correctly model the complexity of anisotropic material such as fiberglass, the five independent elastic constants and the density were measured. In all of the cylindrical shells and solid targets, enhancements are observable for ka values ranging from 9 to 40 where k is the wavenumber and a is the cylinder radius. The simpler targets consist of a low sound speed fluid within a thin plastic or fiberglass shell (11 < ka < 40). Shells were taken to be sufficiently thin so that the shell dynamics could be neglected in the models. The fluid has a density near that of water with a sound speed less than water. It is straightforward to construct the location and length of bright features for the fluid filled shells. Solid finite cylinders of polystyrene (9 < ka < 23) and fiberglass (ka = 17 and 22) were found to have more structure in echoes than the fluid filled shells. Bright image features existed from longitudinal as well as shear wave propagation within the polystyrene. A model including shear and longitudinal wave components showed good agrement with experiments with respect to timing and length of features for RexoliteRTM. Fiberglass is the most complex due to the anisotropic symmetry of the material. The slowness matrix allowed for modeling of timing aspects of the solid fiberglass cylinder. For a flat polystyrene half-space there is predicted to be a prominent enhancement of the acoustic reflection for an angle of incidence near 40°. Measurements showed the existence of a related peak in the reflection from solid Rexolite cylinders with ka near 9. Related peaks in the reflection from coated cylinders were observed. The properties of sound transmitted by a stainless steel plate in water was investigated. The relevant S2b leaky Lamb waves have been previously demonstrated on spherical shells [Kaduchak et al., J. Acoust. Soc. Am. 96, 3704 (1994)]. Directional properties of guided waves excited on a stainless steel plate in water were observed. Guided waves could be excited on the plate having group and phase velocities oppositely directed and such waves could profoundly influence the transmission of sound.

  18. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    PubMed

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  19. Anisotropic Reinforcement of Acute Anteroapical Infarcts Improves Pump Function

    PubMed Central

    Fomovsky, Gregory M.; Clark, Samantha A.; Parker, Katherine M.; Ailawadi, Gorav; Holmes, Jeffrey W.

    2012-01-01

    Background We hypothesize that a therapy that improves LV pump function early after infarction should decrease the need for compensation through sympathetic activation and dilation, thereby reducing the risk of developing heart failure. The mechanical properties of healing myocardial infarcts are an important determinant of left ventricular (LV) function, yet improving function by altering infarct properties has proven unexpectedly difficult. Using a computational model, we recently predicted that stiffening a large anterior infarct anisotropically (in only one direction) would improve LV function, while isotropic stiffening, the focus of previous studies and therapies, would not. The goal of this study was to test the novel strategy of anisotropic infarct reinforcement. Methods and Results We tested the effects of anisotropic infarct reinforcement in 10 open-chest dogs with large anteroapical infarcts that depressed LV pump function. We measured regional mechanics, LV volumes, and cardiac output at a range of preloads at Baseline, 45 minutes after coronary ligation (Ischemia), and 30 minutes later, following surgical reinforcement in the longitudinal direction (Anisotropic). Ischemia shifted the end-systolic pressure-volume relationship (ESPVR) and cardiac output curves rightward, decreasing cardiac output at matched end-diastolic pressure (EDP) by 44%. Anisotropic reinforcement significantly improved systolic function without impairing diastolic function, recovering half the deficit in overall LV function. Conclusions We conclude that anisotropic reinforcement is a promising new approach to improving LV function following a large myocardial infarction. PMID:22665716

  20. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism

    PubMed Central

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-01-01

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio (SA1) behaviors and three types of anisotropic strength difference (SA2) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion cw and friction angle ϕw of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of SA1 and significant increase of SA2 with increasing confinement for higher cohesion cw and lower to medium friction angle ϕw. This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of cw and ϕw under different confinements, different combinations of cw and ϕw may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir. PMID:29140292

  1. Flatness-based control in successive loops for stabilization of heart's electrical activity

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Melkikh, Alexey

    2016-12-01

    The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yun; Ratra, Bharat; Biesiada, Marek

    We investigate two dark energy cosmological models (i.e., the ΛCDM and ϕ CDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕ CDM model the scalar field possesses an inverse power-law potential, V ( ϕ ) ∝ ϕ {sup −} {sup α} ( α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H {sub 0} prior, are jointly employedmore » to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σ m {sub ν} < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕ CDM model, we find Σ m {sub ν} < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σ m {sub ν} and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σ m {sub ν} based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕ CDM models; however, the corresponding differences are larger in the non-flat case.« less

  3. Dynamic Smagorinsky model on anisotropic grids

    NASA Technical Reports Server (NTRS)

    Scotti, A.; Meneveau, C.; Fatica, M.

    1996-01-01

    Large Eddy Simulation (LES) of complex-geometry flows often involves highly anisotropic meshes. To examine the performance of the dynamic Smagorinsky model in a controlled fashion on such grids, simulations of forced isotropic turbulence are performed using highly anisotropic discretizations. The resulting model coefficients are compared with a theoretical prediction (Scotti et al., 1993). Two extreme cases are considered: pancake-like grids, for which two directions are poorly resolved compared to the third, and pencil-like grids, where one direction is poorly resolved when compared to the other two. For pancake-like grids the dynamic model yields the results expected from the theory (increasing coefficient with increasing aspect ratio), whereas for pencil-like grids the dynamic model does not agree with the theoretical prediction (with detrimental effects only on smallest resolved scales). A possible explanation of the departure is attempted, and it is shown that the problem may be circumvented by using an isotropic test-filter at larger scales. Overall, all models considered give good large-scale results, confirming the general robustness of the dynamic and eddy-viscosity models. But in all cases, the predictions were poor for scales smaller than that of the worst resolved direction.

  4. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  5. Attitude error response of structures to actuator/sensor noise

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    Explicit closed-form formulas are presented for the RMS attitude-error response to sensor and actuator noise for co-located actuators/sensors as a function of both control-gain parameters and structure parameters. The main point of departure is the use of continuum models. In particular the anisotropic Timoshenko model is used for lattice trusses typified by the NASA EPS Structure Model and the Evolutionary Model. One conclusion is that the maximum attainable improvement in the attitude error varying either structure parameters or control gains is 3 dB for the axial and torsion modes, the bending being essentially insensitive. The results are similar whether the Bernoulli model or the anisotropic Timoshenko model is used.

  6. Anisotropic nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening

    NASA Astrophysics Data System (ADS)

    de Graaf, J.

    2012-06-01

    In this thesis we consider the influence of anisotropy on the behaviour of colloids using theory and simulations. The recent increase in the ability to synthesize anisotropic particles (cubes, caps, octapods, etc.) has led to samples of sufficient quality to perform self-assembly experiments. Our investigation is therefore particularly relevant to current and future experimental studies of colloids. We examine several topics for which shape anisotropy plays an important role: (1.) - Interfacial adsorption. We introduced the triangular-tessellation technique to approximate the surface areas and line length which are associated with a plane-particle intersection. Our method allowed us to determine the free energy of adsorption for a single irregular colloid with heterogeneous surface properties adsorbed at a flat liquid-liquid interface in the Pieranski approximation. Ellipsoids only adsorbed at the interface perpendicular to the interfacial normal. However, for cylinders we could find a metastable adsorption minimum corresponding to parallel adsorption. We also considered the possible time dependence of the adsorption process using simple dynamics. Finally, we studied the adsorption of truncated nanocubes with a contact-angle surface pattern and we observed that there are three prototypical equilibrium adsorption configurations for these particles. (2.) - Crystal-structure prediction. We extended an existing crystal-structure-prediction algorithm to predict structures for systems comprised of irregular hard particles. Using this technique we examined the high-density crystal structures for 17 irregular nonconvex shapes and we confirmed several mathematical conjectures for the packings of a large set of 142 convex polyhedra. We also proved that we have obtained the densest configurations for rhombicuboctahedra and rhombic enneacontrahedra, respectively. Moreover, we considered a family of truncated cubes, which interpolates between a cube and an octahedron, for which we obtained a fascinating richness in crystal structures. For the octahedron we determined the equation of state and we obtained a liquid, a (metastable) body-centred-cubic rotator phase, and a crystal phase. (3.) - Octapod hierarchical self-assembly. We analysed the recently observed hierarchical self-assembly of octapod-shaped nanocrystals (octapods) into three-dimensional (3D) superstructures. We constructed an empirical simulation model capable of reproducing the initial chain-formation step of the self-assembly. The van-der-Waals (vdW) interactions between octapods suspended in an (a)polar medium were obtained by means of a Hamaker-de-Boer-type integration and the nature of these interactions allowed us to justify elements of our empirical model. We used the theoretical vdW calculation, together with the experimental and simulation results, to formulate a mechanism which explained the observed self-assembly in terms of the solvent-dependence and directionality of the octapod-octapod interactions. (4.) - Ionic screening of charged Janus particles. We studied the screening of charged Janus particles in an electrolyte by primitive-model Monte Carlo (MC) simulations for a wide variety of parameters. We also introduced a method to compare these results to the predictions of nonlinear Poisson-Boltzmann (PB) theory. The comparison of MC and PB results allowed us to probe the range of validity of the PB approximation. This range of validity corresponds well to the range that was predicted by field-theoretical studies of homogeneously charged flat surfaces.

  7. Brain Biology Machine Initiative: Developing Innovative Novel Methods to Improve Neuro-Rehabilitation for Amputees and Treatment for Patients at Remote Sites with Acute Brain Injury

    DTIC Science & Technology

    2010-10-01

    bode well for the future. The paper we submitted to the Journal of Neuroscience detailing the TVAG rabies tracer system was accepted with revisions...of brain electrical activity. Stas Kounitsky successfully completed the port of the new vector-additive implicit (VAI) method for the anisotropic ...Alternating Difference 14 Implicit (ADI) for isotropic head models, and the Vector Additive Implicit (VAI) for anisotropic head models. The ADI method

  8. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    NASA Astrophysics Data System (ADS)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  9. Instability Paths in the Kirchhoff-Plateau Problem

    NASA Astrophysics Data System (ADS)

    Giusteri, Giulio G.; Franceschini, Paolo; Fried, Eliot

    2016-08-01

    The Kirchhoff-Plateau problem concerns the equilibrium shapes of a system in which a flexible filament in the form of a closed loop is spanned by a soap film, with the filament being modeled as a Kirchhoff rod and the action of the spanning surface being solely due to surface tension. Adopting a variational approach, we define an energy associated with shape deformations of the system and then derive general equilibrium and (linear) stability conditions by considering the first and second variations of the energy functional. We analyze in detail the transition to instability of flat circular configurations, which are ground states for the system in the absence of surface tension, when the latter is progressively increased. Such a theoretical study is particularly useful here, since the many different perturbations that can lead to instability make it challenging to perform an exhaustive experimental investigation. We generalize previous results, since we allow the filament to possess a curved intrinsic shape and also to display anisotropic flexural properties (as happens when the cross section of the filament is noncircular). This is accomplished by using a rod energy which is familiar from the modeling of DNA filaments. We find that the presence of intrinsic curvature is necessary to obtain a first buckling mode which is not purely tangent to the spanning surface. We also elucidate the role of twisting buckling modes, which become relevant in the presence of flexural anisotropy.

  10. Evolution of cyclic mixmaster universes with noncomoving radiation

    NASA Astrophysics Data System (ADS)

    Ganguly, Chandrima; Barrow, John D.

    2017-12-01

    We study a model of a cyclic, spatially homogeneous, anisotropic, "mixmaster" universe of Bianchi type IX, containing a radiation field with noncomoving ("tilted" with respect to the tetrad frame of reference) velocities and vorticity. We employ a combination of numerical and approximate analytic methods to investigate the consequences of the second law of thermodynamics on the evolution. We model a smooth cycle-to-cycle evolution of the mixmaster universe, bouncing at a finite minimum, by the device of adding a comoving "ghost" field with negative energy density. In the absence of a cosmological constant, an increase in entropy, injected at the start of each cycle, causes an increase in the volume maxima, increasing approach to flatness, falling velocities and vorticities, and growing anisotropy at the expansion maxima of successive cycles. We find that the velocities oscillate rapidly as they evolve and change logarithmically in time relative to the expansion volume. When the conservation of momentum and angular momentum constraints are imposed, the spatial components of these velocities fall to smaller values when the entropy density increases, and vice versa. Isotropization is found to occur when a positive cosmological constant is added because the sequence of oscillations ends and the dynamics expand forever, evolving towards a quasi-de Sitter asymptote with constant velocity amplitudes. The case of a single cycle of evolution with a negative cosmological constant added is also studied.

  11. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  12. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.

    2004-08-01

    Shallow flat subduction is a relatively common feature at present-day subduction zones. Several mechanisms to explain this feature have been proposed, and can be subdivided into three groups: overthrusting of the subducting plate, subduction of a plume-generated oceanic plateau, and slab suction forces. We developed a numerical model to investigate these mechanisms and tested it through a comparison of the model results with the observations of the Peru flat slab where all three mechanisms seem to be contributing. The ratio of contributions of overthrusting continent to plateau subduction is in the range of 1:1 to 1:2, and the role of plate suction forces is likely to be significant. By applying the overthrusting continent and plateau subduction mechanisms separately, we were able to determine the most important model parameters for each of the mechanisms. Overthrusting easily results in flat subduction, and the flat slab length is primarily a function of slab age, overriding plate motion and mantle viscosity. An oceanic plateau is much less likely to cause flat subduction, and favorable conditions for flat subduction include a young slab age, long-lived plateau buoyancy after subduction, a strong mantle, and addition of slab suction forces that are large enough to further reduce the subduction dip angle, once the plateau initiates this flattening. Furthermore, we found that even though today flat subduction can be explained with the dominant model parameters within a reasonable range, for a slightly hotter, younger Earth, these flat subduction conditions are much less favorable, and so this style of subduction was probably not present in the past. This contradicts earlier predictions that flat subduction was a more wide-spread phenomenon in the early stages of plate tectonics in a younger earth.

  13. Anisotropic Diffusion Despeckling for High Resolution SAR Images

    DTIC Science & Technology

    2004-11-01

    Chiang Mai , Thailand 323 Data Processing B-4.2 Anisotropic Diffusion Despeckling for High...18 324 25th ACRS 2004 Chiang Mai , Thailand B-4.2 Data Processing 2 NONLINEAR DIFFUSION FILTERING 2.1...edge-enhancing diffusion model is adopted. |)(|1 σϕ ug ∇= 2.02 =ϕ (4) 25th ACRS 2004 Chiang Mai , Thailand 325 Data

  14. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    DTIC Science & Technology

    2015-03-01

    interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  15. Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong

    2017-12-01

    In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.

  16. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  17. Effect of the As-Forged and Heat-Treated Microstructure on the Room Temperature Anisotropic Ductile Fracture of Inconel 718

    NASA Astrophysics Data System (ADS)

    Teimouri, Javad; Hosseini, Seyed Rahman; Farmanesh, Khosro

    2018-05-01

    The purpose of the present work was to investigate the effect of primary carbides and the δ-phase on the anisotropic ductile fracture of Inconel 718 in the forging process. Inconel 718 alloys were prepared by VIM + VAR processes with various carbon contents (0.009 and 0.027 wt.%). Then, the alloys were forged and annealed at temperatures of 980 and 1030 °C. The room temperature mechanical anisotropy of the alloys was evaluated at the longitudinal direction (LD) and transverse direction (TD). Tensile and impact tests were used to characterize the mechanical properties of the specimens. The microstructural characterization and the fractography of the alloys were carried out by FE-SEM. The obtained results showed that the fracture strain and the impact energy in the TD were 30-50% lower than the LD. The fracture was accelerated by the δ-phase, leading to the reduction of impact energy in the longitudinal and the lateral directions up to 50%. The low-carbon alloy indicated similar characteristics in both the LD and the TD. Aligned carbides changed the fracture path from a zigzag path in the LD to a fibrous path in the TD, while the δ-phase created a flat fracture path. The shear lip area ratio in the tensile fracture cross section was decreased by reducing ductility.

  18. Effect of the As-Forged and Heat-Treated Microstructure on the Room Temperature Anisotropic Ductile Fracture of Inconel 718

    NASA Astrophysics Data System (ADS)

    Teimouri, Javad; Hosseini, Seyed Rahman; Farmanesh, Khosro

    2018-04-01

    The purpose of the present work was to investigate the effect of primary carbides and the δ-phase on the anisotropic ductile fracture of Inconel 718 in the forging process. Inconel 718 alloys were prepared by VIM + VAR processes with various carbon contents (0.009 and 0.027 wt.%). Then, the alloys were forged and annealed at temperatures of 980 and 1030 °C. The room temperature mechanical anisotropy of the alloys was evaluated at the longitudinal direction (LD) and transverse direction (TD). Tensile and impact tests were used to characterize the mechanical properties of the specimens. The microstructural characterization and the fractography of the alloys were carried out by FE-SEM. The obtained results showed that the fracture strain and the impact energy in the TD were 30-50% lower than the LD. The fracture was accelerated by the δ-phase, leading to the reduction of impact energy in the longitudinal and the lateral directions up to 50%. The low-carbon alloy indicated similar characteristics in both the LD and the TD. Aligned carbides changed the fracture path from a zigzag path in the LD to a fibrous path in the TD, while the δ-phase created a flat fracture path. The shear lip area ratio in the tensile fracture cross section was decreased by reducing ductility.

  19. Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang

    2018-06-01

    Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.

  20. An anisotropic thermal-stress model for through-silicon via

    NASA Astrophysics Data System (ADS)

    Liu, Song; Shan, Guangbao

    2018-02-01

    A two-dimensional thermal-stress model of through-silicon via (TSV) is proposed considering the anisotropic elastic property of the silicon substrate. By using the complex variable approach, the distribution of thermal-stress in the substrate can be characterized more accurately. TCAD 3-D simulations are used to verify the model accuracy and well agree with analytical results (< ±5%). The proposed thermal-stress model can be integrated into stress-driven design flow for 3-D IC , leading to the more accurate timing analysis considering the thermal-stress effect. Project supported by the Aerospace Advanced Manufacturing Technology Research Joint Fund (No. U1537208).

  1. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  2. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials.

    PubMed

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; García-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-16

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  3. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  4. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives better results compared to observations.

  5. Anisotropic Bianchi type-III model in Palatini f (R) gravity

    NASA Astrophysics Data System (ADS)

    Banik, Debika Kangsha; Banik, Sebika Kangsha; Bhuyan, Kalyan

    2017-03-01

    We derive exact solutions for anisotropic Bianchi type-III cosmological model in the Palatini formalism of f (R) gravity using Dynamical System Approach. For the f (R) of the form f(R) =R-β /Rn and f(R) =R+α Rm , we have found the fixed points describing the radiation-dominated, matter dominated and de Sitter evolution periods. Fixed points have also been found which have non-vanishing shear playing a very significant role in describing the anisotropy present in the early universe. In addition, we have also found that the spatial curvature affect isotropisation of this cosmological model.

  6. Properties of Vector Preisach Models

    NASA Technical Reports Server (NTRS)

    Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della

    2004-01-01

    This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.

  7. Variation of yield loci in finite element analysis by considering texture evolution for AA5042 aluminum sheets

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan

    2013-12-01

    Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.

  8. Modeling of DNA-Mediated Self-Assembly from Anisotropic Nanoparticles: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Millan, Jaime; Girard, Martin; Brodin, Jeffrey; O'Brien, Matt; Mirkin, Chad; Olvera de La Cruz, Monica

    The programmable selectivity of DNA recognition constitutes an elegant scheme to self-assemble a rich variety of superlattices from versatile nanoscale building blocks, where the natural interactions between building blocks are traded by complementary DNA hybridization interactions. Recently, we introduced and validated a scale-accurate coarse-grained model for a molecular dynamics approach that captures the dynamic nature of DNA hybridization events and reproduces the experimentally-observed crystallization behavior of various mixtures of spherical DNA-modified nanoparticles. Here, we have extended this model to robustly reproduce the assembly of nanoparticles with the anisotropic shapes observed experimentally. In particular, we are interested in two different particle types: (i) regular shapes, namely the cubic and octahedral polyhedra shapes commonly observed in gold nanoparticles, and (ii) irregular shapes akin to those exhibited by enzymes. Anisotropy in shape can provide an analog to the atomic orbitals exhibited by conventional atomic crystals. We present results for the assembly of enzymes or anisotropic nanoparticles and the co-assembly of enzymes and nanoparticles.

  9. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model

    NASA Astrophysics Data System (ADS)

    Cui, Shuai; Cao, Jun-Peng; Fan, Heng; Amico, Luigi

    2017-05-01

    We introduce the anisotropic two-photon Rabi model in which the rotating and counter rotating terms enters the Hamiltonian with two different coupling constants. Eigenvalues and eigenvectors are studied with exact means. We employ a variation of the Braak method based on Bogolubov rotation of the underlying su(1, 1) Lie algebra. Accordingly, the spectrum is provided by the analytical properties of a suitable meromorphic function. Our formalism applies to the two-modes Rabi model as well, sharing the same algebraic structure of the two-photon model. Through the analysis of the spectrum, we discover that the model displays close analogies to many-body systems undergoing quantum phase transitions.

  11. Weak field equations and generalized FRW cosmology on the tangent Lorentz bundle

    NASA Astrophysics Data System (ADS)

    Triantafyllopoulos, A.; Stavrinos, P. C.

    2018-04-01

    We study field equations for a weak anisotropic model on the tangent Lorentz bundle TM of a spacetime manifold. A geometrical extension of general relativity (GR) is considered by introducing the concept of local anisotropy, i.e. a direct dependence of geometrical quantities on observer 4‑velocity. In this approach, we consider a metric on TM as the sum of an h-Riemannian metric structure and a weak anisotropic perturbation, field equations with extra terms are obtained for this model. As well, extended Raychaudhuri equations are studied in the framework of Finsler-like extensions. Canonical momentum and mass-shell equation are also generalized in relation to their GR counterparts. Quantization of the mass-shell equation leads to a generalization of the Klein–Gordon equation and dispersion relation for a scalar field. In this model the accelerated expansion of the universe can be attributed to the geometry itself. A cosmological bounce is modeled with the introduction of an anisotropic scalar field. Also, the electromagnetic field equations are directly incorporated in this framework.

  12. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics.

    PubMed

    Riveros, Fabián; Chandra, Santanu; Finol, Ender A; Gasser, T Christian; Rodriguez, Jose F

    2013-04-01

    Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However, patient-specific AAA models are generated from gated medical images in which the artery is under pressure. Therefore, identification of the AAA zero pressure geometry would allow for a more realistic estimate of the aneurysmal wall mechanics. This study proposes a novel iterative algorithm to find the zero pressure geometry of patient-specific AAA models. The methodology allows considering the anisotropic hyperelastic behavior of the aortic wall, its thickness and accounts for the presence of the intraluminal thrombus. Results on 12 patient-specific AAA geometric models indicate that the procedure is computational tractable and efficient, and preserves the global volume of the model. In addition, a comparison of the peak wall stress computed with the zero pressure and CT-based geometries during systole indicates that computations using CT-based geometric models underestimate the peak wall stress by 59 ± 64 and 47 ± 64 kPa for the isotropic and anisotropic material models of the arterial wall, respectively.

  13. Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI-medium

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, Stewart

    2008-09-01

    We formulate the derivatives of the phase and group velocities for each of the anisotropic parameters in a tilted transversely isotropic medium (TTI-medium). This is a common geological model in seismic exploration and has five elastic moduli or related Thomsen parameters and two orientation angles defining the axis of symmetry of the rock. We present two independent methods to compute the derivatives and examine the formulae with real anisotropic rocks. The formulations and numerical computations do not encounter any singularity problem when applied to the two quasi shear waves, which is a problem with other approaches. The two methods yield the same results, which show in a quantitative way the sensitivity behaviour of the phase and the group velocities to all of the elastic moduli or Thomsen's anisotropic parameters as well as the orientation angles in the 2D and 3D cases. One can recognize the dominant (strong effect) and weak (or 'dummy') parameters for the three seismic body-wave modes (qP, qSV, qSH) and their effective domains over the whole range of phase-slowness directions. These sensitivity patterns indicate the possibility of nonlinear kinematic inversion with the three wave modes for determining the anisotropic parameters and imaging an anisotropic medium.

  14. The role of anisotropic expansion for pulmonary acinar aerosol deposition

    PubMed Central

    Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613

  15. The role of anisotropic expansion for pulmonary acinar aerosol deposition.

    PubMed

    Hofemeier, Philipp; Sznitman, Josué

    2016-10-03

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (d p =0.005-5.0μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (d p ~0.5-0.75μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  17. Seismic receiver function interpretation: Ps splitting or anisotropic underplating?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Park, J. J.

    2016-12-01

    Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear-wave splitting of Moho P-to-s converted phases in receiver functions has often been used to infer crustal anisotropy. In addition to estimating birefringence directly, the harmonic variations of Moho Ps phases in delay times can be used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may localize at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is well constrained by intra-crust Ps conversions at high frequencies using harmonic decomposition of multiple-taper correlation receiver functions. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. Our results of ARU and KIP show that the harmonic behavior of Moho Ps phases can be explained by a uniformly anisotropic crust model at lower cut-off frequencies, but higher-resolution RF-signals reveal a thin, highly anisotropic layer at the base of the crust. Station LSA tells a similar story with a twist: a modest Ps birefringence is revealed at high frequencies to stem from multiple thin (5-10-km) layers of localized anisotropy within the middle crust, but no strongly-sheared basal layer is inferred. We suggest that the harmonic variation of Moho Ps phases should always be investigated as a result of anisotropic layering using RFs with frequency content above 1Hz, rather than simply reporting averaged anisotropy of the whole crust.

  18. Force balance and deformation characteristics of anisotropic Arctic sea ice (a high resolution study)

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Heorton, H. D.; Tsamados, M.

    2016-12-01

    The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.

  19. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  20. Dynamic analysis of rotor flex-structure based on nonlinear anisotropic shell models

    NASA Astrophysics Data System (ADS)

    Bauchau, Olivier A.; Chiang, Wuying

    1991-05-01

    In this paper an anisotropic shallow shell model is developed that accommodates transverse shearing deformations and arbitrarily large displacements and rotations, but strains are assumed to remain small. Two kinematic models are developed, the first using two DOF to locate the direction of the normal to the shell's midplane, the second using three. The latter model allows for an automatic compatibility of the shell model with beam models. The shell model is validated by comparing its predictions with several benchmark problems. In actual helicopter rotor blade problems, the shell model of the flex structure is shown to give very different results shown compared to beam models. The lead-lag and torsion modes in particular are strongly affected, whereas flapping modes seem to be less affected.

  1. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.

    PubMed

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-07

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  2. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches

    NASA Astrophysics Data System (ADS)

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-01

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  3. Architecture of the crust and uppermost mantle in the northern Canadian Cordillera from receiver functions

    NASA Astrophysics Data System (ADS)

    Tarayoun, Alizia; Audet, Pascal; Mazzotti, Stéphane; Ashoori, Azadeh

    2017-07-01

    The northern Canadian Cordillera (NCC) is an active orogenic belt in northwestern Canada characterized by deformed autochtonous and allochtonous structures that were emplaced in successive episodes of convergence since the Late Cretaceous. Seismicity and crustal deformation are concentrated along corridors located far (>200 to 800 km) from the convergent plate margin. Proposed geodynamic models require information on crust and mantle structure and strain history, which are poorly constrained. We calculate receiver functions using 66 broadband seismic stations within and around the NCC and process them to estimate Moho depth and P-to-S velocity ratio (Vp/Vs) of the Cordilleran crust. We also perform a harmonic decomposition to determine the anisotropy of the subsurface layers. From these results, we construct simple seismic velocity models at selected stations and simulate receiver function data to constrain crust and uppermost mantle structure and anisotropy. Our results indicate a relatively flat and sharp Moho at 32 ± 2 km depth and crustal Vp/Vs of 1.75 ± 0.05. Seismic anisotropy is pervasive in the upper crust and within a thin ( 10-15 km thick) sub-Moho layer. The modeled plunging slow axis of hexagonal symmetry of the upper crustal anisotropic layer may reflect the presence of fractures or mica-rich mylonites. The subhorizontal fast axis of hexagonal anisotropy within the sub-Moho layer is generally consistent with the SE-NW orientation of large-scale tectonic structures. These results allow us to revise the geodynamic models proposed to explain active deformation within the NCC.

  4. Stopping power of an electron gas with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  5. MHz gravitational waves from short-term anisotropic inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Asuka; Soda, Jiro

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  6. Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones

    NASA Astrophysics Data System (ADS)

    Trescher, Maximilian; Sbierski, Björn; Brouwer, Piet W.; Bergholtz, Emil J.

    2015-03-01

    We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in the absence of certain discrete symmetries, such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conductance g , but leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g and F . Since F is a universal number in many other situations, this finding is remarkable. We apply our general considerations to specific lattice models of strained graphene and a pyrochlore Weyl semimetal.

  7. Intercalation Dynamics in Lithium-Ion Batteries

    DTIC Science & Technology

    2009-09-01

    When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4 , this model predicts phase-transformation waves between the...new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic mate- rials such as LiFePO4 ...93 6.3.5 Relevance to LiFePO4 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.6 Wave propagation

  8. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  9. Planck 2015 results. XVIII. Background geometry and topology of the Universe

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Feeney, S.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McEwen, J. D.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highestquality full-sky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible non-trivial topology with a fundamental domain that intersects, or nearly intersects, the last-scattering surface (at comoving distance χrec), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the last-scattering surface. The limits on the radius ℛI of the largest sphere inscribed in the fundamental domain (at log-likelihood ratio Δlnℒ > -5 relative to a simply-connected flat Planck best-fit model) are: ℛI > 0.97 χrec for the T3 cubic torus; and ℛI > 0.56 χrec for the T1 slab. The limit for the T3 cubic torus from the matched-circles search is numerically equivalent, ℛI > 0.97 χrec at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of log-evidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of -0.10 ± 0.04 compared to the value of + 1 if the model were to be correct. In the physically motivated setting, where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (ω/H)0 < 7.6 × 10-10 (95% CL).

  10. Three-dimensional forward modeling and inversion of marine CSEM data in anisotropic conductivity structures

    NASA Astrophysics Data System (ADS)

    Han, B.; Li, Y.

    2016-12-01

    We present a three-dimensional (3D) forward and inverse modeling code for marine controlled-source electromagnetic (CSEM) surveys in anisotropic media. The forward solution is based on a primary/secondary field approach, in which secondary fields are solved using a staggered finite-volume (FV) method and primary fields are solved for 1D isotropic background models analytically. It is shown that it is rather straightforward to extend the isotopic 3D FV algorithm to a triaxial anisotropic one, while additional coefficients are required to account for full tensor conductivity. To solve the linear system resulting from FV discretization of Maxwell' s equations, both iterative Krylov solvers (e.g. BiCGSTAB) and direct solvers (e.g. MUMPS) have been implemented, makes the code flexible for different computing platforms and different problems. For iterative soloutions, the linear system in terms of electromagnetic potentials (A-Phi) is used to precondition the original linear system, transforming the discretized Curl-Curl equations to discretized Laplace-like equations, thus much more favorable numerical properties can be obtained. Numerical experiments suggest that this A-Phi preconditioner can dramatically improve the convergence rate of an iterative solver and high accuracy can be achieved without divergence correction even for low frequencies. To efficiently calculate the sensitivities, i.e. the derivatives of CSEM data with respect to tensor conductivity, the adjoint method is employed. For inverse modeling, triaxial anisotropy is taken into account. Since the number of model parameters to be resolved of triaxial anisotropic medias is twice or thrice that of isotropic medias, the data-space version of the Gauss-Newton (GN) minimization method is preferred due to its lower computational cost compared with the traditional model-space GN method. We demonstrate the effectiveness of the code with synthetic examples.

  11. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    NASA Astrophysics Data System (ADS)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  12. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    PubMed Central

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  13. Microfabricated instrument for tissue biopsy and analysis

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    2001-01-01

    A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate.

  14. Stringy Toda cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaloper, N.

    We discuss a particular stringy modular cosmology with two axion fields in seven space-time dimensions, decomposable as a time and two flat three-spaces. The effective equations of motion for the problem are those of the SU(3) Toda molecule and, hence, are integrable. We write down the solutions, and show that all of them are singular. They can be thought of as a generalization of the pre-big-bang cosmology with excited internal degrees of freedom, and still suffering from the graceful exit problem. Some of the solutions, however, show a rather unexpected property: some of their spatial sections shrink to a pointmore » in spite of winding modes wrapped around them. We also comment how more general, anisotropic solutions, with fewer Killing symmetries, can be obtained with the help of STU dualities. {copyright} {ital 1997} {ital The American Physical Society}« less

  15. Anisotropic structure of the mantle wedge beneath the Ryukyu arc from teleseismic receiver function analysis

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Wirth, E. A.; Long, M. D.

    2011-12-01

    The recycling of oceanic plates back into the mantle through subduction is an important process taking place within our planet. However, many fundamental aspects of subduction systems, such as the dynamics of mantle flow, have yet to be completely understood. Subducting slabs transport water down into the mantle, but how and where that water is released, as well as how it affects mantle flow, is still an open question. In this study, we focus on the Ryukyu subduction zone in southwestern Japan and use anisotropic receiver function analysis to characterize the structure of the mantle wedge. We compute radial and transverse P-to-S receiver functions for eight stations of the broadband F-net array using a multitaper receiver function estimator. We observe coherent P-to-SV converted energy in the radial receiver functions at ~6 sec for most of the stations analyzed consistent with conversions originating at the top of the slab. We also observe conversions on the transverse receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. The character of the transverse receiver functions varies significantly along strike, with the northernmost three stations exhibiting markedly different behavior than stations located in the center of the Ryukyu arc. We compute synthetic receiver functions using a forward modeling scheme that can handle dipping interfaces and anisotropic layers to create models for the depths, thicknesses, and strengths of anisotropic layers in the mantle wedge beneath Ryukyu.

  16. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  17. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    PubMed Central

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, E.; Gupta, S.

    This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at themore » geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules.« less

  19. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  20. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  1. Overview of thermal conductivity models of anisotropic thermal insulation materials

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  2. Seismic anisotropy of the upper mantle beneath Fennoscandia - Preliminary results of anisotropic tomography with novel code AniTomo

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi; Vecsey, Ludek; Babuska, Vladislav

    2016-04-01

    Seismological investigations of the continental mantle lithosphere, particularly its anisotropic structure, advance our understanding of plate tectonics and formation of continents. Orientation of the anisotropic fabrics reflect stress field during the lithosphere origin and its later deformations. We process teleseismic body waves recorded during passive seismic experiments SVEKALAPKO (1998-1999) and LAPNET (2007-2009), deployed in the south-central and northern Fennoscandia, around the contact of the Archean and Proterozoic parts of the shield, to retrieve both anisotropic and isotropic velocity images of the upper mantle. Standard isotropic teleseismic P-wave tomography distinguishes two major regions of the mantle lithosphere in the northern part of Fennoscandia, boundary of which follows the surface trace of the Baltic-Bothnia Megashear Zone (BBZ). Apart from that, joint interpretation of lateral variations of anisotropic P- and SKS-wave pattern detected domains of mantle lithosphere with differently oriented anisotropic fabrics within those two regions (Vecsey et al., Tectonophysics, 2007; Plomerova et al., Solid Earth, 2011). The retrieved anisotropy reflects fossil fabrics of the mantle lithosphere (Babuska and Plomerova, Phys. Earth Planet. Int., 2006). The contact of the Proterozoic and Archean Fennoscandia appears as a broad transition in the south-central Fennoscandia (Vecsey et al., Tectonophysics, 2007), while the contact seems to be more distinct towards the north. We have developed a novel code (AniTomo) that allows us to invert relative P-wave travel time residuals for coupled isotropic-anisotropic P-wave velocity models assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D. The code was successfully tested on synthetic data and here we present results of its first application to real data. The region of Fennoscandia seems to be a right choice for the first calculation of anisotropic tomography with the new code as this Precambrian region is tectonicly stable and it has thick anisotropic mantle lithosphere (Plomerova and Babuska, Lithos, 2010) without significant thermal heterogeneities.

  3. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    NASA Astrophysics Data System (ADS)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  4. Optimal design of high temperature metalized thin-film polymer capacitors: A combined numerical and experimental method

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei

    2017-07-01

    The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.

  5. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for anisotropic ray tracing. x. Chapter 4 presents the data reduction of the P matrix of a crystal waveplate. The diattenuation is embedded in the singular values of P. The retardance is divided into two parts: (A) The physical retardance induced by OPLs and surface interactions, and (B) the geometrical transformation induced by geometry of a ray path, which is calculated by the geometrical transform Q matrix. The Q matrix of an anisotropic intercept is derived from the generalization of s- and p-bases at the anisotropic intercept; the p basis is not confined to the plane of incidence due to the anisotropic refraction or reflection. Chapter 5 shows how the multiple P matrices associated with the eigenmodes resulting from propagation through multiple anisotropic surfaces can be combined into one P matrix when the multiple modes interfere in their overlapping regions. The resultant P matrix contains diattenuation induced at each surface interaction as well as the retardance due to ray propagation and total internal reflections. The polarization aberrations of crystal waveplates and crystal polarizers are studied in Chapter 6 and Chapter 7. A wavefront simulated by a grid of rays is traced through the anisotropic system and the resultant grid of rays is analyzed. The analysis is complicated by the ray doubling effects and the partially overlapping eigen-wavefronts propagating in various directions. The wavefront and polarization aberrations of each eigenmode can be evaluated from the electric field distributions. The overall polarization at the plane of interest or the image quality at the image plane are affected by each of these eigen-wavefronts. Isotropic materials become anisotropic due to stress, strain, or applied electric or magnetic fields. In Chapter 8, the P matrix for anisotropic materials is extended to ray tracing in stress birefringent materials which are treated as spatially varying anisotropic materials. Such simulations can predict the spatial retardance variation throughout the stressed optical component and its effects on the point spread function and modulation transfer function for different incident polarizations. The anisotropic extension of the P matrix also applies to other anisotropic optical components, such as anisotropic diffractive optical elements and anisotropic thin films. It systematically keeps track of polarization transformation in 3D global Cartesian coordinates of a ray propagating through series of anisotropic and isotropic optical components with arbitrary orientations. The polarization ray tracing calculus with this generalized P matrix provides a powerful tool for optical ray trace and allows comprehensive analysis of complex optical system. (Abstract shortened by UMI.).

  6. Crustal anisotropy along the North Anatolian Fault Zone from receiver functions

    NASA Astrophysics Data System (ADS)

    Licciardi, Andrea; Eken, Tuna; Taymaz, Tuncay; Piana Agostinetti, Nicola; Yolsal-Çevikbilen, Seda; Tilmann, Frederik

    2016-04-01

    The North Anatolian Fault Zone (NAFZ) that is considered to be one of the largest plate-bounding transform faults separates the Anatolian Plate to the south from the Eurasian Plate to the north. A proper estimation of the crustal anisotropy in the area is a key point to understand the present and past tectonic processes associated with the plate boundary as well as for assessing its strength and stability. In this work we used data from the North Anatolian Fault (NAF) passive seismic experiment in order to retrieve the anisotropic properties of the crust by means of the receiver function (RF) method. This approach provides robust constraints on the location at depth of anisotropic bodies compared to other seismological tools like S-waves splitting observations where anisotropic parameters are obtained through a path-integrated measurement process over depth. We computed RFs from teleseismic events, for 39 stations with a recording period of nearly 2 years, providing an excellent azimuthal coverage. The observed azimuthal variations in amplitudes and delay times on the Radial and Transverse RF indicate the presence of anisotropy in the crust. Isotropic and anisotropic effects on the RFs are analyzed separately after harmonic decomposition of the RF dataset (Bianchi et al. 2010). Pseudo 2D profiles are built to observe both the seismic isotropic structure and the depth-dependent lateral variations of crustal anisotropy in the area, including orientation of the symmetry axis. Preliminary results show that the isotropic structure is characterized by a complex crustal setting above a nearly flat Moho at a depth of ~40 km in the central portion of the studied area. Strong anisotropy is present in the upper crust along some portions of the NAFZ and the Ezinepazari-Sungurlu Fault (ESF), with a strong correlation between the orientation of the symmetry axis of anisotropy and the strike of the main geological structures. More complex patterns of anisotropy are present in the middle and lower crust as well as in the upper mantle. Bianchi, I., J. Park, N. Piana Agostinetti, and V. Levin (2010), Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy, J. Geophys. Res., 115, B12317, doi:10.1029/2009JB007061.

  7. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.

    PubMed

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael

    2016-10-15

    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate. Such structures are characterised by a high and adjustable porosity, accompanied by distinct stiffness in fibre direction. The present article describes for the first time a fully biodegradable flock scaffold, solely made of chitosan. Utilisation of only one material for manufacturing of flock substrate, adhesive and fibres allow a uniform degradation of the whole construct. Such a new type of scaffold can be of great interest for a variety of biomedical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sousa, J. Ricardo de

    A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.

  9. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  10. Multi-Physics MRI-Based Two-Layer Fluid-Structure Interaction Anisotropic Models of Human Right and Left Ventricles with Different Patch Materials: Cardiac Function Assessment and Mechanical Stress Analysis

    PubMed Central

    Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; del Nido, Pedro J.

    2011-01-01

    Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. PMID:21765559

  11. Biologically Inspired, Anisoptropic Flexible Wing for Optimal Flapping Flight

    DTIC Science & Technology

    2013-01-31

    Anisotropic Flexible Wing for Optimal Flapping Flight FA9550-07-1-0547 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER...anisotropic structural flexibility ; c) Conducted coordinated experimental and computational modeling to determine the roles of aerodynamic loading, wing inertia...and structural flexibility and elasticity; and d) Developed surrogate tools for flapping wing MA V design and optimization. Detailed research

  12. Influence of kondo effect on the specific heat jump of anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.

  13. Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Graham, Scott E.

    2002-01-01

    The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

  14. Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films

    NASA Astrophysics Data System (ADS)

    Trajanovic, Zoran

    1997-12-01

    Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates for achieving such films are also discussed.

  15. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  16. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  17. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  18. Conceptualization and calibration of anisotropic, dynamic alluvial systems: Pitfalls and biases in current modelling practices

    NASA Astrophysics Data System (ADS)

    Gianni, Guillaume; Doherty, John; Perrochet, Pierre; Brunner, Philip

    2017-04-01

    Physical properties of alluvial environments are typically featuring a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. A literature review on current modelling practice shows that hydrogeological models are often calibrated using isotropic hydraulic conductivity fields and steady state conditions. We aim at understanding how these simplifications affect the predictions of hydraulic heads and exchange fluxes using fully coupled, physically based synthetic models and advanced calibration approaches. Specifically, we present an analysis of the information content provided by averaged, steady state hydraulic data compared to transient data with respect to the determination of aquifer hydraulic properties. We show that the information content in average hydraulic heads is insufficient to inform anisotropic properties of alluvial aquifers and can lead to important biases on the calibrated parameters. We further explore the consequences of these biases on predictions of fluxes and water table dynamics. The results of this synthetic analysis are considered in the calibration of a highly dynamic and anisotropic alluvial aquifer system in Switzerland (the Rhône River). The results of the synthetic and real-world modelling and calibration exercises provide insight on future data acquisition, modelling and calibration strategies for these environments.

  19. Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu

    2017-11-01

    The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.

  20. 77 FR 16892 - BMW of North America, LLC, Grant of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... certain BMW vehicles equipped with ``run-flat'' tires do not fully comply with paragraphs S4.3(c) and S4.3... equipped with ``run flat'' tires are affected. The affected vehicle models are certain: Model Year 2008... equipped with ``run-flat'' tires and have no spare tire, the word ``none,'' as required by paragraphs S4.3...

  1. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part II locally re-suspended sediment dynamics

    NASA Astrophysics Data System (ADS)

    Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang

    2017-11-01

    Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.

  2. Kinematic Model of Transient Shape-Induced Anisotropy in Dense Granular Flow

    NASA Astrophysics Data System (ADS)

    Nadler, B.; Guillard, F.; Einav, I.

    2018-05-01

    Nonspherical particles are ubiquitous in nature and industry, yet previous theoretical models of granular media are mostly limited to systems of spherical particles. The problem is that in systems of nonspherical anisotropic particles, dynamic particle alignment critically affects their mechanical response. To study the tendency of such particles to align, we propose a simple kinematic model that relates the flow to the evolution of particle alignment with respect to each other. The validity of the proposed model is supported by comparison with particle-based simulations for various particle shapes ranging from elongated rice-like (prolate) to flattened lentil-like (oblate) particles. The model shows good agreement with the simulations for both steady-state and transient responses, and advances the development of comprehensive constitutive models for shape-anisotropic particles.

  3. Anisotropic Rabi model

    NASA Astrophysics Data System (ADS)

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-04-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  4. Cold formability prediction by the modified maximum force criterion with a non-associated Hill48 model accounting for anisotropic hardening

    NASA Astrophysics Data System (ADS)

    Lian, J.; Ahn, D. C.; Chae, D. C.; Münstermann, S.; Bleck, W.

    2016-08-01

    Experimental and numerical investigations on the characterisation and prediction of cold formability of a ferritic steel sheet are performed in this study. Tensile tests and Nakajima tests were performed for the plasticity characterisation and the forming limit diagram determination. In the numerical prediction, the modified maximum force criterion is selected as the localisation criterion. For the plasticity model, a non-associated formulation of the Hill48 model is employed. With the non-associated flow rule, the model can result in a similar predictive capability of stress and r-value directionality to the advanced non-quadratic associated models. To accurately characterise the anisotropy evolution during hardening, the anisotropic hardening is also calibrated and implemented into the model for the prediction of the formability.

  5. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a significant challenge but is highly desirable. Concurrent advances in computer technology and our understanding of human physiology must be utilised to produce more accurate and accessible predictive models, such as the finite element model described in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    NASA Astrophysics Data System (ADS)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to the stream-bank.

  7. Finite frequency shear wave splitting tomography: a model space search approach

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  8. Propagation of Galactic cosmic rays: the influence of anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    AL-Zetoun, A.; Achterberg, A.

    2018-06-01

    We consider the anisotropic diffusion of cosmic rays in the large-scale Galactic magnetic field, where diffusion along the field and diffusion across the field proceeds at different rates. To calculate this diffusion, we use stochastic differential equations to describe the cosmic ray propagation, solving these numerically. The Galactic magnetic field is described using the Jansson-Farrar model for the Galactic magnetic field. In this paper, we study the influence of perpendicular diffusion on the residence time of cosmic rays in the Galaxy. This provides an estimate for the influence of anisotropic diffusion on the residence time and the amount of matter (grammage) that a typical cosmic ray traverses during its residence in the Galaxy.

  9. Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes.

    PubMed

    Lado Touriño, Isabel; Naranjo, Arisbel Cerpa; Negri, Viviana; Cerdán, Sebastián; Ballesteros, Paloma

    2015-11-01

    Computational modeling of the translational diffusion of water molecules in anisotropic environments entails vital relevance to understand correctly the information contained in the magnetic resonance images weighted in diffusion (DWI) and of the diffusion tensor images (DTI). In the present work we investigated the validity, strengths and weaknesses of a coarse-grained (CG) model based on the MARTINI force field to simulate water diffusion in a medium containing carbon nanotubes (CNTs) as models of anisotropic water diffusion behavior. We show that water diffusion outside the nanotubes follows Ficḱs law, while water diffusion inside the nanotubes is not described by a Ficḱs behavior. We report on the influence on water diffusion of various parameters such as length and concentration of CNTs, comparing the CG results with those obtained from the more accurate classic force field calculation, like the all-atom approach. Calculated water diffusion coefficients decreased in the presence of nanotubes in a concentration dependent manner. We also observed smaller water diffusion coefficients for longer CNTs. Using the CG methodology we were able to demonstrate anisotropic diffusion of water inside the nanotube scaffold, but we could not prove anisotropy in the surrounding medium, suggesting that grouping several water molecules in a single diffusing unit may affect the diffusional anisotropy calculated. The methodologies investigated in this work represent a first step towards the study of more complex models, including anisotropic cohorts of CNTs or even neuronal axons, with reasonable savings in computation time. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng

    2017-05-01

    Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.

  11. Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Walker, Steven A.; Santos Koos, Lindsey M.

    2015-04-01

    The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS. At LEO, ISS encounters exposure from trapped electrons, protons and geomagnetically attenuated galactic cosmic rays (GCR). For short duration studies at LEO, one can ignore trapped electrons and ever present GCR exposure contributions during quiet times. However, within the trapped proton field, a challenge arises from properly estimating the amount of proton exposure acquired. There exist a number of models to define the intensity of trapped particles. Among the established trapped models are the historic AE8/AP8, dating back to the 1980s and the recently released AE9/AP9/SPM. Since at LEO electrons have minimal exposure contribution to ISS, this work ignores the AE8 and AE9 components of the models and couples a measurement derived anisotropic trapped proton formalism to omnidirectional output from the AP8 and AP9 models, allowing the assessment of the differences between the two proton models. The assessment is done at a target point within the ISS-11A configuration (circa 2003) crew quarter (CQ) of Russian Zvezda service module (SM), during its ascending and descending nodes passes through the south Atlantic anomaly (SAA). The anisotropic formalism incorporates the contributions of proton narrow pitch angle (PA) and east-west (EW) effects. Within SAA, the EW anisotropy results in different level of exposure to each side of the ISS Zvezda SM, allowing angular evaluation of the anisotropic proton spectrum. While the combined magnitude of PA and EW effects at LEO depends on a multitude of factors such as trapped proton energy, orientation and altitude of the spacecraft along the velocity vector, this paper draws quantitative conclusions on the combined anisotropic magnitude differences within ISS SM target point between AP8 and AP9 models.

  12. Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models.

    PubMed

    Badavi, Francis F; Walker, Steven A; Santos Koos, Lindsey M

    2015-04-01

    The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS. At LEO, ISS encounters exposure from trapped electrons, protons and geomagnetically attenuated galactic cosmic rays (GCR). For short duration studies at LEO, one can ignore trapped electrons and ever present GCR exposure contributions during quiet times. However, within the trapped proton field, a challenge arises from properly estimating the amount of proton exposure acquired. There exist a number of models to define the intensity of trapped particles. Among the established trapped models are the historic AE8/AP8, dating back to the 1980s and the recently released AE9/AP9/SPM. Since at LEO electrons have minimal exposure contribution to ISS, this work ignores the AE8 and AE9 components of the models and couples a measurement derived anisotropic trapped proton formalism to omnidirectional output from the AP8 and AP9 models, allowing the assessment of the differences between the two proton models. The assessment is done at a target point within the ISS-11A configuration (circa 2003) crew quarter (CQ) of Russian Zvezda service module (SM), during its ascending and descending nodes passes through the south Atlantic anomaly (SAA). The anisotropic formalism incorporates the contributions of proton narrow pitch angle (PA) and east-west (EW) effects. Within SAA, the EW anisotropy results in different level of exposure to each side of the ISS Zvezda SM, allowing angular evaluation of the anisotropic proton spectrum. While the combined magnitude of PA and EW effects at LEO depends on a multitude of factors such as trapped proton energy, orientation and altitude of the spacecraft along the velocity vector, this paper draws quantitative conclusions on the combined anisotropic magnitude differences within ISS SM target point between AP8 and AP9 models. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  13. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  14. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    PubMed

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

  15. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures.

    PubMed

    Filippov, Alexander E; Gorb, Stanislav N

    2016-03-23

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate.

  16. Effect of Evolutionary Anisotropy on Earing Prediction in Cylindrical Cup Drawing

    NASA Astrophysics Data System (ADS)

    Choi, H. J.; Lee, K. J.; Choi, Y.; Bae, G.; Ahn, D.-C.; Lee, M.-G.

    2017-05-01

    The formability of sheet metals is associated with their planar anisotropy, and finite element simulations have been applied to the sheet metal-forming process by describing the anisotropic behaviors using yield functions and hardening models. In this study, the evaluation of anisotropic constitutive models was performed based on the non-uniform height profile or earing in circular cylindrical cup drawing. Two yield functions, a quadratic Hill1948 and a non-quadratic Yld2000-2d model, were used under non-associated and associated flow rules, respectively, to simultaneously capture directional differences in yield stress and r value. The effect of the evolution of anisotropy on the earing prediction was also investigated by employing simplified equivalent plastic strain rate-dependent anisotropic coefficients. The computational results were in good agreement with experiments when the proper choice of the yield function and flow rule, which predicts the planar anisotropy, was made. Moreover, the accuracy of the earing profile could be significantly enhanced if the evolution of anisotropy between uniaxial and biaxial stress states was additionally considered.

  17. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures

    PubMed Central

    Filippov, Alexander E.; Gorb, Stanislav N.

    2016-01-01

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate. PMID:27005001

  18. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures

    NASA Astrophysics Data System (ADS)

    Filippov, Alexander E.; Gorb, Stanislav N.

    2016-03-01

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate.

  19. The influence of groundwater depth on coastal dune development at sand flats close to inlets

    NASA Astrophysics Data System (ADS)

    Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.

    2018-05-01

    A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.

  20. Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Inoue, Michio

    The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.

  1. Ground states of baryoleptonic Q-balls in supersymmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  2. Geomorphic Modeling of Macro-Tidal Embayment with Extensive Tidal Flats: Skagit Bay, Washington

    DTIC Science & Technology

    2011-09-30

    tidal flats: Skagit Bay , Washington Lyle Hibler Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim , WA 98382 phone: (360) 681...3616 fax: (360) 681-4559 email: lyle.hibler@pnnl.gov Adam Maxwell Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim , WA...Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay , Washington 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  3. The super-NFW model: an analytic dynamical model for cold dark matter haloes and elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Evans, N. Wyn; Sanders, Jason L.

    2018-05-01

    An analytic galaxy model with ρ ˜ r-1 at small radii and ρ ˜ r-3.5 at large radii is presented. The asymptotic density fall-off is slower than the Hernquist model, but faster than the Navarro-Frenk-White (NFW) profile for dark matter haloes, and so in accord with recent evidence from cosmological simulations. The model provides the zeroth-order term in a biorthornomal basis function expansion, meaning that axisymmetric, triaxial, and lopsided distortions can easily be added (much like the Hernquist model itself which is the zeroth-order term of the Hernquist-Ostriker expansion). The properties of the spherical model, including analytic distribution functions which are either isotropic, radially anisotropic, or tangentially anisotropic, are discussed in some detail. The analogue of the mass-concentration relation for cosmological haloes is provided.

  4. Numerical modeling of Farallon Plate flat-slab subduction: Influence of lithosphere structure and rheology on slab dynamics

    NASA Astrophysics Data System (ADS)

    Liu, X.; Currie, C. A.

    2017-12-01

    The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.

  5. An Anisotropic Hardening Model for Springback Prediction

    NASA Astrophysics Data System (ADS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  6. Textured silicon nitride: processing and anisotropic properties

    PubMed Central

    Zhu, Xinwen; Sakka, Yoshio

    2008-01-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the same methods as those used for textured β-Si3N4 and β-Sialon. PMID:27877995

  7. Tissue Anisotropy Modeling Using Soft Composite Materials.

    PubMed

    Chanda, Arnab; Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.

  8. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.

    PubMed

    Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N

    2016-09-01

    Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tissue Anisotropy Modeling Using Soft Composite Materials

    PubMed Central

    Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996

  10. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam inclusions. Non-destructive acoustic excitation techniques were used to extract the material parameters of different grades of foam to identify the ideal grade for use in a multi-inclusion unit cell. Single inclusion and multi-inclusion bulk metamaterial samples were constructed and tested to characterize the effective material properties to determine if they exhibited the desired homogeneous anisotropic behavior. The single steel inclusion metamaterial behaved as expected, demonstrating anisotropic mass density and isotropic bulk modulus. Almost no sound energy was transmitted through the multi-inclusion metamaterial, contrary to expectation, because of the presence of air bubbles, both on the surface of the foam as well as potentially in between the inclusions. Finally, an underwater acoustic ground cloak was constructed from perforated steel plates and experimentally tested to conceal an object on a pressure release surface. The perforated plate acoustic ground cloak successfully cloaked the scattered object over a broad frequency range of 7 [kHz] to 12 [kHz]. There was excellent agreement between the phase of the surface reflection and the cloak reflection with a small amplitude difference attributed to the difference between a water - air and a water - mylar - air boundary. Above 15 [kHz], the cloaking performance decreased as the effective material parameters of the perforated plate metamaterial deviated from the required material parameters.

  11. Computational Design of Flat-Band Material.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2018-02-26

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  12. Computational Design of Flat-Band Material

    NASA Astrophysics Data System (ADS)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  13. Anisotropic wetting of microstructured surfaces as a function of surface chemistry.

    PubMed

    Neuhaus, Sonja; Spencer, Nicholas D; Padeste, Celestino

    2012-01-01

    In order to study the influence of surface chemistry on the wetting of structured surfaces, microstructures consisting of grooves or squares were produced via hot embossing of poly(ethylene-alt-tetrafluoroethylene) ETFE substrates. The structured substrates were modified with polymer brushes, thereby changing their surface functionality and wettability. Water droplets were most strongly pinned to the structure when the surface was moderately hydrophilic, as in the case of poly(4-vinylpyridine) (P4VP) or poly(vinyl(N-methyl-2-pyridone) (PVMP) brush-modified substrates. As a result, the droplet shape was determined by the features of the microstructure. The water contact angles (CA) were considerably higher than on flat surfaces and differed, in the most extreme case, by 37° when measured on grooved substrates, parallel and perpendicular to the grooves. On hydrophobic substrates (pristine ETFE), the same effects were observed but were much less pronounced. On very hydrophilic sampes (those modified with poly(N-methyl-vinylpyridinium) (QP4VP)), the microstructure had no influence on the drop shape. These findings are explained by significant differences in apparent and real contact angles at the relatively smooth edges of the embossed structures. Finally, the highly anisotropic grooved microstructure was combined with a gradient in polymer brush composition and wettability. In the case of a parallel alignment of the gradient direction to the grooves, the directed spreading of water droplets could be observed. © 2011 American Chemical Society

  14. Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.

    2015-12-01

    We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.

  15. Limiting cases of the small-angle scattering approximation solutions for the propagation of laser beams in anisotropic scattering media

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1981-01-01

    The propagation of photons in a medium with strongly anisotropic scattering is a problem with a considerable history. Like the propagation of electrons in metal foils, it may be solved in the small-angle scattering approximation by the use of Fourier-transform techniques. In certain limiting cases, one may even obtain analytic expressions. This paper presents some of these results in a model-independent form and also illustrates them by the use of four different phase-function models. Sample calculations are provided for comparison purposes

  16. Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

    NASA Astrophysics Data System (ADS)

    Najafi, A.; Hossienkhani, H.

    2017-10-01

    Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.

  17. A seal test facility for the measurement of isotropic and anisotropic linear rotordynamic characteristics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Yang, T.; Pace, S. E.

    1989-01-01

    A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.

  18. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model

    PubMed Central

    Zhang, Zhaoyan

    2014-01-01

    Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284

  19. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch

    PubMed Central

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M. L.; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G.

    2015-01-01

    Introduction Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. Methods hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. Results SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Conclusions Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch. PMID:25993466

  20. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch.

    PubMed

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M L; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G

    2015-01-01

    Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.

  1. Modelling, validation and analysis of a three-dimensional railway vehicle-track system model with linear and nonlinear track properties in the presence of wheel flats

    NASA Astrophysics Data System (ADS)

    Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.

    2013-11-01

    This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.

  2. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.

    PubMed

    Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi

    2009-07-20

    A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.

  3. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    PubMed

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to dynamically tune the highly ordered herringbone patterning through mechanical stretching or other actuation makes these wrinkles excellent candidates for tunable multifunctional surfaces properties such as reflectivity, friction, anisotropic liquid flow or boundary layer control.

  4. A physical interpretation of softening of pressure-sensitive and anisotropic materials

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wang, Z. R.

    2010-07-01

    Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.

  5. State-vector formalism and the Legendre polynomial solution for modelling guided waves in anisotropic plates

    NASA Astrophysics Data System (ADS)

    Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin

    2018-01-01

    We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.

  6. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.

    PubMed

    Ollila, O H Samuli; Heikkinen, Harri A; Iwaï, Hideo

    2018-06-14

    Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.

  7. Models of collapsing and expanding anisotropic gravitating source in f( R, T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ahmed, Riaz

    2017-07-01

    In this paper, we have formulated the exact solutions of the non-static anisotropic gravitating source in f( R, T) gravity which may lead to expansion and collapse. By assuming there to be no thermal conduction in gravitating source, we have determined parametric solutions in f( R, T) gravity with a non-static spherical geometry filled using an anisotropic fluid. We have examined the ranges of the parameters for which the expansion scalar becomes negative and positive, leading to collapse and expansion, respectively. Further, using the definition of the mass function, the conditions for the trapped surface have been explored, and it has been investigated that there exists a single horizon in this case. The impact of the coupling parameter λ has been discussed in detail in both cases. For the various values of the coupling parameter λ , we have plotted the energy density, anisotropic pressure and anisotropy parameter in the cases of collapse and expansion. The physical significance of the graphs has been explained in detail.

  8. A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.

    2015-09-01

    In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.

  9. Radial Anisotropy in the Mantle Transition Zone and Its Implications

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; Ferreira, A. M.

    2016-12-01

    Seismic anisotropy is a useful tool to investigate mantle flow, mantle convection, and the presence of melts in mantle, since it provides information on the direction of mantle flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost mantle with strong anisotropy have been well studied, anisotropic properties of the mantle transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the mantle transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.

  10. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  11. The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam

    2018-06-01

    We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.

  12. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    PubMed

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  13. Control of surface plasmon excitation via the scattering of light by a nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharov, A. A.; Zharov, A. A.; Zharova, N. A., E-mail: zhani@appl.sci-nnov.ru

    2016-07-15

    We study an excitation of surface plasmons (SPs) due to the scattering of light by a dipole nanoparticle located near a flat air–metal interface. It is well known that such a scattering can reveal asymmetric behavior of excited SPs with respect to the plane of incidence of light. This asymmetric SP excitation, which takes place at the incidence of elliptically polarized light, is often associated with the so-called photonic spin Hall effect caused by the interplay between rotating polarization of a nanoparticle and the intrinsic field angular momentum of the SP. We show that this photonic spin Hall effect canmore » be applied for the SP excitation control, which allows managing the SP directivity pattern and amplitude. The possibilities of SP control can also be extended using nanoparticles with anisotropic polarizability. We believe that manipulations with SPs at a nanometer scale may find some applications in modern nanoplasmonics.« less

  14. New insights into the opening band gap of graphene oxides

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa

    Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.

  15. Two-Equation Low-Reynolds-Number Turbulence Modeling of Transitional Boundary Layer Flows Characteristic of Gas Turbine Blades. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Schmidt, Rodney C.; Patankar, Suhas V.

    1988-01-01

    The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.

  16. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Ata, Metin; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A.; Bolton, Adam S.; Brownstein, Joel R.; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J.; Dawson, Kyle S.; Eisenstein, Daniel J.; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K.; Nichol, Robert C.; Olmstead, Matthew D.; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M.; Reid, Beth A.; Rodríguez-Torres, Sergio A.; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Satpathy, Siddharth; Schlegel, David J.; Schneider, Donald P.; Scóccola, Claudia G.; Seo, Hee-Jong; Sheldon, Erin S.; Simmons, Audrey; Slosar, Anže; Strauss, Michael A.; Swanson, Molly E. C.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A.; Wang, Yuting; Weinberg, David H.; White, Martin; Wood-Vasey, W. Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo

    2017-09-01

    We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ΩK = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = -1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 km s-1 Mpc-1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 km s-1 Mpc-1. Assuming flat ΛCDM, we find Ωm = 0.310 ± 0.005 and H0 = 67.6 ± 0.5 km s-1 Mpc-1, and we find a 95 per cent upper limit of 0.16 eV c-2 on the neutrino mass sum.

  17. Quality Test of Flexible Flat Cable (FFC) With Short Open Test Using Law Ohm Approach through Embedded Fuzzy Logic Based On Open Source Arduino Data Logger

    NASA Astrophysics Data System (ADS)

    Rohmanu, Ajar; Everhard, Yan

    2017-04-01

    A technological development, especially in the field of electronics is very fast. One of the developments in the electronics hardware device is Flexible Flat Cable (FFC), which serves as a media liaison between the main boards with other hardware parts. The production of Flexible Flat Cable (FFC) will go through the process of testing and measuring of the quality Flexible Flat Cable (FFC). Currently, the testing and measurement is still done manually by observing the Light Emitting Diode (LED) by the operator, so there were many problems. This study will be made of test quality Flexible Flat Cable (FFC) computationally utilize Open Source Embedded System. The method used is the measurement with Short Open Test method using Ohm’s Law approach to 4-wire (Kelvin) and fuzzy logic as a decision maker measurement results based on Open Source Arduino Data Logger. This system uses a sensor current INA219 as a sensor to read the voltage value thus obtained resistance value Flexible Flat Cable (FFC). To get a good system we will do the Black-box testing as well as testing the accuracy and precision with the standard deviation method. In testing the system using three models samples were obtained the test results in the form of standard deviation for the first model of 1.921 second model of 4.567 and 6.300 for the third model. While the value of the Standard Error of Mean (SEM) for the first model of the model 0.304 second at 0.736 and 0.996 of the third model. In testing this system, we will also obtain the average value of the measurement tolerance resistance values for the first model of - 3.50% 4.45% second model and the third model of 5.18% with the standard measurement of prisoners and improve productivity becomes 118.33%. From the results of the testing system is expected to improve the quality and productivity in the process of testing Flexible Flat Cable (FFC).

  18. A hydrostatic stress-dependent anisotropic model of viscoplasticity

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Tao, Q.; Verrilli, M. J.

    1994-01-01

    A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).

  19. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  20. A new anisotropic compact star model having Matese & Whitman mass function

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Ratanpal, B. S.

    2016-07-01

    Present paper proposed a new singularity free model of anisotropic compact star. The Einstein field equations are solved in closed form by utilizing Matese & Whitman mass function. The model parameters ρ, pr and pt all are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically acceptable. The model given in the present work is compatible with observational data of compact objects like SAX J 1808.4-3658 (SS1), SAX J 1808.4-3658 (SS2) and 4U 1820-30. A particular model of 4U 1820-30 is studied in detail and found that it satisfies all the condition needed for physically acceptable model. The present work is the generalization of Sharma and Ratanpal (Int. J. Mod. Phys. D 22:1350074, 2013) model for compact stars admitting quadratic equation of state.

  1. Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.

    PubMed

    Menzel, A

    2005-03-01

    In this contribution, we develop a theoretical and computational framework for anisotropic growth phenomena. As a key idea of the proposed phenomenological approach, a fibre or rather structural tensor is introduced, which allows the description of transversely isotropic material behaviour. Based on this additional argument, anisotropic growth is modelled via appropriate evolution equations for the fibre while volumetric remodelling is realised by an evolution of the referential density. Both the strength of the fibre as well as the density follow Wolff-type laws. We however elaborate on two different approaches for the evolution of the fibre direction, namely an alignment with respect to strain or with respect to stress. One of the main benefits of the developed framework is therefore the opportunity to address the evolutions of the fibre strength and the fibre direction separately. It is then straightforward to set up appropriate integration algorithms such that the developed framework fits nicely into common, finite element schemes. Finally, several numerical examples underline the applicability of the proposed formulation.

  2. Effects of electron pressure anisotropy on current sheet configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less

  3. Cutting process simulation of flat drill

    NASA Astrophysics Data System (ADS)

    Tamura, Shoichi; Matsumura, Takashi

    2018-05-01

    Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.

  4. Evidence for equivalence of diffusion processes of passive scalar and magnetic fields in anisotropic Navier-Stokes turbulence.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-05-01

    The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.

  5. The use of cross-section warping functions in composite rotor blade analysis

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1992-01-01

    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.

  6. Local conditions separating expansion from collapse in spherically symmetric models with anisotropic pressures

    NASA Astrophysics Data System (ADS)

    Mimoso, José P.; Le Delliou, Morgan; Mena, Filipe C.

    2013-08-01

    We investigate spherically symmetric spacetimes with an anisotropic fluid and discuss the existence and stability of a separating shell dividing expanding and collapsing regions. We resort to a 3+1 splitting and obtain gauge invariant conditions relating intrinsic spacetime quantities to properties of the matter source. We find that the separating shell is defined by a generalization of the Tolman-Oppenheimer-Volkoff equilibrium condition. The latter establishes a balance between the pressure gradients, both isotropic and anisotropic, and the strength of the fields induced by the Misner-Sharp mass inside the separating shell and by the pressure fluxes. This defines a local equilibrium condition, but conveys also a nonlocal character given the definition of the Misner-Sharp mass. By the same token, it is also a generalized thermodynamical equation of state as usually interpreted for the perfect fluid case, which now has the novel feature of involving both the isotropic and the anisotropic stresses. We have cast the governing equations in terms of local, gauge invariant quantities that are revealing of the role played by the anisotropic pressures and inhomogeneous electric part of the Weyl tensor. We analyze a particular solution with dust and radiation that provides an illustration of our conditions. In addition, our gauge invariant formalism not only encompasses the cracking process from Herrera and co-workers but also reveals transparently the interplay and importance of the shear and of the anisotropic stresses.

  7. Development and Implementation of a Transversely Isotropic Hyperelastic Constitutive Model With Two Fiber Families to Represent Anisotropic Soft Biological Tissues

    DTIC Science & Technology

    2014-06-01

    brain tissue and skeletal muscles , is also discussed. transversely isotropic hyperelastic, two fiber families, nearly incompressible, anisotropic...comprised of fibrous structures, such as muscles , ligaments, tendons, intervertebral discs and the brain, often exhibit strong anisotropy along these fiber ...directions, e.g., collagen fibers of the cornea, striated muscle fibers in skeletal muscles , multiple axonal directions within the brain. In each case

  8. Anisotropic adaptive mesh generation in two dimensions for CFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borouchaki, H.; Castro-Diaz, M.J.; George, P.L.

    This paper describes the extension of the classical Delaunay method in the case where anisotropic meshes are required such as in CFD when the modelized physic is strongly directional. The way in which such a mesh generation method can be incorporated in an adaptative loop of CFD as well as the case of multicriterium adaptation are discussed. Several concrete application examples are provided to illustrate the capabilities of the proposed method.

  9. Material Response Characterization

    DTIC Science & Technology

    1977-08-01

    models fit to vertical UX and TX data and a mean stress tension cutoff criterion. Because tests on the Kayenta sands one materials had revealed a definite...parameters. 9 This data characterizing the anisotropic response of the upper 30 feet of Kayenta material should not just be filed away; it should be used...9. Johnson, J. N., et al, "Anisotropic Mechanical Properties of Kayenta Sandstone (MIXED COMPANY Site) for Ground Motion Calculations," Terra Tek TR

  10. Phase field modeling of crack propagations in fluid-saturated porous media with anisotropic surface energy

    NASA Astrophysics Data System (ADS)

    Na, S.; Sun, W.; Yoon, H.; Choo, J.

    2016-12-01

    Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity.

    PubMed

    Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony

    2016-09-01

    This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement

    PubMed Central

    Jing, Peng; Nowamooz, Hossein; Chazallon, Cyrille

    2017-01-01

    Granular materials are often used in pavement structures. The influence of anisotropy on the mechanical behaviour of granular materials is very important. The coupled effects of water content and fine content usually lead to more complex anisotropic behaviour. With a repeated load triaxial test (RLTT), it is possible to measure the anisotropic deformation behaviour of granular materials. This article initially presents an experimental study of the resilient repeated load response of a compacted clayey natural sand with three fine contents and different water contents. Based on anisotropic behaviour, the non-linear resilient model (Boyce model) is improved by the radial anisotropy coefficient γ3 instead of the axial anisotropy coefficient γ1. The results from both approaches (γ1 and γ3) are compared with the measured volumetric and deviatoric responses. These results confirm the capacity of the improved model to capture the general trend of the experiments. Finally, finite element calculations are performed with CAST3M in order to validate the improvement of the modified Boyce model (from γ1 to γ3). The modelling results indicate that the modified Boyce model with γ3 is more widely available in different water contents and different fine contents for this granular material. Besides, based on the results, the coupled effects of water content and fine content on the deflection of the structures can also be observed. PMID:29207504

  13. Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement.

    PubMed

    Jing, Peng; Nowamooz, Hossein; Chazallon, Cyrille

    2017-12-03

    Granular materials are often used in pavement structures. The influence of anisotropy on the mechanical behaviour of granular materials is very important. The coupled effects of water content and fine content usually lead to more complex anisotropic behaviour. With a repeated load triaxial test (RLTT), it is possible to measure the anisotropic deformation behaviour of granular materials. This article initially presents an experimental study of the resilient repeated load response of a compacted clayey natural sand with three fine contents and different water contents. Based on anisotropic behaviour, the non-linear resilient model (Boyce model) is improved by the radial anisotropy coefficient γ ₃ instead of the axial anisotropy coefficient γ ₁. The results from both approaches ( γ ₁ and γ ₃) are compared with the measured volumetric and deviatoric responses. These results confirm the capacity of the improved model to capture the general trend of the experiments. Finally, finite element calculations are performed with CAST3M in order to validate the improvement of the modified Boyce model (from γ ₁ to γ ₃). The modelling results indicate that the modified Boyce model with γ ₃ is more widely available in different water contents and different fine contents for this granular material. Besides, based on the results, the coupled effects of water content and fine content on the deflection of the structures can also be observed.

  14. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through a Z-transform technique derived from the constitutive relations for bi-anisotropic media. This is the first FDTD formulation to be able to simulate dispersive chiral media on a single FDTD grid. This tool was also used to perform the first simulations of dispersive chiral frequency selective surfaces.

  15. Elastic Network Models For Biomolecular Dynamics: Theory and Application to Membrane Proteins and Viruses

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy R.; Shrivastava, Indira H.; Yang, Zheng; Bahar, Ivet

    The following sections are included: * Introduction * Theory and Assumptions * Statistical mechanical foundations * Anisotropic network models * Gaussian network model * Rigid block models * Treatment of perturbations * Langevin dynamics * Applications * Membrane proteins * Viruses * Conclusion * References

  16. Anisotropic power spectrum and bispectrum in the f(Φ)F² mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco

    2013-01-04

    A suitable coupling of the inflaton φ to a vector kinetic term F² gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ~5 e-folds (~50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis,more » for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local f NL~3(~30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.« less

  17. Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-01-01

    A suitable coupling of the inflaton φ to a vector kinetic term F2 gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ˜5 e-folds (˜50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL˜3(˜30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.

  18. Creep-induced anisotropy in covalent adaptable network polymers.

    PubMed

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  19. On the validity of cosmic no-hair conjecture in an anisotropic inationary model

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2018-05-01

    We will present main results of our recent investigations on the validity of cosmic no-hair conjecture proposed by Hawking and his colleagues long time ago in the framework of an anisotropic inflationary model proposed by Kanno, Soda, and Watanabe. As a result, we will show that the cosmic no-hair conjecture seems to be generally violated in the Kanno-Soda- Watanabe model for both canonical and non-canonical scalar fields due to the existence of a non-trivial coupling term between scalar and electromagnetic fields. However, we will also show that the validity of the cosmic no-hair conjecture will be ensured once a unusual scalar field called the phantom field, whose kinetic energy term is negative definite, is introduced into the Kanno-Soda-Watanabe model.

  20. Anisotropic Shear Dispersion Parameterization for Mesoscale Eddy Transport

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.

    2016-02-01

    The effects of mesoscale eddies are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale eddy parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.

  1. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  2. Anisotropic constitutive modeling for nickel-base single crystal superalloys. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheh, Michael Y.

    1988-01-01

    An anisotropic constitutive model was developed based on crystallographic slip theory for nickel base single crystal superalloys. The constitutive equations developed utilizes drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments were conducted to evaluate the existence of back stress in single crystal superalloy Rene N4 at 982 C. The results suggest that: (1) the back stress is orientation dependent; and (2) the back stress state variable is required for the current model to predict material anelastic recovery behavior. The model was evaluated for its predictive capability on single crystal material behavior including orientation dependent stress-strain response, tension/compression asymmetry, strain rate sensitivity, anelastic recovery behavior, cyclic hardening and softening, stress relaxation, creep and associated crystal lattice rotation. Limitation and future development needs are discussed.

  3. Relativistic model for anisotropic strange stars

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2017-12-01

    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  4. Traveltime inversion and error analysis for layered anisotropy

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhou, Hua-wei

    2011-02-01

    While tilted transverse isotropy (TTI) is a good approximation of the velocity structure for many dipping and fractured strata, it is still challenging to estimate anisotropic depth models even when the tilted angle is known. With the assumption of weak anisotropy, we present a TTI traveltime inversion approach for models consisting of several thickness-varying layers where the anisotropic parameters are constant for each layer. For each model layer the inversion variables consist of the anisotropic parameters ɛ and δ, the tilted angle φ of its symmetry axis, layer velocity along the symmetry axis, and thickness variation of the layer. Using this method and synthetic data, we evaluate the effects of errors in some of the model parameters on the inverted values of the other parameters in crosswell and Vertical Seismic Profile (VSP) acquisition geometry. The analyses show that the errors in the layer symmetry axes sensitively affect the inverted values of other parameters, especially δ. However, the impact of errors in δ on the inversion of other parameters is much less than the impact on δ from the errors in other parameters. Hence, a practical strategy is first to invert for the most error-tolerant parameter layer velocity, then progressively invert for ɛ in crosswell geometry or δ in VSP geometry.

  5. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong

    2018-04-01

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.

  6. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    PubMed

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids

    NASA Astrophysics Data System (ADS)

    Wenzlau, F.; Altmann, J. B.; Müller, T. M.

    2010-07-01

    Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.

  8. Journeys through antigravity?

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Chemissany, Wissam; Kallosh, Renata

    2014-01-01

    A possibility of journeys through antigravity has recently been proposed, with the suggestion that Weyl-invariant extension of scalars coupled to Einstein gravity allows for an unambiguous classical evolution through cosmological singularities in anisotropic spacetimes. We compute the Weyl invariant curvature squared and find that it blows up for the proposed anisotropic solution both at the Big Crunch as well as at the Big Bang. Therefore the cosmological singularities are not resolved by uplifting Einstein theory to a Weyl invariant model.

  9. Quantum walks with an anisotropic coin II: scattering theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; de Aldecoa, R. Tiedra

    2018-05-01

    We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest.

  10. Natural entropy production in an inflationary model for a polarized vacuum

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel; Som, Murari M.

    2007-08-01

    Though entropy production is forbidden in standard FRW Cosmology, Berman and Som presented a simple inflationary model where entropy production by bulk viscosity, during standard inflation without ad hoc pressure terms can be accommodated with Robertson Walker’s metric, so the requirement that the early Universe be anisotropic is not essential in order to have entropy growth during inflationary phase, as we show. Entropy also grows due to shear viscosity, for the anisotropic case. The intrinsically inflationary metric that we propose can be thought of as defining a polarized vacuum, and leads directly to the desired effects without the need of introducing extra pressure terms.

  11. Theoretical study on the perpendicular anisotropic magnetoresistance using Rashba-type ferromagnetic model

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Miura, D.; Sakuma, A.

    2018-05-01

    We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.

  12. Texture formation mechanism and constitutive equation for anisotropic thermorheological rare-earth permanent magnets

    NASA Astrophysics Data System (ADS)

    Zhu, Minggang; Li, Wei

    2017-05-01

    The study investigates the mechanism and constitutive equations describing oriented texture formation in anisotropic thermorheological rare-earth permanent magnets. The thermorheological process cannot be considered as creep, since the related phenomena are not suitably explained by the diffusion creep model. A mathematical model describing the relationship between the rheological deformation rate and texture orientation was established, and a theoretical expression was obtained for the orientation factor of thermorheological magnets. In addition, nanocrystalline Nd-Fe-B magnets were fabricated, with intrinsic coercivity Hcj=760.1 kA/m, remanence Br=1.469 T, and maximum energy product (BH)max=427.1 kJ/m3.

  13. Design of Particulate-Reinforced Composite Materials

    PubMed Central

    Muc, Aleksander; Barski, Marek

    2018-01-01

    A microstructure-based model is developed to study the effective anisotropic properties (magnetic, dielectric or thermal) of two-phase particle-filled composites. The Green’s function technique and the effective field method are used to theoretically derive the homogenized (averaged) properties for a representative volume element containing isolated inclusion and infinite, chain-structured particles. Those results are compared with the finite element approximations conducted for the assumed representative volume element. In addition, the Maxwell–Garnett model is retrieved as a special case when particle interactions are not considered. We also give some information on the optimal design of the effective anisotropic properties taking into account the shape of magnetic particles. PMID:29401678

  14. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  15. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  16. The TT, TB, EB and BB correlations in anisotropic inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xingang; Emami, Razieh; Firouzjahi, Hassan

    2014-08-01

    The ongoing and future experiments will measure the B-mode from different sky coverage and frequency bands, with the potential to reveal non-trivial features in polarization map. In this work we study the TT, TB, EB and BB correlations associated with the B-mode polarization of CMB map in models of charged anisotropic inflation. The model contains a chaotic-type large field complex inflaton which is charged under the U(1) gauge field. We calculate the statistical anisotropies generated in the power spectra of the curvature perturbation, the tensor perturbation and their cross-correlation. It is shown that the asymmetry in tensor power spectrum ismore » a very sensitive probe of the gauge coupling. While the level of statistical anisotropy in temperature power spectrum can be small and satisfy the observational bounds, the interactions from the gauge coupling can induce large directional dependence in tensor modes. This will leave interesting anisotropic fingerprints in various correlations involving the B-mode polarization such as the TB cross-correlation which may be detected in upcoming Planck polarization data. In addition, the TT correlation receives an anisotropic contribution from the tensor sector which naturally decays after l ∼> 100. We expect that the mechanism of using tensor sector to induce asymmetry at low l to be generic which can also be applied to address other low l CMB anomalies.« less

  17. Analysis of diffuse radiation data for Beer Sheva: Measured (shadow ring) versus calculated (global-horizontal beam) values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    1993-12-01

    The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less

  18. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    PubMed

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  20. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering

    PubMed Central

    Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.

    2016-01-01

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751

Top