Sample records for flat bottom hole

  1. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  2. Model Prediction Results for 2007 Ultrasonic Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Joon; Song, Sung-Jin

    2008-02-01

    The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.

  3. Two-Piece Screens for Decontaminating Granular Material

    NASA Technical Reports Server (NTRS)

    Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis

    2009-01-01

    Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.

  4. SSME seal test program: Test results for hole-pattern damper seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1985-01-01

    The results consisting of direct and transverse force coefficients are presented for thirteen, hole-pattern, damper-seal configurations. The designation damper seal refers to a seal which uses a deliberately roughened stator nd smooth rotor, to increase the net damping force developed by a seal. The designation hole-pattern refers to a stator roughness pattern which is developed by a pattern of round holes while are milled into the stator. All seals tested use the same smooth rotor and have the same constant minimum clearance. The seal tests examined the following major design options: (1) hole-area density, i.e., the proportion of stator surface area consumed by holes; and (2) hole depth, particularly the ratio of hole depth to minimum clearance. In addition, limited data were taken to examine the influence of in-line versus staggered hole patterns and flat-bottomed versus spherical-bottomed holes.

  5. Thermographic imaging for high-temperature composite materials: A defect detection study

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Bodis, James R.; Bishop, Chip

    1995-01-01

    The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.

  6. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin

    2014-06-01

    Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.

  7. Heat sinking for printed circuitry

    DOEpatents

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  8. Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, W.F.; Meyer, H.J.

    1979-11-01

    Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less

  9. Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toullelan, Gwénaël; Raillon, Raphaële; Chatillon, Sylvain

    The 2013 Ultrasonic Testing (UT) modeling benchmark concerns direct echoes from side drilled holes (SDH), flat bottom holes (FBH) and corner echoes from backwall breaking artificial notches inspected with a matrix phased array probe. This communication presents the results obtained with the models implemented in the CIVA software: the pencilmodel is used to compute the field radiated by the probe, the Kirchhoff approximation is applied to predict the response of FBH and notches and the SOV (Separation Of Variables) model is used for the SDH responses. The comparison between simulated and experimental results are presented and discussed.

  10. Infrared thermal wave nondestructive technology on the defect in the shell of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Song, Yuanjia; Yang, Zhengwei; Li, Ming; Tian, Gan

    2010-10-01

    Based on the active infrared thermography nondestructive testing (NDT) technology, which is an emerging method and developed in the areas of aviation, spaceflight and national defence, the samples including glass fiber flat bottom hole sample, glass fiber inclusion sample and steel flat bottom hole sample that the shell materials of Solid Rocket Motor (SRM) were heated by a high energy flash lamp. The subsurface flaws can be detected through measuring temperature difference between flaws and materials. The results of the experiments show that: 1) the technique is a fast and effective inspection method, which is used for detecting the composites more easily than the metals. And it also can primarily identify the defect position and size according to the thermal image maps. 2) A best inspection time at when the area of hot spot is the same with that of defect is exited, which can be used to estimate the defect size. The bigger the defect area, the easier it could be detected and also the less of the error for estimating defect area. 3). The infrared thermal images obtained from experiments always have high noise, especially for metal materials due to high reflectivity and environmental factors, which need to be further processed.

  11. Laminar flow control SPF/08 feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Ecklund, R. C.; Williams, N. R.

    1981-10-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  12. Microfluidic devices connected to fused-silica capillaries with minimal dead volume.

    PubMed

    Bings, N H; Wang, C; Skinner, C D; Colyer, C L; Thibault, P; Harrison, D J

    1999-08-01

    Fused-silica capillaries have been connected to microfluidic devices for capillary electrophoresis by drilling into the edge of the device using 200-μm tungsten carbide drills. The standard pointed drill bits create a hole with a conical-shaped bottom that leads to a geometric dead volume of 0.7 nL at the junction, and significant band broadening when used with 0.2-nL sample plugs. The plate numbers obtained on the fused-silica capillary connected to the chip were about 16-25% of the predicted numbers. The conical area was removed with a flat-tipped drill bit and the band broadening was substantially eliminated (on average 98% of the predicted plate numbers were observed). All measurements were made while the device was operating with an electrospray from the end of the capillary. The effective dead volume of the flat-bottom connection is minimal and allows microfluidic devices to be connected to a wide variety of external detectors.

  13. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  14. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  15. Study on quantitative detection technology of special position defects in heat transfer tubes of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Qi, Pan; Cui, Hongyan; Shao, Wenbin; Feng, Meiming; Liao, Shusheng

    2018-04-01

    This study was conducted analyzing eddy current signals from a rotary probe and an array probe to detect artificial cracks and flat bottom holes (FBH) located in selected positions in a steam generator heat transfer tube of a nuclear power plant. In particular, the study examined the expanded transition section, and the detection sensitivity and the variation characteristics of the unilateral signal to provide guidance for in-service inspections.

  16. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  17. Developments in signal processing and interpretation in laser tapping

    NASA Astrophysics Data System (ADS)

    Perton, M.; Neron, C.; Blouin, A.; Monchalin, J.-P.

    2013-01-01

    A novel technique, called laser-tapping, based on the thermoelastic excitation by laser like laser-ultrasonics has been previously introduced for inspecting honeycomb and foam core structures. If the top skin is delaminated or detached from the substrate, the detached layer is driven into vibration. The interpretation of the vibrations in terms of Lamb wave resonances is first discussed for a flat bottom hole configuration and then used to determine appropriate signal processing for samples such as honeycomb structures.

  18. Interdisciplinary Program for Quantitative Flaw Definition

    DTIC Science & Technology

    1975-09-17

    34o XXSZ* or otherwise analytically studied . A flow chart diagram that describes the equipment t"*™11*ŕ™’ and dis £ SStSS used in Task I...shown on Figure F1at Bottomed Holes in Aluminum Samples f «mnles were used to study scattering from flat Two different types of «fP1" ""V^ a 1/8...Analysis Several studies were made using the analytical models for bondlines havingTariius att’uative characteristics. The attenuation ^ion ^s 199

  19. Ultrasonic transducer

    DOEpatents

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  20. High-pressure needle interface for thermoplastic microfluidics.

    PubMed

    Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L

    2009-01-07

    A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.

  1. Model of heap formation in vibrated gravitational suspensions.

    PubMed

    Ebata, Hiroyuki; Sano, Masaki

    2015-11-01

    In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.

  2. Using geophysical data to assess scour development

    USGS Publications Warehouse

    Placzek, Gary; Haeni, Peter F.; Trent, Roy; ,

    1993-01-01

    The development of scour holes in the Connecticut River near the new Baldwin Bridge has been documented by comparing geophysical records collected before (1989), during (1990), and after (1992) bridge construction. Eight piers that support the 570-m (meter) span over the Connecticut River were protected by 12-m wide cofferdams during construction. The maximum flow during the study was equivalent to a 3-year recurrence-interval flood, indicating no significant floods. Fathometer data indicate that deep scour holes, 1.5 to 6.4 m deep, developed north of piers 6, 7, and 8. Scour holes, less than 1.3 m-deep, developed south of these piers. The deepest scour hole was north of pier 7, where data show a flat river bottom in 1989, a scour 3.3-m deep in 1990, and a scour hole 6.4-m deep in 1992. Continuous seismic-profiling (CSP) data show that a 1.5 -m deep scour hole north of pier 6 in 1990 was filled in with 1.5-m of material by 1992. No infilling was detected in the scour holes north of piers 7 and 8. Numerous subbottom reflectors from geologic layers, up to 7.6 -m deep were identified in the CSP records.

  3. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  4. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  5. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.

    1986-12-31

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less

  6. Infrared contrast data analysis method for quantitative measurement and monitoring in flash infrared thermography

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.

  7. Volcanotectonic history of Crater Flat, southwestern Nevada, as suggested by new evidence from drill hole USW-VH-1 and vicinity

    USGS Publications Warehouse

    Carr, W.J.

    1982-01-01

    New evidence for a possible resurgent dome in the caldera related to eruption of the Bullfrog Member of the Crater Flat Tuff has been provided by recent drilling of a 762-meter (2,501-foot) hole in central Crater Flat. Although no new volcanic units were penetrated by the drill hole (USW-VH-1), the positive aeromagnetic anomaly in the vicinity of the drill hole appears to result in part from the unusually thick, densely welded tuff of the Bullfrog. Major units penetrated include alluvium, basalt of Crater Flat, Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, and Prow Pass and Bullfrog Members of the Crater Flat Tuff. In addition, the drill hole provided the first subsurface hydrologic information for the area. The water table in the hole is at about 180 meters (600 feet), and the temperature gradient appears slightly higher than normal for the region.

  8. Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon.

    PubMed

    Kanda, Hiroyuki; Uzum, Abdullah; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2016-12-14

    Engineering of photonics for antireflection and electronics for extraction of the hole using 2.5 nm of a thin Au layer have been performed for two- and four-terminal tandem solar cells using CH 3 NH 3 PbI 3 perovskite (top cell) and p-type single crystal silicon (c-Si) (bottom cell) by mechanically stacking. Highly transparent connection multilayers of evaporated-Au and sputtered-ITO films were fabricated at the interface to be a point-contact tunneling junction between the rough perovskite and flat silicon solar cells. The mechanically stacked tandem solar cell with an optimized tunneling junction structure was ⟨perovskite for the top cell/Au (2.5 nm)/ITO (154 nm) stacked-on ITO (108 nm)/c-Si for the bottom cell⟩. It was confirmed the best efficiency of 13.7% and 14.4% as two- and four-terminal devices, respectively.

  9. Process for manufacturing hollow fused-silica insulator cylinder

    DOEpatents

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  10. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  11. Visualization of vortex flow field around a flat plate with noncircular hole

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.

    2018-02-01

    In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.

  12. Ultrasonic level sensors for liquids under high pressure

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  13. Throat quantization of the Schwarzschild-Tangherlini(-AdS) black hole

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2018-01-01

    By the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area/entropy spectra for the Schwarzschild-Tangherlini-type asymptotically flat or AdS vacuum black hole in arbitrary dimensions. Using the WKB approximation for black holes with large mass, we show that area/entropy is equally spaced for asymptotically flat black holes, while mass is equally spaced for asymptotically AdS black holes. Exact spectra can be obtained for toroidal AdS black holes in arbitrary dimensions including the three-dimensional BTZ black hole.

  14. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  15. Determination of Flaw Size from Thermographic Data

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  16. Charge loss (or the lack thereof) for AdS black holes

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin; Chen, Pisin

    2014-06-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordström black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordström black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  17. Vertical gas injection into liquid cross-stream beneath horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Lee, In-Ho; Makiharju, Simo; Lee, Inwon; Perlin, Marc; Ceccio, Steve

    2013-11-01

    Skin friction drag reduction on flat bottomed ships and barges can be achieved by creating an air layer immediately beneath the horizontal surface. The simplest way of introducing the gas is through circular orifices; however the dynamics of gas injection into liquid cross-streams under horizontal surfaces is not well understood. Experiments were conducted to investigate the development of the gas topology following its vertical injection through a horizontal surface. The liquid cross-flow, orifice diameter and gas flow rate were varied to investigate the effect of different ratios of momentum fluxes. The testing was performed on a 4.3 m long and 0.73 m wide barge model with air injection through a hole in the transparent bottom hull. The incoming boundary layer was measured via a pitot tube. Downstream distance based Reynolds number at the injection location was 5 × 105 through 4 × 106 . To observe the flow topology, still images and video were recorded from above the model (i.e. through the transparent hull), from beneath the bottom facing upward, and from the side at an oblique angle. The transition point of the flow topology was determined and analyzed.

  18. Reducing junk radiation and eccentricity in binary-black-hole initial data

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Pfeiffer, Harald; Brown, Duncan; Lindblom, Lee; Scheel, Mark; Kidder, Lawrence

    2007-04-01

    Numerical simulations of binary-black-hole (BBH) collisions require initial data that satisfy the Einstein constraint equations. Several well-known methods generate constraint-satisfying BBH data, but the commonly-used simplifying assumptions lead to undesirable effects. BBH data typically assume a conformally flat spatial metric; this leads to an initial pulse of unphysical ``junk'' gravitational radiation. Also, the initial radial velocity of the holes is often neglected; this can lead to significant eccentricity in the holes' trajectories. This talk will discuss efforts to reduce these effects by constructing and evolving generalizations of the BBH initial data of Cook and Pfeiffer (2004). By giving the holes a small radial velocity, the eccentricity can be greatly reduced (although the emitted waves are largely unaffected). The junk radiation for flat and non-flat conformal metrics will also be compared.

  19. Hairy black holes in scalar extended massive gravity

    NASA Astrophysics Data System (ADS)

    Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong

    2015-12-01

    We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.

  20. Asymptotically flat, stable black hole solutions in Einstein-Yang-Mills-Chern-Simons theory.

    PubMed

    Brihaye, Yves; Radu, Eugen; Tchrakian, D H

    2011-02-18

    We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordström solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.

  1. Nondestructive testing of moisture separator reheater tubing system using Hall sensor array

    NASA Astrophysics Data System (ADS)

    Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi

    2018-01-01

    This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.

  2. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    NASA Astrophysics Data System (ADS)

    Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan

    2016-12-01

    Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  3. Supersymmetric black holes with lens-space topology.

    PubMed

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.

  4. Hydrodynamics of the Fluid Filtrate on Drilling-In

    NASA Astrophysics Data System (ADS)

    Abbasov, É. M.; Agaeva, N. A.

    2014-01-01

    The volume of the liquid penetrating into the formation after drilling-in has been determined on the basis of theoretical investigations. The dynamics of change in the bottom-hole pressure has been determined in this process. It has been shown that because of the water hammer, the bottom-hole pressure can be doubled in the presence of large fractures and pores closer to the well-bottom zone.

  5. 49 CFR 587.17 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the top edge of the flange and five holes in the bottom flange at a distance of 40 mm (1.6 in) from the bottom edge of the flange. The holes are spaced at 100 mm (3.9 in), 300 mm (11.8 in), 500 mm (19.7 in), 700 mm (27.5 in), 900 mm (35.4 in) horizontally, from either edge of the barrier. All holes are...

  6. CARNELIAN containment data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, T

    The CARNELIAN event was detonated in hole U4af of the Nevada Test Site as indicated in figure 1 .l. The CARNELIAN device had a depth-of-burial (DOB) of 208 m in the alluvium of Area 4 , about 70 m above the Paleozoic formation and 330 m above the standing water level, as shown in the geologic cross-sections of figure 1.2 (l) Figure 1 3 displays the local surface area showing nearby events Stemming of the 2 44 m diameter emplacement hole followed the plan shown in figure 1 4. A log of the stemming operations was maintained by Holmes &more » Narver (2) Detonation time was about 07 00 PDT on July 28,1977, and collapse progressed to the surface at about 19 minutes after the detonation resulting in a crater having a "cookie-cutter" geometry (steep walls with a relatively flat bottom) with a mean radius of 32 2 m and a maximum depth of 10 5 m No radiation arrivals were detected above ground and the CARNELIAN containment was considered successful« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  8. Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1999-01-01

    A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.

  9. Nondestructive testing of Scout rocket motors

    NASA Technical Reports Server (NTRS)

    Oaks, A. E.

    1972-01-01

    The nondestructive tests applied to Scout rocket motors were reviewed and appraised. Analytical techniques were developed to evaluate the capabilities of the radiographic and ultrasonic procedures used. Major problem areas found were the inadequacy of high voltage radiography for detecting unbonds and propellant cracks having narrow widths, the inability to relate the ultrasonic signals received from flat-bottomed holes in standards to those received from real defects and in the general area of the specification of acceptance criteria and how these were to be met. To counter the deficiencies noted, analyses were conducted to the potential utility of radiometric, acoustic, holographic and thermographic techniques for motor and nozzle bond inspection, a new approach to qualifying magnetic particle inspection and the application of acoustic emission analysis to the evaluation of proof and leak test data.

  10. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  11. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  12. Chemical and Physical Characteristics of Basaltic Formation Fluids on a Ridge Flank: Using Drilling Perturbations to Elucidate Water-Rock-Microbial Reactions

    NASA Astrophysics Data System (ADS)

    Jannasch, H. W.; Wheat, G. C.; Hulme, S.; Becker, K.; Fisher, A. T.; Davis, E. E.

    2008-12-01

    Holes 1301A and 1301B were drilled, cased, and instrumented with long-term, subseafloor observatories (CORKs) on the eastern flank of the Juan de Fuca Ridge in Summer 2004. These holes penetrate 265 m of sediment and the uppermost 108 to 318 m of 3.5 Ma basaltic basement, in an area of vigorous, warm (64C) hydrothermal circulation. The new boreholes were located 1 km south and 2.4 km southwest of instrumented Holes 1026B and 1027C, respectively, that were emplaced eight years earlier. This network of four instrumented boreholes was established as part of a long-term, cross-hole experiment that will elucidate hydrologic properties and the nature and dynamics of microbial ecosystems within the upper oceanic crust, in a well defined geochemical and physical context. Downhole instrumented OsmoSampler packages in Holes 1301A and 1026B were replaced by submersible in summer 2008, as part of a program of observatory servicing in preparation for the next drilling expedition and the initiation of cross-hole experiments in this area. The borehole instrument package from Hole 1301A sampled borehole fluids within the upper 107.5 m of basaltic crust during a four-year period of drilling disturbance, self-sustaining flow of cold bottom water into basement, and subsequent recovery to near-predrilling chemical and thermal conditions. Because the borehole was incompletely sealed at the time of initial installation, bottom seawater flowed down into the borehole during the first three years following emplacement, driven by the higher density of cold bottom water relative to warm formation fluid. Borehole thermal records during the first 1.5 years show that temperatures in basement were below 10 C, and fluid samples from the borehole have a chemical composition similar to bottom seawater. Temperatures fluctuated for the next 1.5 years between 10 and 30 C, and the fluid composition began to shift towards that seen in regional basement fluids sampled at nearby Baby Bare outcrop and from Hole 1026B. In early September 2007 the natural formation overpressure overcame the excess pressure of cold bottom water and began to vent a mixture of recently-recharged bottom water and warm formation fluid. The present day composition of fluid venting from Hole 1301A is very similar to that sampled from Baby Bare outcrop. The progression from bottom seawater to formation fluid chemistry is not conservative relative to temperature, most likely because of water-rock and microbial reactions within basaltic basement.

  13. Hawking radiation power equations for black holes

    NASA Astrophysics Data System (ADS)

    Mistry, Ravi; Upadhyay, Sudhaker; Ali, Ahmed Farag; Faizal, Mir

    2017-10-01

    We derive the Hawking radiation power equations for black holes in asymptotically flat, asymptotically Anti-de Sitter (AdS) and asymptotically de Sitter (dS) black holes. This is done by using the greybody factor for these black holes. We observe that the radiation power equation for asymptotically flat black holes, corresponding to greybody factor at low frequency, depends on both the Hawking temperature and the horizon radius. However, for the greybody factors at asymptotic frequency, it only depends on the Hawking temperature. We also obtain the power equation for asymptotically AdS black holes both below and above the critical frequency. The radiation power equation for at asymptotic frequency is same for both Schwarzschild AdS and Reissner-Nordström AdS solutions and only depends on the Hawking temperature. We also discuss the power equation for asymptotically dS black holes at low frequency, for both even or odd dimensions.

  14. Directional antennas for electromagnetic mapping in a borehole

    DOEpatents

    Reagor, David Wesley; Nguyen, Doan Ngoc; Ashworth, Stephen Paul

    2017-05-02

    A bottom hole assembly used for a field operation is disclosed herein. The bottom hole assembly can include at least one directional antenna disposed on an outer surface of a first tubing pipe of a tubing string, where the at least one directional antenna receives a first electric current from at least one power source, where the first electric current generates a first magnetic field that radiates from the at least one directional antenna into a formation. The bottom hole assembly can also include at least one receiver disposed on a second tubing pipe of the tubing string, where the at least one receiver receives the first magnetic field returning from the formation.

  15. Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications.

    PubMed

    Liu, Chang; Dobson, Jacob; Cawley, Peter

    2017-03-01

    Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases.

  16. Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications

    PubMed Central

    Dobson, Jacob; Cawley, Peter

    2017-01-01

    Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases. PMID:28413339

  17. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side... stacked to a height of 3 m (10 feet) (including the test sample). (3) Each of the above tests may be...

  18. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...

  19. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...

  20. Characterizing the stretch-flangeability of hot rolled multiphase steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, N.; Butcher, C.; Worswick, M.

    2013-12-16

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  1. Aspects of hairy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl; Astefanesei, Dumitru

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  2. Analysis of Experimental Investigations of the Planing Process of the Surface of Water

    NASA Technical Reports Server (NTRS)

    Sottorf, W.

    1944-01-01

    Pressure distribution and spray measurements were carried out on rectangular flat and V-bottom planing surfaces. Lift, resistance, and center of pressure data are analyzed and it is shown how these values may be computed for the pure planing procees of a flat or V-bottom suface of arbitrary beam, load and speed, the method being illustrated with the aid of an example.

  3. Negative specific heat of black-holes from fluid-gravity correspondence

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Swastik; Shankaranarayanan, S.

    2017-04-01

    Black holes in asymptotically flat space-times have negative specific heat—they get hotter as they loose energy. A clear statistical mechanical understanding of this has remained a challenge. In this work, we address this issue using fluid-gravity correspondence which aims to associate fluid degrees of freedom to the horizon. Using linear response theory and the teleological nature of event horizon, we show explicitly that the fluctuations of the horizon-fluid lead to negative specific heat for a Schwarzschild black Hole. We also point out how the specific heat can be positive for Kerr-Newman or AdS black holes. Our approach constitutes an important advance as it allows us to apply the canonical ensemble approach to study thermodynamics of asymptotically flat black hole space-times.

  4. Lubricating Holes for Corroded Nuts and Bolts

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.; Ledbetter, Frank E., III

    1986-01-01

    Corroded fasteners taken apart more easily. Lubricating holes bored to thread from three of flats. Holes facilitate application of penetrating oil to help loosen nut when rusted onto bolt. Holes make it possible to apply lubricants and rust removers directly to more of thread than otherwise reachable.

  5. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  6. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades

    NASA Astrophysics Data System (ADS)

    Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.

    2018-04-01

    Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.

  7. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades

    NASA Astrophysics Data System (ADS)

    Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.

    2018-06-01

    Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.

  8. Fixed Eigenvector Analysis of Thermographic NDE Data

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2011-01-01

    Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. This paper will discuss an alternative method of analysis that has been developed where a predetermined set of eigenvectors is used to process the thermal data from both reinforced carbon-carbon (RCC) and graphiteepoxy honeycomb materials. These eigenvectors can be generated either from an analytic model of the thermal response of the material system under examination, or from a large set of experimental data. This paper provides the details of the analytic model, an overview of the PCA process, as well as a quantitative signal-to-noise comparison of the results of performing both conventional PCA and fixed eigenvector analysis on thermographic data from two specimens, one Reinforced Carbon-Carbon with flat bottom holes and the second a sandwich construction with graphite-epoxy face sheets and aluminum honeycomb core.

  9. Preliminary hydrogeologic assessment of boreholes UE-25c #1, UE-25c #2, and UE-25c #3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Geldon, A.L.

    1993-01-01

    Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were used to determine matrix hydrologic properties of the tuffs and lavas of Calico Hills and the Crater Flat Tuff in the C-holes. The porosity ranged from 12 to 43 percent and, on the average, was larger in nonwelded to partially welded, ash-flow tuff, ashfall tuff, and reworked tuff than in moderately to densely welded ash-flow tuff. The pore-scale horizontal permeability of nine samples ranged from 5.7x10'3 to 2.9 millidarcies, and the pore-scale vertical permeability of these samples ranged from 3.7x10'* to 1.5 millidarcies. Ratios of pore-scale horizontal to vertical permeability generally ranged from 0.7 to 2. Although the number of samples was small, values of pore-scale permeability determined were consistent with samples from other boreholes at Yucca Mountain. The specific storage of nonwelded to partially welded ash-flow tuff, ash-fall tuff, and reworked tuff was estimated from porosity and elasticity to' be 2xlO'6 per meter, twice the specific storage of moderately to densely welded ash-flow tuff and tuff breccia. The storativity of geologic units, based on their average thickness (corrected for bedding dip) and specific storage, was estimated to range from 1xlO's to 2xlO'4. Ground-water flow in the Tertiary rocks of the Yucca Mountain area is not confined by strata but appears to result from the random intersection of water-bearing fractures and faults. Even at the C-hole complex, an area of only 1,027 square meters, water-producing zones during pumping tests vary from borehole to borehole. In borehole UE-25c #1, water is produced mainly from the lower, nonwelded to welded zone of the Bullfrog Member of the Crater Flat Tuff and secondarily from the tuff-breccia zone of the Tram Member of the Crater Flat Tuff. In borehole UE-25c #3, water is produced in nearly equal proportions from these two intervals and the central, moderately to densely welded zone of the Bullfrog Member. In borehole UE-25c #2, almost all production comes from the moderately to dense

  10. Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings

    NASA Astrophysics Data System (ADS)

    Patil, G. R.; Singh, K. D.

    2016-12-01

    Due to migration of people to urban area, high land costs and use of light weight materials modern buildings tend to be taller, lighter and flexible. These buildings possess low damping. This increases the possibility of failure during earthquake ground motion and also affect the serviceability during wind vibrations. Out of many available techniques today, to reduce the response of structure under dynamic loading, Tuned Liquid Damper (TLD) is a recent technique to mitigate seismic response. However TLD has been used to mitigate the wind induced structural vibrations. Flat bottom TLD gives energy back to the structure after event of dynamic loading and it is termed as beating. Beating affects the performance of TLD. Study attempts to analyze the effectiveness of sloped bottom TLD for reducing seismic vibrations of structure. Concept of equivalent flat bottom LD has been used to analyze sloped bottom TLD. Finite element method (EM) is used to model the structure and the liquid in the TLD. MATLAB code is developed to study the response of structure, the liquid sloshing in the tank and the coupled fluid-structure interaction. A ten storey two bay RC frame is analyzed for few inputs of ground motion. A sinusoidal ground motion corresponding to resonance condition with fundamental frequency of frame is analyzed. In the analysis the inherent damping of structure is not considered. Observations from the study shows that sloped bottom TLD uses less amount of liquid than flat bottom TLD. Also observed that efficiency of sloped bottom TLD can be improved if it is properly tuned.

  11. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  12. Charged black holes in quartic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Ghanaatian, M.; Naeimipour, F.; Bazrafshan, A.; Abkar, M.

    2018-05-01

    In this paper, we construct exact solutions of charged black holes in the presence of quartic quasi-topological gravity. We obtain thermodynamics and conserved quantities of the solutions and check the first law of thermodynamics. In studying the physical properties of the solutions, we consider anti-de Sitter, de Sitter, and flat solutions of charged black holes in quartic quasi-topological gravity and compare them with Einstein and third-order quasi-topological gravities. We also investigate the thermal stability of the solutions and show that thermal stability is just for anti-de Sitter solutions, not for de Sitter and flat ones.

  13. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  14. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  15. No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory

    NASA Astrophysics Data System (ADS)

    Kunduri, Hari K.; Lucietti, James

    2018-03-01

    We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.

  16. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    NASA Astrophysics Data System (ADS)

    Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.

    2009-02-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.

  17. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less

  18. Multilayer material characterization using thermographic signal reconstruction

    NASA Astrophysics Data System (ADS)

    Shepard, Steven M.; Beemer, Maria Frendberg

    2016-02-01

    Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.

  19. Optimization of air injection parameters toward optimum fuel saving effect for ships

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Seong Hyeon

    2016-11-01

    Air lubrication method is the most promising commercial strategy for the frictional drag reduction of ocean going vessels. Air bubbles are injected through the array of holes or the slots installed onto the flat bottom surface of vessel and a sufficient supply of air is required to ensure the formation of stable air layer by the by the coalescence of the bubbles. The air layer drag reduction becomes economically meaningful when the power gain through the drag reduction exceeds the pumping power consumption. In this study, a model ship of 50k medium range tanker is employed to investigate air lubrication method. The experiments were conducted in the 100m long towing tank facility at the Pusan National University. To create the effective air lubrication with lower air flow rate, various configurations including the layout of injection holes, employment of side fences and static trim have been tested. In the preliminary series of model tests, the maximum 18.13%(at 15kts) of reduction of model resistance was achieved. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2011-0030013).

  20. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  1. Shubnikov-de Haas oscillations of high mobility holes in monolayer and bilayer WSe2: spin-valley locking, effective mass, and inter-layer coupling

    NASA Astrophysics Data System (ADS)

    Fallahazad, Babak; Movva, Hema Chandra Prakash; Kim, Kyounghwan; Larentis, Stefano; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; Tutuc, Emanuel

    We study the magnetotransport properties of high mobility holes in monolayer and bilayer WSe2, measured in dual-gated samples with top and bottom hexagonal boron-nitride dielectrics, and using platinum bottom contacts. Thanks to the Pt high work-function combined with the a high hole density induced electrostatically by an applied top gate bias, the contacts remain ohmic down to low (1.5 K) temperatures. The samples display well defined Shubnikov-de Haas (SdH) oscillations, and quantum Hall states (QHS) in high magnetic fields. In both mono and bilayer WSe2, the SdH oscillations and the QHSs occur predominantly at even filling factors, evincing a two-fold Landau level degeneracy consistent with spin-valley locking. The Fourier transform analysis of the SdH oscillations in dual-gated bilayer WSe2 reveal the presence of two subbands, each localized in the top or the bottom layer, as well as negative compressibility. From the temperature dependence of the SdH oscillation amplitude we determine a hole effective mass of 0.45me for both mono and bilayer WSe2. The top and bottom layer densities can be independently tuned using the top and bottom gates, respectively, evincing a weak interlayer coupling. This work has been supported by NRI-SWAN and Intel corporation.

  2. Connection between black-hole quasinormal modes and lensing in the strong deflection limit.

    PubMed

    Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G

    2010-06-25

    The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

  3. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Koether, S.L.

    1983-01-01

    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an intrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted n tabulation of 7,848 fractures, predominately open and high angle. The fractures were filled or coated with material in various combinations and include the following in decreasing abundance: CaCo3, iron oxides and hydroxides, SiO2, manganese oxides and hydroxides, clays and zeolites. An increase in the intensity of fracturing can be correlated with the following: (1) densely welded zones, (2) lithophysal zones, (3) vitrophyre, (4) silicified zones, (5) fault zones, and (6) cooling joints. Numerous fault zones were penetrated by the drill hole, predominately in the lithophysal zone of the Topopah Spring Member and below the tuffaceous beds of Calico Hills. The faults are predominately high angle with both a vertical and lateral component. Three major faults were penetrated, two of which intersect the ground surface, with displacements of at least 20 m and possibly as much as 52 m. The faults and some fractures are probably related to the regional doming of the area associated with the volcanism-tectonism of the Timber Mountain-Claim Canyon caldera complex, and to Basin and Range tectonism.

  4. Propellant Feed System for Swirl-Coaxial Injection

    NASA Technical Reports Server (NTRS)

    Reynolds, David Christopher (Inventor)

    2015-01-01

    A propellant feed system for swirl-coaxial injection of a liquid propellant includes a reservoir having a bottom plate and at least one tube originating in the bottom plate and extending therefrom. The tube has rectangular slits defined in and distributed tangentially and evenly about a portion of the tube that is disposed in the bottom plate. Drain holes are provided in the bottom plate and tunnels are defined in the bottom plate. Each tunnel fluidly couples one of the drain holes to a corresponding one of the rectangular slits. Each tunnel includes (i) a bend of at least 90.degree., and (ii) a straight portion leading to its corresponding rectangular slit wherein the straight portion is at least five times as long as a hydraulic diameter of the corresponding rectangular slit.

  5. WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT.

    PubMed

    Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa

    2018-03-02

    To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.

  6. 2+1 black hole with SU(2) hair (and the theory where it grows)

    NASA Astrophysics Data System (ADS)

    Zanelli, Jorge

    2015-04-01

    A black hole solution in three spacetime dimensions, endowed with an SU(2) charge is presented. The construction is based on two main features of three dimensions: i) AdS3 spacetime is locally Lorentz-flat, that is, it can be covered with a congruence of local inertial observers, just like flat Minkowski space; ii) The SO(2,1) and SU(2) groups are isomorphic, so that a flat connection of the first can be mapped to a flat connection of the second. The global nontrivial nature of the solution is a consequence of the topology produced by the identification in the covering space that gives rise to the 2+1 black hole. It can be seen that this solution belongs to the vacuum (matter-free) sector of a supersymmetric theory based on the Chern-Simons action for the su(1, 2|2) superalgebra. The action for this system matches that of graphene in the long wavelength limit near the Dirac point. The SU(2) gauge symmetry is interpreted as the freedom to choose locally the definition of spin quantization axis for the electrons.

  7. Conformally flat black hole initial data with one cylindrical end

    NASA Astrophysics Data System (ADS)

    Gabach Clément, María E.

    2010-06-01

    We give a complete analytical proof of the existence and uniqueness of extreme-like black hole initial data for Einstein equations, which possess a cylindrical end, analogous to extreme Kerr, extreme Reissner-Nördstrom and extreme Bowen-York's initial data. This extends and refines a previous result (Dain and Clement 2009 Class. Quantum Grav. 26 035020) to a general case of conformally flat, maximal initial data with angular momentum, linear momentum and matter.

  8. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with at least one tapped drain hole at their lowest point, and a tapped hole at the top of the tank. The top hole must be closed, and the bottom hole may be closed, with not less than three-fourths inch... of tanks joined together to form a compartment tank shall be provided with a tapped drain hole at...

  9. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with at least one tapped drain hole at their lowest point, and a tapped hole at the top of the tank. The top hole must be closed, and the bottom hole may be closed, with not less than three-fourths inch... of tanks joined together to form a compartment tank shall be provided with a tapped drain hole at...

  10. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D) One drop flat on the short side; and (E) One drop on a corner at the junction of three intersecting...

  11. Reliably detectable flaw size for NDE methods that use calibration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  12. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    NASA Technical Reports Server (NTRS)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  13. Reliably Detectable Flaw Size for NDE Methods that Use Calibration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  14. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  15. Structure of Hole 1256D: The role of mechanical deformation in superfast-spread crust

    NASA Astrophysics Data System (ADS)

    Tartarotti, P.; Hayman, N. W.; Anma, R.; Crispini, L.; Veloso Espinosa, E. A.; Galli, L.

    2006-12-01

    One view of seafloor spreading is that mechanical deformation is not significant at high spreading rates. With recovery of up to 37%, and the vertical axis known for many pieces, shipboard visual core descriptions from Hole 1256D provide an opportunity to evaluate the significance of deformational structures in EPR-, superfast- (~220 mm-yr) spread crust. From top to bottom, the structural characteristics of crustal units are: (1) A relatively flat-lying, ~100-m thick "lava pond" that is largely free of deformational structures; (2) ~184 m of shallowly dipping lava flows remarkable for hyaloclastites and a cooling-related fracture system; (3) ~466 m of massive and sheet flows with flow-related fractures, hydrothermal veins, and (fault-related) cataclastic domains; (3) A ~61 m thick transition zone that contains a well-developed (fault-related) cataclastic domain; (4) A ~346 m thick sheeted dike complex, with abundant hydrothermal veins, local breccias, and magmatic flow features. Recovered chilled dike margins have a mean dip of 70° and range from 41-88°; (5) A ~100 m thick plutonic suite contains gabbroic rocks that intrude the sheeted dikes. Gabbros contain some local brittle structures and minor (largely static) recrystallized domains, but are more noteworthy for their magmatic features: dike/gabbro contacts and flow foliations are modestly dipping (e.g., ~45°) with leucocratic melt patches concentrated toward the top of the section. Brittle structures were subordinate to magmatic processes in accommodating large extensional strain. Brittle deformation was important, however, in accommodating magmatism and hydrothermal fluid flow, thereby affecting the variation of crustal physical properties and the distribution of oceanic alteration.

  16. Design for a Simple and Inexpensive Cylinder-within-a-Cylinder Gradient Maker for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.

    2011-01-01

    A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…

  17. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  18. Flat-plate film cooling from a double jet holes: influence of free-stream turbulence and flow acceleration

    NASA Astrophysics Data System (ADS)

    Khalatov, A. A.; Borisov, I. I.; Dashevsky, Yu. J.; Panchenko, N. A.; Kovalenko, A. S.

    2014-12-01

    Results of an experimental study of flat-plate film cooling effectiveness achieved with an inlet double jet scheme are reported. At low ( m = 0.5) and medium ( m = 1.0) blowing ratio the average film cooling effectiveness is about 20 % greater of the traditional two-row scheme of round holes data, while at higher m = 1.5 it is close to it. The free-stream turbulence (≈ 7 %) influences weekly on the average flat-plate film cooling effectiveness. The flow acceleration decreases the film cooling effectiveness down to 25 % when the pressure gradient parameter K is ranged from 0.5·10-6 to 3.5·10-6.

  19. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  20. Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Imperiale, Alexandre; Demaldent, Edouard; Le Bourdais, Florian; Calmon, Pierre; Dominguez, Nicolas

    2018-04-01

    Models for the simulation of ultrasonic inspections of flat and curved plate-like composite structures, as well as stiffeners, are available in the CIVA-COMPOSITE module released in 2016. A first modelling approach using a ray-based model is able to predict the ultrasonic propagation in an anisotropic effective medium obtained after having homogenized the composite laminate. Fast 3D computations can be performed on configurations featuring delaminations, flat bottom holes or inclusions for example. In addition, computations on ply waviness using this model will be available in CIVA 2017. Another approach is proposed in the CIVA-COMPOSITE module. It is based on the coupling of CIVA ray-based model and a finite difference scheme in time domain (FDTD) developed by AIRBUS. The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Alternatively, a high order finite element approach is currently developed at CEA but not yet integrated in CIVA. The advantages of this approach will be discussed and first simulation results on Carbon Fiber Reinforced Polymers (CFRP) will be shown. Finally, the application of these modelling tools to the construction of metamodels is discussed.

  1. A Theoretical and Experimental Study of Planing Surfaces Including Effects of Cross Section and Plan Form

    NASA Technical Reports Server (NTRS)

    Shuford, Charles L , Jr

    1958-01-01

    A summary is given of the background and present status of the pure-planing theory for rectangular flat plates and v-bottom surfaces. The equations reviewed are compared with experiment. In order to extend the range of available planing data, the principal planing characteristics for models having sharp bottom surfaces having constant angles of dead rise of 20 degrees and 40 degrees. Planing data were also obtained for flat-plate surfaces with very slightly rounded chines for which decreased lift and drag coefficients are obtained.

  2. Method For Characterizing Residual Stress In Metals

    DOEpatents

    Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  3. Sea-Floor Character and Sedimentary Processes in the Vicinity of Woods Hole, Massachusetts

    USGS Publications Warehouse

    Poppe, Lawrence J.; McMullen, Katherine Y.; Foster, David S.; Blackwood, Dann S.; Williams, S. Jeffress; Ackerman, Seth D.; Barnum, Steven R.; Brennan, Rick T.

    2008-01-01

    Continuous-coverage multibeam bathymetric models and sidescan-sonar imagery have been verified with high-resolution seismic-reflection profiles, sediment sampling, and bottom photography. Together these data layers provide detailed base maps that yield topographic, compositional, and environmental perspectives of the sea floor in the vicinity of Woods Hole, an important harbor and major passage between the Elizabeth Islands and Cape Cod, Massachusetts. Tidally dominated high-energy environments within Woods Hole have prevented deposition of Holocene marine sediments, exposed underlying glacial drift of the Buzzards Bay moraine, and winnowed finer grained sediments, leaving lag deposits of boulders and gravel. These conditions have also enlarged and preserved depressions in the moraine surface that were originally kettle holes and formed ebb-tidal deltas at the entrances to passages. Fields of transverse and barchanoid sand waves dominate across the southern part of the study area in Vineyard Sound, where benthic environments are characterized by processes associated with coarse-bedload transport. Transverse sand waves dominate near shoals where sediment supply is greater and have asymmetries that indicate that the shoals are shaped and maintained by clockwise gyres of net sediment transport. Barchanoid sand waves, which are most common where Holocene sediments are thinner, commonly align into elongate fields that have smaller isolated waves concentrated at the eastern ends and that progressively widen and have waveforms that increase in amplitude, wavelength, and complexity westward. The northern, protected parts of the Little and Inner Harbors are characterized by muddy sediment and processes associated with deposition. A pockmark field in Little Harbor and the muddy, organic-rich sediments that form a scarp along the edge of Parker Flat are evidence for the presence of submerged marsh deposits formed during the Holocene rise in sea level.

  4. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  5. Device for thermal transfer and power generation

    DOEpatents

    Weaver, Stanton Earl [Northville, NY; Arik, Mehmet [Niskayuna, NY

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  6. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, G.S.; Trudeau, D.A.; Savard, C.S.

    The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather thanmore » ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.« less

  7. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solid materials; (iii) One (1) g (0.04 ounce) for authorized materials meeting the definition of a... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D...

  8. Petrology of deep drill hole, Kilauea Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grose, L.T.; Keller, G.V.

    1976-12-01

    The first deep drill hole (1262 m TD) at the summit of an active volcano (1102 m elev) was drilled in 1973 at Kilauea volcano, Hawaii with support from NSF and USGS. The hole is located within southern margin of Kilauea caldera in northern part of a 15 km/sup 2/ triangular block bounded by east rift zone, Koae fault zone, and southwest rift zone-a summit area relatively free of faults, rifts, and extrusions. Nearest eruptions are from fissures 1.2 km away which are active in 1974 and which do not trend toward the drill hole. Core recovery totals 47 mmore » from 29 core runs at rather evenly spaced intervals to total depth. Megascopic, thin-section, and X-ray examination reveals: (1) Recovered core is essentially vesicular, intergranular, nonporphyritic to porphyritic olivine basalt with minor olivine diabase, picrite diabase, and basalt, (2) Hyaloclastite and pillow basalt are absent, (3) Below water table (614 m elev) with increasing depth, vesicularity decreases, and density, crystallinity, competence, vesicle fill, and alteration irregularly increase, (4) Alteration first occurs at water table where calcite and silica partially fill vesticles and olivine is partially serpentinized, (5) At about 570 m elev massive serpentinization of olivine and deposition of montmorillonite-nontronite occur; at about 210 m elev truscottite and tobermorite occur in vesicles; at about 35 m elev mordenite occurs in vesicles, (6) Bottom-hole cores have complete filling of vesicles with silica, minor silica replacement, and complete alteration of olivine, and (7) Plagioclase is unaltered. Chemical analyses of bottom-hole cores are similar to those of modern summit lavas. Alteration and low porosity in bottom-hole cores plus abrupt temperature increase suggest the drill hole penetrated a self-sealed ''cap rock'' to a hydrothermal convection cell and possibly a magma body.« less

  9. On the thermodynamics of the black hole and hairy black hole transitions in the asymptotically flat spacetime with a box

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Wang, Bin; Liu, Yunqi

    2018-03-01

    We study the asymptotically flat quasi-local black hole/hairy black hole model with nonzero mass of the scalar field. We disclose effects of the scalar mass on transitions in a grand canonical ensemble with condensation behaviors of the parameter ψ 2, which is similar to approaches in holographic theories. We find that a more negative scalar mass makes the phase transition easier. We also obtain the analytical relation ψ 2∝ (Tc-T)^{1/2} around the critical phase transition points, implying a second order phase transition. Besides the parameter ψ 2, we show that metric solutions can be used to disclose properties of the transitions. In this work, we observe that phase transitions in a box are strikingly similar to holographic transitions in AdS gravity and the similarity provides insights into holographic theories.

  10. Asymptotically flat black holes in Horndeski theory and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr

    We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which ismore » Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.« less

  11. 30 CFR 18.32 - Fastenings-additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

  12. 30 CFR 18.32 - Fastenings-additional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

  13. 30 CFR 18.32 - Fastenings-additional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

  14. 30 CFR 18.32 - Fastenings-additional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

  15. Fluids and vortex from constrained fluctuations around C-metric black holes

    NASA Astrophysics Data System (ADS)

    Hao, Xin; Wu, Bin; Zhao, Liu

    2017-08-01

    By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic initial data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary initial hypersurface. Then by perturbing the initial data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the compressible Navier-Stokes equation which describe the momentum transport in non-relativistic viscous fluid on a flat Newtonian space. It turns out that the flat space fluid behaves as a pure vortex and the viscosity to entropy ratio is subjected to the black hole acceleration.

  16. Evaluating Environmental Effects of Dredged Material Management Alternatives: A Technical Framework

    DTIC Science & Technology

    1992-11-01

    fluctuating flows and tamperatures would be difficult. Biological processes such as nitrification, nutrient catabolism, and photosynthesis are important...communities as tidal flats, seagrass meadows, oyster beds, clam flats, fishing reefs, and freshwater aquatic plant establishment. The bottom of many

  17. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    PubMed Central

    Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui

    2016-01-01

    Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765

  18. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-12-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  19. Hartwell Lake Project, Savannah River, Georgia and South Carolina. Rehabilitation of Clemson Upper Diversion Dam. Construction Foundation Report. Volume 2. Appendices B thru E

    DTIC Science & Technology

    1989-08-01

    remove by gravity -washed out 585.8 i -- 89. 2 gneiss from inner - ibarrel Bottom of hole 89.2’ Tape depth 89.0’ 90 -0 I-Note: 6-7-84 water level after...barrel and5 _-_89.3 washed all meterial Bottom of hole 89.3’ left in outer barrel- 90 out of barrel befor- drilling for pull I Tape depth 89.0’ Note

  20. 15. SAME ROOMVIEW SOUTH TOWARDS THREE BOATS UNDER CONSTRUCTION. FLATBOTTOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SAME ROOM-VIEW SOUTH TOWARDS THREE BOATS UNDER CONSTRUCTION. FLAT-BOTTOM SECTION IN FOREGROUND ON SAW HORSES (NOTE FRAME PATTERNS ON BOTTOM PLANKS), BACKGROUND BOATS BEING FRAMED AND PLANKED. - Lowell's Boat Shop, 459 Main Street, Amesbury, Essex County, MA

  1. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    PubMed Central

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction. PMID:25370663

  2. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.« less

  3. TUBEWALL: a passive solar thermo-siphoning, field-fabricated, water storage wall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, F.; Hemker, P.

    1980-01-01

    The basic component of TUBEWALL is a water-filled thin-wall cylindrical tube with an insulating foam vertical partition insert that divides the inside of the tube into a thin collector water compartment (solar side) and a larger storage water compartment (room side). The two compartments are connected at the top and bottom by means of circulation holes in the foam partition. When the sun strikes the solar side of the tube, the thin layer of collector water is heated, thermosiphons through the top opening in the partition into the larger storage compartment on the room side, and is replaced with coolmore » water drawn from the bottom of the storage through the bottom hole in the partition. Night back-siphonage is prevented by a thin flap valve over the top circulation hole. The tubes may by used between wall studs having a low-cost fiberglass/tedlar double glazing. The tubes can be covered on the room side with drywall and heat transferred to the living space by indirect radiation, and either natural air convection through top and bottom vent slots or by fan. Alternatively, the tubes can be left exposed for direct radiation.« less

  4. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  5. The flat bottomed lines of Vega

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.; Kılıcoǧlu, T.

    2017-12-01

    Using one high dispersion high quality spectrum of Vega (HR7001, A0V) obtained with the échelle spectrograph SOPHIE at Observatoire de Haute Provence, we have measured the centroids of 149 flat bottomed lines. The model atmosphere and spectrum synthesis modeling of the spectrum of Vega allows us to provide identifications for all these lines. Most of these lines are due to C I, O I, Mg I, Al I, Ca I, Sc II,Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Sr II, Ba II, the large majority being due to neutral species, in particular Fe I.

  6. Investigation on the Accuracy of Superposition Predictions of Film Cooling Effectiveness

    NASA Astrophysics Data System (ADS)

    Meng, Tong; Zhu, Hui-ren; Liu, Cun-liang; Wei, Jian-sheng

    2018-05-01

    Film cooling effectiveness on flat plates with double rows of holes has been studied experimentally and numerically in this paper. This configuration is widely used to simulate the multi-row film cooling on turbine vane. Film cooling effectiveness of double rows of holes and each single row was used to study the accuracy of superposition predictions. Method of stable infrared measurement technique was used to measure the surface temperature on the flat plate. This paper analyzed the factors that affect the film cooling effectiveness including hole shape, hole arrangement, row-to-row spacing and blowing ratio. Numerical simulations were performed to analyze the flow structure and film cooling mechanisms between each film cooling row. Results show that the blowing ratio within the range of 0.5 to 2 has a significant influence on the accuracy of superposition predictions. At low blowing ratios, results obtained by superposition method agree well with the experimental data. While at high blowing ratios, the accuracy of superposition prediction decreases. Another significant factor is hole arrangement. Results obtained by superposition prediction are nearly the same as experimental values of staggered arrangement structures. For in-line configurations, the superposition values of film cooling effectiveness are much higher than experimental data. For different hole shapes, the accuracy of superposition predictions on converging-expanding holes is better than cylinder holes and compound angle holes. For two different hole spacing structures in this paper, predictions show good agreement with the experiment results.

  7. Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang

    2017-08-01

    WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.

  8. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  9. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-01-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch (P/d) and slot length-to-diameter (l/d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/d = 2 and x/d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  10. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-06-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  11. Internal impacted screw-locking pellet

    NASA Technical Reports Server (NTRS)

    MacMartin, Malcolm J. (Inventor)

    1994-01-01

    An elongate fastener having an engaging surface engageable with an engaging surface of a fastener's mate includes a hole extending through a portion of the fastener and having a top opening and a bottom floor, a locking pellet disposed near the bottom floor, a discharge channel communicating between the pellet and through the engaging surface of the fastener and opening out toward the engaging surface of the fastener's mate, and an impact pin in the hole having a top portion protruding through the top opening and a bottom portion near the locking pellet, whereby the pin drives the locking pellet through the discharge channel against the engaging surfaces of the fastener and the fastener's mate whereby to lock the fastener against the fastener's mate.

  12. Entropy of black holes in N=2 supergravity

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.

    2018-07-01

    Using the formalism of isolated horizons, we construct space of solutions of asymptotically flat extremal black holes in N=2 pure supergravity in 4 dimensions. We prove that the laws of black hole mechanics hold for these black holes. Further, restricting to constant area phase space, we show that the spherical horizons admit a Chern-Simons theory. Standard way of quantizing this topological theory and counting states confirms that entropy is indeed proportional to the area of horizon.

  13. Black Hole Jerked Around Twice

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole itself, so this result differs from recently published work on recoiling black holes. "We think this is the best evidence ever seen for a black hole having been jerked around like this," said Edmund Hodges-Kluck of the University of Maryland. "We're not exactly sure what caused this behavior, but it was probably triggered by a collision between two galaxies." A team of astronomers used Chandra for a long observation of a galaxy known as 4C+00.58, which is located about 780 million light years from Earth. Like most galaxies, 4C+00.58 contains a supermassive black hole at its center, but this one is actively pulling in copious quantities of gas. Gas swirling toward the black hole forms a disk around the black hole. Twisted magnetic fields in the disk generate strong electromagnetic forces that propel some of the gas away from the disk at high speed, producing radio jets. A radio image of this galaxy shows a bright pair of jets pointing from left to right and a fainter, more distant line of radio emission running in a different direction. More specifically, 4C+00.58 belongs to a class of "X-shaped" galaxies, so called because of the outline of their radio emission. The new Chandra data have allowed astronomers to determine what may be happening in this system, and perhaps in others like it. The X-ray image reveals four different cavities around the black hole. These cavities come in pairs: one in the top-right and bottom-left, and another in the top-left and bottom-right. When combined with the orientation of the radio jets, the complicated geometry revealed in the Chandra image may tell the story of what happened to this supermassive black hole and the galaxy it inhabits. "We think that this black hole has quite a history," said Christopher Reynolds of the University of Maryland in College Park. "Not once, but twice, something has caused this black hole to change its spin axis." According to the scenario presented by Hodges-Kluck and his colleagues, the spin axis of the black hole ran along a diagonal line from top-right to bottom-left. After a collision with a smaller galaxy, a jet powered by the black hole ignited, blowing away gas to form cavities in the hot gas to the top-right and bottom-left. Since the gas falling onto the black hole was not aligned with the spin of the black hole, the spin axis of the black hole rapidly changed direction, and the jets then pointed in a roughly top-left to bottom-right direction, creating cavities in the hot gas and radio emission in this direction. Then, either a merging of the two central black holes from the colliding galaxies, or more gas falling onto the black hole caused the spin axis to jerk around to its present direction in roughly a left to right direction. These types of changes in the angle of the spin of a supermassive black hole have previously been suggested to explain X-shaped radio galaxies, but no convincing case has been made in any individual case. "If we're right, our work shows that jets and cavities are like cosmic fossils that help trace the merger history of an active supermassive black hole and the galaxy it lives in," said Hodges-Kluck. "If even a fraction of X-shaped radio galaxies are produced by such "spin-flips", then their frequency may be important for estimating the detection rates with gravitational radiation missions." These results appeared in a recent issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. Drilling at right angles in blind holes

    NASA Technical Reports Server (NTRS)

    Pessin, R.

    1981-01-01

    Tool drills small hole perpendicular to and at bottom of blind hole. It consists of carbide cutter brazed to flexible shaft, inside thin metal tube with 90 degree bend. Wood dowel holds tube while motor turns shaft and drives cutter. It was developed for clearing plugged fuel orifices. Concept is adaptable to other hard-to-reach drilling situations.

  15. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  16. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  17. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part II locally re-suspended sediment dynamics

    NASA Astrophysics Data System (ADS)

    Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang

    2017-11-01

    Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.

  18. Quasinormal Modes of Charged Dilaton Black Holes and Their Entropy Spectra

    NASA Astrophysics Data System (ADS)

    Sakalli, I.

    2013-08-01

    In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ɛ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.

  19. Effect of geometry variations on lee-surface vortex-induced heating for flat-bottom three-dimensional bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.

    1973-01-01

    Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.

  20. Nondestructive Evaluation (NDE) Capabilities Data Book (3rd Edition)

    DTIC Science & Technology

    1997-11-01

    include: 4340 Steel Flat Plate Panels Bolt Holes in i85 Scvcnth Stage Compressor Disks Visual Inspection of Fatigue Cracks in Inconel 718 and HaynEs 188...safety engineer * The maintenance engineer * Thc manufacturing / production process engineer • The liaison (rework and repair) engineer a ’[ lhc life...TC03: Through crnck from an offset hole in a plate TC04: Through crack from hole in a lug TC05: Through crack from hole in plate with a row of holcs

  1. Hybrid Black-Hole Binary Initial Data

    NASA Technical Reports Server (NTRS)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  2. Mechanism of total electron emission yield reduction using a micro-porous surface

    NASA Astrophysics Data System (ADS)

    Ye, Ming; Wang, Dan; He, Yongning

    2017-03-01

    Suppression of the total secondary electron yield (TEY) of metal surfaces is important in many areas such as accelerator, satellite, and Hall thruster. Among TEY suppression techniques, micro-porous surfaces have been demonstrated as an effective method. In this work, we developed an analytical model that is able to obtain the contributions of TEY from both the 1st and 2nd generation secondary electrons (SEs). Calculation results show that the TEY contributed by the bottom of the hole dominates the TEY of the micro-porous surface with the aspect ratio we have chosen. Thus, we developed the following design guidance for the improvement of the TEY suppression efficiency of the micro-porous surface: either lower the TEY of the bottom or guide its SEs to the lateral side of the hole. To verify this idea, we performed the following numerical simulations: a micro-hole with its inner surfaces coated with a low TEY material and a micro-hole with nano-triangular grooves or nano-truncated cone pillars embedded at its bottom. Compared with a usual micro-hole, the proposed hybrid micro/nano structures show improved TEY suppression efficiency as expected from the analytical model. The percentage ratios of the 1st and 2nd generation SEs obtained from the simulation agree well with the predictions of the analytical model. What is more, we also present the results of the emitting angle distribution of SEs which represent remarkable deviation from the usual cosine distribution.

  3. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  4. Asymptotically locally AdS and flat black holes in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Anabalon, Andres; Cisterna, Adolfo; Oliva, Julio

    2014-04-01

    In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exists a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions greater than 4 and show that the presence of a cosmological term in the action allows one to consider the case in which the standard kinetic term for the scalar it is not present. In such a scenario, the solution reduces to an asymptotically flat black hole.

  5. Combining of different data pools for calculating a reliable POD for real defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanzler, Daniel, E-mail: daniel.kanzler@bam.de, E-mail: christina.mueller@bam.de; Müller, Christina, E-mail: daniel.kanzler@bam.de, E-mail: christina.mueller@bam.de; Pitkänen, Jorma, E-mail: jorma.pitkanen@posiva.fi

    2015-03-31

    Real defects are essential for the evaluation of the reliability of non destructive testing (NDT) methods, especially in relation to the integrity of components. But in most of the cases the amount of available real defects is not sufficient to evaluate the system. Model-assisted and transfer functions are one way to handle that challenge. This study is focused on a combination of different data pools to create a sufficient amount of data for the reliability estimation. A widespread approach for calculating the Probability of Detection (POD) was used on a radiographic testing (RT) method. The highest contrast to noise ratiomore » (CNR) of each indication is usually selected as the signal in the 'â vs. a' (signal-response) approach for RT. By combining real and artificial defects (flat bottom holes, side drill holes, flat bottom squares, notches, etc) in RT the highest signals are close to each other, but the process of creating and evaluating real defects is much more complex. The solution is seen in the combination of real and artificial data using a weighted least square approach. The weights for real or artificial data were based on the importance, the value and the different detection behavior of the different data. For comparison, the alternative combination through the Bayesian Updating was also applied. As verification, a data pool with a large amount of real data was available. In an advanced approach for evaluating the digital RT data, the size of the indication (perpendicular to the X-ray beam) was introduced as additional information. The signal now consists of the CNR and the area of the indication. The detectability is changing depending on the area of the indication, a fact that was ignored in the previous POD calculations for RT. This points out that a weighted least square approach to pool the data might no longer be adequate. The Bayesian Updating of the estimated parameters of the relationship between the signal field (the area of the indication) and the geometry of the defects is seen as the appropriate model to combine the different defect types in a useful and meaningful way. This work was carried out together with the Finnish company for spent nuclear fuel and waste management - Posiva Oy. The digital RT is one of the NDT methods that might be used for the inspection of the weld of the copper canister to be used for the spent nuclear fuel in the Scandinavian concept of final disposal.« less

  6. Rotating black holes with non-Abelian hair

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2016-12-01

    We here review asymptotically flat rotating black holes in the presence of non-Abelian gauge fields. Like their static counterparts these black holes are no longer uniquely determined by their global charges. In the case of pure SU(2) Yang-Mills fields, the rotation generically induces an electric charge, while the black holes do not carry a magnetic charge. When a Higgs field is coupled, rotating black holes with monopole hair arise in the case of a Higgs triplet, while in the presence of a complex Higgs doublet the black holes carry sphaleron hair. The inclusion of a dilaton allows for Smarr type mass formulae.

  7. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics

    NASA Astrophysics Data System (ADS)

    Li, Li; Guan, Weibing; Hu, Jianyu; Cheng, Peng; Wang, Xiao Hua

    2018-06-01

    Xiangshan Bay consists of a deep tidal channel and three shallow inlets. A large-scale tidal flat has been utilized through coastal construction. To ascertain the accumulate influences of these engineering projects upon the tidal dynamics of the channel-inlets system, this study uses FVCOM to investigate the tides and flow asymmetries of the bay, and numerically simulate the long-term variations of tidal dynamics caused by the loss of tidal flats. It was found that the reduction of tidal flat areas from 1963 to 2010 slightly dampened M2 tidal amplitudes (0.1 m, ∼6%) and advanced its phases by reducing shoaling effects, while amplified M4 tidal amplitudes (0.09 m, ∼27%) and advanced its phases by reducing bottom friction, in the inner bay. Consequently, the ebb dominance was dampened indicated by reduced absolute value of elevation skewness (∼20%) in the bay. The tides and tidal asymmetry were impacted by the locations, areas and slopes of the tidal flats through changing tidal prism, shoaling effect and bottom friction, and consequently impacted tidal duration asymmetry in the bay. Tides and tidal asymmetry were more sensitive to the tidal flat at the head of the bay than the side bank. Reduced/increased tidal flat slopes around the Tie inlet dampened the ebb dominance. Tidal flat had a role in dissipating the M4 tide rather than generating it, while the advection only play a secondary role in generating the M4 tide. The full-length tidal flats reclamation would trigger the reverse of ebb to flood dominance in the bay. This study would be applicable for similar narrow bays worldwide.

  8. Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background

    NASA Astrophysics Data System (ADS)

    Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng

    2018-06-01

    We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr   =  0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.

  9. Mechanisms of wave‐driven water level variability on reef‐fringed coastlines

    USGS Publications Warehouse

    Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt

    2018-01-01

    Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.

  10. Blackfolds, plane waves and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  11. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.« less

  12. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  13. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.

  14. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M.

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of themore » inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.« less

  15. Engineering ultra-flattened normal dispersion photonic crystal fiber with silica material

    NASA Astrophysics Data System (ADS)

    Ferhat, Mohamed Lamine; Cherbi, Lynda; Bahloul, Lies; Hariz, Abdelhafid

    2017-05-01

    The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.

  16. Gravity-induced stresses near a vertical cliff

    USGS Publications Warehouse

    Savage, W.Z.

    1993-01-01

    The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.

  17. Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Qiyuan; Jing Jiliang

    2008-09-15

    The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It has been shown that the same 'initial entanglement' for the state parameter {alpha} and its 'normalized partners'{radical}(1-{alpha}{sup 2}) will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state no longer has distillable entanglement for any {alpha}. It is interestingmore » to note that the mutual information in this limit is equal to just half of the 'initially mutual information'. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which indicates the degradation of entanglement.« less

  18. Stratigraphic and volcano-tectonic relations of Crater Flat Tuff and some older volcanic units, Nye County, Nevada

    USGS Publications Warehouse

    Carr, W.J.; Byers, F.M.; Orkild, Paul P.

    1984-01-01

    The Crater Flat Tuff is herein revised to include a newly recognized lowest unit, the Tram Member, exposed at scattered localities in the southwest Nevada Test Site region, and in several drill holes in the Yucca Mountain area. The overlying Bullfrog and Prow Pass Members are well exposed at the type locality of the formation near the southeast edge of Crater Flat, just north of U.S. Highway 95. In previous work, the Tram Member was thought to be the Bullfrog Member, and therefore was shown as Bullfrog or as undifferentiated Crater Flat Tuff on published maps. The revised Crater Flat Tuff is stratigraphically below the Topopah Spring Member of the Paintbrush Tuff and above the Grouse Canyon Member of the Belted Range Tuff, and is approximately 13.6 m.y. old. Drill holes on Yucca Mountain and near Fortymile Wash penetrate all three members of the Crater Flat as well as an underlying quartz-poor unit, which is herein defined as the Lithic Ridge Tuff from exposures on Lithic Ridge near the head of Topopah Wash. In outcrops between Calico Hills and Yucca Flat, the Lithic Ridge Tuff overlies a Bullfrog-like unit of reverse magnetic polarity that probably correlates with a widespread unit around and under Yucca Flat, referred to previously as Crater Flat Tuff. This unit is here informally designated as the tuff of Yucca Flat. Although older, it may be genetically related to the Crater Flat Tuff. Although the rocks are poorly exposed, geophysical and geologic evidence to date suggests that (1) the source of the Crater Flat Tuff is a caldera complex in the Crater Flat area between Yucca Mountain and Bare Mountain, and (2) there are at least two cauldrons within this complex--one probably associated with eruption of the Tram, the other with the Bullfrog and Prow Pass Members. The complex is named the Crater Flat-Prospector Pass caldera complex. The northern part of the Yucca Mountain area is suggested as the general location of the source of pre-Crater Flat tuffs, but a caldera related to the Lithic Ridge Tuff has not been specifically identified.

  19. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    NASA Astrophysics Data System (ADS)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  20. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  1. (2+1)-Dimensional charged black holes with scalar hair in Einstein-Power-Maxwell Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zou, De-Cheng

    2017-06-01

    In (2+1)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter k=1 and k≠1), in the Einstein-Power-Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with k≠1, we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  3. Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.

    2017-12-01

    Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with olivine melagabbro and olivine-bearing gabbro is well conspicuous in the bottom part of Unit II. The Unit IV occurs between 284.25 m and 293.92 m CCD from the top of the hole and is characterized by orthopyroxene-bearing lithologies such as fine-grained gabbronorite and coarse-grained troctolite. Discrete orthopyroxene crystals occur in these lithologies.

  4. Improvement of film cooling effectiveness with a small downstream block body

    NASA Astrophysics Data System (ADS)

    Khorsi, A.; Guelailia, A.; Hamidou, M. K.

    2016-07-01

    The aim of this study is to predict the improvement in film cooling performance over a flat plate through a single row of cylindrical holes with different streamwise angles by using the Ansys CFX software package. In order to improve the film cooling effectiveness, a short crescent-shaped block is placed downstream of a cylindrical cooling hole. The numerical results of the cylindrical hole without the downstream short crescent-shaped block are compared with experimental data.

  5. Roughans Point, Revere, Massachusetts Coastal Flood Protection Study. Volume I. Main Report.

    DTIC Science & Technology

    1982-12-01

    1982 conducted bT, Rusty Iwanowicz , Massachusetts Division of Marine Fisheries, concluded that the shoreline area that would be impacted by the... Iwanowicz , DMF, and Charles Freeman of my staff. In this survey, five test holes were dug seaward of the area of project impact in areas which Mr... Iwanowicz felt would indicate the productivity of the clam flat. Two holes revealed no shellfish, and the best hole produced two razor clams, two

  6. Studies on interface curvature during vertical Bridgman growth of InP in a flat-bottom container

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Matsumoto, F.; Fukuda, T.

    1996-01-01

    A simplified numerical simulation of the dynamic behaviour of the solid-liquid interface curvature during modified vertical Bridgman growth of 2 inch InP single crystals, in a flat-bottom container, with a seed of the same diameter is presented. The results agree with striation patterns observed by transmission X-ray topography. A nearly flat interface with slightly constant concavity has been ascertained in the front half of the grown ingots. It can be assumed that such a steady interface morphology is one of the basic requirements for the observed twin-free and reduced dislocation growth in this region. In an attempt to optimize the shape of the melting point isotherm in the last-to-freeze part of the crystals, the axial temperature gradient, the seed length, the growth velocity, the melt temperature and the conditions of heat transfer (different ambient atmospheres and plugs) as well as the temperature profile in the top region above the encapsulant have been varied in the model.

  7. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    NASA Astrophysics Data System (ADS)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  8. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  9. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point.

    PubMed

    Quan, Yundi; Pickett, Warren E

    2018-02-21

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ±[Formula: see text] form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  10. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    2018-02-01

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ± \\sqrt{k_x2n +k_y2m} form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  11. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  12. NuSTAR Seeks Hidden Black Holes

    NASA Image and Video Library

    2015-07-06

    Top: An illustration of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, in orbit. The unique school bus-long mast allows NuSTAR to focus high energy X-rays. Lower-left: A color image from NASA's Hubble Space Telescope of one of the nine galaxies targeted by NuSTAR in search of hidden black holes. Bottom-right: An artist's illustration of a supermassive black hole, actively feasting on its surroundings. The central black hole is hidden from direct view by a thick layer of encircling gas and dust. http://photojournal.jpl.nasa.gov/catalog/PIA19348

  13. Methods of measuring water levels in deep wells

    USGS Publications Warehouse

    Garber, M.S.; Koopman, F. C.

    1968-01-01

    Accurate measurement of water levels deeper than 1,000 feet in wells requires specialized equipment. Corrections for stretch and thermal expansion of measuring tapes must be considered, and other measuring devices must be calibrated periodically. Bore-hole deviation corrections also must be made. Devices for recording fluctuation of fluid level usually require mechanical modification for use at these depths. A multichannel recording device utilizing pressure transducers has been constructed. This device was originally designed to record aquifer response to nearby underground nuclear explosions but can also be used for recording data from multi-well pumping tests. Bottom-hole recording devices designed for oil-field use have been utilized in a limited manner. These devices were generally found to lack the precision required, in ground-water investigations at the Nevada Test Site but may be applicable in other areas. A newly developed bottom-hole recording pressure gauge of improved accuracy has been used with satisfactory results.

  14. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2014-08-01

    Preface; 1. Setting the stage: star formation and hydrogen burning in single stars; 2. Stellar death: the inexorable grip of gravity; 3. Dancing with stars: binary stellar evolution; 4. Accretion disks: flat stars; 5. White Dwarfs: quantum dots; 6. Supernovae: stellar catastrophes; 7. Supernova 1987A: lessons and enigmas; 8. Neutron stars: atoms with attitude; 9. Black holes in theory: into the abyss; 10. Black holes in fact: exploring the reality; 11. Gamma-ray bursts, black holes and the universe: long, long ago and far, far away; 12. Supernovae and the universe; 13. Worm holes and time machines: tunnels in space and time; 14. Beyond: the frontiers; Index.

  15. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2007-01-01

    Preface; 1. Setting the stage: star formation and hydrogen burning in single stars; 2. Stellar death: the inexorable grip of gravity; 3. Dancing with stars: binary stellar evolution; 4. Accretion disks: flat stars; 5. White Dwarfs: quantum dots; 6. Supernovae: stellar catastrophes; 7. Supernova 1987A: lessons and enigmas; 8. Neutron stars: atoms with attitude; 9. Black holes in theory: into the abyss; 10. Black holes in fact: exploring the reality; 11. Gamma-ray bursts, black holes and the universe: long, long ago and far, far away; 12. Supernovae and the universe; 13. Worm holes and time machines: tunnels in space and time; 14. Beyond: the frontiers; Index.

  16. Site 765: Sediment Lithostratigraphy

    USGS Publications Warehouse

    ,

    1990-01-01

    A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.

  17. Black Hole With Jet (Artist's Concept)

    NASA Image and Video Library

    2017-11-02

    This artist's concept shows a black hole with an accretion disk -- a flat structure of material orbiting the black hole -- and a jet of hot gas, called plasma. Using NASA's NuSTAR space telescope and a fast camera called ULTRACAM on the William Herschel Observatory in La Palma, Spain, scientists have been able to measure the distance that particles in jets travel before they "turn on" and become bright sources of light. This distance is called the "acceleration zone." https://photojournal.jpl.nasa.gov/catalog/PIA22085

  18. Are black holes springlike?

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  19. Area-angular-momentum inequality for axisymmetric black holes.

    PubMed

    Dain, Sergio; Reiris, Martin

    2011-07-29

    We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.

  20. Evolution of perturbations of squashed Kaluza-Klein black holes: Escape from instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, Hideki; Kimura, Masashi; Konoplya, Roman A.

    2008-04-15

    The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK blackmore » holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.« less

  1. Five Hundred and Seventy Three Holes in the Bottom of the Sea-Some Results From Seven Years of Deep-Sea Drilling

    ERIC Educational Resources Information Center

    Davies, T. A.

    1976-01-01

    Described are the background, operation, and findings of the work of the deep sea drilling vessel Glomar Challenger, which has taken 8,638 core samples from 573 holes at 392 sites on the floor of the Earth's oceans. (SL)

  2. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  3. Possibility of Flat-Band Ferromagnetism in Hole-Doped Pyrochlore Oxides Sn2 Nb2 O7 and Sn2 Ta2 O7

    NASA Astrophysics Data System (ADS)

    Hase, I.; Yanagisawa, T.; Aiura, Y.; Kawashima, K.

    2018-05-01

    Quantum mechanics tells us that the hopping integral between local orbitals makes the energy band dispersive. In a lattice with geometric frustration, however, dispersionless flat bands may appear due to quantum interference. Several models possessing flat bands have been proposed theoretically, and many attracting magnetic and electronic properties are predicted. However, despite many attempts to realize these models experimentally, compounds that are appropriately described by this model have not been found so far. Here we show that pyrochlore oxides Sn2 Nb2 O7 and Sn2Ta2O7 are such examples, by performing first-principles band calculation and several tight-binding analyses. Moreover, spin-polarized band calculation shows that the hole-doped systems Sn2 Nb2 O6 N and Sn2 Ta2 O6 N have complete spin polarization, and their magnetic moments are mostly carried by Sn-s and N-p orbitals, which are usually nonmagnetic. These compounds are not only candidates for ferromagnets without a magnetic element, but also will provide an experimental platform for a flat-band model which shows a wide range of physical properties.

  4. Flame interactions and burning characteristics of two live leaf samples

    Treesearch

    Brent M. Pickett; Carl Isackson; Rebecca Wunder; Thomas H. Fletcher; Bret W. Butler; David R. Weise

    2009-01-01

    Combustion experiments were performed over a flat-flame burner that provided the heat source for multiple leaf samples. Interactions of the combustion behavior between two leaf samples were studied. Two leaves were placed in the path of the flat-flame burner, with the top leaf 2.5 cm above the bottom leaf. Local gas and particle temperatures, as well as local oxygen...

  5. Numerical study on inter-tidal transports in coastal seas

    NASA Astrophysics Data System (ADS)

    Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo

    2016-06-01

    Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.

  6. MTR CAISSONS WERE DRILLED INTO BEDROCK. IN CENTER OF VIEW, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR CAISSONS WERE DRILLED INTO BEDROCK. IN CENTER OF VIEW, CONCRETE FLOWS FROM TRUCK INTO DRUM, WHICH IS LOWERED INTO CAISSON AND RELEASED AT BOTTOM OF HOLE. BEYOND, TRUCK-MOUNTED DRILLING RIG DRILLS HOLE FOR ANOTHER CAISSON NEAR EDGE OF EXCAVATION. MATERIAL REMOVED FROM HOLE IS CARRIED BY CONVEYOR TO WAITING TRUCK. INL NEGATIVE NO. 307. Unknown Photographer, 6/1950. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida

    USGS Publications Warehouse

    Navoy, A.S.

    1986-01-01

    Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)

  8. A model for correlating flat plate film cooling effectiveness for rows of round holes

    NASA Astrophysics Data System (ADS)

    Lecuyer, M. R.; Soechting, F. O.

    1985-09-01

    An effective method of cooling, that has found widespread application in aircraft gas turbines, is the injection of a film of cooling air through holes into the hot mainstream gas to provide a buffer layer between the hot gas and the airfoil surface. Film cooling has been extensively investigated and the results have been reported in the literature. However, there is no generalized method reported in the literature to predict the film cooling performance as influenced by the major variables. A generalized film cooling correlation has been developed, utilizing data reported in the literature, for constant velocity and flat plate boundary layer development. This work provides a basic understanding of the complex interaction of the major variables effecting film cooling performance.

  9. Long Hole Film Cooling Dataset for CFD Development - Flow and Film Effectiveness

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Poinsatte, Phillip; Thurman, Douglas; Ameri, Ali

    2014-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30 deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (approx. 0.02 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  10. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  11. Schwarzschild-de Sitter spacetimes, McVittie coordinates, and trumpet geometries

    NASA Astrophysics Data System (ADS)

    Dennison, Kenneth A.; Baumgarte, Thomas W.

    2017-12-01

    Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat, however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean curvature trumpet slicings of Schwarzschild-de Sitter spacetimes. We then switch to a comoving isotropic radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances from the black hole the resulting metric asymptotes to a Friedmann-Lemaître-Robertson-Walker metric with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a "wormhole" geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in asymptotically de Sitter spacetimes.

  12. The impact of bottom brightness on spectral reflectance of suspended sediments

    USGS Publications Warehouse

    Tolk, Brian L.; Han, L.; Rundquist, D. C.

    2000-01-01

    Two experiments were conducted outdoors to investigate how bottom brightness impacts the spectral response of a water column under varied suspended sediment concentrations. A white aluminum panel placed at the bottom of the tank was used as the bright bottom, and a flat-black tank liner served as the dark bottom. Sixteen levels of suspended sediment from 25 to 400 mg litre -1 were used in each experiment. Spectral data were collected using a Spectron SE-590 spectroradiometer. The major findings include the following: the bright bottom had the greatest impact at visible wavelengths; when suspended sediment concentrations exceeded 100 mg litre -1, the bright bottom response was found to be negligible; and, substrate brightness has minimal impact between 740 and 900 nm, suggesting that these wavelengths are best for measuring suspended sediment concentrations by means of remote sensing.

  13. Global structure of static spherically symmetric solutions surrounded by quintessence

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Ganguly, Apratim; Gannouji, Radouane; Leon, Genly; Saridakis, Emmanuel N.

    2017-06-01

    We investigate all static spherically symmetric solutions in the context of general relativity surrounded by a minimally-coupled quintessence field, using dynamical system analysis. Applying the 1  +  1  +  2 formalism and introducing suitable normalized variables involving the Gaussian curvature, we were able to reformulate the field equations as first order differential equations. In the case of a massless canonical scalar field we recovered all known black hole results, such as the Fisher solution, and we found that apart from the Schwarzschild solution all other solutions are naked singularities. Additionally, we identified the symmetric phase space which corresponds to the white hole part of the solution and in the case of a phantom field, we were able to extract the conditions for the existence of wormholes and define all possible classes of solutions such as cold black holes, singular spacetimes and wormholes such as the Ellis wormhole, for example. For an exponential potential, we found that the black hole solution which is asymptotically flat is unique and it is the Schwarzschild spacetime, while all other solutions are naked singularities. Furthermore, we found solutions connecting to a white hole through a maximum radius, and not a minimum radius (throat) such as wormhole solutions, therefore violating the flare-out condition. Finally, we have found a necessary and sufficient condition on the form of the potential to have an asymptotically AdS spacetime along with a necessary condition for the existence of asymptotically flat black holes.

  14. Effects of crossflow in an internal-cooling channel on film cooling of a flat plate through compound-angle holes

    NASA Astrophysics Data System (ADS)

    Stratton, Zachary T.

    The film-cooling holes in turbine blades are fed from an internal cooling channel. This channel imposes a crossflow at the entrance of the holes that can significantly affect the performance of the cooling jets that emanate from those holes. In this study, CFD simulations based on steady RANS with the shear-stress transport (SST) and the realizable k-epsilon turbulence models were performed to study film cooling of a flat plate with cooling jets issuing from eight round holes with a compound angle of 45 degrees, where the coolant channel that fed the cooling jets was oriented perpendicular to the direction of the hot-gas flow. One case was also performed by using large-eddy simulation (LES) to get a sense of the unsteady nature of the flow. Operating conditions were chosen to match the laboratory conditions, which maintained a density ratio of 1.5 between the coolant and the hot gas. Parameters studied include internal crossflow direction and blowing ratios of 0.5, 1.0, and 1.5. Results obtained showed an unsteady vortex forms inside the hole, causing a side-to-side shedding of the coolant jet. Values of adiabatic effectiveness predicted by the CFD simulations were compared with experimentally measured values. Steady RANS was found to be inconsistent in its ability to predict adiabatic effectiveness with relative error ranging from 10% to over 100%. LES was able to predict adiabatic effectiveness with reasonable accuracy.

  15. Effects of bleed-hole geometry and plenum pressure on three-dimensional shock-wave/boundary-layer/bleed interactions

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1993-01-01

    A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.

  16. Yield enhancement of 3D flash devices through broadband brightfield inspection of the channel hole process module

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Youl; Seo, Il-Seok; Ma, Seong-Min; Kim, Hyeon-Soo; Kim, Jin-Woong; Kim, DoOh; Cross, Andrew

    2013-03-01

    The migration to a 3D implementation for NAND flash devices is seen as the leading contender to replace traditional planar NAND architectures. However the strategy of replacing shrinking design rules with greater aspect ratios is not without its own set of challenges. The yield-limiting defect challenges for the planar NAND front end were primarily bridges, protrusions and residues at the bottom of the gates, while the primary challenges for front end 3D NAND is buried particles, voids and bridges in the top, middle and bottom of high aspect ratio structures. Of particular interest are the yield challenges in the channel hole process module and developing an understanding of the contribution of litho and etch defectivity for this challenging new integration scheme. The key defectivity and process challenges in this module are missing, misshapen channel holes or under-etched channel holes as well as reducing noise sources related to other none yield limiting defect types and noise related to the process integration scheme. These challenges are expected to amplify as the memory density increases. In this study we show that a broadband brightfield approach to defect monitoring can be uniquely effective for the channel hole module. This approach is correlated to end-of-line (EOL) Wafer Bin Map for verification of capability.

  17. Thermodynamics sheds light on black hole dynamics

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Julié, Félix-Louis; Deruelle, Nathalie

    2018-06-01

    We propose to unify two a priori distinct aspects of black hole physics: their thermodynamics, and their description as point particles, which is an essential starting point in the post-Newtonian approach to their dynamics. We will find that, when reducing a black hole to a point particle endowed with its specific effective mass, one in fact describes a black hole satisfying the first law of thermodynamics, such that its global charges, and hence its entropy, remain constant. This gives a thermodynamical interpretation of its effective mass, thus opening a promising synergy between black hole thermodynamics and the analytical approaches to the two-body problems in gravity theories. To illustrate this relationship, the Einstein-Maxwell-dilaton theory, which contains simple examples of asympotically flat, hairy black hole solutions, will serve as a laboratory.

  18. Method for Cleaning Laser-Drilled Holes on Printed Wiring Boards by Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Hirogaki, Toshiki; Aoyama, Eiichi; Minagi, Ryu; Ogawa, Keiji; Katayama, Tsutao; Matsuoka, Takashi; Inoue, Hisahiro

    We propose a new method for cleaning blind via holes after laser drilling of PWBs using oxygen plasma treatment. This report dealt with three kinds of PWB materials: epoxy resin and two kinds of aramid fiber reinforced plastics (AFRP: Technora or Kevlar fiber reinforcement). We observed the drilled holes after plasma treatment using both an optical and a scanning electric microscope (SEM). It was confirmed that adequate etching took place in the drilled holes by plasma treatment. We also compared the hole wall and hole bottom after plasma treatment with ones after chemical etching. It was clear that there was no damage to the aramid fiber tip on the hole wall, and that a smooth roughness of the hole wall was obtained by means of plasma treatment. As a result, we demonstrated that the plasma treatment is effective in cleaning the laser drilled holes of PWBs.

  19. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon

    NASA Astrophysics Data System (ADS)

    Roy-Leveillee, Pascale; Burn, Christopher R.

    2017-05-01

    It is generally assumed that permafrost is preserved beneath shallow lakes and ponds in the Western North American Arctic where water depth is less than about two thirds of the late-winter lake ice thickness. Here we present field observations of talik development beneath water as shallow as 0.2 m despite a lake ice thickness of 1.5 m, in Old Crow Flats (OCF), YT. Conditions leading to the initiation and development of taliks beneath shallow water were investigated with field measurements of shore erosion rates, bathymetry, ice thickness, snow accumulation, and lake bottom temperature near the shores of two expanding lakes in OCF. The sensitivity of talik development to variations in lake bottom thermal regime was then investigated numerically. Where ice reached the lake bottom, talik development was controlled by the ratio of freezing degree days to thawing degree days at the lake bottom (FDDlb/TDDlb). In some cases, spatial variations in on-ice snow depth had a minimal effect on annual mean lake bottom temperature (Tlb) but caused sufficient variations in FDDlb/TDDlb to influence talik development. Where Tlb was close to but greater than 0°C simulations indicated that the thermal offset allowed permafrost aggradation to occur under certain conditions, resulting in irregular near-shore talik geometries. The results highlight the sensitivity of permafrost to small changes in lake bottom thermal conditions where the water column freezes through in early winter and indicate the occurrence of permafrost degradation beneath very shallow water in the near-shore zone of Arctic ponds and lakes.

  20. Is the Universe a white-hole?

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    2007-10-01

    Pathria (1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein’s field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.

  1. Explosive fluid transmitted shock method for mining deeply buried coal

    DOEpatents

    Archibald, Paul B.

    1976-06-22

    A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.

  2. Design and Manufacture of Elastically Tailored Tow Placed Plates

    NASA Technical Reports Server (NTRS)

    Tatting, Brain F.; Guerdal, Zafer; Jegley, Dawn (Technical Monitor)

    2002-01-01

    Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a relatively novel design concept that has been demonstrated to be both beneficial and practical. In particular, for structures with highly non-uniform stress states, such as the case of a flat panel with a central hole subjected to in-plane loading, the concept is likely to provide substantial improvements in load carrying capability. The objective of the present study is to determine the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels with holes. In this study software was created that translates standard finite element models with traditional laminate definitions into ones that possess stacking sequences with curvilinear fiber paths that are directly manufacturable using an advanced tow placement machine. Preliminary designs for the manufacturing and testing phase were determined through rudimentary design studies for flat plates without holes under axial compression. These candidate designs were then analyzed using finite element models that accurately reflect the test conditions and geometries in order to select final designs for testing. A total of six large panels, measuring three feet by six feet, each of which are used to produce four specimens with or without holes, were fabricated and delivered to NASA for machining and testing.

  3. Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Nishino, M. N.

    2015-12-01

    The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self-consistent modeling not only reproduces intense differential charging between sunlit and shadowed surfaces, but also reveals the potential difference between sunlit surfaces inside and outside the hole. The results demonstrate the uniqueness of the near-hole plasma environment as well as provide useful knowledge for future landing missions.

  4. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  5. Film cooling effectiveness and heat transfer with injection through holes

    NASA Technical Reports Server (NTRS)

    Eriksen, V. L.

    1971-01-01

    An experimental investigation of the local film cooling effectiveness and heat transfer downstream of injection of air through discrete holes into a turbulent boundary layer of air on a flat plate is reported. Secondary air is injected through a single hole normal to the main flow and through both a single hole and a row of holes spaced at three diameter intervals with an injection angle of 35 deg to the main flow. Two values of the mainstream Reynolds number are used; the blowing rate is varied from 0.1 to 2.0. Photographs of a carbon dioxide-water fog injected into the main flow at an angle of 90 deg are also presented to show interaction between the jet and mainstream.

  6. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-03-01

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f (ϕ ) . We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f (ϕ ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f (ϕ ).

  7. Rotating black holes in the teleparallel equivalent of general relativity

    NASA Astrophysics Data System (ADS)

    Nashed, Gamal G. L.

    2016-05-01

    We derive set of solutions with flat transverse sections in the framework of a teleparallel equivalent of general relativity which describes rotating black holes. The singularities supported from the invariants of torsion and curvature are explained. We investigate that there appear more singularities in the torsion scalars than in the curvature ones. The conserved quantities are discussed using Einstein-Cartan geometry. The physics of the constants of integration is explained through the calculations of conserved quantities. These calculations show that there is a unique solution that may describe true physical black hole.

  8. Maximal volume behind horizons without curvature singularity

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Jun; Guo, Xin-Xuan; Wang, Towe

    2018-01-01

    The black hole information paradox is related to the area of event horizon, and potentially to the volume and singularity behind it. One example is the complexity/volume duality conjectured by Stanford and Susskind. Accepting the proposal of Christodoulou and Rovelli, we calculate the maximal volume inside regular black holes, which are free of curvature singularity, in asymptotically flat and anti-de Sitter spacetimes respectively. The complexity/volume duality is then applied to anti-de Sitter regular black holes. We also present an analytical expression for the maximal volume outside the de Sitter horizon.

  9. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories.

    PubMed

    Antoniou, G; Bakopoulos, A; Kanti, P

    2018-03-30

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f(ϕ). We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f(ϕ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f(ϕ).

  10. Waves plus currents at a right angle: The rippled bed case

    NASA Astrophysics Data System (ADS)

    Faraci, C.; Foti, E.; Musumeci, R. E.

    2008-07-01

    The present paper deals with wave plus current flow over a fixed rippled bed. More precisely, modifications of the current profiles due to the superimposition of orthogonal cylindrical waves have been investigated experimentally. Since the experimental setup permitted only the wave dominated regime to be investigated (i.e., the regime where orbital velocity is larger than current velocity), also a numerical k-ɛ turbulence closure model has been developed in order to study a wider range of parameters, thus including the current dominated regime (i.e., where current velocity is larger than wave orbital one). In both cases a different response with respect to the flat bed case has been found. Indeed, in the flat bed case laminar wave boundary layers in a wave dominated regime induce a decrease in bottom shear stresses, while the presence of a rippled bed behaves as a macroroughness, which causes the wave boundary layer to become turbulent and therefore the current velocity near the bottom to be smaller than the one in the case of current only, with a consequent increase in the current bottom roughness.

  11. Results of the exploratory drill hole Ue5n,Frenchman Flat, Nevada Test Site. [Geologic and geophysical parameters of selected locations with anomalous seismic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramspott, L.D.; McArthur, R.D.

    1977-02-18

    Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less

  12. Are eikonal quasinormal modes linked to the unstable circular null geodesics?

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Stuchlík, Z.

    2017-08-01

    In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of the frequency and instability timescale of the circular null geodesics respectively. We shall consider asymptotically flat black hole in the Einstein-Lovelock theory, find analytical expressions for gravitational quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both phenomena shows that the expected link between the null geodesics and quasinormal modes is violated in the Einstein-Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and here we formulate its actual limits.

  13. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics

    NASA Astrophysics Data System (ADS)

    Czinner, Viktor G.; Iguchi, Hideo

    2017-12-01

    Thermodynamics of rotating black holes described by the Rényi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Rényi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Rényi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence.

  14. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  15. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  16. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.

    2016-12-06

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  17. Use of Sacrificial Nanoparticles to Remove the Effects of Shot-noise in Contact Holes Fabricated by E-beam Lithography.

    PubMed

    Rananavare, Shankar B; Morakinyo, Moshood K

    2017-02-12

    Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.

  18. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  19. Study of hole characteristics in Laser Trepan Drilling of ZTA

    NASA Astrophysics Data System (ADS)

    Saini, Surendra K.; Dubey, Avanish K.; Upadhyay, B. N.; Choubey, A.

    2018-07-01

    Zirconia Toughened Alumina ceramic is widely used for aerospace components, combustion chambers, heat exchangers, bearings and pumps mainly due to its improved mechanical and thermal properties. To make holes in thick section Zirconia Toughened Alumina ceramics is a major challenge due to its unfavorable machining characteristics. Recent researches have explored that laser machining can overcome the machining limitations of advanced materials having improved mechanical properties. In present research, authors have analyzed the effect of Laser Trepan Drilling on hole characteristics of 6.0 mm thick Zirconia Toughened Alumina. Effect of significant process parameters on hole characteristics such as hole circularity at top and bottom, hole taper, and spatter size have been studied. The optimum ranges of these parameters have been suggested on the basis of empirical modeling and optimization.

  20. The random walk of a drilling laser beam

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1980-01-01

    The disregistry of holes drilled with a pulse laser beam in 330-micron-thick single-crystal silicon-on-sapphire wafers is examined. The exit positions of the holes were displaced from the hole entrance positions on the opposing face of the wafer, and this random displacement increased with the number of laser pulses required. A model in which the bottom of the drill hole experiences small random displacements during each laser pulse is used to describe the experimental observations. It is shown that the average random displacement caused by each pulse is only a few percent of the hole diameter and can be reduced by using as few laser pulses as necessary while avoiding the cracking and spalling of the wafer that occur with a hole drilled with a single pulse.

  1. Mechanical Slosh Models for Rocket-Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abram; Yang, Lee; Powers. Joseph; Hall, Charles

    2013-01-01

    Several analytical mechanical slosh models for a cylindrical tank with flat bottom are reviewed. Even though spacecrafts use cylinder shaped tanks, most of those tanks usually have elliptical domes. To extend the application of the analytical models for a cylindrical tank with elliptical domes, the modified slosh parameter models are proposed in this report by mapping an elliptical dome cylindrical tank to a flat top/bottom cylindrical tank while maintaining the equivalent liquid volume. For the low Bond number case, the low-g slosh models were also studied. Those low-g models can be used for Bond number > 10. The current low-g slosh models were also modified to extend their applications for the case that liquid height is smaller than the tank radius. All modified slosh models are implemented in MATLAB m-functions and are collected in the developed MST (Mechanical Slosh Toolbox).

  2. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes.

    PubMed

    Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin

    2013-10-21

    Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.

  3. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing.

    PubMed

    Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza

    2016-03-01

    The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Weak annihilation cusp inside the dark matter spike about a black hole.

    PubMed

    Shapiro, Stuart L; Shelton, Jessie

    2016-06-15

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.

  5. On the existence of black holes in distorted Schwarzschild spacetime using marginally trapped surfaces

    NASA Astrophysics Data System (ADS)

    Pilkington, Terry

    The classical definition of a black hole in terms of an event horizon relies on global properties of the spacetime. Realistic black holes have matter distributions surrounding them, which negates the asymptotic flatness needed for an event horizon. Using the (quasi-)local concept of marginally trapped surfaces, we investigate the Schwarzschild spacetime distorted by an axisymmetric matter distribution. We determine that it is possible to locate a future outer trapping horizon for a given foliation within certain value ranges of multipole moments. Furthermore, we show that there are no marginally trapped surfaces for arbitrary values of the multipole moment magnitudes. KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARGINALLY TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON

  6. Clay deposits of the Connecticut River Valley, Connecticut: a special problem in land management

    USGS Publications Warehouse

    Langer, William H.

    1972-01-01

    When man first settled the United States, two natural features favored settlement; flat land that was easy to build on and to farm, and a nearby river that could act as a source of water, transportation, and power. The Connecticut River Valley from Middletown, Ct. north past the Connecticut-Massachusetts state line satisfied these two needs, and was favored by many early Americans in New England. This area remains an area of rapid urbanization, partly because of the broad flat lowlands. The subdued topography of this area is due in large part to deposition of fine-grained materials into glacial Lake Hitchcock. This lake was formed during the Wisconsinan age when southward drainage in the Triassic valley of Connecticut was dammed by glacial drift in the area of Rocky Hill, Connecticut. Lake Hitchcock grew to and beyond St. Johnsbury, Vt. with much of the lake being filled with cyclical lake-bottom deposits during the 2,290 to 2,350 years of its life. Aside from the relative flatness inherent in the deposition of fine-grained lake-bottom deposits, these deposits present very few characteristics that are favorable for urbanization. Favorable characteristics are possible sources of clay for manufacturing and possible sources for waste storage sites. Unfavorable characteristics include low water yields resulting in poor urban water-supply sources, and very low flows in streams during dry periods; low percolation rates resulting In drainage and septic problems; and low or uneven bearing strength which create problems in construction. Fine-grained lake-bottom deposits have been mapped for six quadrangles in the Connecticut Valley lowlands; the quadrangles of Windsor Locks, Broad Brook, Hartford North, Manchester, Hartford South, and Glastonbury (all located in Connecticut). All the maps were prepared from existing information including well and test hole data on file at the Water Resources Division in Hartford, surficial geologic quadrangle maps, and bedrock contour maps. The maps also reflect geologic interpretations of the history of glacial Lake Hitchcock. The Hartford North maps were prepared as test maps to determine if the project was feasible. They were prepared using the previously described information plus additional subsurface data obtained from engineering firms and the State Highway Department. During preparation of the maps, an arcuate-shaped, ice-contact deposit composed of coarse sand and gravel was delineated in the Broad Brook and Windsor Locks quadrangles. This feature marks the location of a zone of stagnant ice In front of and marginal to active ice to the north. Two types of maps were prepared for the area in study; Thickness of the Principal Clay Deposit, and Thickness of Material Overlying the Principal Clay Deposit. The term "principal clay deposit" refers to the fine-grained lake-bottom deposits of Glacial Lake Hitchcock. These maps define the distribution of the deposit, and show the thickness of the deposit in 50 foot intervals and the thickness of the material overlying the deposit In 20 foot intervals. The maps indicate that much of the area is underlain with substantial thicknesses of finegrained lake-bottom deposits (50 feet thick or greater), and that much of the deposit is within 20 feet of the surface. The maps included in this report can be used for land-use planning. Uses include location of favorable sites for specific uses such as landfills, utility corridors, heavy construction, etc; location of problem areas for specific land uses; identification of possible problems for specific areas; design and construction cost estimates; and prospecting for exploitable clay deposits. It Is suggested that, for effective planning, these maps be used together or in conjunction with other maps such as maps showing surface materials, depth to bedrock, depth to water table, and flood prone areas.

  7. AdS3 to dS3 transition in the near horizon of asymptotically de Sitter solutions

    NASA Astrophysics Data System (ADS)

    Sadeghian, S.; Vahidinia, M. H.

    2017-08-01

    We consider two solutions of Einstein-Λ theory which admit the extremal vanishing horizon (EVH) limit, odd-dimensional multispinning Kerr black hole (in the presence of cosmological constant) and cosmological soliton. We show that the near horizon EVH geometry of Kerr has a three-dimensional maximally symmetric subspace whose curvature depends on rotational parameters and the cosmological constant. In the Kerr-dS case, this subspace interpolates between AdS3 , three-dimensional flat and dS3 by varying rotational parameters, while the near horizon of the EVH cosmological soliton always has a dS3 . The feature of the EVH cosmological soliton is that it is regular everywhere on the horizon. In the near EVH case, these three-dimensional parts turn into the corresponding locally maximally symmetric spacetimes with a horizon: Kerr-dS3 , flat space cosmology or BTZ black hole. We show that their thermodynamics match with the thermodynamics of the original near EVH black holes. We also briefly discuss the holographic two-dimensional CFT dual to the near horizon of EVH solutions.

  8. Assessment of the Critical Parameters Influencing the Edge Stretchability of Advanced High-Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Butcher, C.; Worswick, M.

    2016-11-01

    The edge formability of ferritic-martensitic DP (dual-phase) and ferritic-bainitic CP (complex-phase) steels was evaluated using a hole expansion test for different edge conditions. Hole expansion tests involving the standard conical punch as well as a custom flat punch were performed to investigate formability when the hole is expanded out-of-plane (conical punch) and in-plane using the flat punch. A range of edge conditions were considered, in order to isolate the influence of a range of factors thought to influence edge formability. The results demonstrate that work hardening and void damage at the sheared edge govern formability, while the sheared surface quality plays a minor or secondary role. A comparison of the edge stretching limits of DP and CP steels demonstrates the advantages of a ferritic-bainitic microstructure for forming operations with severe local deformation as in a stretch-flanging operation. A comparison of a traditional DP780 steel with a CP steel of similar strength showed that the edge stretching limit of the CP steel was three times larger than that of the DP780.

  9. Testing holography using lattice super-Yang-Mills theory on a 2-torus

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Jha, Raghav G.; Schaich, David; Wiseman, Toby

    2018-04-01

    We consider maximally supersymmetric SU (N ) Yang-Mills theory in Euclidean signature compactified on a flat two-dimensional torus with antiperiodic ("thermal") fermion boundary conditions imposed on one cycle. At large N , holography predicts that this theory describes certain black hole solutions in type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N =16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory-Laflamme transition.

  10. Rock Hole Habitats of a Feral Population of Aedes aegypti on the Island of Anguilla, West Indies

    DTIC Science & Technology

    1983-03-01

    htAHCH, 1983 MOSQUITO NEWS $9 tions of medical importance. Annu. Rev. Entomol. 13:427-450. Fish, D. and S. R. Carpenter. 1982. Leaf litter and...Aedes mgspi larvae (ruler length is 0.31 m). it1 bare rock holes or those containing leaf litter arid/or soil. Larval densities are usually higher in...shade cover. At one end there is a la! er of leaf litter, the remainder has ;I thin mud layer over its rock bottom. During this time, the hole filled

  11. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    USGS Publications Warehouse

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    Question 2—Does basin and range normal faulting observed in the hills north of Frenchman Flat continue southward under alluvium and possibly disrupt the Topopah Spring Tuff of the Paintbrush Group (the Topopah Spring welded tuff aquifer or TSA) east of the Pin Stripe underground nuclear test, which was conducted in Emplacement hole U11b?

  12. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  13. Real-time depth measurement for micro-holes drilled by lasers

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung

    2010-02-01

    An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.

  14. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method.

    PubMed

    Otoguro, Saori; Hayashi, Yoshihiro; Miura, Takahiro; Uehara, Naoto; Utsumi, Shunichi; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The stress distribution of tablets after compression was simulated using a finite element method, where the powder was defined by the Drucker-Prager cap model. The effect of tablet shape, identified by the surface curvature, on the residual stress distribution was investigated. In flat-faced tablets, weak positive shear stress remained from the top and bottom die walls toward the center of the tablet. In the case of the convexly curved tablet, strong positive shear stress remained on the upper side and in the intermediate part between the die wall and the center of the tablet. In the case of x-axial stress, negative values were observed for all tablets, suggesting that the x-axial force always acts from the die wall toward the center of the tablet. In the flat tablet, negative x-axial stress remained from the upper edge to the center bottom. The x-axial stress distribution differed between the flat and convexly curved tablets. Weak stress remained in the y-axial direction of the flat tablet, whereas an upward force remained at the center of the convexly curved tablet. By employing multiple linear regression analysis, the mechanical properties of the tablets were predicted accurately as functions of their residual stress distribution. However, the multiple linear regression prediction of the dissolution parameters of acetaminophen, used here as a model drug, was limited, suggesting that the dissolution of active ingredients is not a simple process; further investigation is needed to enable accurate predictions of dissolution parameters.

  15. Process Specification for Eddy Current Inspection

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2011-01-01

    This process specification establishes the minimum requirements for eddy current inspection of flat surfaces, fastener holes, threaded fasteners and seamless and welded tubular products made from nonmagnetic alloys such as aluminum and stainless steel.

  16. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  17. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  18. Fabrication and photocatalytic properties of free-standing TiO{sub 2} nanotube membranes with through-hole morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Jianjun; Lin Shiwei, E-mail: linsw@hainu.edu.cn; Pan Nengqian

    2012-04-15

    Anodic growth of TiO{sub 2} nanotubes has recently attracted intensive interests. However, the insulating, closed barrier layer has restricted their feasibility for the applications such as flow-through photocatalytic reactions, biofiltration, and diffusion controlling. In the present work, we fabricated free-standing TiO{sub 2} membranes with through-hole morphology by elevating the anodizing voltage at the end of anodization process. Characterization of the samples was carried out by means of scanning electron microscope, X-ray diffraction and thermogravimetry-differential scanning calorimetry. The experimental results show that the TiO{sub 2} membranes start to transform from amorphous phase to anatase at 300 Degree-Sign C, and the phasemore » transformation from anatase to rutile starts at 650 Degree-Sign C. In addition, photocatalytic degradation of rhodamine B by the TiO{sub 2} membranes with closed bottoms and opened bottoms has also been systematically investigated. As compared to TiO{sub 2} membranes with closed bottoms, TiO{sub 2} membranes with opened bottoms exhibited superior photocatalytic activity due to its better access for rhodamine B molecules as well as the enhanced light harvesting and electron collection efficiencies. Highlights: Black-Right-Pointing-Pointer The closed bottoms were opened by elevating the anodizing voltage. Black-Right-Pointing-Pointer Phase transformation from anatase to rutile starts at 650 Degree-Sign C. Black-Right-Pointing-Pointer TiO{sub 2} membranes in the anatase form have a better catalytic performance. Black-Right-Pointing-Pointer Opened-bottom TiO{sub 2} membranes with exhibited superior photocatalytic activity.« less

  19. Identification of bedforms in lower cook inlet, Alaska

    USGS Publications Warehouse

    Bouma, A.H.; Rappeport, M.L.; Orlando, R.C.; Hampton, M.A.

    1980-01-01

    The seafloor of the central part of lower Cook Inlet, Alaska, is characterized by the presence of different sizes and types of bedforms. The bedforms in the sandy sediments include straight-crested to sinuous to lunate ripples, small, medium, and large sand waves, sand ridges, sand ribbons, and sand patches. In addition, rocky and pebbly seafloor has been identified. The water depth ranges from 25 to 120 m, and surface currents average 3.8 kt (2 m/s). Bottom currents have been measured at as much as 42 cm/s at 1 m above bottom. Underwater television observations have shown that the rate of sand transport is lower than expected because small amounts of clay and organic matter appear to inhibit remobilization. Only during the last 1 to 2 h of ebb and flood stages of spring tides, and during storms, does significant transport occur. Comparison of data from high-resolution seismic profiling systems, side-scan sonar, bottom television and camera, and bottom sampling shows that bottom and bedform interpretations based solely on sonographs can be in error. Measuring the length of 'acoustic shadows' on sonographs to obtain bedform heights gives dimensions that are too large by factors of 3-7. Bottom television investigations revealed that the troughs between small sand waves are flat and carpeted by shell fragments. Such coarse material has a high acoustic reflectance that is not related to slope or height and can lead to false interpretations on bedform dimensions. Our observations have shown that small sand waves commonly superimposed on larger ones are slightly higher than those present on flat hard bottom but are still less than calculated from acoustic shadows. Where the bottom is rather smooth or contains elevations small enough to be masked by bathymetric 'noise' caused by the pitching of the vessel, sonographs typically show either small sand waves, sand ribbons, sand patches, rocks, or smooth bottom. The smooth-bottom category can vary widely from ripples to gravelly or shelly or to small rocks with biological overgrowth as verified by television observations. Our observations have clearly demonstrated the need for an integrated multi-scale observation and sampling program in order to classify the bottom characteristics and to provide quantitative data for transport calculations. ?? 1980.

  20. Novel Acoustic Scattering Processes for Target Discrimination

    DTIC Science & Technology

    2014-12-31

    Woods Hole Oceanographic Institution. WORK COMPLETED During FY10, in addition to La Follett’s thesis [6] a publication appeared based primarily on...function of tilt angle is very similar to the case in which the cylinder is hung adjacent to a flat floating platform of closed-cell extruded ...departed during FY10 who are currently employed at NSWC-PCD and remain involved in related research. Dr. Baik [5] is currently a postdoc at Woods Hole

  1. Sediment transport in the presence of large reef bottom roughness

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Storlazzi, Curt; Symonds, Graham; Roelvink, Dano

    2017-01-01

    The presence of large bottom roughness, such as that formed by benthic organisms on coral reef flats, has important implications for the size, concentration, and transport of suspended sediment in coastal environments. A 3 week field study was conducted in approximately 1.5 m water depth on the reef flat at Ningaloo Reef, Western Australia, to quantify the cross-reef hydrodynamics and suspended sediment dynamics over the large bottom roughness (∼20–40 cm) at the site. A logarithmic mean current profile consistently developed above the height of the roughness; however, the flow was substantially reduced below the height of the roughness (canopy region). Shear velocities inferred from the logarithmic profile and Reynolds stresses measured at the top of the roughness, which are traditionally used in predictive sediment transport formulations, were similar but much larger than that required to suspend the relatively coarse sediment present at the bed. Importantly, these stresses did not represent the stresses imparted on the sediment measured in suspension and are therefore not relevant to the description of suspended sediment transport in systems with large bottom roughness. Estimates of the bed shear stresses that accounted for the reduced near-bed flow in the presence of large roughness vastly improved the relationship between the predicted and observed grain sizes that were in suspension. Thus, the impact of roughness, not only on the overlying flow but also on bed stresses, must be accounted for to accurately estimate suspended sediment transport in regions with large bottom roughness, a common feature of many shallow coastal ecosystems.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkoris, George; Boudouvis, Andreas G.; Gogolides, Evangelos

    An integrated framework for the neutral flux calculation inside trenches and holes during plasma etching is described, and a comparison between the two types of structure in a number of applications is presented. First, a detailed and functional set of equations for the neutral and ion flux calculations inside long trenches and holes with cylindrical symmetry is explicitly formulated. This set is based on early works [T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990); V. K. Singh et al., J. Vac. Sci. Technol. B 10, 1091 (1992)], and includes new equations for themore » case of holes with cylindrical symmetry. Second, a method for the solution of the respective numerical task, i.e., one or a set of linear or nonlinear integral equations, is described. This method includes a coupling algorithm with a surface chemistry model and resolves the singularity problem of the integral equations. Third, the fluxes inside trenches and holes are compared. The flux from reemission is the major portion of the local flux at the bottom of both types of structure. The framework is applied in SiO{sub 2} etching by fluorocarbon plasmas to predict the increased intensity of reactive ion etching lag in SiO{sub 2} holes compared to trenches. It is also applied in deep Si etching: By calculating the flux of F atoms at the bottom of very high aspect ratio (up to 150) Si trenches and holes during the gas chopping process, the aspect ratio at which the flux of F atoms is eliminated and etching practically stops is estimated.« less

  3. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  4. Evaluation of Different Techniques of Active Thermography for Quantification of Artificial Defects in Fiber-Reinforced Composites Using Thermal and Phase Contrast Data Analysis

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Röllig, Mathias; Gower, Michael; Lodeiro, Maria; Baker, Graham; Monte, Christian; Adibekyan, Albert; Gutschwager, Berndt; Knazowicka, Lenka; Blahut, Ales

    2018-05-01

    For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed.

  5. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.

    1993-12-31

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. The authors mapped surface temperature differences of 0.2 to 0.6 C for 5 to 14 % thickness losses within corroded lap splices at 0.4 seconds after the heat flash. The procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). They established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels whichmore » had thickness losses from milled flat-bottom holes. The authors mapped the lap splice composite thermal inertia, (k{rho}c){sup 1/2}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where they observed ``pillowing`` from volume build-up of corrosion by-products.« less

  6. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.

    1993-11-01

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. We mapped surface temperature differences of 0.2 to 0.6 {degrees}C for 5 to 14% thickness losses within corroded lap splices at 0.4 seconds after the heat flash. Our procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). We established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thicknessmore » losses from milled flat-bottom holes. We mapped the lap splice composite thermal inertia, (kpc){sup {1/2}}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where we observed ``pillowing`` from volume build-up of corrosion by-products.« less

  7. The effect of pits of different sizes on ultrasonic shear wave signals

    NASA Astrophysics Data System (ADS)

    Howard, Richard; Cegla, Frederic

    2018-04-01

    The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.

  8. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  9. NASA MUST Paper: Infrared Thermography of Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla; Koshti, Ajay

    2010-01-01

    The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.

  10. Sediment drifts and contourites on the continental margin off northwest Britain

    NASA Astrophysics Data System (ADS)

    Stoker, M. S.; Akhurst, M. C.; Howe, J. A.; Stow, D. A. V.

    1998-01-01

    Seismic reflection profiles and short cores from the continental margin off northwest Britain have revealed a variety of sediment-drift styles and contourite deposits preserved in the northeast Rockall Trough and Faeroe-Shetland Channel. The sediment drifts include: (1) distinctly mounded elongate drifts, both single- and multi-crested; (2) broad sheeted drift forms, varying from gently domed to flat-lying; and (3) isolated patch drifts, including moat-related drifts. Fields of sediment waves are locally developed in association with the elongate and gently domed, broad sheeted drifts. The contrasting styles of the sediment drifts most probably reflect the interaction between a variable bottom-current regime and the complex bathymetry of the continental margin. The bulk of the mounded/gently domed drifts occur in the northeast Rockall Trough, whereas the flat-lying, sheet-form deposits occur in the Faeroe-Shetland Channel, a much narrower basin which appears to have been an area more of sediment export than drift accumulation. Patch drifts are present in both basins. In the northeast Rockall Trough, the along-strike variation from single- to multi-crested elongate drifts may be a response to bottom-current changes influenced by developing drift topography. Muddy, silty muddy and sandy contourites have been recovered in sediment cores from the uppermost parts of the drift sequences. On the basis of their glaciomarine origin, these mid- to high-latitude contourites can be referred to, collectively, as glacigenic contourites. Both partial and complete contourite sequences are preserved; the former consist largely of sandy (mid-only) and top-only contourites. Sandy contourites, by their coarse-grained nature and their formation under strongest bottom-current flows, are the most likely to be preserved in the rock record. However, the very large scale of sediment drifts should be borne in mind with regard to the recognition of fossil contourites in ancient successions.

  11. Water Jets from Bottles, Buckets, Barrels, and Vases with Holes

    NASA Astrophysics Data System (ADS)

    Lopac, Vjera

    2015-03-01

    Observation of the water jets flowing from three equidistant holes on the side of a vertical cylindrical bottle is an interesting and widely used didactical experiment illustrating the laws of fluids in motion. In this paper we analyze theoretically and numerically the ranges of the stationary water jets flowing from various rotationally symmetric vessels with holes, and their dependence on the height of the holes above the bottom, on thickness of the block supporting the vessel, and on different shapes of the vessel profile. This investigation was motivated by controversial descriptions and illustrations repeatedly found in physics textbooks and by the fact that previously in the physics teaching literature only the cylindrical vessel was treated.

  12. Static solutions for fourth order gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William

    2010-11-15

    The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.

  13. Universal phase diagrams with superconducting domes for electronic flat bands

    NASA Astrophysics Data System (ADS)

    Löthman, Tomas; Black-Schaffer, Annica M.

    2017-08-01

    Condensed matter systems with flat bands close to the Fermi level generally exhibit, due to their very large density of states, extraordinarily high critical ordering temperatures of symmetry-breaking orders, such as superconductivity and magnetism. Here we show that the critical temperatures follow one of two universal curves with doping away from a flat band depending on the ordering channel, which completely dictates both the general order competition and the phase diagram. Notably, we find that orders in the particle-particle channel (superconducting orders) survive decisively farther than orders in the particle-hole channel (magnetic or charge orders) because the channels have fundamentally different polarizabilities. Thus, even if a magnetic or charge order initially dominates, superconducting domes are still likely to exist on the flanks of flat bands. We apply these general results to both the topological surface flat bands of rhombohedral ABC-stacked graphite and to the Van Hove singularity of graphene.

  14. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Touch, M; Bowsher, J

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator andmore » a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.« less

  15. Cyber-Physical Systems to Understand the Dynamics of Nonlinear Aeroelastic Systems for Flexible MAVs and Energy Harvesting Applications

    DTIC Science & Technology

    2015-09-28

    release. Rotary encoder Brushless servo motor Wind tunnel bottom wall Stainless steel shaft Shaft coupling Wind tunnel top wall Titanium flat plate...illustrating the flat plate mounted to a virtual spring-damper system in the wind tunnel test section. 2 DISTRIBUTION A: Distribution approved for...non-dimensional ratios. For example the non-dimensional stiffness, k∗ = 2k/(ρU2∞c 2h), can be kept constant even if the wind speed, U∞, chord, c, and

  16. Modelling and measurements of bunch profiles at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulou, S.; Antoniou, F.; Argyropoulos, T.

    The bunch profiles in the LHC are often observed to be non-Gaussian, both at Flat Bottom (FB) and Flat Top (FT) energies. Especially at FT, an evolution of the tail population in time is observed. In this respect, the Monte-Carlo Software for IBS and Radiation effects (SIRE) is used to track different types of beam distributions. The impact of the distribution shape on the evolution of bunch characteristics is studied. The results are compared with observations from the LHC Run 2 data.

  17. New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare

    DTIC Science & Technology

    2012-09-01

    complex including craters, gullies, seaweed , rocks, sand ridges, tall obstructions, deep holes and sloping regions. Underwater mines can be hidden...and shadows for detecting objects lying on the seafloor. The seafloor is rather complex including craters, gullies, seaweed , rocks, sand ridges, tall...roughness as craters, gullies, seaweed , sand ridges, tall obstructions, deep holes, or steeply sloping regions. Slopes can make it possible for mines to

  18. Black holes as bubble nucleation sites

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Moss, Ian G.; Withers, Benjamin

    2014-03-01

    We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.

  19. Superradiance in the BTZ black hole with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Dappiaggi, Claudio; Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.

    2018-03-01

    We show the existence of superradiant modes of massive scalar fields propagating in BTZ black holes when certain Robin boundary conditions, which never include the commonly considered Dirichlet boundary conditions, are imposed at spatial infinity. These superradiant modes are defined as those solutions whose energy flux across the horizon is towards the exterior region. Differently from rotating, asymptotically flat black holes, we obtain that not all modes which grow up exponentially in time are superradiant; for some of these, the growth is sourced by a bulk instability of AdS3, triggered by the scalar field with Robin boundary conditions, rather than by energy extraction from the BTZ black hole. Thus, this setup provides an example wherein Bosonic modes with low frequency are pumping energy into, rather than extracting energy from, a rotating black hole.

  20. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  1. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  2. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hale, Glenn S.; Trudeau, Douglas A.; Savard, Charles S.

    1995-01-01

    The underground nuclear-testing program of the U.S. Department of Energy takes place at the Nevada Test Site, about 65 miles northwest of Las Vegas, Nev. Water levels in Yucca Flat may be affected by underground nuclear testing. The purpose of this map report is to present water-level data collected from wells and test holes through December 1991, and to present potentiometric contours representing 1991 water-table conditions in Yucca Flat. Water-level data from 91 sites are shown on the map and include information from 54 sites shown on a 1983 map. Water levels ranged from 519.5 to 2,162.9-feet below land surface. Potentiometric contours are drawn from water-level data to represent the altitude of the water table. Water-level altitudes ranged from about 2,377 ft to 2,770 ft above sea level in the central part of Yucca Flat and from about 4,060 ft to 2,503 ft above sea level in the western and northern parts of Yucca Flat. The water-level data were contoured considering the hydrologic setting, including the concept that water levels within the Cenozoic hydrologic units in the central part of the study area are elevated with respect to water levels in the adjacent and underlying Paleozoic hydrologic units. The most notable feature in the central part of the area is the presence of four ground-water mounds not shown on the 1983 map.

  3. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less

  4. Device for reducing vehicle aerodynamic resistance

    DOEpatents

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  5. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOEpatents

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  6. Evolving a Puncture Black Hole with Fixed Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Imbiriba, Breno; Baker, John; Choi, Dae-II; Centrella, Joan; Fiske. David R.; Brown, J. David; vanMeter, James R.; Olson, Kevin

    2004-01-01

    We present a detailed study of the effects of mesh refinement boundaries on the convergence and stability of simulations of black hole spacetimes. We find no technical problems. In our applications of this technique to the evolution of puncture initial data, we demonstrate that it is possible to simulaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult.

  7. Film cooling from inclined cylindrical holes using large eddy simulations

    NASA Astrophysics Data System (ADS)

    Peet, Yulia V.

    2006-12-01

    The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold for the film cooling flows. Comparison of film cooling effectiveness with experiments shows fair agreement for the centerline and laterally-averaged effectiveness. Lateral growth of the jet as judged from the lateral distribution of effectiveness is predicted correctly.

  8. Quasar populations in a cosmological constant-dominated flat universe

    NASA Technical Reports Server (NTRS)

    Malhotra, Sangeeta; Turner, Edwin L.

    1995-01-01

    Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.

  9. Thermodynamic instability of topological black holes in Gauss-Bonnet gravity with a generalized electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.

    2014-12-01

    Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.

  10. Flat-space quantum gravity in the AdS / CFT correspondence

    DOE PAGES

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.

    2016-03-22

    Motivated by the task of understanding microscopic dynamics of an evolving black hole, we present a scheme describing gauge-fixed continuous time evolution of quantum gravitational processes in asymptotically flat spacetime using the algebra of conformal field theory operators. This allows us to study the microscopic dynamics of the Hawking emission process, although obtaining a full S-matrix may require a modification of the minimal scheme. The role of the operator product expansion is to physically interpret the resulting time evolution by decomposing the Hilbert space of the states for the entire system into those for smaller subsystems. We translate the picturemore » of an evaporating black hole previously proposed by the authors into predictions for nonperturbative properties of the conformal field theories that have weakly coupled dual gravitational descriptions. Finally, we also discuss a possible relationship between the present scheme and a reference frame change in the bulk.« less

  11. Self-assembled Metallic Dots and Antidots: Epitaxial Co on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Yu, Chengtao; Li, Dongqi; Pearson, J.; Bader, S. D.

    2001-03-01

    We have grown 1-420 nm thick epitaxial Co wedge on Ru(0001) with molecular beam epitaxy at 350^oC to investigate self-assembly in metals utilizing ex-situ atomic force microscopy. A novel growth mode was observed whereby three-dimensional islands (dots) or a flat film network with deep holes (antidots) in truncated pyramidal shapes exist below or above 20 nm, respectively. The tops of the islands and the rims of the holes are flat with a root mean square roughness values of 0.3 nm. The lateral sizes of these dots/antidots, 10^2 nm, tend to be uniform. We postulate that this growth mode, similar to that of self-assembled quantum dots in semiconductors, is mainly driven by strain as a result of an 8% lateral mismatch between the basil plane lattice constants of bulk Co and Ru.

  12. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    PubMed

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  13. Sine-Gordon solitonic scalar stars and black holes

    NASA Astrophysics Data System (ADS)

    Franzin, Edgardo; Cadoni, Mariano; Tuveri, Matteo

    2018-06-01

    We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution—a solitonic star—and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the starlike background solution is stable.

  14. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  15. Gravitational tension, spacetime pressure and black hole volume

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.; Sanchioni, Marco

    2016-09-01

    We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.

  16. End Point of the Ultraspinning Instability and Violation of Cosmic Censorship.

    PubMed

    Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran

    2017-04-14

    We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D=6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.

  17. End Point of the Ultraspinning Instability and Violation of Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran

    2017-04-01

    We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D =6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.

  18. An exact solution for effects of topography on free Rayleigh waves

    USGS Publications Warehouse

    Savage, W.Z.

    2004-01-01

    An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.

  19. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  20. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  1. Black holes in a cubic Galileon universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, E.; Charmousis, C.; Lehébel, A.

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two ofmore » these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.« less

  2. Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; Dadhich, Naresh

    2015-12-01

    A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

  3. Black hole hair formation in shift-symmetric generalised scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi

    2017-03-01

    A linear coupling between a scalar field and the Gauss-Bonnet invariant is the only known interaction term between a scalar and the metric that: respects shift symmetry; does not lead to higher order equations; inevitably introduces black hole hair in asymptotically flat, 4-dimensional spacetimes. Here we focus on the simplest theory that includes such a term and we explore the dynamical formation of scalar hair. In particular, we work in the decoupling limit that neglects the backreaction of the scalar onto the metric and evolve the scalar configuration numerically in the background of a Schwarzschild black hole and a collapsing dust star described by the Oppenheimer-Snyder solution. For all types of initial data that we consider, the scalar relaxes at late times to the known, static, analytic configuration that is associated with a hairy, spherically symmetric black hole. This suggests that the corresponding black hole solutions are indeed endpoints of collapse.

  4. Fluid-inclusion evidence for previous higher temperatures in the SUNEDCO 58-28 drill hole near Breitenbush hot springs, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; ,

    1993-01-01

    The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.

  5. SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.

    PubMed

    Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi

    2011-08-01

    In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America

  6. The Sea-Floor Mapping Facility at the U.S. Geological Survey Woods Hole Field Center, Woods Hole, Massachusetts

    USGS Publications Warehouse

    Deusser, Rebecca E.; Schwab, William C.; Denny, Jane F.

    2002-01-01

    Researchers of the sea-floor mapping facility at the U.S. Geological Survey (USGS) Woods Hole Field Center in Woods Hole, Mass., use state-of-the-art technology to produce accurate geologic maps of the sea floor. In addition to basic bathymetry and morphology, sea-floor maps may contain information about the distribution of sand resources, patterns of coastal erosion, pathways of pollutant transport, and geologic controls on marine biological habitats. The maps may also show areas of human impacts, such as disturbance by bottom fishing and pollution caused by offshore waste disposal. The maps provide a framework for scientific research and provide critical information to decisionmakers who oversee resources in the coastal ocean.

  7. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system

    NASA Astrophysics Data System (ADS)

    Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello

    2018-01-01

    An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Compean, H.; Loaiza-Brito, O.; Departamento de Fisica, Universidad de Guanajuato, C.P. 37150, Leon, Guanajuato

    The first steps towards a proposal for a description of the quantum hair in 4D supersymmetric black holes in string Calabi-Yau (CY) compactifications are given. The quantum hair consisting of electric and magnetic fractional charges in black holes are derived from periods of the CY's torsion cycles. In the process a K-theory interpretation of the quantum hair in terms of the Atiyah-Hirzebruch spectral sequence is carried out. Finally, the same procedure is considered for torsion cycles of certain generalized CY's threefolds such as half-flat manifolds.

  9. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInnes, Brett; Ong, Yen Chin, E-mail: matmcinn@nus.edu.sg, E-mail: yenchin.ong@nordita.org

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' massmore » E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.« less

  10. Energy-dependent topological anti-de Sitter black holes in Gauss-Bonnet Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Behnamifard, H.; Bahrami-Asl, B.

    2018-03-01

    Employing higher-curvature corrections to Einstein-Maxwell gravity has garnered a great deal of attention motivated by the high-energy regime in the quantum nature of black hole physics. In addition, one may employ gravity's rainbow to encode quantum gravity effects into black hole solutions. In this paper, we regard an energy-dependent static spacetime with various topologies and study its black hole solutions in the context of Gauss-Bonnet Born-Infeld (GB-BI) gravity. We study the thermodynamic properties and examine the first law of thermodynamics. Using a suitable local transformation, we endow the Ricci-flat black hole solutions with a global rotation and study the effects of rotation on thermodynamic quantities. We also investigate thermal stability in a canonical ensemble by calculating the heat capacity. We obtain the effects of various parameters on the horizon radius of stable black holes. Finally, we discuss a second-order phase transition in the extended phase space thermodynamics and investigate the critical behavior.

  11. 40 CFR 146.68 - Testing and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; or (iii) Using an alternative method approved by the Director. (3) If a corrosion monitoring program... been a well workover; (2) The bottom-hole cement shall be tested by means of an approved radioactive...

  12. An Analysis of Techno-Economic Requirements for MOSAIC CPV Systems to Achieve Cost Competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A; Cunningham, David W.; Zahler, James

    A comprehensive bottom-up cost model has been developed by NREL for ARPAE's MOSAIC micro-concentrator PV program. It will calculate LCOE for MOSAIC technologies and assess their cost competitiveness compared to traditional flat-plate systems.

  13. 49 CFR 174.290 - Materials extremely poisonous by inhalation shipped by, for, or to the Department of Defense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) in carload lots only; (3) Bombs, by boxcar, or gondola car (flat bottom) in carload lots only; or (4... with substantial wooden frames and blocks. (e) Bombs, projectiles, and cannon ammunition being...

  14. High-resolution past environmental reconstruction in East Asia using annually laminated lake sediments of Lake Megata in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Gotanda, K.; Yonenobu, H.; Shinozuka, Y.; Kitagawa, J.; Makohonienko, M.; Schwab, M.; Haraguchi, T.; Yasuda, Y.

    2007-12-01

    37 m-long non-glacial varved sequences were taken from Ichi-no-Megata maar in Oga Peninsula, Akita, northern part of Japan. Ichi-no-Megata maar occupies 0.25 km2 with a maximum water depth of ca. 45.1 m. The shape of lake is a kettle-type basin and the deepest bottom basin is very flat. We took core samples (named IMG06 core) at the center of the lake in November to December in 2006. In order to take completely continuous maar sediment, we drilled three holes and take every sample from each hole which apart only few meters. In this drilling campaign, we can 37 m-long continuous maar sediment except thick volcanic deposits from 26.5 to 31.7m in core. The sedimentological feature of IMG06 core is dominated by thin lamination clay/silt from most top part up to 37 m with turbidites characterized upward fining structure. The SEM image observation of lamination reveals that sponge-like lamina consists of diatom assemblage against dark colored lamina consists of mixture of detritus minerals, clay minerals, and diatom. It means sponge-like lamina deposits during spring season, and later one deposits during another three seasons, and then these thin lamination of IMG06 core could be identified as annual lamination (varves). This interpretation is supported by the correlation of historic event as earthquake and tunnel construction. In this IMG06 core, six volcanic ashes are found and we have also analyzed radiocarbon dating from 38 horizons of the core to use leaf and seeds inter-bedded varves. As the results, the IMG06 core covers from 25,000 to 4,000 14C yr BP with stable sedimentation rates (0.71mm/year).

  15. Hole 504B reclaimed for future drilling

    NASA Astrophysics Data System (ADS)

    Leg 137 Scientific Drilling Party

    Hole 504B, perhaps the most important in situ reference section for the structure and composition of the oceanic crust, has been reopened for future drilling and downhole measurements after remedial operations during Leg 137 of the Ocean Drilling Program. By far the deepest penetration into oceanic crust, Hole 504B had been feared lost when a large diamond bit and assorted hardware (“junk”) broke off in the bottom of the hole at the end of ODP Leg 111 in 1986. Since then ODP's drill ship, JOIDES Resolution, has circumnavigated the globe, with no opportunity to redress this situation. But the objective of deep penetration into the oceanic crust and the hole itself are considered so important by marine Earth scientists that remedial measures in Hole 504B were undertaken as soon as the drill ship returned to the eastern Pacific. These measures succeeded better than had been hoped. Hole 504B was reopened after less than a week of cleaning operations, which included grappling for the lost junk with tools to pull it from the hole (called “fishing”) and grinding or milling the junk away.

  16. Angular-momentum--mass inequality for axisymmetric black holes.

    PubMed

    Dain, Sergio

    2006-03-17

    The inequality square root J

  17. Zaccaria Lilio and the shape of the earth: A brief response to Allegro's "Flat earth science".

    PubMed

    Nothaft, C Philipp E

    2017-12-01

    This is a response to James J. Allegro's article "The Bottom of the Universe: Flat Earth Science in the Age of Encounter," published in Volume 55, Number 1, of this journal. Against the solid consensus of modern scholars, Allegro contends that the decades around 1500 saw a resurgence of popular and learned doubts about the existence of a southern hemisphere and the concept of a spherical earth more generally. It can be shown that a substantial part of Allegro's argument rests on an erroneous reading of his main textual witness, Zaccaria Lilio's Contra Antipodes (1496), and on a failure adequately to place this source in the context of the cosmographical debate of the late fifteenth and early sixteenth centuries. Once this context is taken into account, the notion that Lilio was a flat-earther falls flat.

  18. Topologically nontrivial black holes in Lovelock-Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Farhangkhah, N.

    2018-04-01

    We present the black hole solutions possessing horizon with nonconstant-curvature and additional scalar restrictions on the base manifold in Lovelock gravity coupled to Born-Infeld (BI) nonlinear electrodynamics. The asymptotic and near origin behavior of the metric is presented and we analyze different behaviors of the singularity. We find that, in contrast to the case of black hole solutions of BI-Lovelock gravity with constant curvature horizon and Maxwell-Lovelock gravity with non constant horizon which have only timelike singularities, spacelike, and timelike singularities may exist for BI-Lovelock black holes with nonconstant curvature horizon. By calculating the thermodynamic quantities, we study the effects of nonlinear electrodynamics via the Born-Infeld action. Stability analysis shows that black holes with positive sectional curvature, κ , possess an intermediate unstable phase and large and small black holes are stable. We see that while Ricci flat Lovelock-Born-Infeld black holes having exotic horizons are stable in the presence of Maxwell field or either Born Infeld field with large born Infeld parameter β , unstable phase appears for smaller values of β , and therefore nonlinearity brings in the instability.

  19. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  20. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  1. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    NASA Astrophysics Data System (ADS)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  2. Temperatures and Water Levels at Tanana Flats Monitoring Stations

    DTIC Science & Technology

    2008-04-01

    a Druck pressure trans- ducer near the bottom. In response to this drawdown, the initial record showed a water level of 1.13 m on 1 April 2005, which...gradually increased to 1.68 m on 8 April. Freezing of the sensor on 9–10 April ended the reli- able water level record. A pair of replacement Drucks ...again, and a new Druck was installed to replace those that had been frozen. With rising tem- peratures at the bottom of the well, an injection of 400 g

  3. 30 CFR 56.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Rotary Jet Piercing Drilling § 56.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before attempts are made...

  4. 30 CFR 56.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rotary Jet Piercing Drilling § 56.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before attempts are made...

  5. 30 CFR 57.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Rotary Jet Piercing Drilling-Surface Only § 57.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before...

  6. 30 CFR 56.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rotary Jet Piercing Drilling § 56.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before attempts are made...

  7. 30 CFR 56.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Rotary Jet Piercing Drilling § 56.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before attempts are made...

  8. 30 CFR 57.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Rotary Jet Piercing Drilling-Surface Only § 57.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before...

  9. 30 CFR 57.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Rotary Jet Piercing Drilling-Surface Only § 57.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before...

  10. 30 CFR 57.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Rotary Jet Piercing Drilling-Surface Only § 57.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before...

  11. 30 CFR 56.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Rotary Jet Piercing Drilling § 56.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before attempts are made...

  12. 30 CFR 57.7011 - Straightening crossed cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Rotary Jet Piercing Drilling-Surface Only § 57.7011 Straightening crossed cables. The drill stem shall be resting on the bottom of the hole or on the platform with the stem secured to the mast before...

  13. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    PubMed

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  14. Rholography, black holes and Scherk-Schwarz

    DOE PAGES

    Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan; ...

    2015-06-10

    We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. Here, we find that the corresponding (0, 4) (or (4, 4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name ourmore » construction “Rholography”.« less

  15. Rholography, black holes and Scherk-Schwarz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan

    We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. Here, we find that the corresponding (0, 4) (or (4, 4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name ourmore » construction “Rholography”.« less

  16. A no-hair theorem for black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Cañate, Pedro

    2018-01-01

    In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.

  17. Electromagnetic jets from stars and black holes

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Rodriguez, Maria J.

    2016-02-01

    We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less

  19. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.

  20. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  1. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2018-06-19

    We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.

  2. Behaviour of several fatigue prone bridge details

    NASA Astrophysics Data System (ADS)

    Kubiš, Petr; Ryjáček, Pavel

    2017-09-01

    Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.

  3. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.

  4. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, J.P.

    1993-03-30

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  5. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, John P.

    1993-01-01

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  6. The development of rotary drum dryer for palm fruit sterilization

    NASA Astrophysics Data System (ADS)

    Hanifarianty, S.; Legwiriyakul, A.; Alimalbari, A.; Nuntadusit, C.; Theppaya, T.; Wae-Hayee, M.

    2018-01-01

    The aim of this research was to design and develop a rotary drum dryer for palm fruit sterilization. In this article, the results of the effect of ventilation hole number on the reduction of moisture content in palm fruit were presented. The experimental set up was a drum dryer which has 57.5 cm in a diameter and 90 cm in a length (the size was similar to 200-littre steel drum container). A driving gear and a gear motor rotated the drum dryer. The ventilation hole were drilled on the lateral side of the drum. The diameter of ventilation hole was 10 mm, and the number of ventilation hole were 18, 36 and 72 hole (each side was 9, 18 and 36 hole, respectively). In the experiment, the palm fruit was dried by using LPG to burn and heat the bottom of the drum. The flow rate of LPG was controlled to keep the temperature inside the drum steadily at 120°C.

  7. Full-coverage film cooling on flat, isothermal surfaces: Data and predictions

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The heat transfer and fluid mechanics characteristics of full-coverage film cooling were investigated. The results for flat, isothermal plates for three injection geometries (normal, slant, and compound angle) are summarized and data concerning the spanwise distribution of the heat transfer coefficient within the blowing region are presented. Data are also presented for two different numbers of rows of holes (6 and 11). The experimental results summarized can be predicted with a two dimensional boundary layer code, STANCOOL, by providing descriptors of the injection parameters as inputs.

  8. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  9. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  10. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  11. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  12. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  13. Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study

    DOE PAGES

    Yang, Zhaoqing; Wang, Taiping

    2015-08-25

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less

  14. Flat battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waki, E.; Kobayashi, S.; Hashimoto, Y.

    A flat battery is described comprising: an electrically insulative sheathing film including a first film portion and a second film portion on opposite sides of a fold line, the film having an outer surface and an inner surface opposite the outer surface, on both of the first and the second film portions. The fold line divides the inner surface into a first inner surface portion on the first film portion and a second inner surface portion on the second film portion, the film being folded along the fold line so that the first inner surface portion faces the second innermore » surface portion. The first and second film portions are sealed to one another along the entire peripheries thereof except along the fold line, the first film portion having first a first terminal hole and a second terminal hole formed therein; a first collector formed in a plane on the first inner surface portion and having a first terminal portion covering the first terminal hole, the first terminal portion being exposed to the exterior of the battery through the first terminal hole so as to define a first terminal; and a second collector consisting of a first part formed on the first inner surface portion and a second part continuous to the first part formed on the second inner surface portion. The second collector extends across and is folded along the fold line, the second part having a second terminal portion covering the second terminal hole, the second terminal portion being exposed to the exterior of the battery through the second terminal hole so as to define a second terminal. The second part is formed in the plane in spaced non-overlapping relation to the first collector, one of the first and second collectors consisting of a positive collector, the other of the first and second collectors consisting of a negative collector.« less

  15. Interpretation of a leak-off test conducted near the bottom of the Kumano Forearc Basin strata at IODP Site C0002 in the Nankai accretionary complex, SW Japan

    NASA Astrophysics Data System (ADS)

    Song, I.; Huepers, A.; Olcott, K. A.; Saffer, D. M.; Dugan, B.; Strasser, M.

    2013-12-01

    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a long-term, multi-stage scientific drilling project launched for investigating fault mechanics and seismogenesis along subduction megathrusts. One main key to the mechanics of the plate boundary is understanding the absolute mechanical strength and the in situ stress along the megathrust. As part of efforts to access the Nankai Trough seismogenic zone, the NanTroSEIZE Integrated Ocean Drilling Program (IODP) project began riser-based drilling operations at Site C0002 (Hole C0002F) in 2010 during IODP Expedition 326, with the objective of reaching the plate interface at ~6800 meters below the seafloor (mbsf). The geology in this area is composed of the Kumano Forearc Basin sedimentary strata to ~940 mbsf, underlain by the inner accretionary wedge. IODP Expedition 326 drilled Hole C0002F to 872.5 mbsf, near the bottom of the Kumano Basin, and set a 20-inch casing string to 860.2 mbsf. During IODP Expedition 338 in 2012, the hole was extended to 2005.5 mbsf. At the beginning of the operation, a leak-off test (LOT) was conducted in the interval of 872.5-875.5 mbsf, to define the maximum mud weight for the next stage of logging-while-drilling (LWD). Drilling-out-cement (DOC) at the bottom of the hole prior to the LOT provided a 3-m long, 17-inch diameter open borehole for the LOT. For the LOT, this open hole interval was pressurized with the outer annulus closed by the blow out preventer (BOP) using drilling mud of density of 1100 kg/m3, and mud pressure was measured at the cement pumps. The bottom-hole pressure was calculated by the recorded pressure plus the static pressure of the mud column. The first cycle of pressurization was conducted with injection of drilling mud at 31.8 l/min. However, the leak-off pressure (LOP) was not clearly defined because a large volume of mud was lost. Therefore a second cycle was conducted with a higher drilling mud injection rate (47.7 l /min). The rapid increase in pressure with a lower volume of mud injected during the second cycle suggests that a good mud cake was formed around the borehole wall, possibly due to mud flowing into the formation during the first cycle. In the second cycle, we identify a LOP of ~32.0 MPa from the pressure-volume record, which we interpret as the least principal stress. The total vertical stress given by the integration of bulk density with respect to depth is 35.7 MPa, indicating that the LOP reflects the least horizontal stress. This result can be a solid basis to constrain the in situ state of stress from indirect stress indicators such as wellbore failures at other depths.

  16. Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locker, S.D.; Doyle, L.J.; Hine, A.C.

    1990-05-01

    The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zonemore » extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.« less

  17. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  18. Bed Net Durability Assessments: Exploring a Composite Measure of Net Damage

    PubMed Central

    Vanden Eng, Jodi L.; Chan, Adeline; Abílio, Ana Paula; Wolkon, Adam; Ponce de Leon, Gabriel; Gimnig, John; Morgan, Juliette

    2015-01-01

    Background The durability of Long Lasting Insecticidal Nets (LLINs) in field conditions is of great importance for malaria prevention and control efforts; however, the physical integrity of the net fabric is not well understood making it challenging to determine overall effectiveness of nets as they age. The 2011 World Health Organization Pesticide Evaluation Scheme (WHOPES) guidelines provide a simple, standardized method using a proportional hole index (PHI) for assessing net damage with the intent to provide national malaria control programs with guidelines to assess the useful life of LLINS and estimate the rate of replacement. Methods We evaluated the utility of the PHI measure using 409 LLINs collected over three years in Nampula Province, Mozambique following a mass distribution campaign in 2008. For each LLIN the diameter and distance from the bottom of the net were recorded for every hole. Holes were classified into four size categories and a PHI was calculated following WHOPES guidelines. We investigate how the size, shape, and location of holes influence the PHI. The areas of the WHOPES defined categories were compared to circular and elliptical areas based on approximate shape and actual measured axes of each hole and the PHI was compared to cumulative damaged surface area of the LLIN. Results The damaged area of small, medium, large, and extra-large holes was overestimated using the WHOPES categories compared to elliptical areas using the actual measured axes. Similar results were found when comparing to circular areas except for extra-large holes which were underestimated. (Wilcoxon signed rank test of differences p< 0.0001 for all sizes). Approximating holes as circular overestimated hole surface area by 1.5 to 2 times or more. There was a significant difference in the mean number of holes < 0.5 cm by brand and there were more holes of all sizes on the bottom of nets than the top. For a range of hypothetical PHI thresholds used to designate a “failed LLIN”, roughly 75 to 80% of failed LLINs were detected by considering large and extra-large holes alone, but sensitivity varied by brand. Conclusions Future studies may refine the PHI to better approximate overall damaged surface area. Furthermore, research is needed to identify whether or not appropriate PHI thresholds can be used to deem a net no longer protective. Once a cutoff is selected, simpler methods of determining the effective lifespan of LLINs can help guide replacement strategies for malaria control programs. PMID:26047494

  19. Bed Net Durability Assessments: Exploring a Composite Measure of Net Damage.

    PubMed

    Vanden Eng, Jodi L; Chan, Adeline; Abílio, Ana Paula; Wolkon, Adam; Ponce de Leon, Gabriel; Gimnig, John; Morgan, Juliette

    2015-01-01

    The durability of Long Lasting Insecticidal Nets (LLINs) in field conditions is of great importance for malaria prevention and control efforts; however, the physical integrity of the net fabric is not well understood making it challenging to determine overall effectiveness of nets as they age. The 2011 World Health Organization Pesticide Evaluation Scheme (WHOPES) guidelines provide a simple, standardized method using a proportional hole index (PHI) for assessing net damage with the intent to provide national malaria control programs with guidelines to assess the useful life of LLINS and estimate the rate of replacement. We evaluated the utility of the PHI measure using 409 LLINs collected over three years in Nampula Province, Mozambique following a mass distribution campaign in 2008. For each LLIN the diameter and distance from the bottom of the net were recorded for every hole. Holes were classified into four size categories and a PHI was calculated following WHOPES guidelines. We investigate how the size, shape, and location of holes influence the PHI. The areas of the WHOPES defined categories were compared to circular and elliptical areas based on approximate shape and actual measured axes of each hole and the PHI was compared to cumulative damaged surface area of the LLIN. The damaged area of small, medium, large, and extra-large holes was overestimated using the WHOPES categories compared to elliptical areas using the actual measured axes. Similar results were found when comparing to circular areas except for extra-large holes which were underestimated. (Wilcoxon signed rank test of differences p< 0.0001 for all sizes). Approximating holes as circular overestimated hole surface area by 1.5 to 2 times or more. There was a significant difference in the mean number of holes < 0.5 cm by brand and there were more holes of all sizes on the bottom of nets than the top. For a range of hypothetical PHI thresholds used to designate a "failed LLIN", roughly 75 to 80% of failed LLINs were detected by considering large and extra-large holes alone, but sensitivity varied by brand. Future studies may refine the PHI to better approximate overall damaged surface area. Furthermore, research is needed to identify whether or not appropriate PHI thresholds can be used to deem a net no longer protective. Once a cutoff is selected, simpler methods of determining the effective lifespan of LLINs can help guide replacement strategies for malaria control programs.

  20. Detached Eddy Simulation of Film Cooling over a GE Flat Plate

    NASA Technical Reports Server (NTRS)

    Roy, Subrata

    2005-01-01

    The detached eddy simulation of film cooling has been utilized for a proprietary GE plate-pipe configuration. The blowing ratio was 2.02, the velocity ratio was 1.26, and the temperature ratio was 1.61. Results indicate that the mixing processes downstream of the hole are highly anisotropic. DES solution shows its ability to depict the dynamic nature of the flow and capture the asymmetry present in temperature and velocity distributions. Further, comparison between experimental and DES time-averaged effectiveness is satisfactory. Numerical values of span-averaged effectiveness show better prediction of the experimental values at downstream locations than a steady state Glenn HT solution. While the DES method shows obvious promise, there are several issues that need further investigation. Despite an accurate prediction in the hole vicinity, the simulation still falls short in the region x = 10d to 100d. This should be investigated. Also the model used flat plate. Actual turbine blade should be modeled in the future if additional finding is available.

  1. On the global existence of hairy black holes and solitons in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2016-10-01

    We investigate the existence of black hole and soliton solutions to four dimensional, anti-de Sitter (adS), Einstein-Yang-Mills theories with general semisimple connected and simply connected gauge groups, concentrating on the so-called regular case. We here generalise results for the asymptotically flat case, and compare our system with similar results from the well-researched adS {mathfrak {su}}(N) system. We find the analysis differs from the asymptotically flat case in some important ways: the biggest difference is that for Λ <0, solutions are much less constrained as r→ infty , making it possible to prove the existence of global solutions to the field equations in some neighbourhood of existing trivial solutions, and in the limit of |Λ |→ infty . In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the {mathfrak {su}}(N) case proved important to stability.

  2. The connection between the giant optical outbursts of the flat spectrum radio quasars and the black hole precession

    NASA Astrophysics Data System (ADS)

    Bachev, Rumen

    2018-02-01

    Flat Spectrum Radio Quasars (FSRQ) are a part of the blazar family, which in addition to the dominated nonthermal jet emission shows signatures, normally associated with the presence of a standard thin accretion disk, such like thermal continuum and broad emission lines. Furthermore, there is emerging evidence that the FSRQ are more likely to exhibit giant outbursts in the optical, with amplitudes reaching sometimes up to five magnitudes, compared to their quiescent state. We give examples, compiled from the literature and public archives in support of this statement. The most promising mechanism to account for such outbursts appears to be the changing Doppler factor (orientation with respect to the line of sights) of the jet. We attribute such orientation changes of the jet to the presence of misaligned thin accretion disk, leading to a black hole/accretion disk precession. Such a scheme can explain why FSRQ tend to produce large outbursts while other blazar types do not.

  3. Observer POD for radiographic testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanzler, Daniel, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Ewert, Uwe, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Müller, Christina, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de

    2015-03-31

    The radiographic testing (RT) is a non-destructive testing (NDT) method capable of finding volumetric and open planar defects depending on their orientation. The radiographic contrast is higher for larger penetrated length of the defect in a component. Even though, the detectability of defects does not only depend on the contrast, but also on the noise, the defect area and the geometry of the defect. The currently applied Probability of Detection (POD) approach uses a detection threshold that is only based on a constant noise level or on a constant contrast threshold. This does not reflect accurately the results of evaluationsmore » by human observers. A new approach is introduced, using the widely applied POD evaluation and additionally a detection threshold depending on the lateral area and shape of the indication. This work shows the process of calculating the POD curves with simulated data by the modeling software aRTist and with artificial reference data of different defect types, such as ASTM E 476 EPS plates, flat bottom holes and notches. Additional experiments with different operators confirm that the depth of a defect, the lateral area and shape of its indication contribute with different weight to the detectability of the defect if evaluated by human operators on monitors.« less

  4. Land subsidence associated with hydrocarbon production, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreitler, C.W.; White, W.A.; Akhter, M.S.

    1988-01-01

    Although ground-water withdrawal has been the predominant cause of land subsidence in the Texas Gulf Coast, localized subsidence and faulting have also resulted from hydrocarbon production. Subsidence was documented as early as the 1920s over the Goose Creek field. Since then, subsidence and/or faulting have been identified over the Saxet, South Houston, Chocolate Bayou, Hastings, Alco-Mag, Clinton, Mykawa, Blue Ridge, Webster, and Caplen oil fields. Oil-production-related subsidence over these fields generally creates few environmental or engineering problems. One exception is the subsidence and faulting over the Caplen oil field on Bolivar Peninsula, where more than 1,000 ac of saltwater marshmore » has been replaced by subaqueous flats. Subsidence may be occurring over other fields but has not been identified because of limited releveled benchmark data. An evaluation of drill-stem and bottom-hole pressure data for the Frio Formation in Texas indicates extensive depressurization presumably from hydrocarbon production. Nearly 12,000 measurements from a pressure data base of 17,000 measurements indicate some depressurization. Some of the Frio zones have pressure declines of more than 1,500 psi from original hydrostatic conditions. Subsidence and faulting may be associated with these fields in the Frio as well as other Tertiary formations where extensive hydrocarbon production and subsequent depressurization have occurred.« less

  5. Determination of thermal wave reflection coefficient to better estimate defect depth using pulsed thermography

    NASA Astrophysics Data System (ADS)

    Sirikham, Adisorn; Zhao, Yifan; Mehnen, Jörn

    2017-11-01

    Thermography is a promising method for detecting subsurface defects, but accurate measurement of defect depth is still a big challenge because thermographic signals are typically corrupted by imaging noise and affected by 3D heat conduction. Existing methods based on numerical models are susceptible to signal noise and methods based on analytical models require rigorous assumptions that usually cannot be satisfied in practical applications. This paper presents a new method to improve the measurement accuracy of subsurface defect depth through determining the thermal wave reflection coefficient directly from observed data that is usually assumed to be pre-known. This target is achieved through introducing a new heat transfer model that includes multiple physical parameters to better describe the observed thermal behaviour in pulsed thermographic inspection. Numerical simulations are used to evaluate the performance of the proposed method against four selected state-of-the-art methods. Results show that the accuracy of depth measurement has been improved up to 10% when noise level is high and thermal wave reflection coefficients is low. The feasibility of the proposed method in real data is also validated through a case study on characterising flat-bottom holes in carbon fibre reinforced polymer (CFRP) laminates which has a wide application in various sectors of industry.

  6. Compensating for Attenuation Differences in Ultrasonic Inspections of Titanium-Alloy Billets

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Thompson, R. B.; Keller, Michael; Hassan, Waled

    2004-02-01

    Cylindrical billets of Titanium alloy are ultrasonically inspected prior to use in fabricating rotating jet-engine components. Although each billet has a cylindrical geometry, its ultrasonic properties are not cylindrically symmetric due to asymmetries in the process used to produce the billet from the original cast ingot. In the inspection process, a calibration standard of the same diameter containing flat-bottomed hole (FBH) reflectors is used to set the initial inspection gain (i.e., the signal amplification level). If the ultrasonic attenuation of the billet to be inspected differs significantly from that of the calibration standard, the inspection gain must be adjusted to maintain the desired defect detection sensitivity. In this paper we investigate several schemes for attenuation compensation. The gain adjustments fall into two broad categories: "global" adjustments (in dB/inch units), which are applied uniformly throughout the billet under inspection; and "local adjustments", which vary with axial and circumferential position. The schemes make use of the patterns of reflected back-wall amplitude and backscattered grain noise seen in the calibration standard and test billet. The various compensation schemes are tested using specimens of 6″-diameter Ti-6A1-4V billet into which many FBH targets were drilled. Results are summarized and tentative recommendations for improving billet inspection practices are offered.

  7. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  8. Lux in obscuro II: photon orbits of extremal AdS black holes revisited

    NASA Astrophysics Data System (ADS)

    Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin

    2017-12-01

    A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.

  9. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry; Levkov, Dmitry; Panin, Alexander

    2017-10-01

    Small evaporating black holes were proposed to be dangerous inducing fast decay of the electroweak false vacuum. We observe that the flat-spectrum matter perturbations growing at the post-inflationary matter dominated stage can produce such black holes in a tiny amount which may nevertheless be sufficient to destroy the vacuum in the visible part of the Universe via the induced process. If the decay probability in the vicinity of Planck-mass black holes was of order one as suggested in literature, the absence of such objects in the early Universe would put severe constraints on inflation and subsequent stages thus excluding many well-motivated models (e.g. the R2-inflation) and supporting the need of new physics in the Higgs sector. We give a qualitative argument, however, that exponential suppression of the probability should persist in the limit of small black hole masses. This suppression relaxes our cosmological constraints, and, if sufficiently strong, may cancel them.

  10. Semiclassical S-matrix for black holes

    DOE PAGES

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  11. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbunov, Dmitry; Levkov, Dmitry; Panin, Alexander, E-mail: gorby@ms2.inr.ac.ru, E-mail: levkov@ms2.inr.ac.ru, E-mail: panin@ms2.inr.ac.ru

    Small evaporating black holes were proposed to be dangerous inducing fast decay of the electroweak false vacuum. We observe that the flat-spectrum matter perturbations growing at the post-inflationary matter dominated stage can produce such black holes in a tiny amount which may nevertheless be sufficient to destroy the vacuum in the visible part of the Universe via the induced process. If the decay probability in the vicinity of Planck-mass black holes was of order one as suggested in literature, the absence of such objects in the early Universe would put severe constraints on inflation and subsequent stages thus excluding manymore » well-motivated models (e.g. the R {sup 2}-inflation) and supporting the need of new physics in the Higgs sector. We give a qualitative argument, however, that exponential suppression of the probability should persist in the limit of small black hole masses. This suppression relaxes our cosmological constraints, and, if sufficiently strong, may cancel them.« less

  12. Cold black holes in the Harlow–Hayden approach to firewalls

    DOE PAGES

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2014-12-31

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our workmore » presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.« less

  13. Quasinormal Modes and Strong Cosmic Censorship.

    PubMed

    Cardoso, Vitor; Costa, João L; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron

    2018-01-19

    The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.

  14. Quasinormal Modes and Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron

    2018-01-01

    The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.

  15. Variation of Farmer Stock Grade Factors in Semi-Drying Trailers

    USDA-ARS?s Scientific Manuscript database

    Peanuts are increasingly being loaded into flat bottom semi-drying trailers in the field and transported to peanut buying points for curing, grading, and marketing. Conveyances in excess of 15 t are probed 15 times using the pneumatic sampler requiring considerable time for probing and reducing the...

  16. REMOVAL OF SLIGHTLY HEAVY GASES FROM A VALLEY BY CROSSWINDS

    EPA Science Inventory

    Wind-tunnel experiments made to determine how rapidly dense gas is removed from a topographical depression by a crosswind are reported. he density and flow rate of the gas (input at the bottom of a V-shaped valley in otherwise homogeneous, flat terrain)were together sufficiently ...

  17. Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane

    NASA Astrophysics Data System (ADS)

    Johnson, Jamie J.

    In response to the need for more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the computational optimization of a pressure side film cooling array on a modern turbine inlet vane. Latin hypersquare sampling, genetic algorithm reproduction, and Reynolds-Averaged Navier Stokes (RANS) computational fluid dynamics (CFD) as an evaluation step are used to assess a total of 1,800 film cooling designs over 13 generations. The process was efficient due to the Leo CFD code's ability to estimate cooling mass flux at surface grid cells using a transpiration boundary condition, eliminating the need for remeshing between designs. The optimization resulted in a unique cooling design relative to the baseline with new injection angles, compound angles, cooling row patterns, hole sizes, a redistribution of cooling holes away from the over-cooled midspan to hot areas near the shroud, and a lower maximum surface temperature. To experimentally confirm relative design trends between the optimized and baseline designs, flat plate infrared thermography assessments were carried out at design flow conditions. Use of flat plate experiments to model vane pressure side cooling was justified through a conjugate heat transfer CFD comparison of the 3-D vane and flat plate which showed similar cooling performance trends at multiple span locations. The optimized flat plate model exhibited lower minimum surface temperatures at multiple span locations compared to the baseline. Overall, this work shows promise of optimizing film cooling to reduce design cycle time and save cooling mass flow in a gas turbine.

  18. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  19. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2017-10-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.

  20. Use of the Coastal and Marine Ecological Classification Standard (CMECS) for Geological Studies in Glacier Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Cochrane, G. R.; Hodson, T. O.; Allee, R.; Cicchetti, G.; Finkbeiner, M.; Goodin, K.; Handley, L.; Madden, C.; Mayer, G.; Shumchenia, E.

    2012-12-01

    The U S Geological Survey (USGS) is one of four primary organizations (along with the National Oceanographic and Atmospheric Administration, the Evironmental Protection Agency, and NatureServe) responsible for the development of the Coastal and Marine Ecological Classification Standard (CMECS) over the past decade. In June 2012 the Federal Geographic Data Committee approved CMECS as the first-ever comprehensive federal standard for classifying and describing coastal and marine ecosystems. The USGS has pioneered the application of CMECS in Glacier Bay, Alaska as part of its Seafloor Mapping and Benthic Habitat Studies Project. This presentation briefly describes the standard and its application as part of geological survey studies in the Western Arm of Glacier Bay. CMECS offers a simple, standard framework and common terminology for describing natural and human influenced ecosystems from the upper tidal reaches of estuaries to the deepest portions of the ocean. The framework is organized into two settings, biogeographic and aquatic, and four components, water column, geoform, substrate, and biotic. Each describes a separate aspect of the environment and biota. Settings and components can be used in combination or independently to describe ecosystem features. The hierarchical arrangement of units of the settings and components allows users to apply CMECS to the scale and specificity that best suits their needs. Modifiers allow users to customize the classification to meet specific needs. Biotopes can be described when there is a need for more detailed information on the biota and their environment. USGS efforts focused primarily on the substrate and geoform components. Previous research has demonstrated three classes of bottom type that can be derived from multibeam data that in part determine the distribution of benthic organisms: soft, flat bottom, mixed bottom including coarse sediment and low-relief rock with low to moderate rugosity, and rugose, hard bottom. The West Arm of Glacier Bay has all of these habitats, with the greatest abundance being soft, flat bottom. In Glacier Bay, species associated with soft, flat bottom habitats include gastropods, algae, flatfish, Tanner crabs, shrimp, sea pen, and other crustaceans; soft corals and sponge dominate areas of boulder and rock substrate. Video observations in the West Arm suggest that geological-biological associations found in central Glacier Bay to be at least partially analogous to associations in the West Arm. Given that soft, mud substrate is the most prevalent habitat in the West Arm, it is expected that the species associated with a soft bottom in the bay proper are the most abundant types of species within the West Arm. While mud is the dominant substrate throughout the fjord, the upper and lower West Arm are potentially very different environments due to the spatially and temporally heterogeneous influence of glaciation and associated effects on fjord hydrologic and oceanographic conditions. Therefore, we expect variations in the distribution of species and the development of biotopes for Glacier Bay will require data applicable to the full spectrum of CMECS components.

  1. Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.

    1998-07-01

    This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).

  2. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  3. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  4. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  5. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  6. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  7. Retroreflector for Photonic Doppler Velocimetry

    DTIC Science & Technology

    2009-03-01

    devices . . . . . . . . . . . . . . 58 3.24 SOI device after DRIE and hinge deposition . . . . . . . . . . . . . 59 3.25 MEMS micromirror etch hole layout...61 3.26 Amplitude transmittance functions for MEMS micromirrors . . . . 62 3.27 Diffraction pattern of a square flat...weight of micromirror . . . . . . . . . . . . . . . . . 54 tA amplitude transmittance function . . . . . . . . . . . . . . . . . . . 62 Rspec specular

  8. No hair theorem in quasi-dilaton massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, De-Jun; Zhou, Shuang-Yong

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  9. No hair theorem in quasi-dilaton massive gravity

    DOE PAGES

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-04-11

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  10. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  11. A simple device using magnetic transportation for droplet-based PCR.

    PubMed

    Ohashi, Tetsuo; Kuyama, Hiroki; Hanafusa, Nobuhiro; Togawa, Yoshiyuki

    2007-10-01

    The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50 degrees C to 94 degrees C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.

  12. 25 CFR 226.32 - Well records and reports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... keep accurate and complete records of the drilling, redrilling, deepening, repairing, treating... cement record of casing used in drilling each well; the record of drill-stem and other bottom hole... producing reservoir and to obtain information concerning formations drilled, and shall furnish reports...

  13. Flexible shaft and roof drilling system

    DOEpatents

    Blanz, John H.

    1981-01-01

    A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

  14. Rotating elastic string loops in flat and black hole spacetimes: stability, cosmic censorship and the Penrose process

    NASA Astrophysics Data System (ADS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2018-04-01

    We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).

  15. Computational Design of Flat-Band Material.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2018-02-26

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  16. Computational Design of Flat-Band Material

    NASA Astrophysics Data System (ADS)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  17. IODP Exp 362T: Additional Coring and Remediation in Hole U1473A - Continuing the Journey to the Moho

    NASA Astrophysics Data System (ADS)

    Blum, P.; Dick, H. J.; MacLeod, C. J.; Expedition 360 Scientists, I.

    2016-12-01

    IODP Hole U1473A, located at 32°42.362'S, 057°16.688'E in the central part of the Atlantis Bank, SW Indian Ridge, at 710.2 m water depth, was drilled to a depth of 789.7 m below seafloor during Exp. 360 (11/30/15 - 1/30/16) and recovered 469.2 m of gabbroic rocks. Following successful wireline logging, a mechanical bit release retainer sleeve (MBR-RS) appeared to have been lost in the hole, raising question about the feasibility of deepening the hole in the future.. We are here reporting the successful remediation operation carried out 12 - 21 Jul, which left the hole ready for deepening on a future expedition. Hole U1473A is serendipitously located on the scheduled Transit 362T from Cape Town to Colombo (4 Jul - 6 Aug) and had 14 days of redundant time and a nearly full technical contingent on board. This led to a request and approval to use the time to "fish" for the MBR-RS, cement the hole to stabilize fault zones, and recover up to 20 m of core to establish the feasibility for future deep drilling. An initial attempt at taking a temperature log in the hole was terminated at 277 m due an obstruction. Subsequent reaming successfully reached the bottom of the hole and removed all cuttings. To our surprise, deployment of the fishing tool recovered an 18-cm dia., 36-cm long rock core but no MBR-RS. The latter must have fallen to the seafloor unnoticed at the end of Exp. 360. Given the immaculate hole conditions, we went on to recover four additional cores with excellent recovery (86%), deepening the hole to 809.4 m. The new cores from 789.7 to 809.5 m consist mostly of medium to coarse-grained subophitic olivine gabbro with a weak magmatic fabric and irregular contacts between medium and coarse-grained size domains. From 795 - 797 m, a zone of Fe-Ti oxide gabbro results in high magnetic susceptibility (MS) and significant natural gamma radiation (NGR) with sheared contacts and an associated porphyroclastic interval. The interval below 797 m is more isotropic with low MS and no NGR. At 803 m a 40-cm thick Fe-Ti oxide-rich mylonitic band is underlain by a porphyroclastic interval indicating that zones of crystal plastic deformation continue to the bottom of the hole. Two of the fault zones located with Exp. 360 data above 580 m were cemented, leaving a plug from 584-443 m and the hole ready and in good condition to continue the journey to the Moho.

  18. Reliability evaluation of hermetic dual in-line flat microcircuit packages

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.; Conaway, L. K.

    1977-01-01

    The relative strengths and weaknesses of 35 commonly used hermetic flat and dual in-line packages were determined and used to rank each of the packages according to a numerical weighting scheme for package attributes. The list of attributes included desirable features in five major areas: lead and lead seal, body construction, body materials, lid and lid seal, and marking. The metal flat pack and multilayer integral ceramic flat pack and DIP received the highest rankings, and the soft glass Cerdip and Cerpak types received the lowest rankings. Loss of package hermeticity due to lead and lid seal problems was found to be the predominant failure mode from the literature/data search. However, environmental test results showed that lead and lid seal failures due to thermal stressing was only a problem with the hard glass (Ceramic) body DIP utilizing a metal lid and/or bottom. Insufficient failure data were generated for the other package types tested to correlate test results with the package ranking.

  19. Revisiting the round bottom flask rainbow experiment

    NASA Astrophysics Data System (ADS)

    Selmke, Markus; Selmke, Sarah

    2018-01-01

    A popular demonstration experiment in optics uses a round-bottom flask filled with water to project a circular rainbow on a screen with a hole through which the flask is illuminated. We show how the vessel's wall shifts the first- and second-order bows towards each other and consequently reduces the width of Alexander's dark band. We address the challenge this introduces in observing Alexander's dark band, and explain the importance of a sufficient distance between the flask and the screen. The wall-effect also introduces a splitting of the bows that can easily be misinterpreted.

  20. Conformal Yano-Killing Tensors in General Relativity

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek

    2011-09-01

    How CYK tensors appear in General Relativity? Geometric definition of the asymptotic flat spacetime: strong asymptotic flatness, which guarantees well defined total angular momentum [2, 3, 4] Conserved quantities - asymptotic charges (ℐ, 𝓲0) [2, 3, 4, 5, 6, 9] Quasi-local mass and "rotational energy" for Kerr black hole [5] Constants of motion along geodesics and symmetric Killing tensors [5, 6] Spacetimes possessing CYK tensor [10]: Minkowski (quadratic polynomials) [5] (Anti-)deSitter (natural construction) [7, 8, 9] Kerr (type D spacetime) [5] Taub-NUT (new symmetric conformal Killing tensors) [6] Other applications: Symmetries of Dirac operator Symmetries of Maxwell equations

  1. Three-dimensional mapping of red stingray ( Dasyatis akajei) movement with reference to bottom topography

    NASA Astrophysics Data System (ADS)

    Otaki, Takayoshi; Hamana, Masahiro; Tanoe, Hideaki; Miyazaki, Nobuyuki; Shibuno, Takuro; Komatsu, Teruhisa

    2015-06-01

    Most demersal fishes maintain strong relations with bottom substrates and bottom depths and/or topography during their lives. It is important to know these relations to for understand their lives. In Tokyo Bay, red stingray, Dasyatis akajei, classified as near-threatened species by IUCN, has increased since the 1980s. It is a top predator and engages in ecosystem engineer by mixing the sand bed surface through burring behavior, and greatly influences a coastal ecosystem. It is reported that this species invades in plage and tidal flats and has sometimes injured beachgoers and people gathering clams in Tokyo bay. Thus, it is necessary to know its behavior and habitat use to avoid accidents and to better conserve the biodiversity of ecosystems. However, previous studies have not examined its relationship with the bottom environment. This study aims to describe its behavior in relation to the bottom environment. We sounded three dimensional bottom topography of their habitat off Kaneda Cove in Tokyo Bay with interferometric sidescan sonar system and traced the movement of red stingrays by attaching a data logger system to survey their migration. The results revealed that red stingray repeated vertical movement between the surface and bottom, and used not only sand beds but also rocky beds.

  2. ON THE MODIFICATION OF THE LOW FLOW-RATE PM10 DICHOTOMOUS SAMPLER INLET

    EPA Science Inventory

    A popular flat-topped inlet used for the collection of atmospheric particulate matter was modified to reduce water intrusion during rain and snow events. Simple alterations in the intake region of this inlet were made, including a larger drain hole, a one piece top plate, and ...

  3. 16 CFR 1500.43 - Method of test for flashpoint of volatile flammable materials by Tagliabue open-cup apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... inches in length, with a right-angle bend 1/2-inch from each end. This wire is placed snugly in holes... form a top when shield is open). The interior of the draft shield shall be painted a flat black...

  4. 16 CFR 1500.43 - Method of test for flashpoint of volatile flammable materials by Tagliabue open-cup apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... inches in length, with a right-angle bend 1/2-inch from each end. This wire is placed snugly in holes... form a top when shield is open). The interior of the draft shield shall be painted a flat black...

  5. Remote down-hole well telemetry

    DOEpatents

    Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Coates, Don M [Santa Fe, NM; Freund, Samuel M [Los Alamos, NM

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  6. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  7. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  8. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  9. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... point on a small area of another box. (b) Explosive bombs, unfuzed projectiles, rocket ammunition and... large metal packages of incendiary bombs, each weighing 226 kg (500 pounds) or more, may be loaded in stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket...

  10. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  11. Topical Treatment of Cutaneous Leishmaniasis W/WR279396 Phase II Study. Addendum

    DTIC Science & Technology

    2006-07-01

    France) g. Tape so seal plates h. Sterile flat-bottom 96-well plates i. Inverted microscope with trail (France) j . Cryomarkers 2. Check list 2...Subinvestigators: Nathalie Messaoud Amor Zaâtour Abdelkarim El Fahem Nabil Haj Hmida OBJECTIVE To collaborate with the monitoring visit SUNDAY 19/02

  12. An Archeological Overview and Management Plan for the U.S. Army Natick Research and Development Laboratories.

    DTIC Science & Technology

    1984-06-01

    bifurcate-base points, Kirk points, Plano points). During this time period temperate species were expanding their ranges northward and eastward. Early...textured. A second type of ceramics is smooth-bodled or incised , fiber-or-steatite tempered, manufactured by modeling, has flat bottoms and shows

  13. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  14. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  15. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  16. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  17. Modular support blocks for fluid lines

    NASA Technical Reports Server (NTRS)

    Dimino, J. M.; Deskin, R. D.

    1974-01-01

    Modular line block comprises matched modular elements machined to accept fluid lines of different diameters. Modules can support different fluid-line configurations. Top and bottom surfaces are machined to accept dovetail strip used for holding modules together. End modules have holes drilled through to accept fastening screws.

  18. An experimental assessment of resistance reduction and wake modification of a kvlcc model by using outer-layer vertical blades

    NASA Astrophysics Data System (ADS)

    An, Nam Hyun; Ryu, Sang Hoon; Chun, Ho Hwan; Lee, Inwon

    2014-03-01

    In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

  19. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    NASA Astrophysics Data System (ADS)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  20. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  1. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  2. Modified hoop conjecture in expanding spacetimes and primordial black hole production in FRW universe

    NASA Astrophysics Data System (ADS)

    Saini, Anshul; Stojkovic, Dejan

    2018-05-01

    According to a variant of the hoop conjecture, if we localize two particles within the Schwarzschild radius corresponding to their center of mass energy, then a black hole will form. Despite a large body of work on the formation of primordial black holes, so far this conjecture has not been generalized to expanding spacetimes. We derive a formula which gives the distance within which two particles must be localized to give a black hole, and which crucially depends on the expansion rate of the background space. In the limit of a very slow expansion, we recover the flat spacetime case. In the opposite limit of the large expansion rate when the inverse Hubble radius is smaller than the Schwarzschild radius of a "would be" black hole, the new critical distance between two particles that can make a black hole becomes equal to the particle horizon, which is just a requirement that the particles are in a causal contact. This behavior also nicely illustrates why the Big Bang singularity is not a black hole. We then use our formula to calculate the number density, energy density and production rate of black holes produced in collisions of particles. We find that though black holes might be numerous at high temperatures, they never dominate over the background radiation below the Planck temperature.

  3. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  4. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  5. Cartan invariants and event horizon detection

    NASA Astrophysics Data System (ADS)

    Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.

    2018-04-01

    We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.

  6. Measuring spacetime: from the big bang to black holes.

    PubMed

    Tegmark, Max

    2002-05-24

    Space is not a boring static stage on which events unfold over time, but a dynamic entity with curvature, fluctuations, and a rich life of its own. Spectacular measurements of the cosmic microwave background, gravitational lensing, type Ia supernovae, large-scale structure, spectra of the Lyman alpha forest, stellar dynamics, and x-ray binaries are probing the properties of spacetime over 22 orders of magnitude in scale. Current measurements are consistent with an infinite flat everlasting universe containing about 30% cold dark matter, 65% dark energy, and at least two distinct populations of black holes.

  7. Advanced Composite Cost Estimating Manual. Volume I

    DTIC Science & Technology

    1976-08-01

    0012T)L ( F6 ) MERE: H Standard runtime hour per part T = Thickness of material, in inches 1. =lngth to be sauded, in inches Setup Time = 0.02 Hour 55 4i...hole is beveled to acca -cdate the conical seat of a flat head screw in order to have the head of the screw flush with the s~urface. A carbide tool held...POTBETOOL SANDING 0.02 (O.OO12T)L ( F6 ) MCIESNIG0.25 (0.00046L)P (F7) HOLE OPERATIONS DRILLING 0.05 (0.01693D0 3 0 z +.52 0.0006)Q (F8) COUNTERBORING

  8. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada; Palomares, A.

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinementmore » holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.« less

  9. A refined characterization of the alluvial geology of yucca flat and its effect on bulk hydraulic conductivity

    USGS Publications Warehouse

    Phelps, G.A.; Halford, K.J.

    2011-01-01

    In Yucca Flat, on the Nevada National Security Site in southern Nevada, the migration of radionuclides from tests located in the alluvial deposits into the Paleozoic carbonate aquifer involves passage through a thick, heterogeneous section of late Tertiary and Quaternary alluvial sediments. An understanding of the lateral and vertical changes in the material properties of the alluvial sediments will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating groundwater flow in the Yucca Flat area. Previously published geologic models for the alluvial sediments within Yucca Flat are based on extensive examination and categorization of drill-hole data, combined with a simple, data-driven interpolation scheme. The U.S. Geological Survey, in collaboration with Stanford University, is researching improvements to the modeling of the alluvial section, incorporating prior knowledge of geologic structure into the interpolation method and estimating the uncertainty of the modeled hydrogeologic units.

  10. Effects of percentage of blockage and flameholder downstream counterbores on lean combustion limits of premixed, prevaporized propane-air mixture

    NASA Technical Reports Server (NTRS)

    Fernandez, M. A. B.

    1983-01-01

    Lean combustion limits were determined for a premixed prevaporized propane air mixture with flat plate flame stabilizers. Experiments were conducted in a constant area flame tube combustor utilizing flameholders of varying percentages of blockage and downstream counterbores. Combustor inlet air velocity at ambient conditions was varied from 4 to 9 meters per second. Flameholders with a center hole and four half holes surrounding it were tested with 63, 73, and 85 percent blockage and counterbore diameters of 112 and 125 percent of the thru hole diameter, in addition to the no counterbore configuration. Improved stability was obtained by using counterbore flameholders and higher percentages of blockage. Increases in mixture velocity caused the equivalence ratio at blowout to increase in all cases.

  11. Superconductivity in Li-intercalated bilayer arsenene and hole-doped monolayer arsenene: a first-principles prediction

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Ge, Yanfeng; Zhou, Wenzhe; Peng, Mengqi; Pan, Jiangling; Ouyang, Fangping

    2018-06-01

    Using first-principles calculations, we find Li-intercalated bilayer arsenene with AB stacking is dynamically stable, which is different from pristine bilayer with AA stacking. Electron–phonon coupling of the stable Li-intercalated bilayer arsenene are dominated by the low frequency vibrational modes (E″(1), (1), E‧(1) and acoustic modes) and lead to an superconductivity with T c  =  8.68 K with isotropical Eliashberg function. Small biaxial tensile strain (2%) can improve T c to 11.22 K due to the increase of DOS and phonon softening. By considering the fully anisotropic Migdal–Eliashberg theory, T c are found to be enhanced by 50% and exhibits a single anisotropic gap nature. In addition, considering its nearly flat top valence band which is favorable for high temperature superconductivity, we also explore the superconducting properties of hole-doped monolayer arsenene under different strains. the unstrained monolayer arsenene superconducts at T c  =  0.22 K with 0.1 hole/cell doping. By applying 3% biaxial strain, T c can be lifted up strikingly to 6.69 K due to a strong Fermi nesting of the nearly flat band. Then T c decreases slowly with strain. Our findings provide another insight to realize 2D superconductivity and suggest that the strain is crucial to further enhance the transition temperature.

  12. Photon Sieve Space Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dearborn, M.; Hcharg, G.

    2010-09-01

    We are investigating new technologies for creating ultra-large apertures (>20m) for space-based imagery. Our approach has been to create diffractive primaries in flat membranes deployed from compact payloads. These structures are attractive in that they are much simpler to fabricate, launch and deploy compared to conventional three-dimensional optics. In this case the flat focusing element is a photon sieve which consists of a large number of holes in an otherwise opaque substrate. A photon sieve is essentially a large number of holes located according to an underlying Fresnel Zone Plate (FZP) geometry. The advantages over the FZP are that there are no support struts which lead to diffraction spikes in the far-field and non-uniform tension which can cause wrinkling of the substrate. Furthermore, with modifications in hole size and distribution we can achieve improved resolution and contrast over conventional optics. The trade-offs in using diffractive optics are the large amounts of dispersion and decreased efficiency. We present both theoretical and experimental results from small-scale prototypes. Several key solutions to issues of limited bandwidth and efficiency have been addressed. Along with these we have studied the materials aspects in order to optimize performance and achieve a scalable solution to an on-orbit demonstrator. Our current efforts are being directed towards an on-orbit 1m solar observatory demonstration deployed from a CubeSat bus.

  13. Wave actions and topography determine the small-scale spatial distribution of newly settled Asari clams Ruditapes philippinarum on a tidal flat

    NASA Astrophysics Data System (ADS)

    Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami

    2012-03-01

    There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.

  14. Portal imaging with flat-panel detector and CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.

    1997-07-01

    This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.

  15. 30 CFR 582.29 - Reports and records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE.... The report shall show for each calendar month the location of each mining and processing activity; the... determined from G&G surveys, bottom sampling, drill holes, trenching, dredging, or mining. All excavations...

  16. 30 CFR 582.29 - Reports and records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE.... The report shall show for each calendar month the location of each mining and processing activity; the... determined from G&G surveys, bottom sampling, drill holes, trenching, dredging, or mining. All excavations...

  17. 30 CFR 582.29 - Reports and records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE.... The report shall show for each calendar month the location of each mining and processing activity; the... determined from G&G surveys, bottom sampling, drill holes, trenching, dredging, or mining. All excavations...

  18. 30 CFR 282.29 - Reports and records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTINENTAL SHELF FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR Obligations and Responsibilities of Lessees... location of holes drilled and where bottom samples were taken; and (4) Identification of samples analyzed... activities on the environment, aquatic life, archaeological resources, or other uses and users of the area in...

  19. 10 CFR 39.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...

  20. 10 CFR 39.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...

  1. 10 CFR 39.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...

  2. 10 CFR 39.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...

  3. 10 CFR 39.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...

  4. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2018-06-01

    The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.

  5. Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A.

    2018-04-01

    We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.

  6. Design rules for vertical interconnections by reverse offset printing

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Ushijima, Hirobumi

    2018-03-01

    Formation of vertical interconnections by reverse offset printing was investigated, particularly focusing on the transfer step, in which an ink pattern is transferred from a polydimethylsiloxane (PDMS) sheet for the step coverage of contact holes. We systematically examined the coverage of contact holes made of a tapered photoresist layer by varying the hole size, the hole depth, PDMS elasticity, PDMS thickness, printing speed, and printing indentation depth. Successful ink filling was achieved when the PDMS was softer, and the optimal PDMS thickness varied depending on the size of the contact holes. This behaviour is related to the bell-type uplift deformation of incompressible PDMS, which can be described by contact mechanics numerical simulations. Based on direct observation of PDMS/resist-hole contact behaviour, the step coverage of contact holes typically involves two steps of contact area growth: (i) the PDMS first touches the bottom of the holes and then (ii) the contact area gradually and radially widens toward the tapered sidewall. From an engineering perspective, it is pointed out that mechanical synchronisation mismatch in the roll-to-sheet type printing invokes the cracking of ink layers at the edges of contact holes. According to the above design rule, ink filling into a contact hole with thickness of 2.5 µm and radius of 10 µm was achieved. Contact chain patterns with 1386 points of vertical interconnections with the square hole size of up to 10 µm successfully demonstrated the validity of the technique presented herein.

  7. Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater

    NASA Image and Video Library

    2006-08-24

    This true-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of dust. The rock has a moderately cracked the surface. Around it is a layer of sand and pebbles. The view is reddish brown

  8. Colloidal diffusion over a quasicrystalline-patterned substrate

    NASA Astrophysics Data System (ADS)

    Su, Yun; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    We report a systematic study of colloidal diffusion over a quasicrystalline-patterned substrate. The sample substrate is made of a flat thin layer of photoresist and contains identical cylindrical holes of diameter dh, which are arranged on a quasicrystal lattice. A monolayer of silica spheres of diameter comparable to dh diffuse over the rugged quasicrystalline-patterned substrate and experience a gravitational potential U (x , y) . With optical microscopy and the particle tracking method, we measure U (x , y) and particle's diffusion trajectories, which are found to undergo two distinct states: a trapped state when the particles are inside the holes and a free diffusion state when they are over the flat portion of the substrate. The dynamic properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-time diffusion coefficient DL are obtained from the particle trajectories. The measured DL is found to be in good agreement with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The experiment demonstrates the applications of this newly constructed colloidal potential landscape. This work was supported by the Research Grants Council of Hong Kong SAR.

  9. Theoretical Analysis on Mechanical Deformation of Membrane-Based Photomask Blanks

    NASA Astrophysics Data System (ADS)

    Marumoto, Kenji; Aya, Sunao; Yabe, Hedeki; Okada, Tatsunori; Sumitani, Hiroaki

    2012-04-01

    Membrane-based photomask is used in proximity X-ray lithography including that in LIGA (Lithographie, Galvanoformung und Abformung) process, and near-field photolithography. In this article, out-of-plane deformation (OPD) and in-plane displacement (IPD) of membrane-based photomask blanks are theoretically analyzed to obtain the mask blanks with flat front surface and low stress absorber film. First, we derived the equations of OPD and IPD for the processing steps of membrane-based photomask such as film deposition, back-etching and bonding, using a theory of symmetrical bending of circular plates with a coaxial circular hole and that of deformation of cylinder under hydrostatic pressure. The validity of the equations was proved by comparing the calculation results with experimental ones. Using these equations, we investigated the relation between the geometry of the mask blanks and the distortions generally, and gave the criterion to attain the flat front surface. Moreover, the absorber stress-bias required to obtain zero-stress on finished mask blanks was also calculated and it has been found that only little stress-bias was required for adequate hole size of support plate.

  10. Rotating hairy black holes in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  11. Optimization of Elastically Tailored Tow-Placed Plates with Holes

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a design concept that has been demonstrated to be both beneficial and practical. The objective of the present paper is to demonstrate the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels. Preliminary panel designs that are to be manufactured and tested were determined through design studies for flat plates without holes under axial compression using an optimization program. These candidate designs were then analyzed with finite element models that accurately reflect the test conditions and geometries in order to decide upon the final designs for manufacture and testing. An advanced tow-placement machine is used to manufacture the test panels with varying fiber orientation angles. A total of six large panels measuring three feet by six feet, each of which is used to produce four specimens with or without holes, are fabricated. The panels were machined into specimens with holes and tested at NASA Langley Research Center. Buckling response and failure of panels without holes and with two different hole dimensions are presented. Buckling and failure loads of tow-steered specimens are significantly greater than the buckling and failure loads of traditional straight-fiber specimens.

  12. Direct Numerical Simulation of A Shaped Hole Film Cooling Flow

    NASA Astrophysics Data System (ADS)

    Oliver, Todd; Moser, Robert

    2015-11-01

    The combustor exit temperatures in modern gas turbine engines are generally higher than the melting temperature of the turbine blade material. Film cooling, where cool air is fed through holes in the turbine blades, is one strategy which is used extensively in such engines to reduce heat transfer to the blades and thus reduce their temperature. While these flows have been investigated both numerically and experimentally, many features are not yet well understood. For example, the geometry of the hole is known to have a large impact on downstream cooling performance. However, the details of the flow in the hole, particularly for geometries similar to those used in practice, are generally know well-understood, both because it is difficult to experimentally observe the flow inside the hole and because much of the numerical literature has focused on round hole simulations. In this work, we show preliminary direct numerical simulation results for a film cooling flow passing through a shaped hole into a the boundary layer developing on a flat plate. The case has density ratio 1.6, blowing ratio 2.0, and the Reynolds number (based on momentum thickness) of incoming boundary layer is approximately 600. We compare the new simulations against both previous experiments and LES.

  13. Innovative design of composite structures: Design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.

    1994-01-01

    As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.

  14. A fully relativistic twisted disc around a slowly rotating Kerr black hole: derivation of dynamical equations and the shape of stationary configurations

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. V.; Ivanov, P. B.

    2011-08-01

    In this paper we derive equations describing the dynamics and stationary configurations of a twisted fully relativistic thin accretion disc around a slowly rotating black hole. We assume that the inclination angle of the disc is small and that the standard relativistic generalization of the α model of accretion discs is valid when the disc is flat. We find that similar to the case of non-relativistic twisted discs the disc dynamics and stationary shapes can be determined by a pair of equations formulated for two complex variables describing the orientation of the disc rings and velocity perturbations induced by the twist. We analyse analytically and numerically the shapes of stationary twisted configurations of accretion discs having non-zero inclinations with respect to the black hole equatorial plane at large distances r from the black hole. It is shown that the stationary configurations depend on two parameters - the viscosity parameter α and the parameter ?, where δ* is the opening angle (δ*˜h/r, where h is the disc half-thickness and r is large) of a flat disc and a is the black hole rotational parameter. When a > 0 and ? the shapes depend drastically on the value of α. When α is small the disc inclination angle oscillates with radius with amplitude and radial frequency of the oscillations dramatically increasing towards the last stable orbit, Rms. When α has a moderately small value the oscillations do not take place but the disc does not align with the equatorial plane at small radii. The disc inclination angle either is increasing towards Rms or exhibits a non-monotonic dependence on the radial coordinate. Finally, when α is sufficiently large the disc aligns with the equatorial plane at small radii. When a < 0 the disc aligns with the equatorial plane for all values of α. The results reported here may have implications for determining the structure and variability of accretion discs close to Rms as well as for modelling of emission spectra coming from different sources, which are supposed to contain black holes.

  15. Analysis of the Fisher solution

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-01

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the “scalar charge” Σ. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,Σ) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its “big bang” and “big crunch.” The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are “dual to the horizon.”

  16. Analysis of the Fisher solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exteriormore » region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.« less

  17. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells.

    PubMed

    Zimmermann, Eugen; Pfadler, Thomas; Kalb, Julian; Dorman, James A; Sommer, Daniel; Hahn, Giso; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-05-01

    Low-cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high-quality materials and paves the way for low-cost solution processing compatible with roll-to-roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic-inorganic lead halide perovskites, has been Sb 2 S 3 , which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high-efficiency Sb 2 S 3 devices utilize absorber coatings on nanostructured TiO 2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine-tuned chemical bath deposition method that allows fabricating solution-processed low-cost flat junction Sb 2 S 3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back-illuminated solar cells in combination with transfer matrix-based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.

  18. APPLICATION OF A NEW MICROCULTURING TECHNIQUE TO ASSESS THE EFFECTS OF TEMPERATURE AND SALINITY ON SPECIFIC GROWTH RATES OF SIX SYMBIODINIUM ISOLATES

    EPA Science Inventory

    A simple micro-culturing technique is described for determining specific growth rates of cultured Symbiodinium spp. Micro-cultures were prepared by transferring 200 L fresh test medium containing 2–10 Symbiodinium cells to wells of a flat bottom 96-well plate. Cultures were incub...

  19. The Draining Cylinder

    ERIC Educational Resources Information Center

    James Graham-Eagle

    2009-01-01

    This article explores the time it takes for a liquid to drain from a cylindrical container through a hole in the bottom. Using dimensional analysis and some thought experiments this time is determined and Torricelli's law derived as a consequence. Finally, the effect of pouring liquid into the container as it drains is considered.

  20. CASTING FURNACES

    DOEpatents

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  1. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  2. Apparatus for testing skin samples or the like

    DOEpatents

    Holland, J.M.

    1982-08-31

    An apparatus for testing the permeability of living skin samples has a flat base with a plurality of sample-holding cavities formed in its upper surface, the samples being placed in counterbores in the cavities with the epidermis uppermost. O-rings of Teflon washers are respectively placed on the samples and a flat cover is connected to the base to press the rings against the upper surfaces of the samples. Media to maintain tissue viability and recovery of metabolites is introduced into the lower portion of the sample-holding cavities through passages in the base. Test materials are introduced through holes in the cover plate after assembly of the chamber.

  3. Silicon micromachined broad band light source

    NASA Technical Reports Server (NTRS)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  4. 37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING SYSTEM. NOTE SPIGOT UNDER BOARD AT UPPER LEFT INSERTS INTO HOLE IN PIPE AT BOTTOM OF FRAME. CYANIDE SOLUTION WAS PUMPED INTO THE TANKS AND THE PREGNANT SOLUTION DRAINED OUT OF THE TANKS THROUGH THIS PIPE, AND BACK INTO A SEPARATE HOLDING TANK ON THE EAST SIDE OF THE MILL. TAILINGS WERE REMOVED FROM THE TANKS THROUGH THE ROUND DRAIN DOOR IN THE BOTTOM OF THE TANK (MISSING) SEEN AT TOP CENTER. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  5. Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: Analytical approximation

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.

  6. Number of revolutions of a particle around a black hole: Is it infinite or finite?

    NASA Astrophysics Data System (ADS)

    Pavlov, Yuri V.; Zaslavskii, Oleg B.

    2018-01-01

    We consider a particle falling into a rotating black hole. Such a particle makes an infinite number of revolutions n from the viewpoint of a remote observer who uses the Boyer-Lindquist type of coordinates. We examine the behavior of n when it is measured with respect to a local reference frame that also rotates due to dragging effect of spacetime. The crucial point consists here in the observation that for a nonextremal black hole, the leading contributions to n from a particle itself and the reference frame have the same form being in fact universal, so that divergences mutually cancel. As a result, the relative number of revolutions turns out to be finite. For the extremal black hole this is not so, n can be infinite. Different choices of the local reference frame are considered, the results turn out to be the same qualitatively. For illustration, we discuss two explicit examples—rotation in the flat spacetime and in the Kerr metric.

  7. Duality between electric and magnetic black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Ross, Simon F.

    1995-11-01

    A number of attempts have recently been made to extend the conjectured S duality of Yang-Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because, although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semiclassical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically flat case.

  8. Order, criticality, and excitations in the extended Falicov-Kimball model.

    PubMed

    Ejima, S; Kaneko, T; Ohta, Y; Fehske, H

    2014-01-17

    Using exact numerical techniques, we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the model exhibits, besides band-insulator and staggered orbital ordered phases, an excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in the von Neumann entropy. The anomalous spectral function and condensation amplitude provide the binding energy and coherence length of the electron-hole pairs which, on their part, point towards a Coulomb interaction driven crossover from BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance between electrons and holes does not affect the location of the BCS-BEC crossover regime, it favors staggered orbital ordering to the disadvantage of the EI. Within the Bose-Einstein condensation (BEC) regime, the quasiparticle dispersion develops a flat valence-band top, in accord with the experimental finding for Ta2NiSe5.

  9. Flat band in disorder-driven non-Hermitian Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Zyuzin, A. A.; Zyuzin, A. Yu.

    2018-01-01

    We study the interplay of disorder and band-structure topology in a Weyl semimetal with a tilted conical spectrum around the Weyl points. The spectrum of particles is given by the eigenvalues of a non-Hermitian matrix, which contains contributions from a Weyl Hamiltonian and complex self-energy due to electron elastic scattering on disorder. We find that the tilt-induced matrix structure of the self-energy gives rise to either a flat band or a nodal line segment at the interface of the electron and hole pockets in the bulk band structure of type-II Weyl semimetals depending on the Weyl cone inclination. For the tilt in a single direction in momentum space, each Weyl point expands into a flat band lying on the plane, which is transverse to the direction of the tilt. The spectrum of the flat band is fully imaginary and is separated from the in-plane dispersive part of the spectrum by the "exceptional nodal ring" where the matrix of the Green's function in momentum-frequency space is defective. The tilt in two directions might shrink a flat band into a nodal line segment with "exceptional edge points." We discuss the connection to the non-Hermitian topological theory.

  10. Flat-Band Slow Light in a Photonic Crystal Slab Waveguide by Vertical Geometry Adjustment and Selective Infiltration of Optofluidics

    NASA Astrophysics Data System (ADS)

    Mansouri-Birjandi, Mohammad Ali; Janfaza, Morteza; Tavousi, Alireza

    2017-11-01

    In this paper, a photonic crystal slab waveguide (PhCSW) for slow light applications is presented. To obtain widest possible flat-bands of slow light regions—regions with large group index ( n g), and very low group velocity dispersion (GVD)—two core parameters of PhCSW structure are investigated. The design procedure is based on vertical shifting of the first row of the air holes adjacent to the waveguide center and concurrent selective optofluidic infiltration of the second row. The criteria of < n_g > ± 10% variations is used for ease of definition and comparison of flat-band regions. By applying various geometry optimizations for the first row, our results suggest that a waveguide core of W 1.09 would provide a reasonable wide flat-band. Furthermore, infiltration of optofluidics in the second row alongside with geometry adjustments of the first row result in flexible control of 10 < n g < 32 and provide flat-band regions with large bandwidth (10 nm < Δ λ < 21.5 nm). Also, negligible GVD as low as β 2 = 10-24 (s2/m) is achieved. Numerical simulations are calculated by means of the three-dimensional plane wave expansion method.

  11. An Analysis of Hole Trapping at Grain Boundary or Poly-Si Floating-Body MOSFET.

    PubMed

    Jang, Taejin; Baek, Myung-Hyun; Kim, Hyungjin; Park, Byung-Gook

    2018-09-01

    In this paper, we demonstrate the characteristics of the floating body effect of poly-silicon with grain boundary by SENTAURUS™ TCAD simulation. As drain voltage increases, impact ionization occurs at the drain-channel junction. And these holes created by impact ionization are deposited on the bottom of the body to change the threshold voltage. This feature, the kink effect, is also observed in fully depleted silicon on insulator because grain boundary of the poly-silicon serve as a storage to trap the holes. We simulate the transfer curve depending on the density and position of the grain boundary. The trap density of the grain boundary affects the device characteristics significantly. However similar properties appear except where the grain boundary is located on the drain side.

  12. Unconsolidated sediments at the bottom of Lake Vostok from seismic data

    USGS Publications Warehouse

    Filina, I.; Lukin, V.; Masolov, V.; Blankenship, D.

    2007-01-01

    Seismic soundings of Lake Vostok have been performed by the Polar Marine Geological Research Expedition in collaboration with the Russian Antarctic Expedition since the early 1990s. The seismograms recorded show at least two relatively closely spaced reflections associated with the lake bottom. These were initially interpreted as boundaries of a layer of unconsolidated sediments at the bottom of the lake. A more recent interpretation suggests that the observed reflections are side echoes from the rough lake bottom, and that there are no unconsolidated sediments at the bottom of the lake. The major goal of this paper is to reveal the nature of those reflections by testing three hypotheses of their origin. The results show that some of the reflections, but not all of them, are consistent with the hypothesis of a non-flat lake bottom along the source-receiver line (2D case). The reflections were also evaluated as side echoes from an adjacent sloping interface, but these tests implied unreasonably steep slopes (at least 8 degrees) at the lake bottom. The hypothesis that is the most compatible with seismic data is the presence of a widespread layer of unconsolidated sediments at the bottom of Lake Vostok. The modeling suggests the presence of a two hundred meter thick sedimentary layer with a seismic velocity of 1700 -1900 m/sec in the southern and middle parts of the lake. The sedimentary layer thickens in the northern basin to ~350 m

  13. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda.

    PubMed

    Parsons, Rachel J; Nelson, Craig E; Carlson, Craig A; Denman, Carmen C; Andersson, Andreas J; Kledzik, Andrew L; Vergin, Kevin L; McNally, Sean P; Treusch, Alexander H; Giovannoni, Stephen J

    2015-10-01

    Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole, Bermuda during the 6-week annual transition from a strongly stratified water column with suboxic and high-pCO2 bottom waters to a fully mixed and ventilated state during 2008. A suite of culture-independent methods provided a quantitative spatiotemporal characterization of bacterioplankton community changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating members of the genera Chlorobium and Prosthecochloris--anoxygenic photoautotrophs that utilize sulfide as a source of electrons for photosynthesis. Transitional zones of hypoxia also exhibited elevated levels of methane- and sulfur-oxidizing bacteria relative to the overlying waters. The abundance of both Thaumarcheota and Euryarcheota were elevated in the suboxic bottom waters (> 10(9) cells l(-1)). Following convective mixing, the entire water column returned to a community typical of oxygenated waters, with Euryarcheota only averaging 5% of cells, and Chlorobiales and Thaumarcheota absent. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. A no-short scalar hair theorem for rotating Kerr black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-06-01

    If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.

  15. Deep Borehole Field Test Research Activities at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less

  16. Ultrasonic multi-skip tomography for pipe inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno; Zon, Tim van

    The inspection of wall loss corrosion is difficult at pipe supports due to limited accessibility. The recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, butmore » it is difficult to quantify both the extent and depth of the loss. Multi-skip tomography has been developed to reconstruct the wall thickness profile along the axial direction of the pipe. The method uses model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). Experimental results are very encouraging. Various defects (slot and flat bottom hole) are reconstructed using the tomographic inversion. The general shape and width are well recovered. The current sizing accuracy is in the order of 1 mm.« less

  17. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  18. How fast can a black hole rotate?

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2015-11-01

    Kerr black holes (BHs) have their angular momentum, J, bounded by their mass, M: Jc ≤ GM2. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, vH. The vH bound is simply that vH cannot exceed the velocity of light. We verify the vH bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the vH bound.

  19. AGN Space Telescope and Optical Reverberation Mapping Project V. Continuum Time Delays and Disk Inclinations

    NASA Astrophysics Data System (ADS)

    Starkey, David; Agn Storm Team

    2015-01-01

    Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.

  20. 'Blueberry' Exposed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of five images taken by the microscopic imager on the Mars Exploration Rover Opportunity on sol 87 shows the hole drilled by the rover's rock abrasion tool into the rock dubbed 'Pilbara.' A sliced 'blueberry,' or spherule, which is darker and harder than the rest of the rock, can be seen near the center of the hole. The rock abrasion process left a pile of rock powder around the side of the hole, and to a lesser degree, inside the hole. The hole is 7.2 millimeters (about 0.28 inches) deep and 4.5 centimeters (about 1.8 inches) in diameter.

    Because the original images of this hole had areas of bright sunlight as well as shadow, the images making up this mosaic have been arranged to hide as much of the sunlit area as possible. The white spot is one area that could not be covered by other images. It is possible to stretch the image so that features in this white spot are visible, but this makes the rest of the mosaic harder to view. The bright streaks on the bottom part of the hole are most likely reflections from various parts of the robotic arm. The geometric and brightness seams have been corrected in this image.

  1. Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe

    2009-04-01

    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less

  3. Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater False Color

    NASA Image and Video Library

    2006-08-24

    This false-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of reddish dust. The rock is light tan and has a moderately cracked the surface. Around it is a layer of bluish sand and pebbles

  4. Structural Imaging around the SMS Deposit by the Multi-Source ZVCS Survey Method in the Izena Hole, Mid-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Tara, K.; Asakawa, E.; Murakami, F.; Tsukahara, H.; Saito, S.; Lee, S.; Katou, M.; Jamali Hondori, E.; Sumi, T.; Kadoshima, K.; Kose, M.

    2017-12-01

    Seafloor Massive Sulfide (SMS) deposits typically show rugged topography such as abundant chimney structures and sulfide mounds. However, buried SMS deposits are not well studied because of few efficient methods to detect and characterize them. Therefore, we proposed a Zero-offset Vertical Cable Seismic (ZVCS) survey using a Sparker and a Remotely Operated Vehicle (ROV) which was equipped with autonomous hydrophone arrays and a sub-bottom profiler (SBP). Zero-offset shooting and near-bottom recording can acquire high resolution acoustic data that could separate the reflection and scattered wave by vertically towed hydrophone arrays. We conducted the multi-source ZVCS survey in the Hakurei site, where the existence of the exposed and the buried SMS deposits has been reported, in Izena Hole, the Mid-Okinawa Trough, during the exploration cruise JM16-04. We obtained the two source's cross-sections of the buried SMS that enabled us to identify the area from the viewpoint of seismic facies. Buried SMS area is characterized by wavy to subparallel internal configuration and semi-continuously reflections. These features suggest that results from collapse of original sedimentary structure and hydrothermal alteration. Previous our exploration of the entire Izena Hole by the Autonomous Cable Seismic (ACS) were conducted in the JM16-02. Comparison between the ZVCS and ACS results gave us not only structural features in the surrounding area of SMS, but also the hydrothermal system of the Izena Hole. These results suggest that the hydrothermal circulation in the Izena Hole is vertically limited to the fracture zone caused by the depression and the buried SMS occurs in a sedimentary layer in the fracture zone. We conclude that ZVCS and ACS imaging of the shallow sub-seafloor structures will be useful for discussion about the geological background of SMS deposits.

  5. Reconstruction of sediment transport pathways in modern microtidal sand flat by multiple classification analysis

    NASA Astrophysics Data System (ADS)

    Yamashita, S.; Nakajo, T.; Naruse, H.

    2009-12-01

    In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.

  6. Tow-Steered Panels With Holes Subjected to Compression or Shear Loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer

    2005-01-01

    Tailoring composite laminates to vary the fiber orientations within a fiber layer of a laminate to address non-uniform stress states and provide structural advantages such as the alteration of principal load paths has potential application to future low-cost, light-weight structures for commercial transport aircraft. Evaluation of this approach requires the determination of the effectiveness of stiffness tailoring through the use of curvilinear fiber paths in flat panels including the reduction of stress concentrations around the holes and the increase in load carrying capability. Panels were designed through the use of an optimization code using a genetic algorithm and fabricated using a tow-steering approach. Manufacturing limitations, such as the radius of curvature of tows the machine could support, avoidance of wrinkling of fibers and minimization of gaps between fibers were considered in the design process. Variable stiffness tow-steered panels constructed with curvilinear fiber paths were fabricated so that the design methodology could be verified through experimentation. Finite element analysis where each element s stacking sequence was accurately defined is used to verify the behavior predicted based on the design code. Experiments on variable stiffness flat panels with central circular holes were conducted with the panels loaded in axial compression or shear. Tape and tow-steered panels are used to demonstrate the buckling, post-buckling and failure behavior of elastically tailored panels. The experimental results presented establish the buckling performance improvements attainable by elastic tailoring of composite laminates.

  7. Forest resources of the south Arkansas delta

    Treesearch

    R.K. Winters

    1939-01-01

    The portion of Arkansas treated in this report is a former flood plain of Mississippi River, through which the Arkansas, the White, the Mississippi, and other rivers have cut new channels and developed a later flood plain at a lower level. The soils and topography differ accordingly on the two sites. The present flood plains, or bottoms, are generally flat; wheareas...

  8. Floristics of ephemeral ponds in east-central Texas

    Treesearch

    Barbara R. MacRoberts; Michael H. MacRoberts; D. Craig Rudolph; David W. Peterson

    2014-01-01

    Beginning in 2009, we surveyed the vegetation of ephemeral ponds in Sabine and Nacogdoches counties in east-central Texas. These ponds are shallow and flat-bottomed, with a small but distinct flora dominated by grasses (Poaceae) and sedges (Cyperaceae). The floras of these ponds are most similar to those of flatwoods ponds located on the lower coastal plain. Once more...

  9. Keep Laptop Cool with Simple Custom Riser

    ERIC Educational Resources Information Center

    Rynone, William

    2012-01-01

    Although the author's netbook computer--a diminished capacity laptop computer--uses less power than its big brother, when working with it on his lap, his thighs are roasted, even in the winter. When using the unit on a flat surface, such as a table top, the bottom surface of the computer and table top become quite warm--and it is generally…

  10. Litter-Spinning Retarders

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  11. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  12. Effects of initial amplitude and pycnocline thickness on the evolution of mode-2 internal solitary waves

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Hung; Hsieh, Chih-Min; Hwang, Robert R.; Hsu, John R.-C.

    2018-04-01

    Numerical simulations are performed to investigate the effects of the initial amplitude and pycnocline thickness on the evolutions of convex mode-2 internal solitary waves propagating on the flat bottom. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using the improved delayed detached eddy simulation turbulent closure model. Mode-2 internal solitary waves (ISWs) are found to become stable at t = 15 s after lifting a vertical sluice gate by a gravity collapse mechanism. Numerical results from three cases of pycnocline thickness reveal the following: (1) the occurrence of a smooth mode-2 ISW when the wave amplitude is small; (2) the PacMan phenomenon for large amplitude waves; and (3) pseudo vortex shedding in the case of very large amplitudes. In general, basic wave properties (wave amplitude, wave speed, vorticity, and wave energy) increase as the wave amplitude increases for a specific value of the pycnocline thickness. Moreover, the pycnocline thickness chiefly determines the core size of a convex mode-2 ISW, while the step depth (that generates an initial wave amplitude) and offset in pycnocline govern the waveform type during its propagation on the flat bottom.

  13. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/Bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  14. The Acoustically Driven Vortex Cannon

    ERIC Educational Resources Information Center

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  15. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  16. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  17. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  18. 76 FR 81924 - East Cheyenne Gas Storage, LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Gas Storage, LLC; Notice of Amendment Take notice that on December 16, 2011, East Cheyenne Gas Storage... the West Peetz Field of its East Cheyenne Gas Storage Project to a maximum bottom-hole pressure of 2..., East Cheyenne Gas Storage, LLC, 10370 Richmond Avenue, Suite 510, Houston, Texas 77042, by Telephone...

  19. 3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL HOLES IN GRANITE AT RIGHT EDGE. US GEOLOGICAL SURVEY BENCHMARK AT BOTTOM CORNER OF SIDEWALK - 4,621 FEET. SLOT IN FAR WALL FOR SEMAPHORE OF OBSOLETE CARBON MONOXIDE WARNING SYSTEM. - Wawona Tunnel, Wawona Road through Turtleback Dome, Yosemite Village, Mariposa County, CA

  20. 30 CFR 75.1910 - Nonpermissible diesel-powered equipment; electrical system design and performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical reaction to electrolyte must be provided on battery connections to prevent battery terminals from... materials. Insulating materials that may be subject to chemical reaction with electrolyte must be treated to resist such action; and (o) Drainage holes must be provided in the bottom of each battery box. ...

  1. Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes - a field experiment.

    PubMed

    Langhamer, Olivia; Wilhelmsson, Dan

    2009-10-01

    Several Western European countries are planning for a significant development of offshore renewable energy along the European Atlantic Ocean coast, including many thousands of wave energy devices and wind turbines. There is an increasing interest in articulating the added values of the creation of artificial hard bottom habitats through the construction of offshore renewable energy devices, for the benefit of fisheries management and conservation. The Lysekil Project is a test park for wave power located about 100 km north of Gothenburg at the Swedish west coast. A wave energy device consists of a linear wave power generator attached to a foundation on the seabed, and connected by a wire to a buoy at the surface. Our field experiment examined the function of wave energy foundations as artificial reefs. In addition, potentials for enhancing the abundance of associated fish and crustaceans through manufactured holes of the foundations were also investigated. Assemblages of mobile organisms were examined by visual censuses in July and August 2007, 3 months after deployment of the foundations. Results generally show low densities of mobile organisms, but a significantly higher abundance of fish and crabs on the foundations compared to surrounding soft bottoms. Further, while fish numbers were not influenced by increased habitat complexity (holes), it had a significantly positive effect on quantities of edible crab (Cancer pagurus), on average leading to an almost five-fold increase in densities of this species. Densities of spiny starfish (Marthasterias glacialis) were negatively affected by the presence of holes, potentially due to increased predator abundance (e.g. C. pagurus). These results suggest a species-specific response to enhanced habitat complexity.

  2. Study on Gap Flow Field Simulation in Small Hole Machining of Ultrasonic Assisted EDM

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chang, Hao; Zhang, Wenchao; Ma, Fujian; Sha, Zhihua; Zhang, Shengfang

    2017-12-01

    When machining a small hole with high aspect ratio in EDM, it is hard for the flushing liquid entering the bottom gap and the debris could hardly be removed, which results in the accumulation of debris and affects the machining efficiency and machining accuracy. The assisted ultrasonic vibration can improve the removal of debris in the gap. Based on dynamics simulation software Fluent, a 3D model of debris movement in the gap flow field of EDM small hole machining assisted with side flushing and ultrasonic vibration is established in this paper. When depth to ratio is 3, the laws of different amplitudes and frequencies on debris distribution and removal are quantitatively analysed. The research results show that periodic ultrasonic vibration can promote the movement of debris, which is beneficial to the removal of debris in the machining gap. Compared to traditional small hole machining in EDM, the debris in the machining gap is greatly reduced, which ensures the stability of machining process and improves the machining efficiency.

  3. Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40

    NASA Astrophysics Data System (ADS)

    Gierliński, Marek; Maciołek-Niedźwiecki, Andrzej; Ebisawa, Ken

    2001-08-01

    We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius. We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68<=a<=0.88. Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.

  4. Ultrahigh-Resolution Optical Coherence Tomography of Surgically Closed Macular Holes

    PubMed Central

    Ko, Tony H.; Witkin, Andre J.; Fujimoto, James G.; Chan, Annie; Rogers, Adam H.; Baumal, Caroline R.; Schuman, Joel S.; Drexler, Wolfgang; Reichel, Elias; Duker, Jay S.

    2007-01-01

    Objective To evaluate retinal anatomy using ultrahigh-resolution optical coherence tomography (OCT) in eyes after successful surgical repair of full-thickness macular hole. Methods Twenty-two eyes of 22 patients were diagnosed as having macular hole, underwent pars plana vitrectomy, and had flat/closed macular anatomy after surgery, as confirmed with biomicroscopic and OCT examination findings. An ultrahigh-resolution–OCT system developed for retinal imaging, with the capability to achieve approximately 3-μm axial resolution, was used to evaluate retinal anatomy after hole repair. Results Despite successful closure of the macular hole, all 22 eyes had macular abnormalities on ultrahigh-resolution–OCT images after surgery. These abnormalities were separated into the following 5 categories: (1) outer foveal defects in 14 eyes (64%), (2) persistent foveal detachment in 4 (18%), (3) moderately reflective foveal lesions in 12 (55%), (4) epiretinal membranes in 14 (64%), and (5) nerve fiber layer defects in 3 (14%). Conclusions With improved visualization of fine retinal architectural features, ultrahigh-resolution OCT can visualize persistent retinal abnormalities despite anatomically successful macular hole surgery. Outer foveal hyporeflective disruptions of the junction between the inner and outer segments of the photoreceptors likely represent areas of foveal photoreceptor degeneration. Moderately reflective lesions likely represent glial cell proliferation at the site of hole reapproximation. Thin epiretinal membranes do not seem to decrease visual acuity and may play a role in reestablishing foveal anatomy after surgery. PMID:16769836

  5. Machine-learning classifiers applied to habitat and geological substrate mapping offshore South Carolina

    NASA Astrophysics Data System (ADS)

    White, S. M.; Maschmeyer, C.; Anderson, E.; Knapp, C. C.; Brantley, D.

    2017-12-01

    Offshore of northern South Carolina holds considerable potential for wind energy development. This study describes a method for comprehensive and efficient evaluation of the geological framework and archaeological artifacts in potential Bureau of Ocean Energy Management lease blocks located 12 km offshore Myrtle Beach, South Carolina. Identification of cultural artifacts and potential critical habitats on the seafloor is critical to support for lease blocks designation, but must be done primarily using sonar data with limited visual data. We used bathymetry and backscatter to create 6 m seafloor grids of slope, and gray-level co-occurrence matrices: homogeneity, entropy, and second-moment. Supervised automated classification using an adaptive neuro-fuzzy inference system (ANFIS) in Matlab scripts provided comprehensive evaluation of the seafloor in the study area. Coastal Carolina University collected EM3002 multibeam sonar from the R/V Coastal Explorer on multiple cruises in 2015-2016 in a 32 km by 9 km area. We processed the multibeam using QPS Qimera and Fledermaus Geocoder to produce bathymetric and backscatter datasets gridded at 0.5 m with estimated 0.1 m vertical resolution. During Fall 2016, Coastal Carolina University collected ground-referenced tow-camera imagery of 68 km in 4 different sites within the multibeam survey zone. We created a ground-reference bottom-type dataset with over 75,000 reference points from the imagery. We extracted slope, backscatter intensity, and the first principal component of backscatter textures to each point. We trained an adaptive neuro-fuzzy inference system (ANFIS) on 2,500 points representing three classes: soft-bottom, hard-bottom, and cultural artifact, 101 km2 is soft-bottom, 1.5 km2 is rocky outcrop or hard-bottom, and there were 3 locations of cultural artifacts. Our classification is > 88% accurate. The extent of human artifacts, such as sunken ships and artificial reefs, are under-represented by 60% in our classification as the classifier confused flat parts with relatively flat sand data. 100% of testing data representing rocky portions of the seafloor were correctly classified. The use of machine-learning classifiers to determine seafloor-type provides a new solution to habitat mapping and offshore engineering problems.

  6. Holographic entanglement entropies for Schwarzschild and Reisner-Nordström black holes in asymptotically Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Zhao, Liu

    2017-04-01

    Holographic entanglement entropies (HEE) associated with four-dimensional Schwarzschild and Reisner-Nordström (RN) black holes in asymptotically Minkowski spacetimes are investigated. Unlike the cases of asymptotically AdS spacetimes for which the boundaries are always taken at (timelike) conformal infinities, we take the boundaries at either large but finite radial coordinates (far boundary) or very close to the black hole event horizons (near horizon boundary). The reason for such choices is that such boundaries are similar to the conformal infinity of AdS spacetime in that they are all timelike, so that there may be some hope to define dual systems with ordinary time evolution on such boundaries. Our results indicate that, in the case of far boundaries, the leading-order contribution to HEEs comes from the background Minkowski spacetime; however, the next-to-leading-order contribution which arises from the presence of the black holes is always proportional to the black hole mass, which constitutes a version of the first law of HEE for asymptotically flat spacetimes, and the higher-order contributions are always negligibly small. In the case of near horizon boundaries, the leading-order contribution to HEE is always proportional to the area of the black hole event horizon, and the case of extremal RN black holes is distinguished from the cases of nonextremal black holes in that the minimal surface defining HEE is completely immersed inside the boundary up to the second order in the perturbative expansion.

  7. USAR Robot Communication Using ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Tsui, Charles; Carnegie, Dale; Pan, Qing Wei

    This paper reports the successful development of an automatic routing wireless network for USAR (urban search and rescue) robots in an artificial rubble environment. The wireless network was formed using ZigBee modules and each module was attached to a micro-controller in order to model a wireless USAR robot. Proof of concept experiments were carried out by deploying the networked robots into artificial rubble. The rubble was simulated by connecting holes and trenches that were dug in 50 cm deep soil. The simulated robots were placed in the bottom of the holes. The holes and trenches were then covered up by various building materials and soil to simulate a real rubble environment. Experiments demonstrated that a monitoring computer placed 10 meters outside the rubble can establish proper communication with all robots inside the artificial rubble environment.

  8. Skyrmions, Skyrme stars and black holes with Skyrme hair in five spacetime dimension

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen; Tchrakian, D. H.

    2017-11-01

    We consider a class of generalizations of the Skyrme model to five spacetime dimensions ( d = 5), which is defined in terms of an O(5) sigma model. A special ansatz for the Skyrme field allows angular momentum to be present and equations of motion with a radial dependence only. Using it, we obtain: 1) everywhere regular solutions describing localised energy lumps ( Skyrmions); 2) Self-gravitating, asymptotically flat, everywhere non-singular solitonic solutions ( Skyrme stars), upon minimally coupling the model to Einstein's gravity; 3) both static and spinning black holes with Skyrme hair, the latter with rotation in two orthogonal planes, with both angular momenta of equal magnitude. In the absence of gravity we present an analytic solution that satisfies a BPS-type bound and explore numerically some of the non-BPS solutions. In the presence of gravity, we contrast the solutions to this model with solutions to a complex scalar field model, namely boson stars and black holes with synchronised hair. Remarkably, even though the two models present key differences, and in particular the Skyrme model allows static hairy black holes, when introducing rotation, the synchronisation condition becomes mandatory, providing further evidence for its generality in obtaining rotating hairy black holes.

  9. Local properties and global structure of McVittie spacetimes with non-flat Friedmann-Lemaître-Robertson-Walker backgrounds

    NASA Astrophysics Data System (ADS)

    Nolan, Brien C.

    2017-11-01

    McVittie spacetimes embed the vacuum Schwarzschild(-(anti) de Sitter) spacetime in an isotropic, Friedmann-Lemaître-Robertson-Walker (FLRW) background universe. The global structure of such spacetimes is well understood when the FLRW background is spatially flat. In this paper, we study the global structure of McVittie spacetimes with spatially non-flat FLRW backgrounds. We derive some basic results on the metric, curvature and matter content of these spacetimes and provide a representation of the metric that makes the study of their global properties possible. In the closed case, we find that at each instant of time, the spacetime is confined to a region bounded by a (positive) minimum and a maximum area radius, and is bounded either to the future or to the past by a scalar curvature singularity. This allowed region only exists when the background scale factor is above a certain minimum, and so is bounded away from the Big Bang singularity, as in the flat case. In the open case, the situation is different, and we focus mainly on this case. In K<0 McVittie spacetimes, radial null geodesics originate in finite affine time in the past at a boundary formed by the union of the Big Bang singularity of the FLRW background and a hypersurface (of varying causal character) which is non-singular in the sense of scalar curvature. Furthermore, in the case of eternally expanding open universes with Λ≥slant0 , we prove that black holes are ubiquitous: ingoing radial null geodesics extend in finite affine time to a hypersurface that forms the boundary of the region from which photons can escape to future null infinity. We determine the structure of the conformal diagrams that can arise in the open case. Finally, we revisit the black hole interpretation of McVittie spacetimes in the spatially flat case, and show that this interpretation holds also in the case of a vanishing cosmological constant, contrary to a previous claim of ours.

  10. On the properties of organic heterostructures prepared with nano-patterned metallic electrode

    NASA Astrophysics Data System (ADS)

    Breazu, C.; Socol, M.; Preda, N.; Matei, E.; Rasoga, O.; Girtan, M.; Mallet, R.; Stanculescu, F.; Stanculescu, A.

    2018-06-01

    This paper presents a comparative study between the properties of the heterostructures realized with single/multi layer organic (zinc phthalocyanine or/and fullerene) prepared on Si substrate between flat or patterned aluminum (Al) layer metallic electrode and multi layer ZnO/Au/ZnO transparent conductor electrode (TCE). The UV-Nanoimprint Lithography was used for the realization of a 2D array of nanostructures (holes/pillars) characterized by a periodicity of 1.1 μm and cylindrical shape: diameter = 400 nm and depth/height = 300 nm. The effect of the electrode patterning on the properties of the organic heterostructures was analyzed. For the samples with patterned Al electrode was remarked a slight red shift of the peaks in the reflection spectra determined by an increased interaction between the organic molecules in the delimited region of the patterned holes. The shape of the emission spectra at excitation with UV light showed a narrow intense peak around 500 nm associated with the intense resonance phenomena between the energy of the incident light and the surface plasmons in the patterned Al layer. The TCE followed the morphology of the organic film on which it was deposited. The significant differences between the morphology of the top layer in the heterostructures realized on flat and patterned Al are correlated with the total thickness of the successively deposited layers and with the particularities of the molecular arrangement, leading to the preservation or deleting of patterning. An injection contact behavior was evidence for most heterostructures built on flat and patterned Al. The slight increase in current at an applied bias <1 V in the heterostructure Si/Al/ZnPc/TCE is attributed to the larger interfacial area between the patterned Al electrode and ZnPc layer compared to the interface area between flat Al and ZnPc. A buffer layer of 1,4,5,8-naphthalen-tetracarboxylic dianhydride (NTCDA), sandwiched between the flat metallic electrode and organic film in the heterostructure Si/Al/C60/ZnPc/TCE has determined an increase in the current at low applied voltages.

  11. A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion

    NASA Astrophysics Data System (ADS)

    Wirth, A.

    2005-01-01

    We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.

  12. Estimation of spatially varying heat transfer coefficient from a flat plate with flush mounted heat sources using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2016-09-01

    This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.

  13. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuyama, S.; Yaita, J.; Kondo, M.

    2015-10-19

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  14. The portrait of eikonal instability in Lovelock theories

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Perturbations and eikonal instabilities of black holes and branes in the Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in the literature for several particular cases, where the asymptotic conditions (flat, dS, AdS), the number of spacetime dimensions D, non-vanishing coupling constants (α1, α2, α3 etc.) and other parameters have been chosen in a specific way. Here we give a comprehensive analysis of the eikonal instabilities of black holes and branes for the most general Lovelock theory, not limited by any of the above cases. Although the part of the stability analysis is performed here purely analytically and formulated in terms of the inequalities for the black hole parameters, the most general case is treated numerically and the accurate regions of instabilities are presented. The shared Mathematica® code allows the reader to construct the regions of eikonal instability for any desired values of the parameters.

  15. Speed of gravitational waves and black hole hair

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-04-01

    The recent detection of GRB 170817A and GW170817 constrains the speed of gravity waves cT to be that of light, which severely restricts the landscape of modified gravity theories that impact the cosmological evolution of the Universe. In this work, we investigate the presence of black hole hair in the remaining viable cosmological theories of modified gravity that respect the constraint cT=1 . We focus mainly on scalar-tensor theories of gravity, analyzing static, asymptotically flat black holes in Horndeski, Beyond Horndeski, Einstein-scalar-Gauss-Bonnet, and Chern-Simons theories. We find that in all of the cases considered here, theories that are cosmologically relevant and respect cT=1 do not allow for hair, or have negligible hair. We further comment on vector-tensor theories including Einstein-Yang-Mills, Einstein-Aether, and generalized Proca theories, as well as bimetric theories.

  16. Sealed, nozzle-mix burners for silica deposition

    DOEpatents

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Yen Chin, E-mail: ongyenchin@sjtu.edu.cn

    Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner—the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there existmore » closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry. As such, despite the original claim that the twisted black hole might have observational consequences, it cannot be.« less

  18. Extrema of mass, first law of black hole mechanics, and a staticity theorem in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    1998-08-01

    Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derive the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial data for the manifold with an interior boundary we get the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and a compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion-electric fields on static slices.

  19. Penrose inequality in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Singh, Suprit

    2017-11-01

    For asymptotically flat spacetimes the Penrose inequality gives an initial data test for the weak cosmic censorship hypothesis. We give a formulation of this inequality for asymptotically anti-de Sitter (AAdS) spacetimes, and show that the inequality holds for time asymmetric data in spherical symmetry. Our analysis is motivated by the constant-negative-spatial-curvature form of the AdS black hole metric.

  20. Application of local indentations for film cooling of gas turbine blade leading edge

    NASA Astrophysics Data System (ADS)

    Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.

    2016-09-01

    The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.

Top