Sample records for flat panel technology

  1. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  2. JTEC panel on display technologies in Japan

    NASA Technical Reports Server (NTRS)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  3. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

    1996-04-16

    A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

  4. Shin-Etsu super-high-flat substrate for FPD panel photomask

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki

    2017-07-01

    Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.

  5. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  6. Technical advances of interventional fluoroscopy and flat panel image receptor.

    PubMed

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most obvious. On the other hand, due to its wide dynamic range and linearity, lowering of patient dose beyond current practice could be achieved through the calibration process of the flat panel input dose rate being set to, for example, one half or less of current values. In this article various radiation saving devices and control circuits are briefly described. This includes various types of fluoroscopic systems designed to strive for reduction of patient exposure with the application of spectral shaping filters. The main thrust is to understand the ADRIQ control logic, through equipment testing, as it relates to clinical applications, and to show how this ADRIQ control logic "ties" those three technological advancements together to provide low radiation dose to the patient with high quality fluoroscopic images. Finally, rotational angiography with computed tomography (CT) and three dimensional (3-D) images utilizing flat panel technology will be reviewed as they pertain to diagnostic imaging in cardiovascular disease.

  7. Flat panel display test and evaluation: procedures, standards, and facilities

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.

    1997-07-01

    This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.

  8. Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector.

    PubMed

    Hosch, W P; Fink, C; Radeleff, B; kampschulte a, A; Kauffmann, G W; Hansmann, J

    2002-10-01

    The aim of this study was to evaluate the image quality and the potential for radiation dose reduction with a digital flat-panel amorphous silicon detector radiography system. Using flat-panel technology, radiographs of an anthropomorphic thorax phantom were taken with a range of technical parameters (125kV, 200mA and 5, 4, 3.2, 2, 1, 0.5, and 0.25mAs) which were equivalent to a radiation dose of 332, 263, 209, 127, 58.7, 29, and 14 microGy, respectively. These images were compared to radiographs obtained by a conventional film-screen radiography system at 125kV, 200mA and 5mAs (equivalent to 252 microGy) which served as reference. Three observers evaluated independently the visibility of simulated rounded lesions and anatomical structures, comparing printed films from the flat-panel amorphous silicon detector and conventional x-ray system films. With flat-panel technology, the visibility of rounded lesions and normal anatomical structures at 5, 4, and 3.2mAs was superior compared to the conventional film-screen radiography system. (P< or =0.0001). At 2mAs, improvement was only marginal (P=0.19). At 1.0, 0.5 and 0.25mAs, the visibility of simulated rounded lesions was worse (P< or =0.004). Comparing fine lung parenchymal structures, the flat-panel amorphous silicon detector showed improvement for all exposure levels down to 2mAs and equality at 1mAs. Compared to a conventional x-ray film system, the flat-panel amorphous silicon detector demonstrated improved image quality and the possibility for a reduction of the radiation dose by 50% without loss in image quality.

  9. Projection display technology for avionics applications

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  10. Laminar flow control SPF/08 feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Ecklund, R. C.; Williams, N. R.

    1981-10-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  11. Emissive flat panel displays: A challenge to the AMLCD

    NASA Astrophysics Data System (ADS)

    Walko, R. J.

    According to some sources, flat panel displays (FPD's) for computers will represent a 20-40 billion dollar industry by the end of the decade and could leverage up to 100-200 billion dollars in computer sales. Control of the flat panel display industry could be a significant factor in the global economy if FPD's manage to tap into the enormous audio/visual consumer market. Japan presently leads the world in active matrix liquid crystal display (AMLCD) manufacturing, the current leading FPD technology. The AMLCD is basically a light shutter which does not emit light on its own, but modulates the intensity of a separate backlight. However, other technologies, based on light emitting phosphors, could eventually challenge the AMLCD's lead position. These light-emissive technologies do not have the size, temperature and viewing angle limitations of AMLCD's. In addition, they could also be less expensive to manufacture, and require a smaller capital outlay for a manufacturing plant. An overview of these alternative technologies is presented.

  12. Alternatives to flat panel displays in vehicle turrets

    NASA Astrophysics Data System (ADS)

    Nicholson, Gail

    2011-06-01

    Space is a premium in vehicle turrets. Reducing the footprint of displays inside turrets frees up space for the warfighter. Traditional military ruggedized flat panel displays cannot reside flush with the curved turret wall and consumes more space than their advertized size. The lack of turret space also makes balancing human factors difficult. To better meet the Warfighter needs, alternatives and incremental upgrades to the flat panel displays in turrets were compiled. Each alternative technology was assessed against the constraints of a turret. Benefits, issues, and predictions to implementation are summarized. Viable alternatives are being developed into suitable options.

  13. Flat-panel cone-beam CT: a novel imaging technology for image-guided procedures

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.; Jaffray, David A.; Edmundson, Gregory K.; Sanders, W. P.; Wong, John W.; Martinez, Alvaro A.

    2001-05-01

    The use of flat-panel imagers for cone-beam CT signals the emergence of an attractive technology for volumetric imaging. Recent investigations demonstrate volume images with high spatial resolution and soft-tissue visibility and point to a number of logistical characteristics (e.g., open geometry, volume acquisition in a single rotation about the patient, and separation of the imaging and patient support structures) that are attractive to a broad spectrum of applications. Considering application to image-guided (IG) procedures - specifically IG therapies - this paper examines the performance of flat-panel cone-beam CT in relation to numerous constraints and requirements, including time (i.e., speed of image acquisition), dose, and field-of-view. The imaging and guidance performance of a prototype flat panel cone-beam CT system is investigated through the construction of procedure-specific tasks that test the influence of image artifacts (e.g., x-ray scatter and beam-hardening) and volumetric imaging performance (e.g., 3D spatial resolution, noise, and contrast) - taking two specific examples in IG brachytherapy and IG vertebroplasty. For IG brachytherapy, a procedure-specific task is constructed which tests the performance of flat-panel cone-beam CT in measuring the volumetric distribution of Pd-103 permanent implant seeds in relation to neighboring bone and soft-tissue structures in a pelvis phantom. For IG interventional procedures, a procedure-specific task is constructed in the context of vertebroplasty performed on a cadaverized ovine spine, demonstrating the volumetric image quality in pre-, intra-, and post-therapeutic images of the region of interest and testing the performance of the system in measuring the volumetric distribution of bone cement (PMMA) relative to surrounding spinal anatomy. Each of these tasks highlights numerous promising and challenging aspects of flat-panel cone-beam CT applied to IG procedures.

  14. Display Techniques for Advanced Crew Stations (DTACS). Phase 1. Display Techniques Study.

    DTIC Science & Technology

    1984-03-01

    26 3.1.3 Off Screen Displays .. ................... 27 3.1.4 Flat Panel Displays. .. ................. 27 3.2 FORMAT REQUIREMENTS...Head-Up Display ....... .................... ... 96 4.5.2 Display Panel .... ................. 98 4.5.3 RGB Calligraphic Display ................ 99...117 3.4 VOICE WARNING/RESPONSE TECHNOLOGY .............. . i.117 5.5 TOUCH PANEL TECHNOLOGY ..... ................ ... 118 5.6

  15. U.S. Army Aeromedical Research Laboratory Annual Progress Report, Calendar Year 1999

    DTIC Science & Technology

    2000-03-01

    has continued basic flat panel research with the intent of transitioning the approach to applied, in-flight examination of flat panel technology...Department of Psychology was executed in CY99 for cooperative investigation of hierarchically ordered information in intelligent multifunction displays...1999 Instructional courses on fatigue management were given at the Aviation Precommand Course, the Aviation Psychology Course, the Flight Surgeon’s

  16. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.

  17. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    NASA Astrophysics Data System (ADS)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  18. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    PubMed

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  19. Miniaturized LEDs for flat-panel displays

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Meitl, Matthew; Prevatte, Carl; Bonafede, Salvatore; Rotzoll, Robert; Gomez, David; Moore, Tanya; Raymond, Brook; Cok, Ronald; Fecioru, Alin; Trindade, António Jose; Fisher, Brent; Goodwin, Scott; Hines, Paul; Melnik, George; Barnhill, Sam; Bower, Christopher A.

    2017-02-01

    Inorganic light emitting diodes (LEDs) serve as bright pixel-level emitters in displays, from indoor/outdoor video walls with pixel sizes ranging from one to thirty millimeters to micro displays with more than one thousand pixels per inch. Pixel sizes that fall between those ranges, roughly 50 to 500 microns, are some of the most commercially significant ones, including flat panel displays used in smart phones, tablets, and televisions. Flat panel displays that use inorganic LEDs as pixel level emitters (μILED displays) can offer levels of brightness, transparency, and functionality that are difficult to achieve with other flat panel technologies. Cost-effective production of μILED displays requires techniques for precisely arranging sparse arrays of extremely miniaturized devices on a panel substrate, such as transfer printing with an elastomer stamp. Here we present lab-scale demonstrations of transfer printed μILED displays and the processes used to make them. Demonstrations include passive matrix μILED displays that use conventional off-the shelf drive ASICs and active matrix μILED displays that use miniaturized pixel-level control circuits from CMOS wafers. We present a discussion of key considerations in the design and fabrication of highly miniaturized emitters for μILED displays.

  20. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  1. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  2. Determination of washout performance of various monochrome displays under simulated flight ambient and solar lighting conditions

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Robertson, James B.; Parrish, Russell V.

    1990-01-01

    The aircraft cockpit ambient lighting simulation system (ACALSS) has been developed to study display readability and associated pilot/vehicle performance effects in a part-task simulator cockpit. In the study reported here, the ACALSS was used to determine the illumination levels at which subjects lose the ability to maintain aircraft states when using three display technologies as display media for primary flight displays: a standard monochrome EL (electroluminescent) flat-panel, a laboratory-class monochrome CRT, and an enhanced-brightness EL flat-panel. The multivariate statistical technique of modified profile analysis was used to test for performance differences between display devices as functions of illumination levels. The standard monochrome EL flat-panel display began to washout after the 2500 foot-candle level of illumination. The monochrome CRT began to washout after the 5500 foot-candle level of illumination. No performance decrements by increased illumination up to the 12,000 foot-candle level were found for the enhanced-brightness EL flat-panel display. What was not anticipated was that half the subjects would subjectively prefer the CRT over the enhanced-brightness EL, even though their performance errors would have indicated the opposite.

  3. Large area x-ray detectors for cargo radiography

    NASA Astrophysics Data System (ADS)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  4. Examination of optimal upgrade timing and best value: DoD acquisition of commercial vs. military custom flat panel displays

    NASA Astrophysics Data System (ADS)

    Lippitz, Michael J.

    1999-08-01

    This paper proposes a framework for quantitatively balancing the costs, benefits, and risks of alternate upgrade strategies, with Department of Defense (DoD) acquisition of flat panel display as an example. A key issue in DoD Acquisition Reform is the rapid product turnover in commercial markets and the difficulties DoD has traditionally faced in adopting these advances in a timely manner. This paper aims to clarify when commercial technology represents 'best value' to DoD.

  5. Flat panel displays in the helmet-mounted display

    NASA Astrophysics Data System (ADS)

    Bartlett, Christopher T.; Freeman, Jonathan P.

    2002-08-01

    The Helmet Mounted Display has been in development for over 25 years and with few exceptions those systems in service have incorporated a miniature Cathode Ray Tube as the display source. The exceptions have been the use of Light Emitting Diodes in Helmet Sighting displays. The argument for Flat Panel Displays has been well rehearsed and this paper provides a summary of the available technologies but with a rationale for a decision to use Reflective Liquid Crystal devices. The Paper then describes sources of illumination and derives the luminance required from that source.

  6. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    PubMed

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  7. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  8. Evaluation of viewing experiences induced by curved 3D display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul; Yano, Sumio

    2015-05-01

    As advanced display technology has been developed, much attention has been given to flexible panels. On top of that, with the momentum of the 3D era, stereoscopic 3D technique has been combined with the curved displays. However, despite the increased needs for 3D function in the curved displays, comparisons between curved and flat panel displays with 3D views have rarely been tested. Most of the previous studies have investigated their basic ergonomic aspects such as viewing posture and distance with only 2D views. It has generally been known that curved displays are more effective in enhancing involvement in specific content stories because field of views and distance from the eyes of viewers to both edges of the screen are more natural in curved displays than in flat panel ones. For flat panel displays, ocular torsions may occur when viewers try to move their eyes from the center to the edges of the screen to continuously capture rapidly moving 3D objects. This is due in part to differences in viewing distances from the center of the screen to eyes of viewers and from the edges of the screen to the eyes. Thus, this study compared S3D viewing experiences induced by a curved display with those of a flat panel display by evaluating significant subjective and objective measures.

  9. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  10. Technical trends of large-size photomasks for flat panel displays

    NASA Astrophysics Data System (ADS)

    Yoshida, Koichiro

    2017-06-01

    Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".

  11. 75 FR 51286 - Certain Flat Panel Digital Televisions and Components Thereof; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-733] Certain Flat Panel Digital Televisions and... importation, and the sale within the United States after importation of certain flat panel digital televisions... after importation of certain flat panel digital televisions and components thereof that infringe one or...

  12. 75 FR 51285 - In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-733] In the Matter of Certain Flat Panel Digital... importation, and the sale within the United States after importation of certain flat panel digital televisions... sale within the United States after importation of certain flat panel digital televisions and...

  13. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems.

    PubMed

    Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert

    2006-09-01

    The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.

  14. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers

    PubMed Central

    Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  15. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers.

    PubMed

    Katchman, Benjamin A; Smith, Joseph T; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O'Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S

    2016-07-04

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers.

  16. Flat panel detectors--closing the (digital) gap in chest and skeletal radiology.

    PubMed

    Reiff, K J

    1999-08-01

    In the radiological department today the majority of all X-ray procedures on chest and skeletal radiography is performed with classical film-screen-systems. Using digital luminescence radiography (DLR or CR, which stands for Computed Radiography) as a technique has shown a way to replace this 100-year-old procedure of doing general radiography work by acquiring the X-rays digitally via phosphor screens, but this approach has faced criticism from lots of radiologists world wide and therefore has not been widely accepted except in the intensive care environment. A new technology is now rising based on the use of so called flat panel X-ray (FD) detectors. Semi-conducting material detects the X-rays in digital form directly and creates an instantaneous image for display, distribution and diagnosis. This ability combined with a large field of view and compared to existing methods--excellent detective quantum efficiency represents a revolutionary step for chest and skeletal radiography and will put basic X-ray-work back into the focus of radiological solutions. This paper will explain the basic technology of flat panel detectors, possible system solutions based on this new technology, aspects of the user interface influencing the system utilization and versatility as well as the possibility to redefine the patient examination process for chest and skeletal radiography. Furthermore the author discusses limitations for the first released systems, upgrades for the installed base and possible scenarios for the future, e.g. fluoroscopy or angiography application.

  17. A Laboratory-Based Course in Display Technology

    ERIC Educational Resources Information Center

    Sarik, J.; Akinwande, A. I.; Kymissis, I.

    2011-01-01

    A laboratory-based class in flat-panel display technology is presented. The course introduces fundamental concepts of display systems and reinforces these concepts through the fabrication of three display devices--an inorganic electroluminescent seven-segment display, a dot-matrix organic light-emitting diode (OLED) display, and a dot-matrix…

  18. Review of flat panel display programs and defense applications

    NASA Astrophysics Data System (ADS)

    Gnade, Bruce; Schulze, Raymond; Henderson, Girardeau L.; Hopper, Darrel G.

    1997-07-01

    Flat panel display research has comprised a substantial portion of the national investment in new technology for economic and national security for the past nine years. These investments have ben made principally via several Defense Advanced Research Projects Agency (DARPA) programs, known collectively as the continuing High Definition Systems Program, and the Office of the Secretary of Defense Production Act Title III Program. Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These research programs are reviewed and opportunities for applications are described. Future technology development, transfer, and transition requirements are identified. Strategy and vision are documented to assist the identification of areas meriting further consideration.

  19. Flat Surface Damage Detection System (FSDDS)

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  20. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1977-01-01

    A general technology assessment and manufacturing cost analysis was presented. A near-term (1982) factory design is described, and the results of an experimental production study for the large-scale production of flat-panel silicon and solar-cell arrays are detailed.

  1. Recent advances in flexible low power cholesteric LCDs

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  2. Chemically amplified i-line positive resist for next-generation flat panel display

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Chieh; Lu, Ying-Hao; Huang, Shin-Yih; Lan, Wei-Jen; Hanabata, Makoto

    2017-03-01

    Traditional diazonaphthoquinone (DNQ) positive photoresists are widely used for TFT-LCD array process. Current LTPS technology has more than 600ppi resolution is required for small or middle-sized TFT liquid crystal display panels. One of the ways to enhance resolution is to apply i-line single exposure system instead of traditional g/h/ibroadband exposure system. We have been developing i-line chemically amplified photoresist ECA 200 series for the next generation flat panel display (FPD). ECA 200 consists of three components: a phenol resin, a photo acid generator and dissolution enhancer. We applied two different types of dissolution enhancers with two different kinds of protected groups to our resist materials. As a result, we achieved higher sensitivity, higher resolution, less footing of the resist profile and reduced standing wave effect compared with traditional DNQ photoresists. In addition, we have found further property of photoresist that does not need post exposure bake (PEB) process. This resist has a great advantage at most of current panel plants without PEB process.

  3. Low-cost fabrication and direct bond installation of flat, single-curvature and compound-curvature ablative heat shield panels

    NASA Technical Reports Server (NTRS)

    Norwood, L. B.

    1972-01-01

    Procedures for low cost fabrication and direct bond installation of flat, single curved, and compound curvature ablative heat shields on a DC-3 aircraft are discussed. The panel sizes and attachment locations are identified. In addition to the bonding of the four contoured panels, two flat panels were bonded to the nearly flat, lower surface of the center wing section. The detailed requirements and objectives of the investigation are described.

  4. Predictive value of flat-panel CT for haemorrhagic transformations in patients with acute stroke treated with thrombectomy.

    PubMed

    Rouchaud, Aymeric; Pistocchi, Silvia; Blanc, Raphaël; Engrand, Nicolas; Bartolini, Bruno; Piotin, Michel

    2014-03-01

    Haemorrhagic transformations are pejorative for patients with acute ischaemic stroke (AIS). We estimated flat-panel CT performances to detect brain parenchymal hyperdense lesions immediately after mechanical thrombectomy directly on the angiography table in patients with AIS, and its ability to predict haemorrhagic transformation. We also evaluated an easy-reading protocol for post-procedure flat-panel CT evaluation by clinicians to enable them to determine the potential risk of haemorrhage. Two neuroradiologists retrospectively reviewed post-procedural flat-panel CT and 24 h follow-up imaging. We evaluated hyperdense lesions on flat-panel CT to predict the occurrence of haemorrhagic transformation within 24 h detected with conventional imaging. Of 63 patients, 60.3% presented post-procedural parenchymal hyperdensity and 54.0% had haemorrhagic transformation. Significantly more patients with hyperdense lesions on post-thrombectomy flat-panel CT presented haemorrhagic transformation (84.2% vs 8.0%; p<0.0001). No significant haemorrhagic transformations were detected for patients without parenchymal hyperdensity. Sensitivity and specificity of hyperdense lesions on flat-panel CT for the prediction of haemorrhagic transformation were 94.1% (80.3-99.3%) and 79.3% (60.3-92.0%), respectively. The positive and negative predictive values for the occurrence of haemorrhage were 84.2% (68.8-94.0%) and 92.0% (74.0-99.0%), respectively. For significant parenchymal haemorrhage type 2, sensitivity and negative predictive values were 100%. We observed good homogeneity between the different readers. Hyperdensity on post-procedural flat-panel CT was associated with a tendency for higher risk of death and lower risk of good clinical outcome. Flat-panel CT appears to be a good tool to detect brain parenchymal hyperdensities after mechanical thrombectomy in patients with AIS and to predict haemorrhagic transformation.

  5. Flat Panel Displays for Medical Monitoring Systems

    DTIC Science & Technology

    2001-10-25

    filter prevents light from passing (figure 2). FLAT PANEL DISPLAYS FOR MEDICAL MONITORING SYSTEMS A. Cebrián, J. Millet , I. García Department of...The touch screen is placed over the flat panel display as a filter (figure 10) and allows user interfaces based in direct finger touch (figure 11

  6. 75 FR 81555 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Techniques Guidelines for Large Appliance and Metal Furniture; Flat Wood Paneling; Paper, Film, and Foil... appliance and metal furniture; flat wood paneling; and paper, film, and foil surface coating processes. In... Control Techniques Guidelines for Large Appliance and Metal Furniture; Flat Wood Paneling; Paper, Film...

  7. 76 FR 13567 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... sources covered by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface... Protection (PADEP) submitted to EPA a SIP revision concerning the adoption of the CTG for flat wood paneling...

  8. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  9. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  10. Development and demonstration of manufacturing processes for fabricating graphite/LARC 160 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.

    1981-01-01

    The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.

  11. Coupled Electro-Magneto-Mechanical-Acoustic Analysis Method Developed by Using 2D Finite Element Method for Flat Panel Speaker Driven by Magnetostrictive-Material-Based Actuator

    NASA Astrophysics Data System (ADS)

    Yoo, Byungjin; Hirata, Katsuhiro; Oonishi, Atsurou

    In this study, a coupled analysis method for flat panel speakers driven by giant magnetostrictive material (GMM) based actuator was developed. The sound field produced by a flat panel speaker that is driven by a GMM actuator depends on the vibration of the flat panel, this vibration is a result of magnetostriction property of the GMM. In this case, to predict the sound pressure level (SPL) in the audio-frequency range, it is necessary to take into account not only the magnetostriction property of the GMM but also the effect of eddy current and the vibration characteristics of the actuator and the flat panel. In this paper, a coupled electromagnetic-structural-acoustic analysis method is presented; this method was developed by using the finite element method (FEM). This analysis method is used to predict the performance of a flat panel speaker in the audio-frequency range. The validity of the analysis method is verified by comparing with the measurement results of a prototype speaker.

  12. Evaluation of a metal artifacts reduction algorithm applied to postinterventional flat panel detector CT imaging.

    PubMed

    Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K

    2014-01-01

    Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.

  13. Projection display technologies for the new millennium

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    2000-04-01

    Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.

  14. Design, fabrication and delivery of a miniature Cassegrainian concentrator solar array system

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A.

    1987-01-01

    The optical design of the miniature Cassegrainian concentrator (MCC) element was improved for both offpoint and onpoint power capability. The cell stack design has shown no losses under the high short term thermal stresses imposed by component level test and is projected to be capable of greater than five years thermal cycle life in low Earth orbit. The structural design met all requirements for stiffness and flatness and requires adjustable inserts for fine tuning of the GFRP structure to meet flatness goals. The completed, fully populated small and large MCC panels deliverable under this contract perform electrically as expected. A solid acceptance inspection program to guarantee quality of all purchased parts, and continued manufacturing process improvements will make the MCC design a viable low cost alternative to standard flat panel technology. Minor improvements to the cell stack design of the MCC element can make significant improvements in both the performance and manufacturability of the MCC system.

  15. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  16. 75 FR 70692 - TUV Rheinland PTL, LLC; Application for Recognition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... was current at the time OSHA prepared this notice. UL 1703 Flat-Plate Photovoltaic Modules and Panels... for photovoltaic products, and a leading test organization for photovoltaic technology. Arizona State University (ASU) established the organization in 1992, as the Photovoltaic Testing Laboratory (PTL). The...

  17. 77 FR 75617 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... transmittal, policy justification, and Sensitivity of Technology. Dated: December 18, 2012. Aaron Siegel... Processor Cabinets, 2 Video Wall Screen and Projector Systems, 46 Flat Panel Displays, and 2 Distributed Video Systems), 2 ship sets AN/SPQ-15 Digital Video Distribution Systems, 2 ship sets Operational...

  18. A preliminary study of flat-panel displays

    NASA Technical Reports Server (NTRS)

    Yancey, K. E.

    1986-01-01

    Six display technologies that might be of future value in a spacelab workstation are discussed. Some have been developed to the point where they could be used as a computer display while others have not. The display technologies studied are electroluminescents, light-emitting didodes, gas plasma, liquid crystal, electrochromic, and electrophoretic. An explanation of each mechanism is provided along with the state-of-the-art development.

  19. Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors

    DTIC Science & Technology

    2011-05-01

    selenium flat panel detector. Proc. SPIE 2005. 5745: p. 529-540 4. Kopans, D.B., Breast Imaging. 2 ed. 1997, New York Lippincott Williams and...same. 2005. 8. M. Bissonnette, et al. Digital breast tomosynthesis using an amorphous selenium flat panel detector. in Medical Imaging 2005...tomosynthesis system with selenium based flat panel detector. Proc of SPIE, Physics of Medical Imaging, 2005. 5745. 12

  20. Active noise control using a distributed mode flat panel loudspeaker.

    PubMed

    Zhu, H; Rajamani, R; Dudney, J; Stelson, K A

    2003-07-01

    A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.

  1. A survey of new technology for cockpit application to 1990's transport aircraft simulators

    NASA Technical Reports Server (NTRS)

    Holt, A. P., Jr.; Noneaker, D. O.; Walthour, L.

    1980-01-01

    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels.

  2. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  3. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  4. Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii

    NASA Astrophysics Data System (ADS)

    Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas

    2011-12-01

    Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.

  5. Testing and analysis of flat and curved panels with multiple cracks

    DOT National Transportation Integrated Search

    1994-08-01

    An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The ...

  6. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  7. The iMoD display: considerations and challenges in fabricating MOEMS on large area glass substrates

    NASA Astrophysics Data System (ADS)

    Chui, Clarence; Floyd, Philip D.; Heald, David; Arbuckle, Brian; Lewis, Alan; Kothari, Manish; Cummings, Bill; Palmateer, Lauren; Bos, Jan; Chang, Daniel; Chiang, Jedi; Wang, Li-Ming; Pao, Edmon; Su, Fritz; Huang, Vincent; Lin, Wen-Jian; Tang, Wen-Chung; Yeh, Jia-Jiun; Chan, Chen-Chun; Shu, Fang-Ann; Ju, Yuh-Diing

    2007-01-01

    QUALCOMM has developed and transferred to manufacturing iMoD displays, a MEMS-based reflective display technology. The iMoD array architecture allows for development at wafer scale, yet easily scales up to enable fabrication on flat-panel display (FPD) lines. In this paper, we will describe the device operation, process flow and fabrication, technology transfer issues, and display performance.

  8. Current status of stereoscopic 3D LCD TV technologies

    NASA Astrophysics Data System (ADS)

    Choi, Hee-Jin

    2011-06-01

    The year 2010 may be recorded as a first year of successful commercial 3D products. Among them, the 3D LCD TVs are expected to be the major one regarding the sales volume. In this paper, the principle of current stereoscopic 3D LCD TV techniques and the required flat panel display (FPD) technologies for the realization of them are reviewed. [Figure not available: see fulltext.

  9. Advances in infrastructure support for flat panel display manufacturing

    NASA Astrophysics Data System (ADS)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  10. Modelling the drying of three-dimensional pulp moulded structures. Part II, Drying data obtained from flat panels using virgin and recycled paper fibre

    Treesearch

    John F. Hunt; Margit Tamasy-Bano; Heike Nyist

    1999-01-01

    A three-dimensional structural panel, called FPL Spaceboard, was developed at the USDA Forest Products Laboratory. Spaceboard panels have been formed using a variety of fibrous materials using either a wet- or dry-forming process. Geometrically, the panel departs from the traditional two-dimensional flat panel by integrally forming an array of perpendicular ribs and...

  11. 76 FR 31856 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface coating processes. EPA is approving this revision concerning the adoption of the EPA CTG requirements for flat wood...

  12. Solar shutter arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, P.L.

    1988-02-02

    In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less

  13. A large flat panel multifunction display for military and space applications

    NASA Astrophysics Data System (ADS)

    Pruitt, James S.

    1992-09-01

    A flat panel multifunction display (MFD) that offers the size and reliability benefits of liquid crystal display technology while achieving near-CRT display quality is presented. Display generation algorithms that provide exceptional display quality are being implemented in custom VLSI components to minimize MFD size. A high-performance processor converts user-specified display lists to graphics commands used by these components, resulting in high-speed updates of two-dimensional and three-dimensional images. The MFD uses the MIL-STD-1553B data bus for compatibility with virtually all avionics systems. The MFD can generate displays directly from display lists received from the MIL-STD-1553B bus. Complex formats can be stored in the MFD and displayed using parameters from the data bus. The MFD also accepts direct video input and performs special processing on this input to enhance image quality.

  14. Enhancement in lipid content of Chlorella sp. MJ 11/11 from the spent medium of thermophilic biohydrogen production process.

    PubMed

    Ghosh, Supratim; Roy, Shantonu; Das, Debabrata

    2017-01-01

    The present study investigates the effect of spent media of acetogenic dark fermentation for mixotrophic algal cultivation for biodiesel production. Mixotrophic growth conditions were optimized in culture flask (250mL) using Chlorella sp. MJ 11/11. Maximum lipid accumulation (58% w/w) was observed under light intensity, pH, nitrate and phosphate concentration of 100μmolm -2 s -1 , 7, 2.7mM and 1.8mM, respectively. Air lift (1.4L) and flat panel (1.4L) reactors were considered for algal cultivation. Air lift showed significant improvement in biomass and lipid production as compared to flat panel reactor. The results could help in development of sustainable technology involving acetogenic hydrogen production integrated with sequential mitigation of spent media by algal cultivation for improved energy recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Driver-Array Based Flat-Panel Loudspeakers: Theoretical Background and Design Guidelines

    NASA Astrophysics Data System (ADS)

    Anderson, David Allan

    This thesis relates to the simulation and design of flat-panel loudspeakers using moving-coil driver elements. A brief history of the industry is given, including a collection of products and patents from 1925 until the present, an overview of research papers, and a discussion of current products available. The mechanics of bending flat panels are developed with respect to localized driving forces, both in the frequency domain and the time domain as an impulse response. These simulations are compared to measurements on prototype panels. Additional resonant elements influence the behavior of the system: an optional ported rear enclosure and the resonant characteristics of the drivers. The governing equations for these systems are derived and solutions are implemented using equivalent mechanical circuits and numerical methods. The idea of using driver arrays to independently actuate modes of the panel is discussed at length with respect to modal addressability, modal spillover, and experimental validation. The numerical approach to determining the optimal driver placement for a given set of modes is derived and experimentally validated. An investigation of the acoustic behavior of flat panel loudspeakers is presented, using mechanical simulation results to predict the acoustic radiation. The simulations are compared to measurements and found to accurately predict important mechanical and acoustical behaviors. It is demonstrated that a driver array, with the proper biasing, is capable of creating a flat panel loudspeaker which acts more like a piston than a "diffuse radiator" flat panel loudspeaker. The techniques of "Modal Crossover Networks" are introduced, which use multi-band filters to bias the driver array differently for different frequency bands, optimized for audio reproduction. The question of how many drivers are necessary for a modal crossover network is addressed and found to be dependent on the estimated quality factor (Q) of the panel material and edge conditions.

  16. Testing and analysis of flat and curved panels with multiple cracks

    NASA Technical Reports Server (NTRS)

    Broek, David; Jeong, David Y.; Thomson, Douglas

    1994-01-01

    An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The test specimens contained various configurations for initial damage. Static loading was applied to these specimens until ultimate failure, while loads and crack propagation were recorded. This data provides the basis for developing and validating methodologies for predicting linkup of multiple cracks, progression to failure, and overall residual strength. The results from twelve flat coupon and ten full scale curved panel tests are presented. In addition, an engineering analysis procedure was developed to predict multiple crack linkup. Reasonable agreement was found between predictions and actual test results for linkup and residual strength for both flat and curved panels. The results indicate that an engineering analysis approach has the potential to quantitatively assess the effect of multiple cracks in the arrest capability of an aircraft fuselage structure.

  17. Performance of mobile digital X-ray fluoroscopy using a novel flat panel detector for intraoperative use.

    PubMed

    Jeong, Chang-Won; Ryu, Jong-Hyun; Joo, Su-Chong; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Technologies employing digital X-ray devices are developed for mobile settings. To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 μ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 μ Gy and 0.1 μ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 μ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). The proposed MDF is suitable for imaging in operating rooms.

  18. Direct-reading design charts for 75S-T6 aluminum-alloy flat compression panels having longitudinal extruded Z-section stiffeners

    NASA Technical Reports Server (NTRS)

    Hickman, William A; Dow, Norris F

    1951-01-01

    Direct-reading design charts are presented for 75S-T6 aluminum-alloy flat compression panels having longitudinal extruded Z-section stiffeners. These charts, which cover a wide range of proportions, make possible the direct determination of the stress and all panel dimensions required to carry a given intensity of loading with a given skin thickness and effective length of panel.

  19. Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy.

    PubMed

    Hartmann, Bernadette; Telsemeyer, Julia; Huber, Lucas; Ackermann, Benjamin; Jäkel, Oliver; Martišíková, Mária

    2012-01-07

    Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post-exposure treatment and no developer and darkroom facilities are needed.

  20. Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography.

    PubMed

    Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen

    2002-02-01

    The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.

  1. Verification and Demonstration for Transition of Nonhexavalent Chromium, Low-Volatile Organic Compound (VOC) Alternative Technologies to Replace DOD-P-15328 Wash Primer for Multimetal Applications

    DTIC Science & Technology

    2017-09-28

    DTL-53030 at 1008 h Aluminum panels were run out to 1008 h of exposure in ASTM B117 testing. The results obtained can be seen in Table 13. At 1008...were scraped with a 2-inch flat blade putty knife after rating to unveil any previously unseen corrosion or delamination issues between the coating and...CRS primed with MIL-DTL-53022 after 80 cycles Although success is established at 40 cycles, the aluminum test panels were also run out to 80 cycles

  2. Vision Algorithms Catch Defects in Screen Displays

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Andrew Watson, a senior scientist at Ames Research Center, developed a tool called the Spatial Standard Observer (SSO), which models human vision for use in robotic applications. Redmond, Washington-based Radiant Zemax LLC licensed the technology from NASA and combined it with its imaging colorimeter system, creating a powerful tool that high-volume manufacturers of flat-panel displays use to catch defects in screens.

  3. Performance comparison of flat static and adjustable angle solar panels for sunny weather

    NASA Astrophysics Data System (ADS)

    Chua, Yaw Long; Yong, Yoon Kuang

    2017-04-01

    Nowadays solar panels are commonly used to collect sunlight so that it could convert solar energy into electrical energy. The power generated by the solar panels depends on the amount of sunlight collected on the solar panels. This paper presents a study that was carried out to study how changing the angle of the solar panels will impact the amount of electrical energy collected after conversion and the efficiencies of the solar panels. In this paper, the solar panels were placed at 30°, 35° and 40° angles throughout different days. The energy collected is then compared with energy collected by a flat static solar panel. It turns out that the solar panels with 40° angle performed best among the other angle solar panels.

  4. Some sound transmission loss characteristics of typical general aviation structural materials

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Van Dam, C.; Grosveld, F.; Durenberger, D.

    1978-01-01

    Experimentally measured sound transmission loss characteristics of flat aluminum panels with and without damping and stiffness treatment are presented and discussed. The effect of pressurization on sound transmission loss of flat aluminum panels is shown to be significant.

  5. Color quality management in advanced flat panel display engines

    NASA Astrophysics Data System (ADS)

    Lebowsky, Fritz; Neugebauer, Charles F.; Marnatti, David M.

    2003-01-01

    During recent years color reproduction systems for consumer needs have experienced various difficulties. In particular, flat panels and printers could not reach a satisfactory color match. The RGB image stored on an Internet server of a retailer did not show the desired colors on a consumer display device or printer device. STMicroelectronics addresses this important color reproduction issue inside their advanced display engines using novel algorithms targeted for low cost consumer flat panels. Using a new and genuine RGB color space transformation, which combines a gamma correction Look-Up-Table, tetrahedrization, and linear interpolation, we satisfy market demands.

  6. Optimization of reading conditions for flat panel displays.

    PubMed

    Thomas, J A; Chakrabarti, K; Kaczmarek, R V; Maslennikov, A; Mitchell, C A; Romanyukha, A

    2006-06-01

    Task Group 18 (TG 18) of the American Association of Physicists in Medicine has developed guidelines for Assessment of Display Performance for Medical Imaging Systems. In this document, a method for determination of the maximum room lighting for displays is suggested. It is based on luminance measurements of a black target displayed on each display device at different room illuminance levels. Linear extrapolation of the above luminance measurements vs. room illuminance allows one to determine diffuse and specular reflection coefficients. TG 18 guidelines have established recommended maximum room lighting. It is based on the characterization of the display by its minimum and maximum luminance and the description of room by diffuse and specular coefficients. We carried out these luminance measurements for three selected displays to determine their optimum viewing conditions: one cathode ray tube and two flat panels. We found some problems with the application of the TG 18 guidelines to optimize viewing conditions for IBM T221 flat panels. Introduction of the requirement for minimum room illuminance allows a more accurate determination of the optimal viewing conditions (maximum and minimum room illuminance) for IBM flat panels. It also addresses the possible loss of contrast in medical images on flat panel displays because of the effect of nonlinearity in the dependence of luminance on room illuminance at low room lighting.

  7. Buckling coefficients for simply supported and camped flat, rectangular sandwich panels under edgewise compression

    Treesearch

    Edward W. Kuenzi; Charles B. Norris; Paul M. Jenkinson

    1964-01-01

    “This report presents curves of coefficients and formulas for use in calculating the buckling of flat panels of sandwich construction under edgewise compressive loads. The curves were derived for sandwich panels having one facing of either of two orthotropic materials, the other facing of an isotropic material; both facings of orthotropic material; both facings of...

  8. Compact flat-panel gas-gap heat switch operating at 295 K

    NASA Astrophysics Data System (ADS)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  9. Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lopez, Osvaldo F.

    1991-01-01

    Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.

  10. Development of Plastic Substrate Technology for Active Matrix Liquid Crystal Displays Final Report CRADA No. TC-761-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, P.; Kamath, H.

    Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.

  11. Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.

    PubMed

    Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D

    2004-09-01

    A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.

  12. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  13. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  14. 75 FR 42783 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Re Certain Flat Panel Digital Televisions and Components Thereof''; the Commission is soliciting... importation of certain flat panel digital televisions and components thereof. The complaint names as..., competitive conditions in the United States economy, the production of like or directly competitive articles...

  15. 76 FR 4578 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Wood Paneling Coatings AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for flat wood paneling coatings. These amendments will reduce emissions of volatile organic compound (VOC) from flat wood coating...

  16. Anti-reflective coating for visible light using a silver nanodisc metasurface with a refractive index of less than 1.0

    NASA Astrophysics Data System (ADS)

    Yasuda, Hideki; Matsuno, Ryo; Koito, Naoki; Hosoda, Hidemasa; Tani, Takeharu; Naya, Masayuki

    2017-12-01

    Suppression of visible-light reflection from material surfaces is an important technology for many applications such as flat-panel displays, camera lenses, and solar panels. In this study, we developed an anti-reflective coating design based on a silver nanodisc metasurface. The effective refractive index of a 10-nm-thick monolayer of silver nanodiscs was less than 1.0, which enabled strong suppression of reflection from the underlying substrate. The nanodisc structure was easy to fabricate using a conventional roll-to-roll wet-coating method. The anti-reflective structure was fabricated over a large area.

  17. European display scene

    NASA Astrophysics Data System (ADS)

    Bartlett, Christopher T.

    2000-08-01

    The manufacture of Flat Panel Displays (FPDs) is dominated by Far Eastern sources, particularly in Active Matrix Liquid Crystal Displays (AMLCD) and Plasma. The United States has a very powerful capability in micro-displays. It is not well known that Europe has a very active research capability which has lead to many innovations in display technology. In addition there is a capability in display manufacturing of organic technologies as well as the licensed build of Japanese or Korean designs. Finally, Europe has a display systems capability in military products which is world class.

  18. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    NASA Technical Reports Server (NTRS)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  19. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  20. Human Visual Performance and Flat Panel Display Image Quality

    DTIC Science & Technology

    1980-07-01

    the research required to relate human operator performance to the geome- tric properties of these designs has characteristically lag- - 68 - tte ...see: A summary of basic principles. In Committee on Undersea Warfare, National Research Council, A Summary Report on Human Factors in Undersea ...Office of the Deputy Under Secretary of Defense OUSDRE (E&LS) The Pentagon, Room 3D129 Washington, D. C. 20301 Director, Undersea Technology Code 220

  1. Development of 4-Sides Buttable CdTe-ASIC Hybrid Module for X-ray Flat Panel Detector

    NASA Astrophysics Data System (ADS)

    Tamaki, Mitsuru; Mito, Yoshio; Shuto, Yasuhiro; Kiyuna, Tatsuya; Yamamoto, Masaya; Sagae, Kenichi; Kina, Tooru; Koizumi, Tatsuhiro; Ohno, Ryoichi

    2009-08-01

    A 4-sides buttable CdTe-ASIC hybrid module suitable for use in an X-ray flat panel detector (FPD) has been developed by applying through silicon via (TSV) technology to the readout ASIC. The ASIC has 128 times 256 channels of charge integration type readout circuitry and an area of 12.9 mm times 25.7 mm. The CdTe sensor of 1 mm thickness, having the same area and pixel of 100 mum pitch, was fabricated from the Cl-doped CdTe single crystal grown by traveling heater method (THM). Then the CdTe pixel sensor was hybridized with the ASIC using the bump-bonding technology. The basic performance of this 4-sides buttable module was evaluated by taking X-ray images, and it was compared with that of a commercially available indirect type CsI(Tl) FPD. A prototype CdTe FPD was made by assembling 9 pieces of the 4-sides buttable modules into 3 times 3 arrays in which the neighboring modules were mounted on the interface board. The FPD covers an active area of 77 mm times 39 mm. The results showed the great potential of this 4-sides buttable module for the new real time X-ray FPD with high spatial resolution.

  2. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  3. Effect of Boundary Conditions on the Back Face Deformations of Flat UHMWPE Panels

    DTIC Science & Technology

    2014-12-01

    Zhang [2] carried out a numerical study of the effects of clamping type and clamping pressure on the ballistic performance of woven Kevlar , and found...effects of composite size were also studied. Singletary [5] studied the effects of boundary conditions and panel sizes on V50 for Kevlar KM2 fabric. The...on the BFD in flat UHMWPE panels. UHMWPE possesses high tenacity and high strength compared to Kevlar , as a result of which it is the material of

  4. Field emitter displays for future avionics applications

    NASA Astrophysics Data System (ADS)

    Jones, Susan K.; Jones, Gary W.; Zimmerman, Steven M.; Blazejewski, Edward R.

    1995-06-01

    Field emitter array-based display technology offers CRT-like characteristics in a thin flat-panel display with many potential applications for vehicle-mounted, crew workstation, and helmet-mounted displays, as well as many other military and commercial applications. In addition to thinness, high brightness, wide viewing angle, wide temperature range, and low weight, field emitter array displays also offer potential advantages such as row-at-a-time matrix addressability and the ability to be segmented.

  5. Configuration and Sizing of a Test Fixture for Panels Under Combined Loads

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2006-01-01

    Future air and space structures are expected to utilize composite panels that are subjected to combined mechanical loads, such as bi-axial compression/tension, shear and pressure. Therefore, the ability to accurately predict the buckling and strength failures of such panels is important. While computational analysis can provide tremendous insight into panel response, experimental results are necessary to verify predicted performances of these panels to judge the accuracy of computational methods. However, application of combined loads is an extremely difficult task due to the complex test fixtures and set-up required. Presented herein is a comparison of several test set-ups capable of testing panels under combined loads. Configurations compared include a D-box, a segmented cylinder and a single panel set-up. The study primarily focuses on the preliminary sizing of a single panel test configuration capable of testing flat panels under combined in-plane mechanical loads. This single panel set-up appears to be best suited to the testing of both strength critical and buckling critical panels. Required actuator loads and strokes are provided for various square, flat panels.

  6. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  7. Draft standard for color AMLCDs in U.S. military aircraft

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Dolezal, William K.; Schur, Keith; Liccione, John W.

    1994-06-01

    Flight instruments have begun to use color active liquid crystal displays (AMLCDs), signaling the beginning of a significant transition from electromechanical and cathode ray tube display designs to AMLCD designs. We have the opportunity with this new technology to establish common products capable of meeting user requirements for sunlight-readable, color and gray scale-capable, high-pixel-count, flat-panel displays for weapon systems. The Wright Laboratory is leading the development of standard and specification documentation for this new generation of display modules based on requirements for U.S. military aircraft. These requirements are similar in many ways to those of both the civil aviation and automotive industries. Accordingly, commonality with these applications is incorporated, where possible, along with the requirements for all military combat applications. Industry and government organizations are involved in this process through workshops and draft review processes. Military procurement specifications for combat system applications may use this information as a source of recommended best practice for this new generation of digital flat panel displays. The draft standard will be revised based upon continuing feedback by early 1995.

  8. Using Container Structures in Architecture and Urban Design

    NASA Astrophysics Data System (ADS)

    Grębowski, Karol; Kałdunek, Daniel

    2017-10-01

    The paper presents the use of shipping containers in architecture and urban design. Even today, houses and apartments are still too expensive. Since 1923 architects have been improving the living conditions of citizens by building very simple, repeatable forms. With prefabrication technology it became possible to build quicker, causing house prices to decrease. Apartments in block of flats became affordable to more and more people. Modernism had great impact on the quality of living spaces, despite the detrimental effect of large panel technology on social life. It gave people their own bathrooms, and gifted them with simple solutions we now consider indispensable. The ambition to build cheaply but effectively is still here. The future of housing lies in prefabricated apartment modules. A well optimized creation process is the key, but taking into consideration the mistakes made by past generations should be the second most important factor. Studies show that large panel buildings were too monumental and solid for a housing structure, and offered no public spaces between them. Lack of urban design transformed a great idea into blocks that are considered to be ugly and unfriendly. Diversity is something that large panel structures were missing. While most block of flats were being constructed out of the same module (Model 770), differentiated architecture was difficult to achieve. Nowadays, increasing numbers of shipping containers are being used for housing purposes. These constructions show that it is possible to create astonishing housing with modules. Shipping containers were not designed to be a building material, but in contrast to large panel modules, there are many more possibilities of their transformation. In this paper the authors propose a set of rules that, if followed, would result in cheaper apartments, while keeping in consideration both tremendous architecture and friendly urban design. What is more, the proposed solution is designed to adapt to personalized requirements. In this paper the authors include information about design guidelines for structures made from shipping containers.

  9. The Mechanical Robustness of Atomic-Layer- and Molecular-Layer-Deposited Coatings on Polymer Substrates

    DTIC Science & Technology

    2009-01-01

    coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch

  10. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, M. A.; Liu, B.; Donoghue, E. P.

    2011-01-01

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  11. Experimental Investigation at Mach Number 3.0 of the Effects of Thermal Stress and Buckling on the Flutter of Four-Bay Aluminum Alloy Panels with Length-Width Ratios of 10

    NASA Technical Reports Server (NTRS)

    Dixon, Sidney C.; Griffith, George E.; Bohon, Herman L.

    1961-01-01

    Skin-stiffener aluminum alloy panels consisting of four bays, each bay having a length-width ratio of 10, were tested at a Mach number of 3.0 at dynamic pressures ranging from 1,500 psf to 5,000 psf and at stagnation temperatures from 300 F to 655 F. The panels were restrained by the supporting structure in such a manner that partial thermal expansion of the skins could occur in both the longitudinal and lateral directions. A boundary faired through the experimental flutter points consisted of a flat-panel portion, a buckled-panel portion, and a transition point at the intersection of the two boundaries. In the region where a panel must be flat when flutter occurs, an increase in panel skin temperature (or midplane compressive stress) makes the panel more susceptible to flutter. In the region where a panel must be buckled when flutter occurs, the flutter trend is reversed. This reversal in trend is attributed to the panel postbuckling behavior.

  12. Diffractive flat panel solar concentrators of a novel design.

    PubMed

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  13. Nonlinear bulging factor based on R-curve data

    NASA Technical Reports Server (NTRS)

    Jeong, David Y.; Tong, Pin

    1994-01-01

    In this paper, a nonlinear bulging factor is derived using a strain energy approach combined with dimensional analysis. The functional form of the bulging factor contains an empirical constant that is determined using R-curve data from unstiffened flat and curved panel tests. The determination of this empirical constant is based on the assumption that the R-curve is the same for both flat and curved panels.

  14. SCIENCE AND TECHNOLOGY OF THE TWENTY-FIRST CENTURY: Synthesis, Properties, and Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Terrones, Mauricio

    2003-08-01

    This account reviews the discovery, synthesis, properties, and the latest research advances of carbon nanotubes developed over the past 12 years. Because of their remarkable electronic and mechanical properties, carbon nanotubes are unique and exciting. The field has been developed rapidly, and the number of publications per year is increasing almost exponentially. Various technological applications are likely to arise using nanotubes for fabrication of flat panel displays, gas storage devices, toxic gas sensors, Li+ batteries, robust and lightweight composites, conducting paints, electronic nanodevices, etc. Further experimental and theoretical research is still necessary so that novel technologies will become a reality in the early twenty-first century.

  15. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  16. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  17. Flat-panel electronic displays: a triumph of physics, chemistry and engineering

    PubMed Central

    Hilsum, Cyril

    2010-01-01

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III–V or II–VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X–Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs. PMID:20123746

  18. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    PubMed

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  19. Using a flat-panel detector in high resolution cone beam CT for dental imaging.

    PubMed

    Baba, R; Ueda, K; Okabe, M

    2004-09-01

    Cone beam CT (CBCT) requires a two-dimensional X-ray detector. In the several CBCT systems developed for dental imaging, detection has been by the combination of an X-ray image intensifier and charge-coupled device (CCD) camera. In this paper, we propose a new CBCT system in which the detector is of the flat-panel type and evaluate its performance in dental imaging. We developed a prototype CBCT that has a flat-panel-type detector. The detector consists of a CsI scintillator screen and a photosensor array. First, the flat panel detector and image intensifier detector were compared in terms of the signal-to-noise ratio (SNR) of projected images. We then used these data and a theoretical formula to evaluate noise in reconstructed images. Second, reconstructed images of a bar pattern phantom were obtained as a way of evaluating the spatial resolution. Then, reconstructed images of a skull phantom were obtained. The SNR of the developed system was 1.6 times as high as that of a system with an image intensifier detector of equal detector pitch. The system was capable of resolving a 0.35 mm pattern and its field of view almost completely encompassed that of an image intensifier detector which is used in dentomaxillofacial imaging. The fine spatial resolution of the detector led to images in which the structural details of a skull phantom were clearly visible. The system's isotropically fine resolution will lead to improved precision in dental diagnosis and surgery. The next stage of our research will be the development of a flat panel detector system with a high frame acquisition rate.

  20. 5-inch-size liquid crystal flat panel display evaluation test by flight simulator

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroyasu; Watanabe, Akira; Wakairo, Kaoru; Udagawa, Tomoyuki; Kurihara, Yoichiro

    An evaluation test is conducted on the function, performance, and display format of a 5x5 inch flat panel display (FPD) in a flight simulator. The FPD utilizes a color liquid crystal panel that is compact and lightweight and has excellent visibility. The simulator evaluation test is carried out in sequence with the conventional takeoff and landing to altitude, and then conversion to STOL procedures for flight path and subsequent approach and landing. It is shown that the liquid crystal display could be employed as a satisfactory indicator for aircraft instrumentation.

  1. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  2. Charts for the minimum-weight design of 24s-t aluminum-alloy flat compression panels with longitudinal z-section stiffeners

    NASA Technical Reports Server (NTRS)

    Schuette, Evan H

    1945-01-01

    Design charts are developed for 24s-t aluminum-alloy flat compression panels with longitudinal z-section stiffeners. These charts make possible the design of the lightest panels of this type for a wide range of design requirements. Examples of the use of the charts are given and it is pointed out on the basis of these examples that, over a wide range of design conditions, the maintenance of buckle-free surfaces does not conflict with the achievement of high structural efficiency. The achievement of the maximum possible structural efficiency with 24s-t aluminum-alloy panels, however, requires closer stiffener spacings than those now in common use.

  3. Calculated and measured stresses in simple panels subject to intense random acoustic loading including the near noise field of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Lassiter, Leslie W; Hess, Robert W

    1958-01-01

    Flat 2024-t3 aluminum panels measuring 11 inches by 13 inches were tested in the near noise fields of a 4-inch air jet and turbojet engine. The stresses which were developed in the panels are compared with those calculated by generalized harmonic analysis. The calculated and measured stresses were found to be in good agreement. In order to make the stress calculations, supplementary data relating to the transfer characteristics, damping, and static response of flat and curved panels under periodic loading are necessary and were determined experimentally. In addition, an appendix containing detailed data on the near pressure field of the turbojet engine is included.

  4. Advanced and tendencies in the development of display technologies

    NASA Astrophysics Data System (ADS)

    Kompanets, I. N.

    2006-06-01

    Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.

  5. 76 FR 38992 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Update to Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Definitions 5/24/10 12/28/10, 75 FR 81555... Addition of four new definitions: Exterior panels, interior panels, flat wood panel coating, and tileboard. See Part III of the IBR document. * * * * * * Part E...

  6. Dual redundant display in bubble canopy applications

    NASA Astrophysics Data System (ADS)

    Mahdi, Ken; Niemczyk, James

    2010-04-01

    Today's cockpit integrator, whether for state of the art military fast jet, or piston powered general aviation, is striving to utilize all available panel space for AMLCD based displays to enhance situational awareness and increase safety. The benefits of a glass cockpit have been well studied and documented. The technology used to create these glass cockpits, however, is driven by commercial AMLCD demand which far outstrips the combined worldwide avionics requirements. In order to satisfy the wide variety of human factors and environmental requirements, large area displays have been developed to maximize the usable display area while also providing necessary redundancy in case of failure. The AMLCD has been optimized for extremely wide viewing angles driven by the flat panel TV market. In some cockpit applications, wide viewing cones are desired. In bubble canopy cockpits, however, narrow viewing cones are desired to reduce canopy reflections. American Panel Corporation has developed AMLCD displays that maximize viewing area, provide redundancy, while also providing a very narrow viewing cone even though commercial AMLCD technology is employed suitable for high performance AMLCD Displays. This paper investigates both the large area display architecture with several available options to solve redundancy as well as beam steering techniques to also limit canopy reflections.

  7. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.

    1982-09-01

    Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.

  8. A novel heuristic for optimization aggregate production problem: Evidence from flat panel display in Malaysia

    NASA Astrophysics Data System (ADS)

    Al-Kuhali, K.; Hussain M., I.; Zain Z., M.; Mullenix, P.

    2015-05-01

    Aim: This paper contribute to the flat panel display industry it terms of aggregate production planning. Methodology: For the minimization cost of total production of LCD manufacturing, a linear programming was applied. The decision variables are general production costs, additional cost incurred for overtime production, additional cost incurred for subcontracting, inventory carrying cost, backorder costs and adjustments for changes incurred within labour levels. Model has been developed considering a manufacturer having several product types, which the maximum types are N, along a total time period of T. Results: Industrial case study based on Malaysia is presented to test and to validate the developed linear programming model for aggregate production planning. Conclusion: The model development is fit under stable environment conditions. Overall it can be recommended to adapt the proven linear programming model to production planning of Malaysian flat panel display industry.

  9. Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor.

    PubMed

    Yang, Zongbo; Cheng, Jun; Xu, Xiaodan; Zhou, Junhu; Cen, Kefa

    2016-07-01

    Novel horizontal tubes and triangular prism (HTTP) baffles that generate flow vortices were developed to increase solution velocity between dark and light areas and thus improve microalgal growth in a flat-panel photo-bioreactor. Solution velocity, mass-transfer coefficient, and mixing time were measured with a particle-imaging velocimeter, dissolved oxygen probes, and pH probes. The solution mass-transfer coefficient increased by 30% and mixing time decreased by 21% when the HTTP baffles were used. The solution velocity between dark and light areas increased from ∼0.9cm/s to ∼3.5cm/s, resulting in a decreased dark-light cycle period to one-fourth. This enhanced flashing light effect with the HTTP baffles dramatically increased microalgae biomass yield by 70% in the flat-panel photo-bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  11. Low cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Cecka, A. M.; Schofield, W. C.

    1972-01-01

    A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.

  12. A study of the structural-acoustic response and interior noise levels of fuselage structures

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1978-01-01

    Models of both flat and curved fuselage panels were tested for their sound transmission characteristics. The effect of external air flow on transmission loss was simulated in a subsonic wind-tunnel. By numerically evaluating the known equations for field-incidence transmission loss of single-walled panels in a computer program, a comparison of the theory with the test results was made. As a further extension to aircraft fuselage simulation, equations for the field-incidence transmission loss of a double-walled panel were derived. Flow is shown to provide a small increase in transmission loss for a flat panel. Curvature is shown to increase transmission loss for low frequencies, while also providing a sharp decrease in transmission loss at the ring frequency of the cylindrical panel. The field-incidence transmission loss of a double-walled panel was found to be approximately twice that for a single-walled panel, with the addition of dips in the transmission loss at the air gap resonances and at the critical frequency of the internal panel.

  13. Age-forming aluminum panels

    NASA Technical Reports Server (NTRS)

    Baxter, G. I.

    1976-01-01

    Contoured-stiffened 63 by 337 inch 2124 aluminum alloy panels are machined in-the-flat to make integral, tapered T-capped stringers, parallel with longitudinal centerline. Aging fixture, which includes net contour formers made from lofted contour templates, has eggcrate-like structure for use in forming and checking panels.

  14. [The future of bedside chest radiography: Comparative study of mobile flat-panels and needle-image plate storage phosphor systems].

    PubMed

    Bremicker, K; Gosch, D; Kahn, T; Borte, G

    2015-11-01

    Chest radiography is the most common diagnostic modality in intensive care units with new mobile flat-panels gaining more attention and availability in addition to the already used storage phosphor plates. Comparison of the image quality of mobile flat-panels and needle-image plate storage phosphor system in terms of bedside chest radiography. Retrospective analysis of 84 bedside chest radiographs of 42 intensive care patients (20 women, 22 men, average age: 65 years). All images were acquired during daily routine. For each patient, two images were analyzed, one from each system mentioned above. Two blinded radiologists evaluated the image quality based on ten criteria (e.g., diaphragm, heart contour, tracheal bifurcation, thoracic spine, lung structure, consolidations, foreign material, and overall impression) using a 5-point visibility scale (1 = excellent, 5 = not usable). There was no significant difference between the image quality of the two systems (p < 0.05). Overall some anatomical structures such as the diaphragm, heart, pulmonary consolidations and foreign material were considered of higher diagnostic quality compared to others, e.g., tracheal bifurcation and thoracic spine. Mobile flat-panels achieve an image quality which is as good as those of needle-image plate storage phosphor systems. In addition, they allow immediate evaluation of the image quality but in return are much more expensive in terms of purchase and maintenance.

  15. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2

    PubMed Central

    Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi

    2009-01-01

    Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765

  16. [Wireless digital radiography detectors in the emergency area: an efficacious solution].

    PubMed

    Garrido Blázquez, M; Agulla Otero, M; Rodríguez Recio, F J; Torres Cabrera, R; Hernando González, I

    2013-01-01

    To evaluate the implementation of a flat panel digital radiolography (DR) system with WiFi technology in an emergency radiology area in which a computed radiography (CR) system was previously used. We analyzed aspects related to image quality, radiation dose, workflow, and ergonomics. We analyzed the results obtained with the CR and WiFi DR systems related with the quality of images analyzed in images obtained using a phantom and after radiologists' evaluation of radiological images obtained in real patients. We also analyzed the time required for image acquisition and the workflow with the two technological systems. Finally, we analyzed the data related to the dose of radiation in patients before and after the implementation of the new equipment. Image quality improved in both the tests carried out with a phantom and in radiological images obtained in patients, which increased from 3 to 4.5 on a 5-point scale. The average time required for image acquisition decreased by 25 seconds per image. The flat panel required less radiation to be delivered in practically all the techniques carried out using automatic dosimetry, although statistically significant differences were found in only some of the techniques (chest, thoracic spine, and lumbar spine). Implementing the WiFi DR system has brought benefits. Image quality has improved and the dose of radiation to patients has decreased. The new system also has advantages in terms of functionality, ergonomics, and performance. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  17. Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties.

    PubMed

    Li, Guogang; Lin, Jun

    2014-01-01

    Nowadays there are several technologies used for flat panel displays (FPDs) and the development of FPDs with enhanced energy efficiency and improved display quality is strongly required. Field emission displays (FEDs) have been considered as one of the most promising next generation flat panel display technologies due to their excellent display performance and low energy consumption. For the development of FEDs, phosphors are irreplaceable components. In the past decade, the study of highly efficient low-voltage cathodoluminescent materials, namely FED phosphors, has become the focus of enhancing energy efficiency and realizing high-quality displays. This review summaries the recent progress in the chemical synthesis and improvement of novel, rare-earth and transition metal ions activated inorganic cathodoluminescent materials in powder and thin film forms. The discussion is focused on the modification of morphology, size, surface, composition and conductivity of phosphors and the corresponding effects on their cathodoluminescent properties. Special emphases are given to the selection of host and luminescent centers, the adjustment of emission colors through doping concentration optimization, energy transfer and mono- or co-doping activator ions, the improvement of chromaticity, color stability and color gamut as well as the saturation behavior and the degradation behavior of phosphors under the excitation of a low-voltage electron beam. Finally, the research prospects and future directions of FED phosphors are discussed with recommendations to facilitate the further study of new and highly efficient low-voltage cathodoluminescent materials.

  18. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  19. Method of gas emission control for safe working of flat gassy coal seams

    NASA Astrophysics Data System (ADS)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  20. Theoretical investigation of flutter of two-dimensional flat panels with one surface exposed to supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Cunningham, Herbert J

    1956-01-01

    A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.

  1. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  2. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  3. The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution

    NASA Astrophysics Data System (ADS)

    MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.

    2007-03-01

    In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.

  4. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  5. Attenuated phase-shift mask (PSM) blanks for flat panel display

    NASA Astrophysics Data System (ADS)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  6. Fabrication and electrical characterization of planar lighting devices with Cs3Sb photocathode emitters

    NASA Astrophysics Data System (ADS)

    Jeong, Hyo-Soo; Keller, Kris; Culkin, Brad

    2017-03-01

    Non-vacuum process technology was used to produce Cs3Sb photocathodes on substrates, and in-situ panel devices were fabricated. The performance of the devices was characterized by measuring the anode current as functions of the devices' operation times. An excitation light source with a 475-nm wavelength was used for the photocathodes. The device has a simple diode structure, providing unique characteristics such as a large gap, vertical electron beam directionality, and resistance to surface contamination from ion bombardment and poisoning by outgassing species. Accordingly, Cs3Sb photocathodes function as flat emitters, and the emission properties of the photocathode emitters depend on the vacuum level of the devices. An improved current stability has been observed after conducting an electrical conditioning process to remove possible adsorbates on the Cs3Sb flat emitters.

  7. Wafer integrated micro-scale concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  8. 16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. THE PANEL CONTROLS AIR-HANDLING EQUIPMENT AND AIR PRESSURE WITHIN THE BUILDING. (10/6/69) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  9. Modeling Microalgae Productivity in Industrial-Scale Vertical Flat Panel Photobioreactors.

    PubMed

    Endres, Christian H; Roth, Arne; Brück, Thomas B

    2018-05-01

    Potentially achievable biomass yields are a decisive performance indicator for the economic viability of mass cultivation of microalgae. In this study, a computer model has been developed and applied to estimate the productivity of microalgae for large-scale outdoor cultivation in vertical flat panel photobioreactors. Algae growth is determined based on simulations of the reactor temperature and light distribution. Site-specific weather and irradiation data are used for annual yield estimations in six climate zones. Shading and reflections between opposing panels and between panels and the ground are dynamically computed based on the reactor geometry and the position of the sun. The results indicate that thin panels (≤0.05 m) are best suited for the assumed cell density of 2 g L -1 and that reactor panels should face in north-south direction. Panel spacings of 0.4-0.75 m at a panel height of 1 m appear most suitable for commercial applications. Under these preconditions, yields of around 10 kg m -2 a -1 are possible for most locations in the U.S. Only in hot climates significantly lower yields have to be expected, as extreme reactor temperatures limit overall productivity.

  10. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    PubMed

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to kV: 0.91, 0.93, 0.86, and 0.99 for 0.1-mm Sn, 0.2-mm Cu, 1.5-mm Al, and 0.05-mm Ag, respectively; r(2) of signal variance to kV: 0.99 for all four filters). The comparison of the signal and noise (mean, variance, and NPS) between the simulated and measured air scan images suggested that this model was reasonable in predicting accurate signal statistics of air scan images using absolute percent error. Overall, the model was found to be accurate in estimating signal statistics and spatial correlation between the detector elements of the images acquired with indirect, flat-panel x-ray detectors. The semiempirical linear model of the indirect, flat-panel x-ray detectors was described and validated with images of air scans. The model was found to be a useful tool in understanding the signal and noise transfer within indirect, flat-panel x-ray detector systems.

  11. Mobile display technologies: Past developments, present technologies, and future opportunities

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  12. Interleaved array antenna technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is the third phase of a program to establish an antenna concept for shuttle and free flying spacecraft earth resources experiments using Synthetic Aperture Radar. The feasibility of a plated graphite epoxy waveguide for a space antenna was evaluated. A quantity of flat panels and waveguides were developed, procured, and tested for electrical and mechanical properties. In addition, processes for the assembly of a unique waveguide array were investigated. Finally, trades between various configurations that would allow elevation (range) electronic scanning and that would minimize feed complexity for various RF bandwidths were made.

  13. A novel technique for ventriculoperitoneal shunting by flat panel detector CT-guided real-time fluoroscopy

    PubMed Central

    Kobayashi, Shinya; Ishikawa, Tatsuya; Mutoh, Tatsushi; Hikichi, Kentaro; Suzuki, Akifumi

    2012-01-01

    Background: Surgical placement of a ventriculoperitoneal shunt (VPS) is the main strategy to manage hydrocephalus. However, the failure rate associated with placement of ventricular catheters remains high. Methods: A hybrid operating room, equipped with a flat-panel detector digital subtraction angiography system containing C-arm cone-beam computed tomography (CB-CT) imaging, has recently been developed and utilized to assist neurosurgical procedures. We have developed a novel technique using intraoperative fluoroscopy and a C-arm CB-CT system to facilitate accurate placement of a VPS. Results: Using this novel technique, 39 consecutive ventricular catheters were placed accurately, and no ventricular catheter failures were experienced during the follow-up period. Only two patients experienced obstruction of the VPS, both of which occurred in the extracranial portion of the shunt system. Conclusion: Surgical placement of a VPS assisted by flat panel detector CT-guided real-time fluoroscopy enabled accurate placement of ventricular catheters and was associated with a decreased need for shunt revision. PMID:23226605

  14. Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm

    NASA Astrophysics Data System (ADS)

    Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan

    2006-03-01

    Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.

  15. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  16. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  17. PANDA2: Program for Minimum Weight Design of Stiffened, Composite, Locally Buckled Panels

    DTIC Science & Technology

    1986-09-01

    a flat panel or a panel that spans less than about 45 degrees of circumference. However, in PANDA2 complete cylindrical shells can be treated by the...compression and that corresponding to maximum in-plane shear. It is usually best to treat complete cylindrical shells in this way rather than try to set up a...to treat panels, not complete cylindrical shells. Therefore, it is best applied to panels. In PANDA2 the curved edges of a cylindrical panel lie in

  18. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  19. Consideration of technologies for head-down displays

    NASA Astrophysics Data System (ADS)

    Bartlett, Christopher T.

    1998-09-01

    The market for military avionics head down displays for which Active Matrix Liquid Crystal Displays (AMLCD) has been specified is both well established and substantial. Typical major programs such as F-22, V-22 and Joint Strike Fighter (JSF) amount to over 15,000 displays. Nevertheless there is an insecurity about the situation because of the dependency upon Japanese and Korean manufacturers and the vagaries of the commercial market. The U.S. has only 7% of the world's manufacturing capability in AMLCD and is seeking alternative technologies to regain a hold in this lucrative business. The U.S. military manufacturers of AMLCD are capable, but can never achieve the benefits of scale that Commercial Off The Shelf (COTS) equipment can offer. In addition to the commercial and political concerns, there are still performance issues related to AMLCD and there is a view that emissive displays in particular can offer advantages over AMLCD. However, it is beneficial to be able to tailor display sizes and there are doubts about the ability of current flat panel technologies to achieve custom, or indeed large area panels either economically, or reliably. It is in this arena that projection displays may be the optimum solution.

  20. Comparison of custom versus COTS AMLCDs for military and avionic applications

    NASA Astrophysics Data System (ADS)

    Angelo, Van

    1997-07-01

    AMLCD's are currently the flat panel technology of choice for military systems and civil transport avionic applications, both new and retrofit. Historically, military and avionic displays have ben custom designed and have generally been specific to each application. Two recent developments have given display system designers a choice between a custom military/avionic solution or a ruggedized commercial off-the-shelf (COTS) implementation. The first development is the widespread availability of various consumer and automotive AMLCD panels at low prices. The second is the change in the policy of defense departments, notably the US Department of Defense, to procure COTS components instead of developing custom solutions. This paper assesses and analyzes the key differences in characteristics, performance and logistical supportability of military and avionic AMLCD's and presents the tradeoffs involved in making the optimum choice between custom and COTS.

  1. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work continued toward the development of tooling and processing concepts required for a cocured hat/skin cover assembly. A plan was developed and implemented to develop the process for using preimpregnated T300/5208 with a resin content of 34 + or - 2 percent by weight. Use of this material results in a simplified laminating process because removal by bleeding or prebleeding is no longer required. The approach to this task basically consists of fabricating and testing flat laminated panels and simulated structural panels to verify known processing techniques relative to end-laminate quality. The flat panels were used to determine air bleeding arrangement and required cure cycle. Single and multihat-stiffened panels were fabricated using the established air bleeding arrangement and cure cycle with the resulting cured parts yielding excellent correlation of ply thickness with all surfaces clear of porosity and voids.

  2. Use of Glass Reinforced Concrete (GRC) as a substrate for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1980-01-01

    A substrate for flat plate photovoltaic solar panel arrays using a glass fiber reinforced concrete (GRC) material was developed. The installed cost of this GRC panel is 30% less than the cost goal of the Near Term Low-Cost Flat Plate Photovoltaic Solar Array Program. The 4 ft by 8 ft panel is fabricated from readily available inexpensive materials, weighs a nominal 190 lbs., has exceptionally good strength and durability properties (rigid and resists weathering), is amenable to mass production and is easily installed on simple mountings. Solar cells are encapsulated in ethylene/vinyl acetate with Tedlar backing and Korad cover film. The laminates are attached to the GRC substrate with acrylic transfer tape and edge sealed with silicone RTV adhesive.

  3. Postbuckling analysis of shear deformable composite flat panels taking into account geometrical imperfections

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Stein, M.

    1990-01-01

    The effects of initial geometrical imperfections on the postbuckling response of flat laminated composite panels to uniaxial and biaxial compressive loading are investigated analytically. The derivation of the mathematical model on the basis of first-order transverse shear deformation theory is outlined, and numerical results for perfect and imperfect, single-layer and three-layer square plates with free-free, clamped-clamped, or free-clamped edges are presented in graphs and briefly characterized. The present approach is shown to be more accurate than analyses based on the classical Kirchhoff plate model.

  4. Beyond the limits of present active matrix flat-panel imagers (AMFPIs) for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; El-Mohri, Youcef; Jee, Kyung-Wook; Maolinbay, Manat; Nassif, Samer C.; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Zhao, Qihua; Street, Robert A.

    1999-05-01

    A theoretical cascaded systems analysis of the performance limits of x-ray imagers based on thin-film, active matrix flat-panel technology is presented. This analysis specifically focuses upon an examination of the functional dependence of the detective quantum efficiency on exposure. While the DQE of AMFPI systems is relatively high at the large exposure levels associated with radiographic x-ray imaging, there is a significant decline in DQE with decreasing exposure over the medium and lower end of the exposure range associated with fluoroscopic imaging. This fall-off in DQE originates from the relatively large size of the additive noise of AMFPI systems compared to their overall system gain. Therefore, strategies to diminish additive noise and increase system gain should significantly improve performance. Potential strategies for noise reduction include the use of charge compensation lines while strategies for gain enhancement include continuous photodiodes, pixel amplification structures, or higher gain converters. The effect of the implementation of such strategies is examined for a variety for hypothetical imager configurations. Through the modeling of these configurations, such enhancements are shown to hold the potential of making low frequency DQE response large and essentially independent of exposure while greatly reducing the fall-off in DQE at higher spatial frequencies.

  5. Basic imaging properties of an indirect flat-panel detector system employing irradiation side sampling (ISS) technology for chest radiography: comparison with a computed radiographic system.

    PubMed

    Tanaka, Nobukazu; Yano, Yuki; Yabuuchi, Hidetake; Akasaka, Tsutomu; Sasaki, Masayuki; Ohki, Masafumi; Morishita, Junji

    2013-01-01

    The image quality and potential usefulness for patient skin-dose reduction of a newly developed flat-panel detector (FPD) system employing irradiation side sampling (ISS) were investigated and compared to a conventional computed radiography (CR) system. We used the X-ray beam quality of RQA 9 as noted in the standard evaluation method by the International Electrotechnical Commission 62220-1 to evaluate the image quality of the detector for chest radiography. The presampled modulation transfer function (MTF) of the ISS-FPD system was slightly higher than that of the CR system in the horizontal direction at more than 2.2 cycles/mm. However, the presampled MTF of the ISS-FPD system was slightly lower than that of the CR system in the vertical direction. The Wiener spectrum of the ISS-FPD system showed a 50-65 % lesser noise level than that of the CR system under the same exposure condition. The detective quantum efficiency of the ISS-FPD system was at least twice as great as that of the CR system. We conclude that the ISS-FPD system has the potential to reduce the patient skin dose compared to a conventional CR system for chest radiography.

  6. Comparison of Intraoperative Portable CT Scanners in Skull Base and Endoscopic Sinus Surgery: Single Center Case Series

    PubMed Central

    Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.

    2011-01-01

    Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270

  7. PREFACE: MRS International Materials Research Conference (IMRC-2008)

    NASA Astrophysics Data System (ADS)

    Wang, Zhanguo; Qiu, Yong; Li, Yongxiang

    2009-03-01

    This volume contains selected papers presented at the MRS International Materials Research Conference (IMRC-2008) held in Chongqing, China, 9-12 June 2008. IMRC-2008 included 9 symposia of A. Eco/Environmental Materials, B. Sustainable Energy Materials, C. Electronic Packaging Materials, D. Electronic Materials, E. Materials and Processes for Flat-panel Displays, F. Functional Ceramics, G. Transportation Materials, H. Magnesium and I. Biomaterials for Medical Applications. Nearly 1200 participants from 33 countries attended the conference, and the conference organizers received more than 700 papers. After the peer review processes, 555 papers were selected to be published in 9 Journals or proceedings, including J. of Materials Research (JMR), Rare Metal Materials and Engineering, J. of Univ. Science and Technology Beijing, Biomedical Materials: Materials for Tissue Engineering and Regenerative Medicine, Chinese Journal of Aeronautics, Materials Science Forum, and Journal of Physics: Conference Series. Among the 555 selected papers, 91 papers are published in this volume, and the topics mainly cover electronic matrials, processes for flat-panel displays and functional ceramics. The editors would like to give special thanks to the graduate students Liwu Jiang, Ming Li and Di He from Beihang University for their hard work compiling and typesetting each paper in this volume. Zhanguo Wang, Yong Qiu and Yongxiang Li Editors

  8. A Comparison of Image Quality and Radiation Exposure Between the Mini C-Arm and the Standard C-Arm.

    PubMed

    van Rappard, Juliaan R M; Hummel, Willy A; de Jong, Tijmen; Mouës, Chantal M

    2018-04-01

    The use of intraoperative fluoroscopy has become mandatory in osseous hand surgery. Due to its overall practicality, the mini C-arm has gained popularity among hand surgeons over the standard C-arm. This study compares image quality and radiation exposure for patient and staff between the mini C-arm and the standard C-arm, both with flat panel technology. An observer-based subjective image quality study was performed using a contrast detail (CD) phantom. Five independent observers were asked to determine the smallest circles discernable to them. The results were plotted in a graph, forming a CD curve. From each curve, an image quality figure (IQF) was derived. A lower IQF equates to a better image quality. The patients' entrance skin dose was measured, and to obtain more information about the staff exposure dose, a perspex hand phantom was used. The scatter radiation was measured at various distances and angles relative to a central point on the detector. The IQF was significantly lower for the mini C-arm resulting in a better image quality. The patients' entrance dose was 10 times higher for the mini C-arm as compared with the standard C-arm, and the scatter radiation threefold. Due to its improved image quality and overall practicality, the mini C-arm is recommended for hand surgical procedures. To ensure that the surgeons' radiation exposure is not exceeding the safety limits, monitoring radiation exposure using mini C-arms with flat panel technology during surgery should be done in a future clinical study.

  9. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  10. Evaluating the warping of laminated particleboard panels

    Treesearch

    Zhiyong Cai

    2004-01-01

    Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...

  11. Deformation behavior of welded steel sandwich panels under quasi-static loading

    DOT National Transportation Integrated Search

    2011-03-01

    This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...

  12. 29. INTERIOR VIEW TO THE NORTHEAST OF CONTROL PANEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. INTERIOR VIEW TO THE NORTHEAST OF CONTROL PANEL AND VIEWING WINDOW IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  13. Synthesis and characterization of organic/inorganic heterostructure films for hybrid light emitting diode

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki

    2007-10-01

    Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.

  14. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detectormore » materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam hardening effect. Conclusions: The results showed that a CT system using an energy resolving detector reduces the dose to the patient while maintaining image quality for various breast imaging tasks.« less

  15. Visual and ocular effects from the use of flat-panel displays.

    PubMed

    Porcar, Esteban; Pons, Alvaro M; Lorente, Amalia

    2016-01-01

    To evaluate the prevalence of eye symptoms in a non-presbyopic population of video display unit (VDU) users with flat-panel displays. One hundred and sixteen VDU users with flat-panel display from an urban population participated in the study; their ages ranging from 20 to 34y. There were 60 females and 56 males. An eye examination to rule out the presence of significant uncorrected refractive errors, general binocular dysfunctions and eye conditions was carried out. In order to determine and quantify the type and nature of eye symptoms, participants were asked to answer written questionnaire and the results were grouped by gender, age and number of hours a day spent using a VDU. Seventy-two percent of participants reported eye symptoms related to VDU use. Eye symptoms from moderate-to-severe were found in 23% of participants. The main symptom was moderate-to-severe tired eyes (14%); followed by sensitivity to bright lights (12%), blurred vision at far distances (10%), eyestrain or dry eye or irritated or burning eyes (9%), difficulty in refocusing from one distance to another or headache (8%) and blurred vision at near or intermediate distances (<4%). Eye symptoms were greater among females (P=0.005) and increased with VDU use, markedly above 6h spent using a VDU in a typical day (P=0.01). Significant eye symptoms relate to VDU use often occur and should not be underestimated. The increasing use of electronic devices with flat-panel display should prompt users to take appropriate measures to prevent or to relieve the eye symptoms arising from their use.

  16. Technical Note: A Feasibility Study of Using the Flat Panel Detector on Linac for the kV X-ray Generator Test.

    PubMed

    Cai, Bin; Dolly, Steven; Kamal, Gregory; Yaddanapudi, Sridhar; Sun, Baozhou; Goddu, S Murty; Mutic, Sasa; Li, Hua

    2018-04-28

    To investigate the feasibility of using kV flat panel detector on linac for consistency evaluations of kV X-ray generator performance. An in-house designed aluminum (Al) array phantom with six 9×9 cm 2 square regions having various thickness was proposed and used in this study. Through XML script-driven image acquisition, kV images with various acquisition settings were obtained using the kV flat panel detector. Utilizing pre-established baseline curves, the consistency of X-ray tube output characteristics including tube voltage accuracy, exposure accuracy and exposure linearity were assessed through image quality assessment metrics including ROI mean intensity, ROI standard deviation (SD) and noise power spectrums (NPS). The robustness of this method was tested on two linacs for a three-month period. With the proposed method, tube voltage accuracy can be verified through conscience check with a 2% tolerance and 2 kVp intervals for forty different kVp settings. The exposure accuracy can be tested with a 4% consistency tolerance for three mAs settings over forty kVp settings. The exposure linearity tested with three mAs settings achieved a coefficient of variation (CV) of 0.1. We proposed a novel approach that uses the kV flat panel detector available on linac for X-ray generator test. This approach eliminates the inefficiencies and variability associated with using third party QA detectors while enabling an automated process. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Heat-shield for Extreme Entry Environment Technology (HEEET) Development Status

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50% mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps exist between the panels and these gaps have to be filled with seams. The seam material then has to be bonded on to adjacent panels and also to the structure. The heat-shield assembly is shown in Figure 1. One of the significant challenges we have overcome recently is the design, development and testing of the seam. HEEET material development and the seam concept development have utilized some of the unique test capabilities available in the US. The various test facilities utilized in thermal testing along with the entry environment for Saturn and Venus missions are shown in Figure 2. The HEEET project is currently in it's 3rd year of a four-year development. Figure 3 illustrates the key accomplishments to-date and the challenges yet to be overcome before the technology is ready for mission infusion. This proposed presentation will cover both progress that has been made in the HEEET project and also the challenges to be overcome that is highlighted in Figure 3. Objective of the HEEET project is to mature the system in time to support the next New Frontiers opportunity and we believe we are well along the way to mission infuse HEEET.

  18. Heatshield for Extreme Entry Environment Technology (HEEET) Development Status

    NASA Technical Reports Server (NTRS)

    Ellerby, Don; Gage, Peter; Kazemba, Cole; Mahzari, Milad; Nishioka, Owen; Peterson, Keith; Stackpoole, Mairead; Venkatapathy, Ethiraj; Young, Zion; Poteet, Carl; hide

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASAs high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50 mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps exist between the panels and these gaps have to be filled with seams. The seam material then has to be bonded on to adjacent panels and also to the structure. The heat-shield assembly is shown in Figure 1. One of the significant challenges we have overcome recently is the design, development and testing of the seam. HEEET material development and the seam concept development have utilized some of the unique test capabilities available in the US. The various test facilities utilized in thermal testing along with the entry environment for Saturn and Venus missions are shown in Figure 2. The HEEET project is currently in its 3rd year of a four-year development. Figure 3 illustrates the key accomplishments to date and the challenges yet to be overcome before the technology is ready for mission infusion. This proposed presentation will cover both progress that has been made in the HEEET project and also the challenges to be overcome that is highlighted in Figure 3. Objective of the HEEET project is to mature the system in time to support the next New Frontiers opportunity and we believe we are well along the way to mission infuse HEEET.

  19. Deformation behavior of welded steel sandwich panels under quasi-static loading

    DOT National Transportation Integrated Search

    2011-03-16

    This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...

  20. Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets.

    PubMed

    Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk

    2007-12-01

    The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.

  1. Pictorial Review of Digital Radiography Artifacts.

    PubMed

    Walz-Flannigan, Alisa I; Brossoit, Kimberly J; Magnuson, Dayne J; Schueler, Beth A

    2018-01-01

    Visual familiarity with the variety of digital radiographic artifacts is needed to identify, resolve, or prevent image artifacts from creating issues with patient imaging. Because the mechanism for image creation is different between flat-panel detectors and computed radiography, the causes and appearances of some artifacts can be unique to these different modalities. Examples are provided of artifacts that were found on clinical images or during quality control testing with flat-panel detectors. The examples are meant to serve as learning tools for future identification and troubleshooting of artifacts and as a reminder for steps that can be taken for prevention. The examples of artifacts provided are classified according to their causal connection in the imaging chain, including an equipment defect as a result of an accident or mishandling, debris or gain calibration flaws, a problematic acquisition technique, signal transmission failures, and image processing issues. Specific artifacts include those that are due to flat-panel detector drops, backscatter, debris in the x-ray field during calibration, detector saturation or underexposure, or collimation detection errors, as well as a variety of artifacts that are processing induced. © RSNA, 2018.

  2. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less

  3. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  4. Impact Testing on Reinforced Carbon-Carbon Flat Panels With BX-265 and PDL-1034 External Tank Foam for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.

  5. 2. VIEW OF THE EXPERIMENT CONTROL PANEL IN 1970. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE EXPERIMENT CONTROL PANEL IN 1970. THE NUCLEAR SAFETY GROUP CONDUCTED ABOUT 1,700 CRITICAL MASS EXPERIMENTS USING URANIUM AND PLUTONIUM IN SOLUTIONS (900 TESTS), COMPACTED POWDER (300), AND METALLIC FORMS (500). ALL 1,700 CRITICALITY ASSEMBLIES WERE CONTROLLED FROM THIS PANEL. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  6. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  7. NIST display colorimeter calibration facility

    NASA Astrophysics Data System (ADS)

    Brown, Steven W.; Ohno, Yoshihiro

    2003-07-01

    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  8. Vision systems for manned and robotic ground vehicles

    NASA Astrophysics Data System (ADS)

    Sanders-Reed, John N.; Koon, Phillip L.

    2010-04-01

    A Distributed Aperture Vision System for ground vehicles is described. An overview of the hardware including sensor pod, processor, video compression, and displays is provided. This includes a discussion of the choice between an integrated sensor pod and individually mounted sensors, open architecture design, and latency issues as well as flat panel versus head mounted displays. This technology is applied to various ground vehicle scenarios, including closed-hatch operations (operator in the vehicle), remote operator tele-operation, and supervised autonomy for multi-vehicle unmanned convoys. In addition, remote vision for automatic perimeter surveillance using autonomous vehicles and automatic detection algorithms is demonstrated.

  9. Encapsulant selection and durability testing experience

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1985-01-01

    The Flat Plate Solar Array Project (FSA) has established technically challenging cost and service life goals for photovoltaic modules. These goals are a cost of $70 sq m and an expected 30 years of service life in an outdoor weathering environment. out of the cost goal, $14 sq m is allocated for encapsulation materials, which includes the cost of a structural panel. At FSA's inception in 1975, the cumulative cost of encapsulation materials in popular use, such as room temperature vulcanized (RTV) silicones, aluminum panels, etc., greatly exceeded $14/sq m. Accordingly, it became necessary to identify and/or develop new materials and new material technologies to achieve the goals. Many of these new materials are low cost polymers that satisfy module engineering and encapsulation processing requirements but unfortunately are not intrinsically weather stable. This necessitates identifying lifetime and/or weathering deficiencies inherent in these low cost materials and developing specific approaches to enhancing weather stability.

  10. Designing, Modeling, Constructing, and Testing a Flat Panel Speaker and Sound Diffuser for a Simulator

    NASA Technical Reports Server (NTRS)

    Dillon, Christina

    2013-01-01

    The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project

  11. Multiple-Panel Cylindrical Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  12. F‐GHG Emissions Reduction Efforts: FY2015 Supplier Profiles

    EPA Pesticide Factsheets

    The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.

  13. F‐GHG Emissions Reduction Efforts: FY2016 Supplier Profiles

    EPA Pesticide Factsheets

    The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.

  14. Efficiency of geometric designs of flexible solar panels: mathematical simulation

    NASA Astrophysics Data System (ADS)

    Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia

    2017-09-01

    The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.

  15. 16. Detail of original wainscot in the dining room. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail of original wainscot in the dining room. The wainscot panels are flat (not beveled) and are painted along the edge to simulate a raised (beveled) panel. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  16. Flutter of Hybrid Laminated Flat Panels with Simply Supported Edges in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Barai, A.; Durvasula, S.

    1994-01-01

    Flutter of hybrid laminated flat panels in supersonic flow is studied by using first order shear deformation theory in conjunction with the assumed mode method. Both the quasi-static approximation and piston theory are used for aerodynamic force calculations at supersonic speeds. The flutter stability boundaries are determined by using the frequency coalescence criterion with the quasi-static approximation and Movchan-Krumhaar's criterion with the piston theory aerodynamics. Numerical calculations are presented for hybrid laminates consisting of graphite, Kevlar and glass fibres in an epoxy matrix. The effects of hybridization, shear deformation, ply orientation and aspect ratio are studied. The critical dynamic pressure parameter of a hybrid laminate lies between the values for laminates made with all plies of higher stiffness and with all plies of lower stiffness, respectively. The role of aerodynamic damping is found to be particularly important in determining the aeroelastic stability boundaries of laminated composite panels. Shear flexibility reduces the critical dynamic pressure parameter, but the reduction is insignificant for thin panels.

  17. Effect of boundary conditions and panel geometry on the response of laminated panels subjected to transverse pressure loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1993-01-01

    The behavior of thin laminated flat and curved panels subjected to transverse pressure and inplane loads is considered. The effects of panel geometry, boundary conditions and laminate stacking sequence on the response of panels subjected to transverse pressure loads up to 12.4 N/sq cm is presented. The response of thin laminated panels is evaluated analytically and selected results are compared with test data. A parametric study of the deformation and strain responses of panels with radius of curvature ranging from 20 to 305 cm is presented. The combination of inplane tensile and pressure loads is also considered.

  18. Evaluation of viewing experiences induced by a curved three-dimensional display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul; Yano, Sumio

    2015-10-01

    Despite an increased need for three-dimensional (3-D) functionality in curved displays, comparisons pertinent to human factors between curved and flat panel 3-D displays have rarely been tested. This study compared stereoscopic 3-D viewing experiences induced by a curved display with those of a flat panel display by evaluating subjective and objective measures. Twenty-four participants took part in the experiments and viewed 3-D content with two different displays (flat and curved 3-D display) within a counterbalanced and within-subject design. For the 30-min viewing condition, a paired t-test showed significantly reduced P300 amplitudes, which were caused by engagement rather than cognitive fatigue, in the curved 3-D viewing condition compared to the flat 3-D viewing condition at P3 and P4. No significant differences in P300 amplitudes were observed for 60-min viewing. Subjective ratings of realness and engagement were also significantly higher in the curved 3-D viewing condition than in the flat 3-D viewing condition for 30-min viewing. Our findings support that curved 3-D displays can be effective for enhancing engagement among viewers based on specific viewing times and environments.

  19. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)

    2014-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  20. Low-Melt Poly(amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)

    2015-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  1. Structural parameters that influence the noise reduction characteristics of typical general aviation materials

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Grosveld, F.

    1980-01-01

    Effect of panel curvature and oblique angle of sound incidence on noise reduction characteristics of an aluminum panel are experimentally investigated. Panel curvature results show significant increase in stiffness with comparable decrease of sound transmission through the panel in the frequency region below the panel/cavity resonance frequency. Noise reduction data have been achieved for aluminum panels with clamped, bonded and riveted edge conditions. These edge conditions are shown to influence noise reduction characteristics of aluminum panels. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial and biaxial in-plane stresses are presented and discussed. Results indicate important improvement in noise reduction of these panels in the frequency range below the fundamental panel/cavity resonance frequency.

  2. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    PubMed

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  3. Portal imaging with flat-panel detector and CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.

    1997-07-01

    This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.

  4. Effect of monitor display on detection of approximal caries lesions in digital radiographs.

    PubMed

    Isidor, S; Faaborg-Andersen, M; Hintze, H; Kirkevang, L-L; Frydenberg, M; Haiter-Neto, F; Wenzel, A

    2009-12-01

    The aim was to compare the accuracy of five flat panel monitors for detection of approximal caries lesions. Five flat panel monitors, Mermaid Ventura (15 inch, colour flat panel, 1024 x 768, 32 bit, analogue), Olórin VistaLine (19 inch, colour, 1280 x 1024, 32 bit, digital), Samsung SyncMaster 203B (20 inch, colour, 1024 x 768, 32 bit, analogue), Totoku ME251i (21 inch, greyscale, 1400 x 1024, 32 bit, digital) and Eizo FlexScan MX190 (19 inch, colour, 1280 x 1024, 32 bit, digital), were assessed. 160 approximal surfaces of human teeth were examined with a storage phosphor plate system (Digora FMX, Soredex) and assessed by seven observers for the presence of caries lesions. Microscopy of the teeth served as validation for the presence/absence of a lesion. The sensitivities varied between observers (range 7-25%) but the variation between the monitors was not large. The Samsung monitor obtained a significantly higher sensitivity than the Mermaid and Olórin monitors (P<0.02) and a lower specificity than the Eizo and Totoku monitors (P<0.05). There were no significant differences between any other monitors. The percentage of correct scores was highest for the Eizo monitor and significantly higher than for the Mermaid and Olórin monitors (P<0.03). There was no clear relationship between the diagnostic accuracy and the resolution or price of the monitor. The Eizo monitor was associated with the overall highest percentage of correct scores. The standard analogue flat panel monitor, Samsung, had higher sensitivity and lower specificity than some of the other monitors, but did not differ in overall accuracy for detection of carious lesions.

  5. [Flat-panel detector technology -State-of-the-art and future prospects-].

    PubMed

    Yamazaki, Tatsuya

    2002-01-01

    A flat-panel detector (FPD) is a long-awaited technology to implement the digital X-ray imaging technology into the radiological department. This paper describes the state-of-the-art technology and future prospects on the FPD technology. State-of-the-art technology was reviewed taking the CXDI series as an example. Several FPD-based systems have been introduced into the Japanese market since CXDI-11 opened it in November 1998. Accompanying CXDI-C2 for control, CXDI-22 for table position and CXDI-31 for portable, the CXDI series fulfills the requirement of the radiography room being a fully digitalized room. The FPD on the CXDI series is comprised of a scintillator (Gd(2)O(2)S:Tb(3+)) as a primary sensor in which the X-ray is captured and an amorphous silicon detector (LANMIT) as a secondary sensor in which the fluorescent light is detected. Since the scintillator is identical to that of the screen-film systems, it can be said as proven, durable and chemically stable and it is expected to produce the same image quality as the screen-film systems. CXDI-31, a portable FPD-based system, was developed targeting thinner dimensions, lightweight, durability and high spatial resolution. Thoroughly re-designing the mechanical structure and reducing the power consumption at the readout IC realized thinner dimensions. Introducing the portable note PC technologies successfully combined lightweight with durability. Improving the sensor process and re-designing the layout made the sensor high resolution without compromising the signal-to-noise ratio. Future prospects were overviewed in the aspect of technology and applications. Sensitivity, spatial resolution, frame rate and portability were described as the upcoming technology. Increasing gain and reducing noise will realize higher sensitivity, especially by adopting the PbI(2), HgI(2) or such photoconductor materials as the primary sensor. Pixelized amplifier will also achieve higher sensitivity. Layered sensor designed such that TFT layer and sensitive layer are constructed separately will decrease the pixel pitch lower than 100 microm. The FPD has been applied in radiography, mammography and angiography. It will expand the applications into low-dose fluoroscopy to replace the X-ray image intensifiers and into cone-beam computer tomography. What the FPD brought was mainly the efficient workflow of the X-ray technologist. However, diagnosis efficiency and patient benefit must be improved further more by combining FPD technology into computer-aided diagnosis, tele-radiography or other IT-based technologies. Such prospect may come true in the near future.

  6. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  7. The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance

    NASA Technical Reports Server (NTRS)

    Coleman, Michael J.; Baginski, Frank; Romanofsky, Robert R.

    2011-01-01

    For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy.

  8. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  9. US general aviation: The ingredients for a renaissance. A vision and technology strategy for US industry, NASA, FAA, universities

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce

    1993-01-01

    General aviation today is a vital component in the nation's air transportation system. It is threatened for survival but has enormous potential for expansion in utility and use. This potential for expansion is fueled by new satellite navigation and communication systems, small computers, flat panel displays, and advanced aerodynamics, materials and manufacturing methods, and propulsion technologies which create opportunities for new levels of environmental and economic acceptability. Expanded general aviation utility and use could have a large impact on the nation's jobs, commerce, industry, airspace capacity, trade balance, and quality of life. This paper presents, in viewgraph form, a general overview of U.S. general aviation. Topics covered include general aviation shipment and billings; airport and general aviation infrastructure; cockpit, airplane, and airspace technologies; market demand; air traffic operations and aviation accidents; fuel efficiency comparisons; and general aviation goals and strategy.

  10. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  11. Color flat panel display for the Bradley Fighting Vehicle

    NASA Astrophysics Data System (ADS)

    Prince, J. Colin; Martin, A. J.

    1996-05-01

    The modernization program for the Bradley Fighting Vehicle, M2 A3, represents the first deployment of an active matrix liquid crystal display, AMLCD, in a military ground vehicle. In many respects the selection of AMLCD was determined according to the familiar metrics which have resulted in AMLCD being broadly selected for modern air vehicle installations. In fact, there is considerable similarities between the Bradley AMLCD and its recent forbearers in the avionic industry. In the Bradley, the AMLCD unit is referred to as a color flat panel display, CFPD and the features of this unit, as well as its environment and utilization are described in this paper.

  12. [Investigation of the accurate measurement of the basic imaging properties for the digital radiographic system based on flat panel detector].

    PubMed

    Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J

    2008-07-20

    PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.

  13. Percutaneous foot joint needle placement using a C-arm flat-panel detector CT.

    PubMed

    Wiewiorski, Martin; Takes, Martin Thanh Long; Valderrabano, Victor; Jacob, Augustinus Ludwig

    2012-03-01

    Image guidance is valuable for diagnostic injections in foot orthopaedics. Flat-detector computed tomography (FD-CT) was implemented using a C-arm, and the system was tested for needle guidance in foot joint injections. FD-CT-guided joint infiltration was performed in 6 patients referred from the orthopaedic department for diagnostic foot injections. All interventions were performed utilising a flat-panel fluoroscopy system utilising specialised image guidance and planning software. Successful infiltration was defined by localisation of contrast media depot in the targeted joint. The pre- and post-interventional numeric analogue scale (NAS) pain score was assessed. All injections were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of symptoms was noted by all 6 participants. FD-CT-guided joint infiltration is a feasible method for diagnostic infiltration of midfoot and hindfoot joints. The FD-CT approach may become an alternative to commonly used 2D-fluoroscopically guidance.

  14. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  15. Study of noise reduction characteristics of multilayered panels and dual pane windows with Helmholtz resonators

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.

    1981-01-01

    The experimental noise attenuation characteristics of flat, general aviation type, multilayered panels are discussed. Experimental results of stiffened panels, damping tape, honeycomb materials and sound absorption materials are presented. Single degree of freedom theoretical models were developed for sandwich type panels with both shear resistant and non-shear resistant core material. The concept of Helmholtz resonators used in conjunction with dual panel windows in increasing the noise reduction around a small range of frequency was tested. It is concluded that the stiffening of the panels either by stiffeners or by sandwich construction increases the low frequency noise reduction.

  16. Tow-Steered Panels With Holes Subjected to Compression or Shear Loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer

    2005-01-01

    Tailoring composite laminates to vary the fiber orientations within a fiber layer of a laminate to address non-uniform stress states and provide structural advantages such as the alteration of principal load paths has potential application to future low-cost, light-weight structures for commercial transport aircraft. Evaluation of this approach requires the determination of the effectiveness of stiffness tailoring through the use of curvilinear fiber paths in flat panels including the reduction of stress concentrations around the holes and the increase in load carrying capability. Panels were designed through the use of an optimization code using a genetic algorithm and fabricated using a tow-steering approach. Manufacturing limitations, such as the radius of curvature of tows the machine could support, avoidance of wrinkling of fibers and minimization of gaps between fibers were considered in the design process. Variable stiffness tow-steered panels constructed with curvilinear fiber paths were fabricated so that the design methodology could be verified through experimentation. Finite element analysis where each element s stacking sequence was accurately defined is used to verify the behavior predicted based on the design code. Experiments on variable stiffness flat panels with central circular holes were conducted with the panels loaded in axial compression or shear. Tape and tow-steered panels are used to demonstrate the buckling, post-buckling and failure behavior of elastically tailored panels. The experimental results presented establish the buckling performance improvements attainable by elastic tailoring of composite laminates.

  17. Scaling the Non-linear Impact Response of Flat and Curved Composite Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.

    2005-01-01

    The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.

  18. A Dynamic Competition Simulation for Worldwide Big-size TV Market Using Lotka-Volterra Model

    NASA Astrophysics Data System (ADS)

    Chen, Wu-Tung Terry; Li, Yiming; Hung, Chih-Young

    2009-08-01

    Technological innovation is characterized by the substitution of new technologies for full-fledged ones in the development of new products, processes and techniques. Global TV market is seeing a price down-spiral for FPD(Flat Panel Display)-TVs, replacement of CRT by LCD, and consumer's defection to larger screen. The LCD-TV market started in Japan from 2003 and took off globally from 2005. LCD panel production is moving toward larger sizes. In the 35″-39″ size market, the price/performance ratio of LCD-TV is better than that of PDP. The purpose of this paper is to estimate the demand function of worldwide big-size (35″-39″) TVs including LCD and PDP with an explicit consideration of market competition. The demand function was estimated using Lotka-Volterra model, a famous competitive diffusion model. The results exhibit a kind of predator-prey relationship, in which the PDP market was hunted by LCD product. In addition, the coefficients of difference equations of Lotka-Volterra model in this analysis are also used to forecast the future market of the big-size LCD and PDP.

  19. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.

    2017-02-01

    IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.

  20. System requirements for head down and helmet mounted displays in the military avionics environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, M.F.; Kalmanash, M.; Sethna, V.

    1996-12-31

    The introduction of flat panel display technologies into the military avionics cockpit is a challenging proposition, due to the very difficult system level requirements which must be met. These relate to environmental extremes (temperature and vibrational), sever ambient lighting conditions (10,000 fL to nighttime viewing), night vision system compatibility, and wide viewing angle. At the same time, the display system must be packaged in minimal space and use minimal power. The authors will present details on the display system requirements for both head down and helmet mounted systems, as well as information on how these challenges may be overcome.

  1. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  2. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  3. Sunlight readable avionics displays

    NASA Astrophysics Data System (ADS)

    Visinski, Joseph R.

    1998-09-01

    The theme of the Cockpit Displays V Conference of 'Custom versus Consumer -- Grade Displays in Defense Applications' reflects the Raytheon Systems Company field emission display (FED) development effort. Raytheon chose to license commercial FED technology and subsequently participate in a commercial industry 'FED Alliance' to insert this technology into commercial and avionics defense applications. The unaffordability of custom military displays makes them an unfeasible choice to build a business upon. The major differences between consumer FEDs and those adapted for military/avionics installations are: (1) high brightness for sunlight visibility; (2) extended environmental range; (3) high resolution; (4) wider dimming range for sunlight to NVIS operation; (5) extended gray scales; (6) lifetime product support well beyond two year consumer market life. The transition to defense applications is further being accomplished via industry/government partnerships as the DARPA Technology Reinvestment Project (TRP) and BAA 97-31. FEDs combine cathode ray tube (CRT) and matrix addressed flat panel display technology, parts, manufacturing, and test equipment, plus open systems interfaces into a new display.

  4. Low-weight, low-cost, low-cycle time, replicated glass mirrors

    NASA Astrophysics Data System (ADS)

    Egerman, Robert; De Smitt, Steven; Strafford, David

    2010-07-01

    ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper will provide an historical overview of the development in this area with an emphasis on recent technology developments to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.

  5. Imperfection and Thickness Measurement of Panels Using a Coordinate Measurement Machine

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.

    2006-01-01

    This paper summarizes the methodology used to measure imperfection and thickness variation for flat and curved panels using a Coordinate Measurement Machine (CMM) and the software program MeasPanel. The objective is to provide a reference document so that someone with a basic understanding of CMM operation can measure a panel with minimal training. Detailed information about both the measurement system setup and computer software is provided. Information is also provided about the format of the raw data, as well as how it is post-processed for use in finite-element analysis.

  6. 19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD AND SILVER WERE AMONG THE MATERIALS PLATED ONTO PARTS MADE OF COPPER, STAINLESS STEEL AND STEEL. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  7. Comparison of Wood Composite Properties Using Cantilever-Beam Bending

    Treesearch

    Houjiang Zhang; John F. Hunt; Lujing Zhou

    2015-01-01

    Wood-based composite panels generally are first tested out-of-plane in the primarypanel directionfollowed by the cross panel direction, but rarely edgewise. While most applications use wood-based composites in the flat-wise orientation and only need the out-of-plane properties, there are construction configurations where edgewise properties are needed for improved...

  8. Volumetric soft tissue brain imaging on xCAT, a mobile flat-panel x-ray CT system

    NASA Astrophysics Data System (ADS)

    Zbijewski, Wojciech; Stayman, J. Webster

    2009-02-01

    We discuss the ongoing development of soft-tissue imaging capabilities on xCAT, a highly portable, flat-panel based cone-beam X-ray CT platform. By providing the ability to rapidly detect intra-cranial bleeds and other symptoms of stroke directly at the patient's bedside, our new system can potentially significantly improve the management of neurological emergency and intensive care patients. The paper reports on the design of our system, as well as on the methods used to combat artifacts due to scatter, non-linear detector response and scintillator glare. Images of cadaveric head samples are also presented and compared with conventional CT scans.

  9. Transparent Solar Concentrator for Flat Panel Display

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  10. Development of a real-time digital radiography system using a scintillator-type flat-panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi

    2001-06-01

    In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.

  11. General aviation aircraft interior noise problem: Some suggested solutions

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Navaneethan, R.

    1984-01-01

    Laboratory investigation of sound transmission through panels and the use of modern data analysis techniques applied to actual aircraft is used to determine methods to reduce general aviation interior noise. The experimental noise reduction characteristics of stiffened flat and curved panels with damping treatment are discussed. The experimental results of double-wall panels used in the general aviation industry are given. The effects of skin panel material, fiberglass insulation and trim panel material on the noise reduction characteristics of double-wall panels are investigated. With few modifications, the classical sound transmission theory can be used to design the interior noise control treatment of aircraft. Acoustic intensity and analysis procedures are included.

  12. Evolution of digital angiography systems.

    PubMed

    Brigida, Raffaela; Misciasci, Teresa; Martarelli, Fabiola; Gangitano, Guido; Ottaviani, Pierfrancesco; Rollo, Massimo; Marano, Pasquale

    2003-01-01

    The innovations introduced by digital subtraction angiography in digital radiography are briefly illustrated with the description of its components and functioning. The pros and cons of digital subtraction angiography are analyzed in light of present and future imaging technologies. In particular, among advantages there are: automatic exposure, digital image subtraction, digital post-processing, high number of images per second, possible changes in density and contrast. Among disadvantages there are: small round field of view, geometric distortion at the image periphery, high sensitivity to patient movements, not very high spatial resolution. At present, flat panel detectors represent the most suitable substitutes for digital subtraction angiography, with the introduction of novel solutions for those artifacts which for years have hindered its diagnostic validity. The concept of temporal artifact, reset light and possible future evolutions of this technology that may afford both diagnostic and protectionist advantages, are analyzed.

  13. Critical technology limits to silicon material and sheet production

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1982-01-01

    Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.

  14. Advanced electronic displays and their potential in future transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.

    1981-01-01

    It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.

  15. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  16. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing

    PubMed Central

    Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane

    2017-01-01

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434

  17. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

    PubMed

    Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane

    2017-09-14

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.

  18. Emergency in-flight egress opening for general aviation aircraft. [pilot bailout

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    An emergency in-flight egress system was installed in a light general aviation airplane. The airplane had no provision for egress on the left side. To avoid a major structural redesign for a mechanical door, an add on 11.2 kg (24.6 lb) pyrotechnic-actuated system was developed to create an opening in the existing structure. The skin of the airplane was explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel was jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mockups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics. This technology is applicable to any aircraft of similar construction.

  19. AAPM/RSNA physics tutorial for residents: physics of flat-panel fluoroscopy systems: Survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more.

    PubMed

    Nickoloff, Edward Lee

    2011-01-01

    This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.

  20. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography.

    PubMed

    Finkenstaedt, Tim; Morsbach, Fabian; Calcagni, Maurizio; Vich, Magdalena; Pfirrmann, Christian W A; Alkadhi, Hatem; Runge, Val M; Andreisek, Gustav; Guggenberger, Roman

    2014-08-01

    The aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Imaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact-induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen κ) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. Artifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P < 0.05). No significant differences in artifact extent among different screw types and scanning positions were noted (P > 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen κ = 0.76-0.78). Both MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.

  1. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Wei; Li Dan; Reznik, Alla

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less

  2. 78 FR 36791 - Hardwood Plywood From China; Institution of Antidumping and Countervailing Duty Investigations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... and decorative plywood. ``Hardwood and decorative plywood is a flat panel composed of an assembly of two or more layers or plies of wood veneers in combination with a core. The veneers, along with the... plywood panel must have face and back veneers which are composed of one or more species of hardwoods...

  3. Properties of flat-pressed wood plastic composites containing fire retardants

    Treesearch

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  4. High bit rate mass data storage device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.

  5. Development and characterization of a dual-energy subtraction imaging system for chest radiography based on CsI:Tl amorphous silicon flat-panel technology

    NASA Astrophysics Data System (ADS)

    Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III

    2001-06-01

    Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.

  6. Low concentrator PV optics optimization

    NASA Astrophysics Data System (ADS)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  7. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  8. Mechanical Testing of IN718 Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.

    2002-01-01

    Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.

  9. Mathematical simulation of efficiency of various shapes of solar panels for NASA geostationary satellites

    NASA Astrophysics Data System (ADS)

    Pandya, Raaghav; Raja, Hammad; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia; Hassebo, Yasser; Marciniak, Małgorzata

    2018-02-01

    The purpose of this research is to analyze mathematically cylindrical shapes of flexible solar panels and compare their efficiency to the flat panels. The efficiency is defined to be the flux density, which is the ratio of the mathematical flux and the surface area. In addition we describe the trajectory of the Sun at specific locations: the North Pole, The Equator and a geostationary satellite above the Equator. The calculations were performed with software: Maple, Mathematica, and MATLAB.

  10. Shear buckling analysis of a hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1994-01-01

    A buckling analysis was performed on a hat-stiffened panel subjected to shear loading. Both local buckling and global buckling were analyzed. The global shear buckling load was found to be several times higher than the local shear buckling load. The classical shear buckling theory for a flat plate was found to be useful in predicting the local shear buckling load of the hat-stiffened panel, and the predicted local shear buckling loads thus obtained compare favorably with the results of finite element analysis.

  11. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction, which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  12. Multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Jackson, L. R. (Inventor)

    1982-01-01

    Multiwall insulating sandwich panels are provided for thermal protection of hypervelocity vehicles and other enclosures. In one embodiment, the multiwall panels are formed of alternate layers of dimpled and flat metal (titanium alloy) foil sheets and beaded scarfed edge seals to provide enclosure thermal protection up to 1000 F. An additional embodiment employs an intermediate fibrous insulation for the sandwich panel to provide thermal protection up to 2000 F. A third embodiment employs a silicide coated columbium waffle as the outer panel skin and fibrous layered intermediate protection for thermal environment protection up to 2500 F. The use of multiple panels on an enclosure facilitate repair and refurbishment of the thermal protection system due to the simple support provided by the tab and clip attachment for the panels.

  13. Status of development of LCOS projection displays for F-22A, F/A-18E/F, and JSF cockpits

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.

    2001-09-01

    Projection display technology has been found to be an attractive alternative to direct view flat panel displays in many avionics applications. The projection approach permits compact high performance systems to be tailored to specific platform needs while using a complement of commercial off the shelf (COTS) components, including liquid crystal on silicon (LCOS) microdisplay imagers. A common projection engine used on multiple platforms enables improved performance, lower cost and shorter development cycles. This paper provides a status update for projection displays under development for the F-22A, the F/A-18E/F and the Lockheed Joint Strike Fighter (JSF) aircraft.

  14. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  15. Applications of AMLCDs in U.S. military cockpits

    NASA Astrophysics Data System (ADS)

    Michaels, Robert A.; Desjardins, Daniel D.; Daniels, Reginald; Hopper, Darrel G.

    1996-05-01

    Active matrix liquid crystal displays have become the flat panel technology of choice for new cockpits as well as for retrofits of existing ones. Systems such as F-22, F-18, F-16, and C-141 have already begun extensive development efforts over the last few years. More recently, JPATS, AH-64, P-3, KC-135, T-45, and T-38 have announced plans to use AMLCDs also. Because of the advantages that AMLCDs have to offer, the list of platforms that will implement them will continue to grow over the next several years. The Displays Branch in Wright Laboratory is continually analyzing current as well as potential programs. An update on this analysis program is presented.

  16. Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.

    1997-06-01

    The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.

  17. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  18. Effect of stiffness characteristics on the response of composite grid-stiffened structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rehfield, Lawrence W.

    1991-01-01

    A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.

  19. TOPICAL REVIEW: Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.

    2002-03-01

    A review of electronic portal imaging devices (EPIDs) used in external beam, megavoltage radiation therapy is presented. The review consists of a brief introduction to the definition, role and clinical significance of portal imaging, along with a discussion of radiotherapy film systems and the motivations for EPIDs. This is followed by a summary of the challenges and constraints inherent to portal imaging along with a concise, historical review of the technologies that have been explored and developed. The paper then examines, in greater depth, the two first-generation technologies that have found widespread clinical use starting from the late 1980s. This is followed by a broad overview of the physics, operation, properties and advantages of active matrix, flat-panel, megavoltage imagers, presently being commercially introduced to clinical environments or expected to be introduced in the future. Finally, a survey of contemporary research efforts focused on improving portal imaging performance by addressing various weaknesses in existing commercial systems is presented.

  20. Fabric panel clean change-out frame

    DOEpatents

    Brown, Ronald M.

    1995-01-31

    A fabric panel clean change-out frame, for use on a containment structure having rigid walls, is formed of a compression frame and a closure panel. The frame is formed of elongated spacers, each carrying a plurality of closely spaced flat springs, and each having a hooked lip extending on the side of the spring facing the spacer. The closure panel is includes a perimeter frame formed of flexible, wedge-shaped frame members that are receivable under the springs to deflect the hooked lips. A groove on the flexible frame members engages the hooked lips and locks the frame members in place under the springs. A flexible fabric panel is connected to the flexible frame members and closes its center.

  1. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs

    Treesearch

    Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White

    2012-01-01

    Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...

  2. 78 FR 16250 - Hardwood and Decorative Plywood From the People's Republic of China: Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... plywood. Hardwood and decorative plywood is a flat panel composed of an assembly of two or more layers or plies of wood veneers in combination with a core. The veneers, along with the core, are glued or otherwise bonded together to form a finished product. A hardwood and decorative plywood panel must have face...

  3. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  4. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  5. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  6. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  7. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  8. Display technologies; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 17, 18, 1992

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hsia; Wu, Shin-Tson

    1992-10-01

    A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)

  9. Nano-Filament Field Emission Cathode Development Final Report CRADA No. TSB-0731-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, Tony; Fahlen, Ted

    At the time the CRADA was established, Silicon Video Corporation, of Cupertino, CA was a one-year-old rapidly growing start-up company. SVC was developing flat panel displays (FPDs) to replace Cathode Ray Terminals (CRTs) for personal computers, work stations and televisions. They planned to base their products on low cost and energy efficient field emission technology. It was universally recognized that the display was both the dominant cost item and differentiating feature of many products such as laptop computers and hand-held electronics and that control of the display technology through U.S. sources was essential to success in these markets. The purposemore » of this CRADA project was to determine if electrochemical planarization would be a viable, inexpensive alternative to current optical polishing techniques for planarizing the surface of a ceramic backplate of a thin film display.« less

  10. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously published preliminary linear analysis, it is demonstrated in the present paper that neglecting nonlinear effects for the structure and loads of interest can lead to appreciable loss in analysis fidelity.

  11. The distribution of deformation in parallel fault-related folds with migrating axial surfaces: comparison between fault-propagation and fault-bend folding

    NASA Astrophysics Data System (ADS)

    Salvini, Francesco; Storti, Fabrizio

    2001-01-01

    In fault-related folds that form by axial surface migration, rocks undergo deformation as they pass through axial surfaces. The distribution and intensity of deformation in these structures has been impacted by the history of axial surface migration. Upon fold initiation, unique dip panels develop, each with a characteristic deformation intensity, depending on their history. During fold growth, rocks that pass through axial surfaces are transported between dip panels and accumulate additional deformation. By tracking the pattern of axial surface migration in model folds, we predict the distribution of relative deformation intensity in simple-step, parallel fault-bend and fault-propagation anticlines. In both cases the deformation is partitioned into unique domains we call deformation panels. For a given rheology of the folded multilayer, deformation intensity will be homogeneously distributed in each deformation panel. Fold limbs are always deformed. The flat crests of fault-propagation anticlines are always undeformed. Two asymmetric deformation panels develop in fault-propagation folds above ramp angles exceeding 29°. For lower ramp angles, an additional, more intensely-deformed panel develops at the transition between the crest and the forelimb. Deformation in the flat crests of fault-bend anticlines occurs when fault displacement exceeds the length of the footwall ramp, but is never found immediately hinterland of the crest to forelimb transition. In environments dominated by brittle deformation, our models may serve as a first-order approximation of the distribution of fractures in fault-related folds.

  12. Requirements for AMLCDs in U.S. military applications

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Desjardins, Daniel D.

    1995-06-01

    Flat panel displays are fast becoming a significant source of more defense for less money. Military instruments have begun to use color active matrix liquid crystal displays (AMLCDs). This is the beginning of a significant transition from electromechanical, CRT. dichroic LCD, and electroluminescent display designs to the AMLCD designs. We have the opportunity with this new technology to establish common products capable of meeting user requirements for sunlight-readable, color and grayscale capable, high-sharpness high-pixel count, flat panel displays for military applications. The Wright Laboratory is leading the development of recommended best practice, draft guidance standard, and performance specifications for this new generation, the flat panel cockpit display generation, of display modules based on requirements for U.S. military aircraft and ground combat human system interfaces. These requirements are similar in many regards to those in both the civil aviation and automotive industries; accordingly, commonality with these civil applications is incorporated where possible, against the requirements for military combat applications. The performance requirement may be achieved by two approaches: militarization of displays made to low requirements of a large volume civil products manufacturer like Sharp or integration of displays made to high requirements by a niche market commercial vendor, like Optical Imaging Systems, Litton Systems Limited, ImageQuest Inc., and Planar Advanced Inc. teamed with Xerox PARC and Standish Industries. [Note that the niche market companies listed are commercial off-the shelf vendors, albeit for high requirement low volume customers.] Given that the performance specifications can be met for a particular military product by either approach, the choice is based on life cycle cost and a thin analysis based on initial costs alone is not acceptable as it ignores the fact that military product life cycles and procurements are 20-60 years compared to 1.5 years for civil products. Thus far there is no convincing evidence that the large volume commercial product approach for combat systems will meet the combat performance specification or be cheaper from a life cycle cost perspective. National and economic security requirements require some military/avionic-grade AMLCD production domestically (i.e. in the U.S. and/or Canada). Examples of AMLCD demand and performance requirements in U.S. military systems are provided.

  13. Structural efficiency study of composite wing rib structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gary D.; Gurdal, Zafer; Starnes, James H., Jr.

    1988-01-01

    A series of short stiffened panel designs which may be applied to a preliminary design assessment of an aircraft wing rib is presented. The computer program PASCO is used as the primary design and analysis tool to assess the structural efficiency and geometry of a tailored corrugated panel, a corrugated panel with a continuous laminate, a hat stiffened panel, a blade stiffened panel, and an unstiffened flat plate. To correct some of the shortcomings in the PASCO analysis when shear is present, a two step iterative process using the computer program VICON is used. The loadings considered include combinations of axial compression, shear, and lateral pressure. The loading ranges considered are broad enough such that the designs presented may be applied to other stiffened panel applications. An assessment is made of laminate variations, increased spacing, and nonoptimum geometric variations, including a beaded panel, on the design of the panels.

  14. DQE and system optimization for indirect-detection flat-panel imagers in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.; Antonuk, Larry E.

    1998-07-01

    The performance of indirect-detection flat-panel imagers incorporating CsI:Tl x-ray converters is examined through calculation of the detective quantum efficiency (DQE) under conditions of chest radiography, fluoroscopy, and mammography. Calculations are based upon a cascaded systems model which has demonstrated excellent agreement with empirical signal, noise- power spectra, and DQE results. For each application, the DQE is calculated as a function of spatial-frequency and CsI:Tl thickness. A preliminary investigation into the optimization of flat-panel imaging systems is described, wherein the x-ray converter thickness which provides optimal DQE for a given imaging task is estimated. For each application, a number of example tasks involving detection of an object of variable size and contrast against a noisy background are considered. The method described is fairly general and can be extended to account for a variety of imaging tasks. For the specific examples considered, the preliminary results estimate optimal CsI:Tl thicknesses of approximately 450 micrometer (approximately 200 mg/cm2), approximately 320 micrometer (approximately 140 mg/cm2), and approximately 200 micrometer (approximately 90 mg/cm2) for chest radiography, fluoroscopy, and mammography, respectively. These results are expected to depend upon the imaging task as well as upon the quality of available CsI:Tl, and future improvements in scintillator fabrication could result in increased optimal thickness and DQE.

  15. An iterative algorithm for soft tissue reconstruction from truncated flat panel projections

    NASA Astrophysics Data System (ADS)

    Langan, D.; Claus, B.; Edic, P.; Vaillant, R.; De Man, B.; Basu, S.; Iatrou, M.

    2006-03-01

    The capabilities of flat panel interventional x-ray systems continue to expand, enabling a broader array of medical applications to be performed in a minimally invasive manner. Although CT is providing pre-operative 3D information, there is a need for 3D imaging of low contrast soft tissue during interventions in a number of areas including neurology, cardiac electro-physiology, and oncology. Unlike CT systems, interventional angiographic x-ray systems provide real-time large field of view 2D imaging, patient access, and flexible gantry positioning enabling interventional procedures. However, relative to CT, these C-arm flat panel systems have additional technical challenges in 3D soft tissue imaging including slower rotation speed, gantry vibration, reduced lateral patient field of view (FOV), and increased scatter. The reduced patient FOV often results in significant data truncation. Reconstruction of truncated (incomplete) data is known an "interior problem", and it is mathematically impossible to obtain an exact reconstruction. Nevertheless, it is an important problem in 3D imaging on a C-arm to address the need to generate a 3D reconstruction representative of the object being imaged with minimal artifacts. In this work we investigate the application of an iterative Maximum Likelihood Transmission (MLTR) algorithm to truncated data. We also consider truncated data with limited views for cardiac imaging where the views are gated by the electrocardiogram(ECG) to combat motion artifacts.

  16. Single-cell computational analysis of light harvesting in a flat-panel photo-bioreactor.

    PubMed

    Loomba, Varun; Huber, Gregor; von Lieres, Eric

    2018-01-01

    Flat-panel photo-bioreactors (PBRs) are customarily applied for investigating growth of microalgae. Optimal design and operation of such reactors is still a challenge due to complex non-linear combinations of various impact factors, particularly hydrodynamics, light irradiation, and cell metabolism. A detailed analysis of single-cell light reception can lead to novel insights into the complex interactions of light exposure and algae movement in the reactor. The combined impacts of hydrodynamics and light irradiation on algae cultivation in a flat-panel PBR were studied by tracing the light exposure of individual cells over time. Hydrodynamics and turbulent mixing in this air-sparged bioreactor were simulated using the Eulerian approach for the liquid phase and a slip model for the gas phase velocity profiles. The liquid velocity was then used for tracing single cells and their light exposure, using light intensity profiles obtained from solving the radiative transfer equation at different wavelengths. The residence times of algae cells in defined dark and light zones of the PBR were statistically analyzed for different algal concentrations and sparging rates. The results indicate poor mixing caused by the reactor design which can be only partially improved by increased sparging rates. The results provide important information for optimizing algal biomass productivity by improving bioreactor design and operation and can further be utilized for an in-depth analysis of algal growth by using advanced models of cell metabolism.

  17. Hybrid Laser-Arc Welding of the High-Strength Shipbuilding Steels: Equipment and Technology

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Kuznetsov, M.; Tsibulskiy, I.; Firsova, A.

    Hybrid laser-arc welding (HLAW) allows getting weld joints with thickness up to 35 mm for one pass, provide good quality formation of joints, minimal thermal deformations, the productivity in 10 times more in comparison with arc welding. In addition, replacement arc welding to the HLAW allows economizing filler materials, shielding gas and consumable electricity more than 4 times. Therefore, HLAW is actually technology for basic engineering branches and especially for shipbuilding. The Institute of Laser and Welding Technologies (ILWT) developed laser and hybrid laser-arc welding technologies for different type of steels and alloys including high-strength shipbuilding steels. Also ILWT produced portal and robotic systems for HLAW process realization. Portal system for hybrid laser-arc welding of panels with dimensions 6x6 m using at the manufacturing of flat curvilinear sections in the shipbuilding is depicted in the article. Results of experimental researches of the hybrid laser-arc welding parameters influence on the formation and mechanical properties of weld joint are described at the publication also. Experimental part was made with using of the portal system.

  18. Systematic development of input-quantum-limited fluoroscopic imagers based on active-matrix flat-panel technology

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; El-Mohri, Youcef; Li, Yixin; Wang, Yi; Sawant, Amit R.

    2004-05-01

    The development of fluoroscopic imagers exhibiting performance that is primarily limited by the noise of the incident x-ray quanta, even at very low exposures, remains a highly desirable objective for active matrix flat-panel technology. Previous theoretical and empirical studies have indicated that promising strategies to acheiving this goal include the development of array designs incorporating improved optical collection fill factors, pixel-level amplifiers, or very high-gain photoconductors. Our group is pursuing all three strategies and this paper describes progress toward the systematic development of array designs involving the last approach. The research involved the iterative fabrication and evaluation of a series of prototype imagers incorporating a promising high-gain photoconductive material, mercuric iodide (HgI2). Over many cycles of photoconductor deposition and array evaluation, improvements ina variety of properties have been observed and remaining fundamental challenges have become apparent. For example, process compatibility between the deposited HgI2 and the arrays have been greatly improved, while preserving efficient, prompt signal extraction. As a result, x-ray sensitivities within a factor of two of the nominal limit associated with the single-crystal form of HgI2 have been observed at relatively low electric fields (~0.1 to 0.6 V/μm), for some iterations. In addition, for a number of iterations, performance targets for dark current stability and range of linearity have been met or exceeded. However, spotting of the array, due to localized chemical reactions, is still a concern. Moreover, the dark current, uniformity of pixel response, and degree of charge trapping, though markedly improved for some iterations, require further optimization. Furthermore, achieving the desired performance for all properties simultaneously remains an important goal. In this paper, a broad overview of the progress of the research will be presented, remaining challenges in the development of this photoconductive material will be outlined, and prospects for further improvement will be discussed.

  19. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facilitymore » was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.« less

  20. Preliminary design review package on air flat plate collector for solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  1. A passive cooling system proposal for multifunction and high-power displays

    NASA Astrophysics Data System (ADS)

    Tari, Ilker

    2013-03-01

    Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.

  2. Micro-valve pump light valve display

    DOEpatents

    Yeechun Lee.

    1993-01-19

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  3. Micro-valve pump light valve display

    DOEpatents

    Lee, Yee-Chun

    1993-01-01

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  4. [Change in process management by implementing RIS, PACS and flat-panel detectors].

    PubMed

    Imhof, H; Dirisamer, A; Fischer, H; Grampp, S; Heiner, L; Kaderk, M; Krestan, C; Kainberger, F

    2002-05-01

    Implementation of radiological information systems (RIS) and picture archiving and communicating systems (PACS) results in significant changes of workflow in a radiological department. Additional connection with flat-panel detectors leads to a shortening of the work process. RIS and PACS implementation alone reduces the complete workflow by 21-80%. With flatpanel technology the image production process is further shortened by 25-30%. The workflow-steps are changed from original 17-12 with the implementation of RIS and PACS and to 5 with the integrated use of flatpanels. This clearly recognizable advantages in the workflow need an according financial investment. Several studies could show that the capitalisation-factor calculated over eight years is positive, with a gain range between 5-25%. Whether the additional implementation of flatpanel detectors results also in a positive capitalisation over the years, cannot be estimated exactly, at the moment, because the experiences are too short. Particularly critical are the interfaces, which needs a constant quality control. Our flatpanel detector-system is fixed, special images--as we have them in about 3-5% of all cases--need still conventional filmscreen or phosphorplate-systems. Full-spine and long-leg examinations cannot be performed with sufficient exactness. Without any questions implementation of integrated RIS, PACS and flatpanel detector-system needs excellent training of the employees, because of the changes in workflow etc. The main profits of such an integrated implementation are an increase in quality in image and report datas, easier handling--there are almost no more cassettes necessary--and excessive shortening of workflow.

  5. Purging of multilayer insulation by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Spuckler, C. M.

    1976-01-01

    An experimental investigation was conducted to determine the time required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable (nitrogen) gas concentration of less than 1 percent within the panel. Two flat, rectangular MLI panel configurations, one incorporating a butt joint, were tested. The insulation panels consisted of 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The test results indicated that the rate which the condensable gas concentration at the edge or at the butt joint of an MLI panel was reduced was a significant factor in the total time required to reduce the condensable gas concentration within the panel to less than 1 percent. The experimental data agreed well with analytical predictions made by using a simple, one-dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent.

  6. Development of beryllium honeycomb sandwich composite for structural and other related applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Grant, L. A.

    1972-01-01

    The feasibility of fabricating large beryllium honeycomb panels was demonstrated. Both flat and curved sandwich structures were manufactured using practical, braze bonding techniques. The processes developed prove that metallurgically assembled beryllium honeycomb panels show decided potential where rigid, lightweight structures are required. Three panels, each 10 square feet in surface area, were fabricated, and radiographically inspected to determine integrity. This examination revealed a 97 percent braze in the final panel. It is believed that ceramic dies for forming and brazing would facilitate the fabrication techniques for higher production rates. Ceramic dies would yield a lower thermal gradient in the panel during the braze cycle. This would eliminate the small amount of face sheet wrinkling present in the panels. Hot forming the various panel components demonstrated efficient manufacturing techniques for scaling up and producing large numbers of hot formed beryllium components and panels. The beryllium honeycomb panel demonstrated very good vibrational loading characteristics under test with desirable damping characteristics.

  7. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    PubMed Central

    Wronski, M. M.; Rowlands, J. A.

    2008-01-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10−7–10−2 R∕frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range. PMID:19175080

  8. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M. M.; Rowlands, J. A.

    2008-12-15

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmablemore » avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range.« less

  9. Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.

    1998-07-01

    This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).

  10. TU-E-217BCD-06: Cone Beam Breast CT with a High Resolution Flat Panel Detector-Improvement of Calcification Visibility.

    PubMed

    Shen, Y; Zhong, Y; Lai, C; Wang, T; Shaw, C

    2012-06-01

    To investigate the advantage of a high resolution flat panel detector for improving the visibility of microcalcifications (MCs) in cone beam breast CT Methods: A paraffin cylinder was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 125-140 μm to 224 - 250 μm in size, were used to simulate the MCs. Groups of 25 same size MCs were embedded at the phantom center. The phantom was scanned with a bench-top CBCT system at various exposure levels. A 75μm pitch flat panel detector (Dexela 2923, Perkin Elmer) with 500μm thick CsI scintillator plate was used as the high resolution detector. A 194 μm pitch detector (Paxscan 4030CB, Varian Medical Systems) was used for reference. 300 projection images were acquired over 360° and reconstructed. The images were reviewed by 6 readers. The MC visibility was quantified as the fraction of visible MCs and averaged for comparison. The visibility was plotted as a function of the estimated dose level for various MC sizes and detectors. The MTFs and DQEs were measured and compared. For imaging small (200 μm and smaller) MCs, the visibility achieved with the 75μm pitch detector was found to be significantly higher than those achieved with the 194μm pitch detector. For imaging larger MCs, there was little advantage in using the 75μm pitch detector. Using the 75μm pitch detector, MCs as small as 180 μm could be imaged to achieve a visibility of 78% with an isocenter tissue dose of ∼20 mGys versus 62% achieved with the 194 μm pitch detector at the same dose level. It was found that a high pitch flat panel detector had the advantages of extending its imaging capability to higher frequencies thus helping improve the visibility when used to image small MCs. This work was supported in part by grants CA104759, CA13852 and CA124585 from NIH-NCI, a grant EB00117 from NIH-NIBIB, and a subcontract from NIST-ATP. © 2012 American Association of Physicists in Medicine.

  11. Progress of OLED devices with high efficiency at high luminance

    NASA Astrophysics Data System (ADS)

    Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong

    2014-03-01

    Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.

  12. Basic materials physics of transparent conducting oxides.

    PubMed

    Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M

    2004-10-07

    Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.

  13. Field-Sensitive Materials for Optical Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Little, Mark

    2002-01-01

    The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

  14. Method for producing micro heat panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Peterson, George P. (Inventor); Rummler, Donald R. (Inventor)

    1997-01-01

    Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.

  15. Fabrication of Electrophoretic Display Driven by Membrane Switch Array

    NASA Astrophysics Data System (ADS)

    Senda, Kazuo; Usui, Hiroaki

    2010-04-01

    Electrophoretic devices (EPDs) and organic light-emitting diodes (OLEDs) have potential application in a large-area flexible displays, such as digital signage. For this purpose, a new backplane is capable of driving a large unit is required instead of thin-film transistors. In this paper we describe the fabrication of a membrane switch array suitable for driving large-scale flat-panel displays. An array of membrane switches was prepared using flexible printed circuit (FPC) technology of polyimide films, by combining low-temperature processes of lamination and copper electroplating methods. An array of 256 matrix switches with a pixel size of 7 mm2 was prepared to drive the EPD front panel. The switches were driven at a voltage of about 40 V and a frequency of 10 Hz. The operation characteristics agreed well with the result of the theoretical calculation. The calculation also suggested that driving voltage can be lowered by increasing pixel size. The contact resistance of the membrane switch was as low as 0.2 Ω, which implies the wide applicability of this device for driving a variety of elements.

  16. Influence of microstructure and surface topography on the electrical conductivity of Cu and Ag thin films obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.

    2017-05-01

    Conductive thin films formation by copper and silver magnetron sputtering is one of high technological areas for industrial production of solar energy converters, energy-saving coatings, flat panel displays and touch control panels because of their high electrical and optical properties. Surface roughness and porosity, average grain size, internal stresses, orientation and crystal lattice type, the crystallinity degree are the main physical properties of metal films affecting their electrical resistivity and conductivity. Depending on the film thickness, the dominant conduction mechanism can affect bulk conductivity due to the flow of electron gas, and grain boundary conductivity. The present investigation assesses the effect of microstructure and surface topography on the electrical conductivity of magnetron sputtered Cu and Ag thin films using X-ray diffraction analysis, scanning electron and laser interference microscopy. The highest specific conductivity (78.3 MS m-1 and 84.2 MS m-1, respectively, for copper and silver films at the thickness of 350 nm) were obtained with the minimum values of roughness and grain size as well as a high degree of lattice structuredness.

  17. Recent progress in flexible OLED displays

    NASA Astrophysics Data System (ADS)

    Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.

    2001-09-01

    Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.

  18. Silicon microelectronic field-emissive devices for advanced display technology

    NASA Astrophysics Data System (ADS)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  19. China, the United States, and competition for resources that enable emerging technologies

    USGS Publications Warehouse

    Gulley, Andrew L.; Nassar, Nedal T.; Xun, Sean

    2018-01-01

    Historically, resource conflicts have often centered on fuel minerals (particularly oil). Future resource conflicts may, however, focus more on competition for nonfuel minerals that enable emerging technologies. Whether it is rhenium in jet engines, indium in flat panel displays, or gallium in smart phones, obscure elements empower smarter, smaller, and faster technologies, and nations seek stable supplies of these and other nonfuel minerals for their industries. No nation has all of the resources it needs domestically. International trade may lead to international competition for these resources if supplies are deemed at risk or insufficient to satisfy growing demand, especially for minerals used in technologies important to economic development and national security. Here, we compare the net import reliance of China and the United States to inform mineral resource competition and foreign supply risk. Our analysis indicates that China relies on imports for over half of its consumption for 19 of 42 nonfuel minerals, compared with 24 for the United States—11 of which are common to both. It is for these 11 nonfuel minerals that competition between the United States and China may become the most contentious, especially for those with highly concentrated production that prove irreplaceable in pivotal emerging technologies.

  20. Brushless Cleaning of Solar Panels and Windows

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  1. Thermal Analysis of Antenna Structures. Part 2: Panel Temperature Distribution

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.; Lansing, F. L.

    1983-01-01

    This article is the second in a series that analyzes the temperature distribution in microwave antennas. An analytical solution in a series form is obtained for the temperature distribution in a flat plate analogous to an antenna surface panel under arbitrary temperature and boundary conditions. The solution includes the effects of radiation and air convection from the plate. Good agreement is obtained between the numerical and analytical solutions.

  2. Environmental burdens in the management of end-of-life cathode ray tubes.

    PubMed

    Rocchetti, Laura; Beolchini, Francesca

    2014-02-01

    We compared the environmental burdens in the management of end-of life cathode ray tubes (CRTs) within two frameworks according to the different technologies of the production of televisions/monitors. In the first case, CRT recycling is addressed to the recovery of the panel and funnel glass for the manufacturing of new CRT screens. In the second case, where flat screen technology has replaced that of CRT, the recycling is addressed to the recovery of the glass cullet and lead for other applications. The impacts were evaluated according to the problem-oriented methodology of the Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. Our data confirm that in both cases, the recycling treatment allows benefits to be gained for the environment through the recovery of the secondary raw materials. These benefits are higher for the "CRT technology" framework (1 kg CO2 saved per CRT) than for the "flat screen technology" (0.9 kg CO2 saved, per CRT, as the highest possible), mainly due to the high energy consumption for lead separation from the funnel glass. Furthermore, the recovery of yttrium from the fluorescent powders that are a residue of the recycling treatment would further improve the CO2 credit for both the frameworks considered, which would provide a further saving of about 0.75 kg CO2 per CRT, net of the energy and raw materials needed for the recovery. Overall, this study confirms that, even with a change in the destination of the recovered materials, the recycling processes provide a benefit for the environment: indeed the higher loads for the environment are balanced by avoiding the primary production of the recovered materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pixel electronic noise as a function of position in an active matrix flat panel imaging array

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.

    2010-04-01

    We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.

  4. Flat or curved thin optical display panel

    DOEpatents

    Veligdan, J.T.

    1995-01-10

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  5. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  6. Theoretical and Monte Carlo optimization of a stacked three-layer flat-panel x-ray imager for applications in multi-spectral diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.

    2016-03-01

    We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.

  7. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    NASA Astrophysics Data System (ADS)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  8. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment

    PubMed Central

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-01-01

    Background Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. Objective To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Methods Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. Results MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. Conclusions When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. PMID:26346458

  9. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other structures where weight and through-the-thickness strength are design considerations. An overview of the development of PRSEUS technology for commercial transport aircraft is the subject of this paper.

  10. Purging of a multilayer insulation with dacron tuft spacer by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Fisk, W. J.

    1976-01-01

    The time and purge gas usage required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable gas (nitrogen) concentration of less than 1 percent within the panel are stipulated. Two different, flat, rectangular MLI panels, one incorporating a butt joint, were constructed of of 11 double-aluminized Mylar (DAM) radiation shields separated by Dacron tuft spacers. The DAM/Dacron tuft concept is known commercially as Superfloc. The nitrogen gas concentration as a function of time within the MLI panel could be adequately predicted by using a simple, one dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent. The time and purge gas usage required to achieve 1 percent nitrogen gas concentration within the MLI panel varied from 208 to 86 minutes and 34.1 to 56.5 MLI panel purge volumes, respectively, for gaseous helium purge rates from 10 to 40 MLI panel volumes per hour.

  11. Thermo-elastoviscoplastic snapthrough behavior of cylindrical panels

    NASA Technical Reports Server (NTRS)

    Song, Y.; Simitses, G. J.

    1992-01-01

    The thermo-elastoviscoplastic snapthrough behavior of simply supported cylindrical panels is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations which include both Bodner-Partom's and Walker's material models. A finite element approach is employed to predict the inelastic buckling behavior. Numerical examples are given to demonstrate the effects of several parameters which include the temperature, thickness and flatness of the panel. Comparisons of buckling responses between Bodner-Partom's model and Walker's model are given. The creep buckling behavior, as an example of time-dependent inelastic deformation, is also presented.

  12. Solar hot water system installed at Las Vegas, Nevada

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  13. Effect of soiling in CPV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivar, M.; Herrero, R.; Anton, I.

    2010-07-15

    The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?'more » The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)« less

  14. SU-C-304-05: Use of Local Noise Power Spectrum and Wavelets in Comprehensive EPID Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Gopal, A; Yan, G

    2015-06-15

    Purpose: As EPIDs are increasingly used for IMRT QA and real-time treatment verification, comprehensive quality assurance (QA) of EPIDs becomes critical. Current QA with phantoms such as the Las Vegas and PIPSpro™ can fail in the early detection of EPID artifacts. Beyond image quality assessment, we propose a quantitative methodology using local noise power spectrum (NPS) to characterize image noise and wavelet transform to identify bad pixels and inter-subpanel flat-fielding artifacts. Methods: A total of 93 image sets including bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Quantitative metrics such asmore » modulation transform function (MTF), NPS and detective quantum efficiency (DQE) were computed for each image set. Local 2D NPS was calculated for each subpanel. A 1D NPS was obtained by radial averaging the 2D NPS and fitted to a power-law function. R-square and slope of the linear regression analysis were used for panel performance assessment. Haar wavelet transformation was employed to identify pixel defects and non-uniform gain correction across subpanels. Results: Overall image quality was assessed with DQE based on empirically derived area under curve (AUC) thresholds. Using linear regression analysis of 1D NPS, panels with acceptable flat fielding were indicated by r-square between 0.8 and 1, and slopes of −0.4 to −0.7. However, for panels requiring flat fielding recalibration, r-square values less than 0.8 and slopes from +0.2 to −0.4 were observed. The wavelet transform successfully identified pixel defects and inter-subpanel flat fielding artifacts. Standard QA with the Las Vegas and PIPSpro phantoms failed to detect these artifacts. Conclusion: The proposed QA methodology is promising for the early detection of imaging and dosimetric artifacts of EPIDs. Local NPS can accurately characterize the noise level within each subpanel, while the wavelet transforms can detect bad pixels and inter-subpanel flat fielding artifacts.« less

  15. ARC-1976-AC76-0965

    NASA Image and Video Library

    1976-06-11

    Artist: Rick Guidice Space Colonization - Bernal Sphere - The residential area is in the central sphere. Farming regions are in the 'tires.' Mirrors reflect sunlight into the habitat and farms. The large flat panels radiate away extra heat into space, and panels of solar cells provide electricity. Factories and docks for spaceships are at either end of the long central tube. (NOTE: art printed in Book 'Space Colony - Frontier of the 21st Century by Franklyn M. Branley)

  16. Food color and appearance measurement, specification and communication, can we do better?

    NASA Astrophysics Data System (ADS)

    Hutchings, John; Singleton, Mark; Plater, Keith; Dias, Benjamin

    2002-06-01

    Conventional methods of color specification demand a sample that is flat, uniformly colored, diffusely reflecting and opaque. Very many natural, processed and manufactured foods, on the other hand, are three-dimensional, irregularly shaped unevenly colored and translucent. Hence, spectrophotometers and tristimulus colorimeters can only be used for reliable and accurate color measurement in certain cases and under controlled conditions. These techniques are certainly unsuitable for specification of color patterning and other factors of total appearance in which, for example, surface texture and gloss interfere with the surface color. Hence, conventional techniques are more appropriate to food materials than to foods themselves. This paper reports investigations on the application of digital camera and screen technologies to these problems. Results indicated that accuracy sufficient for wide scale use in the food industry is obtainable. Measurement applications include the specification and automatic measurement and classification of total appearance properties of three-dimensional products. This will be applicable to specification and monitoring of fruit and vegetables within the growing, storage and marketing supply chain and to on-line monitoring. Applications to sensory panels include monitoring of color and appearance changes occurring during paneling and the development of physical reference scales based pigment chemistry changes. Digital technology will be extendable to the on-screen judging of real and virtual products as well as to the improvement of appearance archiving and communication.

  17. Quantitative Percussion Diagnostics For Evaluating Bond Integrity Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott Leonard

    Conventional nondestructive testing (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was utilized based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Experimental results indicate that this technology is capable of detecting 'kiss' bonds (very low adhesive shear strength), caused by the application of release agents on the bonding surfaces, between flat composite laminates bonded together with epoxy adhesive. Specifically, the local value of the loss coefficient determined from quantitative percussion testing was found to be significantly greater for a release coated panel compared to that for a well bonded sample. Also, the local value of the probe force or force returned to the probe after impact was observed to be lower for the release coated panels. The increase in loss coefficient and decrease in probe force are thought to be due to greater internal friction during the percussion event for poorly bonded specimens. NDT standards were also fabricated by varying the cure parameters of an epoxy film adhesive. Results from QPD for the variable cure NDT standards and lap shear strength measurements taken of mechanical test specimens were compared and analyzed. Finally, experimental results have been compared to a finite element analysis to understand the visco-elastic behavior of the laminates during percussion testing. This comparison shows how a lower quality bond leads to a reduction in the percussion force by biasing strain in the percussion tested side of the panel.

  18. RADIANCE PROCESS EVALUATION FOR PARTICLE REMOVAL

    EPA Science Inventory

    The microelectronics industry (wafer, flat panel displays, photomasks, and storage media) is transitioning to higher device densities and larger substrate formats. These changes will challenge standard cleaning methods and will require significant increases to the fabricator inf...

  19. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  20. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  1. Further advances in autostereoscopic technology at Dimension Technologies Inc.

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1992-06-01

    Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.

  2. NASTRAN DMAP Fuzzy Structures Analysis: Summary of Research

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    2001-01-01

    The main proposed tasks of Cooperative Agreement NCC1-382 were: (1) developing MSC/NASTRAN DMAP language scripts to implement the Soize fuzzy structures approach for modeling the dynamics of complex structures; (2) benchmarking the results of the new code to those for a cantilevered beam in the literature; and (3) testing and validating the new code by comparing the fuzzy structures results to NASA Langley experimental and conventional finite element results for two model test structures representative of aircraft fuselage sidewall construction: (A) a small aluminum test panel (SLP, single longeron panel) with a single longitudinal stringer attached with bolts; and (B) a 47 by 72 inch flat aluminum fuselage panel (AFP, aluminum fuselage panel) including six longitudinal stringers and four frame stiffeners attached with rivets.

  3. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  4. Development of CFRP mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2013-09-01

    CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.

  5. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1977-01-01

    Innovations in reflectometry techniques are described; and the development of an absorbing selective coating is discussed along with details of surface properties. Conclusions as to the parameterization desired for practical applications of selective surfaces are provided.

  6. 31. INTERIOR VIEW TO THE SOUTHWEST OF A THIRD CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. INTERIOR VIEW TO THE SOUTHWEST OF A THIRD CONTROL PANEL IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  7. 30. INTERIOR VIEW TO THE WEST OF A SECOND CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. INTERIOR VIEW TO THE WEST OF A SECOND CONTROL PANEL IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  8. Flat-panel video resolution LED display system

    NASA Astrophysics Data System (ADS)

    Wareberg, P. G.; Kennedy, D. I.

    The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.

  9. On-demand stereoscopic 3D displays for avionic and military applications

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri; Lu, Kanghua; Larson, Brent; Schmidt, John; Cupero, Frank

    2010-04-01

    High speed AM LCD flat panels are evaluated for use in Field Sequential Stereoscopic (FSS) 3D displays for military and avionic applications. A 120 Hz AM LCD is used in field-sequential mode for constructing eyewear-based as well as autostereoscopic 3D display demonstrators for test and evaluation. The COTS eyewear-based system uses shutter glasses to control left-eye/right-eye images. The autostereoscopic system uses a custom backlight to generate illuminating pupils for left and right eyes. It is driven in synchronization with the images on the LCD. Both displays provide 3D effect in full-color and full-resolution in the AM LCD flat panel. We have realized luminance greater than 200 fL in 3D mode with the autostereoscopic system for sunlight readability. The characterization results and performance attributes of both systems are described.

  10. A Rotatable Quality Control Phantom for Evaluating the Performance of Flat Panel Detectors in Imaging Moving Objects.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki

    2016-02-01

    As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.

  11. Monitoring of experimental rat lung transplants by high-resolution flat-panel volumetric computer tomography (fpVCT).

    PubMed

    Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus

    2009-01-01

    Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.

  12. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  13. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  14. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  15. Study of noise reduction characteristics of double-wall panels

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-01-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  16. Study of noise reduction characteristics of double-wall panels

    NASA Astrophysics Data System (ADS)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-05-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  17. Development of a stereoscopic three-dimensional drawing application

    NASA Astrophysics Data System (ADS)

    Carver, Donald E.; McAllister, David F.

    1991-08-01

    With recent advances in 3-D technology, computer users have the opportunity to work within a natural 3-D environment; a flat panel LCD computer display of this type, the DTI-100M made by Dimension Technologies, Inc., recently went on the market. In a joint venture between DTI and NCSU, an object-oriented 3-D drawing application, 3-D Draw, was developed to address some issues of human interface design for interactive stereo drawing applications. The focus of this paper is to determine some of the procedures a user would naturally expect to follow while working within a true 3-D environment. The paper discusses (1) the interface between the Macintosh II and DTI-100M during implementation of 3-D Draw, including stereo cursor development and presentation of current 2-D systems, with an additional `depth'' parameter, in the 3-D world, (2) problems in general for human interface into the 3-D environment, and (3) necessary functions and/or problems in developing future stereoscopic 3-D operating systems/tools.

  18. Thermal Insulation Test Apparatuses

    NASA Technical Reports Server (NTRS)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  19. Microalgal production--a close look at the economics.

    PubMed

    Norsker, Niels-Henrik; Barbosa, Maria J; Vermuë, Marian H; Wijffels, René H

    2011-01-01

    Worldwide, microalgal biofuel production is being investigated. It is strongly debated which type of production technology is the most adequate. Microalgal biomass production costs were calculated for 3 different micro algal production systems operating at commercial scale today: open ponds, horizontal tubular photobioreactors and flat panel photobioreactors. For the 3 systems, resulting biomass production costs including dewatering, were 4.95, 4.15 and 5.96 € per kg, respectively. The important cost factors are irradiation conditions, mixing, photosynthetic efficiency of systems, medium- and carbon dioxide costs. Optimizing production with respect to these factors, a price of € 0.68 per kg resulted. At this cost level microalgae become a promising feedstock for biodiesel and bulk chemicals. Photobioreactors may become attractive for microalgal biofuel production. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  1. Design and Manufacture of Elastically Tailored Tow Placed Plates

    NASA Technical Reports Server (NTRS)

    Tatting, Brain F.; Guerdal, Zafer; Jegley, Dawn (Technical Monitor)

    2002-01-01

    Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a relatively novel design concept that has been demonstrated to be both beneficial and practical. In particular, for structures with highly non-uniform stress states, such as the case of a flat panel with a central hole subjected to in-plane loading, the concept is likely to provide substantial improvements in load carrying capability. The objective of the present study is to determine the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels with holes. In this study software was created that translates standard finite element models with traditional laminate definitions into ones that possess stacking sequences with curvilinear fiber paths that are directly manufacturable using an advanced tow placement machine. Preliminary designs for the manufacturing and testing phase were determined through rudimentary design studies for flat plates without holes under axial compression. These candidate designs were then analyzed using finite element models that accurately reflect the test conditions and geometries in order to select final designs for testing. A total of six large panels, measuring three feet by six feet, each of which are used to produce four specimens with or without holes, were fabricated and delivered to NASA for machining and testing.

  2. Development of tailorable advanced blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Calamito, Dominic P.

    1987-01-01

    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.

  3. Safety-related requirements for photovoltaic modules and arrays. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levins, A.

    1984-03-01

    Underwriters Laboratories has conducted a study to identify and develop safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. This discussion of safety systems recognizes that there is little history on which to base the expected safety related performance of a photovoltaic system. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaicmore » systems is made. A discussion of the UL investigation of the photovoltaic module evaluated to the provisions of the Proposed UL Standard for Flat-Plate Photovoltaic Modules and Panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit grounding, and the type of circuit ground are covered. The development of the Standard for Flat-Plate Photovoltaic Modules and Panels has continued, and with both industry comment and a product submittal and listing, the Standard has been refined to a viable document allowing an objective safety review of photovoltaic modules and panels. How this document, and other UL documents would cover investigations of certain other photovoltaic system components is described.« less

  4. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  5. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.

    PubMed

    Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A

    1999-05-01

    Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.

  6. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD).

    PubMed

    Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S

    2016-02-27

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  8. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  9. [Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)].

    PubMed

    Heidrich, G; Hassepass, F; Dullin, C; Attin, T; Grabbe, E; Hannig, C

    2005-12-01

    Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as denticles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 microm. Only around 73 % of the main root canals detected with FD-VCT and 87 % of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. FD-VCT is an innovative diagnostic modality in preclinical and experimental use for non-destructive three-dimensional analysis of teeth. Thanks to the high isotropic spatial resolution compared with conventional X-rays, even the minutest structures, such as side canals, can be detected and evaluated. Potential applications in endodontics include diagnostics and evaluation of all steps of root canal treatment, ranging from trepanation through determination of the length of the root canal to obturation.

  10. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD)

    PubMed Central

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2017-01-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices. PMID:28615795

  11. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  12. Urothelial dysplasia and other flat lesions of the urinary bladder: clinicopathologic and molecular features.

    PubMed

    Hodges, Kurt B; Lopez-Beltran, Antonio; Davidson, Darrell D; Montironi, Rodolfo; Cheng, Liang

    2010-02-01

    The 2004 World Health Organization classification system for urothelial neoplasia classifies flat-related preneoplastic lesions as urothelial hyperplasia (flat and papillary), reactive urothelial atypia, urothelial atypia of unknown significance, urothelial dysplasia (low-grade intraurothelial neoplasia), and urothelial carcinoma in situ (high-grade intraurothelial neoplasia). Each lesion is defined with precise nomenclature and strict morphologic criteria. In many cases, morphologic features alone suffice for diagnosis. Other cases may require a panel of immunohistochemical antibodies consisting of cytokeratin 20, p53, and CD44 for diagnosis. Recent molecular studies have provided further insight into the premalignant potential of these urothelial lesions. Herein, we present a review of flat urothelial lesions of the urinary bladder as defined by the 2004 World Health Organization classification with focus on the clinicopathologic, immunohistochemical, and molecular features. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Symptomatic accommodative and binocular dysfunctions from the use of flat-panel displays

    PubMed Central

    Porcar, Esteban; Montalt, Juan Carlos; Pons, Álvaro M.; España-Gregori, Enrique

    2018-01-01

    AIM To determine the presence of symptomatic accommodative and non-strabismic binocular dysfunctions (ANSBD) in a non-presbyopic population of video display unit (VDU) users with flat-panel displays. METHODS One hundred and one VDU users, aged between 20 to 34y, initially participated in the study. This study excluded contact-lens wearers and subjects who had undergone refractive surgery or had any systemic or ocular disease. First, subjects were asked about the type and nature of eye symptoms they experienced during VDU use. Then, a thorough eye examination excluded those subjects with a significant uncorrected refractive error or other problem, such as ocular motility disorders, vertical deviation, strabismus and eye diseases. Finally, the remaining participants underwent an exhaustive assessment of their accommodative and binocular vision status. RESULTS Eighty-nine VDU users (46 females and 43 males) were included in this study. They used flat-panel displays for an average of 5±1.9h a day. Twenty subjects presented ANSBD (22.5%). Convergence excess was the most frequent non-strabismic binocular dysfunction (9 subjects), followed by fusional vergence dysfunction (3 subjects) and convergence insufficiency (2 subjects). Within the accommodative dysfunctions, accommodative excess was the most common (4 subjects), followed by accommodative insufficiency (2 subjects). Moderate to severe eye symptoms were found in 13 subjects with ANSBD. CONCLUSION Significant eye symptoms in VDU users with accommodative and/or non-strabismic binocular dysfunctions often occur and should not be underestimated; therefore, an appropriate evaluation of accommodative and binocular vision status is more important for this population. PMID:29600186

  14. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment.

    PubMed

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-08-01

    Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty.

    PubMed

    Tam, Alda L; Mohamed, Ashraf; Pfister, Marcus; Chinndurai, Ponraj; Rohm, Esther; Hall, Andrew F; Wallace, Michael J

    2010-05-01

    Retrospective review. To report our early clinical experience using C-arm cone beam computed tomography (C-arm CBCT) with fluoroscopic overlay for needle guidance during vertebroplasty. C-arm CBCT is advanced three-dimensional (3-D) imaging technology that is currently available on state-of-the-art flat panel based angiography systems. The imaging information provided by C-arm CBCT allows for the acquisition and reconstruction of "CT-like" images in flat panel based angiography/interventional suites. As part of the evolution of this technology, enhancements allowing the overlay of cross-sectional imaging information can now be integrated with real time fluoroscopy. We report our early clinical experience with C-arm CBCT with fluoroscopic overlay for needle guidance during vertebroplasty. This is a retrospective review of 10 consecutive oncology patients who underwent vertebroplasty of 13 vertebral levels using C-arm CBCT with fluoroscopic overlay for needle guidance from November 2007 to December 2008. Procedural data including vertebral level, approach (transpedicular vs. extrapedicular), access (bilateral vs. unilateral) and complications were recorded. Technical success with the overlay technology was assessed based on accuracy which consisted of 4 measured parameters: distance from target to needle tip, distance from planned path to needle tip, distance from midline to needle tip, and distance from the anterior 1/3 of the vertebral body to needle tip. Success within each parameter required that the distance between the needle tip and parameter being evaluated be no more than 5 mm on multiplanar CBCT or fluoroscopy. Imaging data for 12 vertebral levels was available for review. All vertebral levels were treated using unilateral access and 9 levels were treated with an extrapedicular approach. Technical success rates were 92% for both distance from planned path and distance from midline to final needle tip, 100% when distance from needle tip to the anterior 1/3 border of the vertebral body was measured, and 75% when distance from target to needle tip was measured. There were no major complications. Minor complications consisted of 3 cases (25%) of cement extravasation. C-arm CBCT with needle path overlay for fluoroscopic guided vertebroplasty is feasible and allows for reliable unilateral therapy of both lumbar and thoracic vertebral bodies. Extrapedicular approaches were performed safely and with good accuracy of reaching the targets.

  16. Residual Strength Analyses of Monolithic Structures

    NASA Technical Reports Server (NTRS)

    Forth, Scott (Technical Monitor); Ambur, Damodar R. (Technical Monitor); Seshadri, B. R.; Tiwari, S. N.

    2003-01-01

    Finite-element fracture simulation methodology predicts the residual strength of damaged aircraft structures. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic- plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intention of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels.In this regard, a series of fracture tests were conducted on both flat and curved aluminum alloy integrally-stiffened panels. These flat panels were subjected to uniaxial tension and during the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (wc) using three-dimensional code (ZIP3D) and the plane-strain core height (hJ using two-dimensional code (STAGS). These values were then used in the STAGS analysis to predict the fracture behavior of the integrally-stiffened panels. The analyses modeled stable tearing, buckling, and crack branching at the integral stiffener using different values of critical CTOA for different material thicknesses and orientation. Comparisons were made between measured and predicted load-crack extension, out-of-plane displacements and local deformations around the crack tip region. Simultaneously, three-dimensional capabilities to model crack branching and to monitor stable crack growth of multiple cracks in a large thick integrally-stiffened flat panels were implemented in three-dimensional finite element code (ZIP3D) and tested by analyzing the integrally-stiffened panels tested at Alcoa. The residual strength of the panels predicted from STAGS and ZP3D code compared very well with experimental data. In recent times, STAGS software has been updated with new features and now one can have combinations of solid and shell elements in the residual strength analysis of integrally-stiffened panels.

  17. Concepts for improving the damage tolerance of composite compression panels

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Williams, J. G.

    1981-01-01

    The results of an experimental evaluation of graphite-epoxy composite compression panel impact damage tolerance and damage propagation arrest concepts are reported. The tests were conducted on flat plate specimens and blade-stiffened structural panels such as those used in commercial aircraft wings, and the residual strength of damaged specimens and their sensitivity to damage while subjected to in-plane compression loading were determined. Results suggest that matrix materials that fail by delamination have the lowest damage tolerance, and it is concluded that alternative matrix materials with transverse reinforcement to suppress the delamination failure mode and yield the higher-strain value transverse shear crippling mode should be developed.

  18. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  19. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  20. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  1. Fabrication and characteristics of high-performance and high-stability aluminum-doped zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Shan, Dongfang; Han, Dedong; Huang, Fuqing; Tian, Yu; Zhang, Suoming; Qi, Lin; Cong, Yingying; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2014-01-01

    Fully transparent aluminum-doped zinc oxide (AZO) thin-film transistors (TFTs) were successfully fabricated on glass substrates at room temperature. Superior properties, such as a high saturation mobility of 59.3 cm2 V-1 s-1, a positive threshold voltage of 1.3 V, a steep subthreshold swing of 122.9 mV/dec, an off-state current on the order of 10-12 A, and an on/off ratio of 2.7 × 108, were obtained. The electrical properties of the AZO TFTs were successively studied within a period of six months. Small property degenerations could be observed from the test results obtained within the study period, which proved the high-performance and high-stability characteristics of AZO TFTs. Furthermore, hysteresis loop scanning of AZO TFTs was performed, and a small hysteresis could be detected in the scanning curves, which suggested the superior properties of a dielectric and a channel-insulator interface. Lastly, we succeeded in manufacturing an organic LED (OLED) flat panel display panel driven by AZO TFTs and obtained an excellent display effect from it. We believe that AZO TFTs are a promising candidate successor to Si-based TFTs in next-generation flat panel displays.

  2. Investigation of time-resolved proton radiography using x-ray flat-panel imaging system

    NASA Astrophysics Data System (ADS)

    Jee, K.-W.; Zhang, R.; Bentefour, E. H.; Doolan, P. J.; Cascio, E.; Sharp, G.; Flanz, J.; Lu, H.-M.

    2017-03-01

    Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2  ×  2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.

  3. Investigation of time-resolved proton radiography using x-ray flat-panel imaging system.

    PubMed

    Jee, K-W; Zhang, R; Bentefour, E H; Doolan, P J; Cascio, E; Sharp, G; Flanz, J; Lu, H-M

    2017-03-07

    Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2  ×  2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.

  4. The Apple IIc.

    ERIC Educational Resources Information Center

    Freiberger, Paul

    1984-01-01

    Description of the portable Apple IIc includes its flat panel display; a new microprocessor, the 65CO2; its new design language; layout; documentation, including interactive tutorials; software support; and cost. Apple IIc's competitors and its new printer, the Scribe, are also discussed. (MBR)

  5. Guide to Air Cleaners in the Home

    MedlinePlus

    ... In-duct Particle Removal Flat or panel air filters Pleated or extended surface filters In-duct Gaseous Pollutant Removal In-duct Pollutant ... can remove particles from the air — mechanical air filters and electronic air cleaners. Mechanical air filters remove ...

  6. 76 FR 71922 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... from coatings and strippers used on wood products, wood paneling, and miscellaneous metal parts and...: PCAPCD Rule 236 (Wood Products and Coating Operations), PCAPCD Rule 238 (Factory Coating of Flat Wood...

  7. Fog water collection and reforestation at mountain locations in a western Mediterranean basin region

    NASA Astrophysics Data System (ADS)

    Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.

    2010-07-01

    Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds was matched up to fog occurrence and fog water yields. Additionally, a simple methodology was also found to transform fog water yields from the cylindrical collector into cumulative large flat-panel collector water catches by using wind sensor data. The method found allows an estimation of bulk fog-water catches at any single station of our fog collection network and the use of that information in future potential applications.

  8. Development of a prototype flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1979-01-01

    The radiator is a roll-up flexible panel with the transport fluid manifolds located at the ends of the 27 foot length. A total of fifty Teflon flow tubes are sandwiched between the layers of silver wire mesh and sealed in the Teflon film. The transport fluid flows from an inlet manifold through 25 panel flow tubes to the end of the radiator panel into a manifold which directs the fluid into the other 25 flow tubes on its return to the base of the radiator. Deployment/retraction of the flexible radiator panel is by low pressure inflation tubes (one along each side of the panel) which incorporate a flat spring. The spring supplies the retraction force to wind the radiator panel on a drum when the pressure in the inflation tubes is relieved. Room ambient deployment tests of the radiator panel were conducted to verify the inflation tube spring deployment, and retraction capability. The panel underwent a thermal vacuum, solar spectrum exposure test. After approximately 100 hours of solar exposure, post-test inspection revealed no structural or optical properties degraded.

  9. Addressing Theory and Performance Enhancements for the Independent Sustain and Address AC Plasma Display

    NASA Astrophysics Data System (ADS)

    Warren, Kevin Wilson

    The Independent Sustain and Address (ISA) AC plasma panel is a flat, flicker-free, gas discharge type of display device. This display technology promises to reduce both the cost of manufacturing and operation of AC plasma displays. The ISA technology uses a vastly different mechanism to change the state of the display pixels than the standard AC plasma technology. This addressing mechanism is an exploitation of some of the natural characteristics associated with the plasma that can form during strong gas discharges. This thesis presents detailed data from experiments that were designed to evaluate and test the effectiveness of this mechanism. Through these experiments, the theory that the addressing methodology is based upon is developed and evaluated. These experiments show that the address margin windows for this technology are very large, minimally two to three times larger than the address margins for the standard XY AC plasma addressing techniques. New capabilities are also described, such as global brightness control for the ISA technology and a technique for increasing the addressing rate. These advances were designed into working prototypes and transferred to industry where there are currently commercial products available based upon these advances. A technique for implementing gray scale using some of these advances is also proposed.

  10. Artist: Rick Guidice Space Colonization - Bernal Sphere - The residential area is in the central

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Artist: Rick Guidice Space Colonization - Bernal Sphere - The residential area is in the central sphere. Farming regions are in the 'tires.' Mirrors reflect sunlight into the habitat and farms. The large flat panels radiate away extra heat into space, and panels of solar cells provide electricity. Factories and docks for spaceships are at either end of the long central tube. (NOTE: art printed in Book 'Space Colony - Frontier of the 21st Century by Franklyn M. Branley)

  11. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-Ray Phase CT

    DTIC Science & Technology

    2014-06-01

    normal, pathologic and Alzheimer’s brains, in which the amyloid precursor protein (APP) will be included as a reference. Toward this goal, we have made...in x-ray flat panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001. 4. X Wu and H Liu...panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001 12. Tang X, Hsieh J, Nilsen RA

  12. Experimental transient and permanent deformation studies of steel-sphere-impacted or explosively-impulsed aluminum panels

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Merlis, F.; Rodal, J. J. A.; Stagliano, T. R.

    1977-01-01

    The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large deflection 3-d transient and/or permanent strain data on simple well defined structural specimens and materials: initially-flat 6061-T651 aluminum panels with all four sides ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides "forcing function information" of small uncertainty. These data will be useful for evaluating pertinent 3-d structural response prediction methods.

  13. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  14. Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.

    2015-01-01

    Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.

  15. APPLIED ORIGAMI. Origami of thick panels.

    PubMed

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-24

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. Copyright © 2015, American Association for the Advancement of Science.

  16. Flat or curved thin optical display panel

    DOEpatents

    Veligdan, James T.

    1995-01-10

    An optical panel 10 includes a plurality of waveguides 12 stacked together, with each waveguide 12 having a first end 12a and an opposite second end 12b. The first ends 12a collectively define a first face 16, and the second ends 12b collectively define a second face 18 of the panel 10. The second face 18 is disposed at an acute face angle relative to the waveguides 12 to provide a panel 10 which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face 16 is substantially smaller in height than the second face 18 and receives a TV image, with the second face 18 defining a screen for viewing the image enlarged.

  17. Neah Bay Antenna Connectivity Tests and Analysis: November 19, 2001

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David; Edgein, Ken; Pansera, Vincent; Bell, Terry; Shell, Dan; Miller, Cecil

    2002-01-01

    The purpose of these tests was to determine the connectivity range and associated data rates for connection between the flat panel antennas on the Federal Building and the dipole and L-3 tracking antennas on the Neah Bay.

  18. Novel Composites for Wing and Fuselage Applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS)

    NASA Technical Reports Server (NTRS)

    Sharp, Dave; Sobel, Larry

    1997-01-01

    A simple and rapid analysis method, consisting of a number of modular, 'strength-of-materials-type' models, is presented for predicting the nonlinear response and stiffener separation of postbuckled, flat, composite, shear panels. The analysis determines the maximum principal tensile stress in the skin surface layer under to toe. Failure is said to occur when this stress reaches the mean transverse tensile strength of the layer. The analysis methodology consists of a number of closed-form equations that can easily be used in a 'hand analysis. For expediency, they have been programmed into a preliminary design code called SNAPPS (Speedy Nonlinear Analysis of Postbuckled Panels in Shear), which rapidly predicts postbuckling response of the panel for each value of the applied shear load. SNAPPS response and failure predictions were found to agree well with test results for three panels with widely different geometries, laminates and stiffnesses. Design guidelines are given for increasing the load-carrying capacity of stiffened, composite shear panels.

  19. Supersonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1976-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 1.54 to 2.50 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using a state-of-the-art inviscid flow, constant-pressure-panel method. Emphasis was on conditions under which this theory is valid for both flat and twisted wings.

  20. 75 FR 1446 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2010-0001] Future Systems Technology Advisory Panel... systems technology and electronic services at the agency five to ten years into the future. The Panel will recommend a road map to aid SSA in determining what future systems technologies may be developed to assist...

  1. Simulated hail impact testing of photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  2. Enhancements of Tow-Steering Design Techniques: Design of Rectangular Panel Under Combined Loads

    NASA Technical Reports Server (NTRS)

    Tatting, Brian F.; Setoodeh, Shahriar; Gurdal, Zafer

    2005-01-01

    An extension to existing design tools that utilize tow-steering is presented which is used to investigate the use of elastic tailoring for a flat panel with a central hole under combined loads of compression and shear. The elastic tailoring is characterized by tow-steering within individual lamina as well as a novel approach based on selective reinforcement, which attempts to minimize compliance through the use of Cellular Automata design concepts. The selective reinforcement designs lack any consideration of manufacturing constraints, so a new tow-steered path definition was developed to translate the prototype selective reinforcement designs into manufacturable plies. The minimum weight design of a flat panel under combined loading was based on a model provided by NASA-Langley personnel and analyzed by STAGS within the OLGA design environment. Baseline designs using traditional straight fiber plies were generated, as well as tow-steered designs which incorporated parallel, tow-drop, and overlap plies within the laminate. These results indicated that the overlap method provided the best improvement with regards to weight and performance as compared to traditional constant stiffness monocoque panels, though the laminates did not measure up to similar designs from the literature using sandwich and isogrid constructions. Further design studies were conducted using various numbers of the selective reinforcement plies at the core and outer surface of the laminate. None of these configurations exhibited notable advantages with regard to weight or buckling performance. This was due to the fact that the minimization of the compliance tended to direct the major stresses toward the center of the panel, which decreased the ability of the structure to withstand loads leading to instability.

  3. Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.

    2006-03-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.

  4. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging qualitymore » was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)« less

  5. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications.

    PubMed

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-12-01

    To evaluate the radiation exposure for operating personnel associated with rotational flat-panel angiography and C-arm cone beam CT. Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8s/rotation, 20s/rotation and 5s/2 rotations), and 47 cm×18 cm (16s/2 rotations) and standard 2D angiography (10s, FOV 24 cm×18 cm). Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8s/rotation: 28.0 μSv, 20s/rotation: 79.3 μSv, 5s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20s/rotation). Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Jee, K; Sharp, G

    Purpose: Proton radiography, which images the patients with the same type of particles that they are to be treated with, is a promising approach for image guidance and range uncertainties reduction. This study aimed to realize quality proton radiography by measuring dose rate functions (DRF) in time domain using a single flat panel and retrieve water equivalent path length (WEPL) from them. Methods: An amorphous silicon flat panel (PaxScan™ 4030CB, Varian Medical Systems, Inc., Palo Alto, CA) was placed behind phantoms to measure DRFs from a proton beam modulated by the modulator wheel. To retrieve WEPL and RSP, calibration modelsmore » based on the intensity of DRFs only, root mean square (RMS) of DRFs only and the intensity weighted RMS were tested. The quality of obtained WEPL images (in terms of spatial resolution and level of details) and the accuracy of WEPL were compared. Results: RSPs for most of the Gammex phantom inserts were retrieved within ± 1% errors by calibration models based on the RMS and intensity weighted RMS. The mean percentage error for all inserts was reduced from 1.08% to 0.75% by matching intensity in the calibration model. In specific cases such as the insert with a titanium rod, the calibration model based on RMS only fails while the that based on intensity weighted RMS is still valid. The quality of retrieved WEPL images were significantly improved for calibration models including intensity matching. Conclusion: For the first time, a flat panel, which is readily available in the beamline for image guidance, was tested to acquire quality proton radiography with WEPL accurately retrieved from it. This technique is promising to be applied for image-guided proton therapy as well as patient specific RSP determination to reduce uncertainties of beam ranges.« less

  7. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    NASA Astrophysics Data System (ADS)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  8. Numerical optimization techniques for bound circulation distribution for minimum induced drag of Nonplanar wings: Computer program documentation

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Ku, T. J.

    1981-01-01

    A two dimensional advanced panel far-field potential flow model of the undistorted, interacting wakes of multiple lifting surfaces was developed which allows the determination of the spanwise bound circulation distribution required for minimum induced drag. This model was implemented in a FORTRAN computer program, the use of which is documented in this report. The nonplanar wakes are broken up into variable sized, flat panels, as chosen by the user. The wake vortex sheet strength is assumed to vary linearly over each of these panels, resulting in a quadratic variation of bound circulation. Panels are infinite in the streamwise direction. The theory is briefly summarized herein; sample results are given for multiple, nonplanar, lifting surfaces, and the use of the computer program is detailed in the appendixes.

  9. Thermal-Structural Evaluation of TD Ni-20Cr Thermal Protection System Panels

    NASA Technical Reports Server (NTRS)

    Eidinoff, H. L.; Rose, L.

    1974-01-01

    The results of a thermal-structural test program to verify the performance of a metallic/radiative Thermal Protection System (TPS) under reentry conditions are presented. This TPS panel is suitable for multiple reentry, high L/D space vehicles, such as the NASA space shuttle, having surface temperatures up to 1200 C (2200 F). The TPS panel tested consists of a corrugation-stiffened, beaded-skin TD Ni-20Cr metallic heat shield backed by a flexible fibrous quartz and radiative shield insulative system. Test conditions simulated the critical heating and aerodynamic pressure environments expected during 100 repeated missions of a reentry vehicle. Temperatures were measured during each reentry cycle; heat-shield flatness surveys to measure permanent set of the metallic components were made every 10 cycles. The TPS panel, in spite of localized surface failures, performed its designated function.

  10. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  11. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    PubMed

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  12. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  13. 48 CFR 1523.7001 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy-Efficient Computer Equipment 1523.7001 Policy. (a) The “Energy Star” Executive Order (E.O. 12845) applies to the following equipment... (CRT or Flat-panel LCD). (b) “Energy Star” requirements do not apply to the following equipment: (1...

  14. 48 CFR 1523.7001 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy-Efficient Computer Equipment 1523.7001 Policy. (a) The “Energy Star” Executive Order (E.O. 12845) applies to the following equipment... (CRT or Flat-panel LCD). (b) “Energy Star” requirements do not apply to the following equipment: (1...

  15. 48 CFR 1523.7001 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy-Efficient Computer Equipment 1523.7001 Policy. (a) The “Energy Star” Executive Order (E.O. 12845) applies to the following equipment... (CRT or Flat-panel LCD). (b) “Energy Star” requirements do not apply to the following equipment: (1...

  16. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  17. 76 FR 45296 - In the Matter of Certain Flat Panel Display Devices, and Products Containing the Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ...-Hsin Road 2, Hsinchu Science Park, Hsinchu 30078, Taiwan. AU Optronics Corporation America, 1525... facts to be as alleged in the complaint and this notice and to enter an initial determination and a...

  18. Are New Image Quality Figures of Merit Needed for Flat Panel Displays?

    DTIC Science & Technology

    1998-06-01

    American National Standard for Human Factors Engineering of Visual Display Terminal Workstations in 1988 have adopted the MTFA as the standard...References American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI/HFS 100-1988). 1988. Santa Monica

  19. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact

    PubMed Central

    Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo

    2018-01-01

    This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed. PMID:29522479

  20. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact.

    PubMed

    Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo

    2018-03-09

    This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  1. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  2. [Comparison of noise characteristics of direct and indirect conversion flat panel detectors].

    PubMed

    Murai, Masami; Kishimoto, Kenji; Tanaka, Katsuhisa; Oota, Kenji; Ienaga, Akinori

    2010-11-20

    Flat-panel detector (FPD) digital radiography systems have direct and indirect conversion systems, and the 2 conversion systems provide different imaging performances. We measured some imaging performances [input-output characteristic, presampled modulation transfer function (presampled MTF), noise power spectrum (NPS)] of direct and indirect FPD systems. Moreover, some image samples of the NPSs were visually evaluated by the pair comparison method. As a result, the presampled MTF of the direct FPD system was substantially higher than that of the indirect FPD system. The NPS of the direct FPD system had a high value for all spatial frequencies. In contrast, the NPS of the indirect FPD system had a lower value as the frequency became higher. The results of visual evaluations showed the same tendency as that found for NPSs. We elucidated the cause of the difference in NPSs in a simulation study, and we determined that the cause of the difference in the noise components of the direct and indirect FPD systems was closely related to the presampled MTF.

  3. Image degradation by glare in radiologic display devices

    NASA Astrophysics Data System (ADS)

    Badano, Aldo; Flynn, Michael J.

    1997-05-01

    No electronic devices are currently available that can display digital radiographs without loss of visual information compared to traditional transilluminated film. Light scattering within the glass faceplate of cathode-ray tube (CRT) devices causes excessive glare that reduces image contrast. This glare, along with ambient light reflection, has been recognized as a significant limitation for radiologic applications. Efforts to control the effect of glare and ambient light reflection in CRTs include the use of absorptive glass and thin film coatings. In the near future, flat panel displays (FPD) with thin emissive structures should provide very low glare, high performance devices. We have used an optical Monte Carlo simulation to evaluate the effect of glare on image quality for typical CRT and flat panel display devices. The trade-off between display brightness and image contrast is described. For CRT systems, achieving good glare ratio requires a reduction of brightness to 30-40 percent of the maximum potential brightness. For FPD systems, similar glare performance can be achieved while maintaining 80 percent of the maximum potential brightness.

  4. Advantages and difficulties of implementation of flat-panel multimedia monitoring system in a surgical MRI suite

    NASA Astrophysics Data System (ADS)

    Deckard, Michael; Ratib, Osman M.; Rubino, Gregory

    2002-05-01

    Our project was to design and implement a ceiling-mounted multi monitor display unit for use in a high-field MRI surgical suite. The system is designed to simultaneously display images/data from four different digital and/or analog sources with: minimal interference from the adjacent high magnetic field, minimal signal-to-noise/artifact contribution to the MRI images and compliance with codes and regulations for the sterile neuro-surgical environment. Provisions were also made to accommodate the importing and exporting of video information via PACS and remote processing/display for clinical and education uses. Commercial fiber optic receivers/transmitters were implemented along with supporting video processing and distribution equipment to solve the video communication problem. A new generation of high-resolution color flat panel displays was selected for the project. A custom-made monitor mount and in-suite electronics enclosure was designed and constructed at UCLA. Difficulties with implementing an isolated AC power system are discussed and a work-around solution presented.

  5. Lung imaging of laboratory rodents in vivo

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Cavanaugh, Dawn; Price, Roger E.; Rivera, Belinda; Gladish, Gregory; Travis, Elizabeth

    2004-10-01

    We have been acquiring respiratory-gated micro-CT images of live mice and rats for over a year with our General Electric (formerly Enhanced Vision Systems) hybrid scanner. This technique is especially well suited for the lung due to the inherent high tissue contrast. Our current studies focus on the assessment of lung tumors and their response to experimental agents, and the assessment of lung damage due to chemotherapy agents. We have recently installed a custom-built dual flat-panel cone-beam CT scanner with the ability to scan laboratory animals that vary in size from mice to large dogs. A breath-hold technique is used in place of respiratory gating on this scanner. The objective of this pilot study was to converge on scan acquisition parameters and optimize the visualization of lung damage in a mouse model of fibrosis. Example images from both the micro-CT scanner and the flat-panel CT scanner will be presented, as well as preliminary data describing spatial resolution, low contrast resolution, and radiation dose parameters.

  6. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  7. Military display market: third comprehensive edition

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2002-08-01

    Defense displays comprise a niche market whose continually high performance requirements drive technology. The military displays market is being characterized to ascertain opportunities for synergy across platforms, and needs for new technology. All weapons systems are included. Some 382,585 displays are either now in use or planned in DoD weapon systems over the next 15 years, comprising displays designed into direct-view, projection-view, and virtual- image-view applications. This defense niche market is further fractured into 1163 micro-niche markets by the some 403 program offices who make decisions independently of one another. By comparison, a consumer electronics product has volumes of tens-of-millions of units for a single fixed design. Some 81% of defense displays are ruggedized versions of consumer-market driven designs. Some 19% of defense displays, especially in avionics cockpits and combat crewstations, are custom designs to gain the additional performance available in the technology base but not available in consumer-market-driven designs. Defense display sizes range from 13.6 to 4543 mm. More than half of defense displays are now based on some form of flat panel display technology, especially thin-film-transistor active matrix liquid crystal display (TFT AMLCD); the cathode ray tube (CRT) is still widely used but continuing to drop rapidly in defense market share.

  8. Future Defence Budget Constraints: Challenges and Opportunities (Contraintes futures sur les budgets de defense: Defis et opportunites)

    DTIC Science & Technology

    2016-12-01

    collaborative effort is addressed by six Technical Panels who manage a wide range of scientific research activities, a Group specialising in modelling and...HFM Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis...and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group are the

  9. 1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. OPERATIONS IN THE GLOVE BOX IN THE BACKGROUND OF THE PHOTOGRAPH INCLUDED HYDRIDING OF PLUTONIUM AND HYDRIDE SEPARATION. IN THE FOREGROUND, THE VACUUM MONITOR CONTROL PANEL MEASURED TEMPERATURES WITHIN THE GLOVEBOX. THE CENTER CONTROL PANEL REGULATED THE FURNACE INSIDE THE GLOVE BOX USED IN THE HYDRIDING PROCESSES. THIS EQUIPMENT WAS ESSENTIAL TO THE HYDRIDING PROCESS, AS WELL AS OTHER GLOVE BOX OPERATIONS. - Rocky Flats Plant, Plutonium Laboratory, North-central section of industrial area at 79 Drive, Golden, Jefferson County, CO

  10. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  11. [Analysis of color gamut of LCD system based on LED backlight with area-controlling technique].

    PubMed

    Li, Fu-Wen; Jin, Wei-Qi; Shao, Xi-Bin; Zhang, Li-Lei; Wan, Li-Fang

    2010-05-01

    Color gamut as a significant performance index for display system describes the color reproduction ability IN real scenes. Liquid crystal display (LCD) is the most popular technology in flat panel display. However, conventional cold cathode fluorescent lamp (CCFL) backlight of LCD can not behave high color gamut compared with cathode ray tube (CRT). The common used method of color gamut measuring for LCD system is introduced at the beginning. According to the inner structure and display principle of LCD system, there are three major factors deciding LCD's color gamut: spectral properties of backlight, transmittance properties of color filters and performance of liquid crystal panel. Instead of conventional backlight CCFL, RGB-LED backlight is used for improving color reproduction of LCD display system. Due to the imperfect match between RGB-LED' s spectra and color filter's transmittance, the color filter would reduce the color gamut of LCD system more or less. Therefore, LCD system based on LED backlight with area-control technique is introduced which modifies backlight control signal according to the input signal After analyzing and calculating the spectra of LED backlight which passes through the color filters using method of colorimetry, the area sizes of color gamut triangles of RGB-LED backlight with area-control and RGB-LED backlight without area-control LCD systems are compared and the relationship between color gamut and varying contrast of liquid crystal panel is analyzed. It is indicated that LED backlight with area-control technique can avoid color saturation dropping and have little effects on the contrast variation of liquid crystal panel. In other words, LED backlight with area-control technique relaxes the requirements of both color filter performance and liquid crystal panel. Thus, it is of importance to improve the color gamut of the current LCD system with area-control LED backlight.

  12. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  13. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  14. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  15. Assessment of Intelligent Tutoring Systems Technologies and Opportunities (Evaluation et opportunites des technologies des systemes de tutorat intelligents)

    DTIC Science & Technology

    2018-01-01

    His research designs adaptive systems for online content, by integrating research in psychology and education, human- ANNEX A − INTELLIGENT TUTORING...related scientific activities that include systems engineering, operational research and analysis, synthesis, integration and validation of knowledge...System Analysis and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group

  16. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  17. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  18. 76 FR 63657 - Certain Flat Panel Display Devices, and Products Containing the Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... the same by reason of infringement of various claims of United States Patent Nos. 6,281,955; 7,697,093... Mobility LLC of Atlanta, Georgia; Best Buy Stores, L.P. of Richfield, Minnesota; BestBuy.com , LLC of Eden...

  19. Thermal and Mechanical Buckling Analysis of Hypersonic Aircraft Hat-Stiffened Panels With Varying Face Sheet Geometry and Fiber Orientation

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1996-01-01

    Mechanical and thermal buckling behavior of monolithic and metal-matrix composite hat-stiffened panels were investigated. The panels have three types of face-sheet geometry: Flat face sheet, microdented face sheet, and microbulged face sheet. The metal-matrix composite panels have three types of face-sheet layups, each of which is combined with various types of hat composite layups. Finite-element method was used in the eigenvalue extractions for both mechanical and thermal buckling. The thermal buckling analysis required both eigenvalue and material property iterations. Graphical methods of the dual iterations are shown. The mechanical and thermal buckling strengths of the hat-stiffened panels with different face-sheet geometry are compared. It was found that by just microdenting or microbulging of the face sheet, the axial, shear, and thermal buckling strengths of both types of hat-stiffened panels could be enhanced considerably. This effect is more conspicuous for the monolithic panels. For the metal-matrix composite panels, the effect of fiber orientations on the panel buckling strengths was investigated in great detail, and various composite layup combinations offering, high panel buckling strengths are presented. The axial buckling strength of the metal-matrix panel was sensitive to the change of hat fiber orientation. However, the lateral, shear, and thermal buckling strengths were insensitive to the change of hat fiber orientation.

  20. Design and analysis of grid stiffened fuselage panel with curved stiffeners

    NASA Astrophysics Data System (ADS)

    Hemanth, Bharath; Babu, N. C. Mahendra; Shivakumar, H. G.; Srikari, S.

    2018-04-01

    Designing and analyzing grid stiffened panel to understand the effect of stiffeners on stiffness of the panel is crucial in designing grid stiffened cylinder for fuselage application. Traditionally only straight stiffeners were used due to limited manufacturing capabilities and in recent years GSS with curved stiffeners have become a reality. The present work is on flat grid stiffened panel and the focus is to realize the change in stiffness by converting straight stiffeners in an isogrid panel to curved stiffeners. An isogrid stiffened panel is identified from literature for which experimental results were available and was considered for replacing straight stiffeners with curved stiffeners. Defining and designing the curve for curved stiffeners which can be used to replace straight stiffeners in isogrid pattern is crucial. FE model of the grid stiffened fuselage panel with isogrid pattern identified from the literature for which experimental data was available was developed and evaluated for stiffness. For the same panel, curved grid pattern to enhance stiffness of the panel was designed following existing design procedure. FE model of the grid stiffened fuselage panel with designed curved stiffeners was developed and evaluated for stiffness. It is established that the stiffness of panel can be increased by minimum of 2.82% to maximum of 11.93% by using curved stiffeners of particular curvature as a replacement for straight stiffeners in isogrid pattern with a slight mass penalty.

  1. JANNAF Rocket Nozzle Technology Subcommittee Executive Committee Report

    NASA Technical Reports Server (NTRS)

    Lawrence, Timothy W.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the structure and activities of the panels of the Joint Army Navy NASA Air Force (JANNAF) Rocket Nozzle Technology Subcommittee. The panels profiled are the Processing Science and Materials Panel, the Nozzle Design, Test, and Evaluation Panel, the Nozzle Analysis and Modeling Panel, and the Nozzle Control Systems Panel. The presentation also lists meetings, workshops, and publications in which the subcommittee participated during the reporting period.

  2. Emerged/Emerging Disruptive Technologies (E2DT) (Technologies de rupture apparues/emergentes (E2DT)). Proceedings of the RTO Information Systems Technology Panel (IST) Symposium held in Madrid, Spain on 7-8 May 2011

    DTIC Science & Technology

    2011-05-01

    with the potential to impact future military Information Systems. The second is to explore and identify innovative applications of these emerging or...NATO) BP 25, F-92201 Neuilly- sur -Seine Cedex, France RTO-MP-IST-099 Approved for Public release, distribution unlimited. Supporting documents are...Analysis and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These bodies are made up of

  3. Fundamentals of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  4. 3D vision upgrade kit for the TALON robot system

    NASA Astrophysics Data System (ADS)

    Bodenhamer, Andrew; Pettijohn, Bradley; Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Kingston, David; Newell, Scott

    2010-02-01

    In September 2009 the Fort Leonard Wood Field Element of the US Army Research Laboratory - Human Research and Engineering Directorate, in conjunction with Polaris Sensor Technologies and Concurrent Technologies Corporation, evaluated the objective performance benefits of Polaris' 3D vision upgrade kit for the TALON small unmanned ground vehicle (SUGV). This upgrade kit is a field-upgradable set of two stereo-cameras and a flat panel display, using only standard hardware, data and electrical connections existing on the TALON robot. Using both the 3D vision system and a standard 2D camera and display, ten active-duty Army Soldiers completed seven scenarios designed to be representative of missions performed by military SUGV operators. Mission time savings (6.5% to 32%) were found for six of the seven scenarios when using the 3D vision system. Operators were not only able to complete tasks quicker but, for six of seven scenarios, made fewer mistakes in their task execution. Subjective Soldier feedback was overwhelmingly in support of pursuing 3D vision systems, such as the one evaluated, for fielding to combat units.

  5. Recent advances and product enhancements in reflective cholesteric displays

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.

    2005-04-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.

  6. Finite Element Analysis of Quantitative Percussion Diagnostics for Evaluating the Strength of Bonds Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott; Malcolm, Doug; Earthman, James

    Conventional nondestructive (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was adopted based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Results indicate that this technology is capable of detecting weak (`kiss') bonds between flat composite laminates. Specifically, the local value of the probe force determined from quantitative percussion testing was predicted to be significantly lower for a laminate that contained a `kiss' bond compared to that for a well-bonded sample, which is in agreement with experimental findings. Experimental results were compared to a finite element analysis (FEA) using MSC PATRAN/NASTRAN to understand the visco-elastic behavior of the laminates during percussion testing. The dynamic FEA models were used to directly predict changes in the probe force, as well as effective stress distributions across the bonded panels as a function of time.

  7. Joint Cockpit Office: history and role in defense-wide issues regarding avionics displays

    NASA Astrophysics Data System (ADS)

    O'Connor, John C.; Kraemer, William A.

    2000-08-01

    The charter of the Joint Cockpit Office (JCO) is to plan, coordinate and accelerate the transition of advanced development cockpit/crew station technologies critical to crew effectiveness in current and future air vehicles. The JCO helps assure a single, coordinated, and highly integrated cockpit/crew station Science and Technology (S&T) program within and between the Air Force, the Army, and the Navy. It serves as the primary interface and focal point for issues involving these technologies for organizations within and external to the Services. The Services are at the advent of fielding new technologies such as helmet-mounted displays as a primary flight reference. They will most certainly evaluate the use of windowless cockpits to counter the laser threat and allow for less constraining aerodynamic conditions in future vehicle design. The transition to multi-spectral displays in future military and commercial aircraft is imminent. The JCO is well positioned to assess and focus the research needed to safely exploit these new technologies and meet customer requirements. Presently, the JCO is undertaking three initiatives: creation of a joint-service, Cooperative Research and Development Agreement (CRDA) with Lockheed Martin to study the thresholds of virtual helmet-mounted display attributes and effects on pilot performance; management of the Spatial Disorientation Countermeasures program, and facilitation of the actions determined by the DoD Executive Agent for Flat Panel Displays.

  8. Solving bezel reliability and CRT obsolescence

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard J.; Bowen, Arlen R.; Knowles, Terry

    2003-09-01

    Scientific Research Corporation designed a Smart Multi-Function Color Display with Positive Pilot Feedback under the funding of an U. S. Navy Small Business Innovative Research program. The Smart Multi-Function Color Display can replace the obsolete monochrome Cathode Ray Tube display currently on the T-45C aircraft built by Boeing. The design utilizes a flat panel color Active Matrix Liquid Crystal Display and TexZec's patented Touch Thru Metal bezel technology providing both visual and biomechanical feedback to the pilot in a form, fit, and function replacement to the current T-45C display. Use of an existing color AMLCD, requires the least adaptation to fill the requirements of this application, thereby minimizing risk associated with developing a new display technology and maximizing the investment in improved user interface technology. The improved user interface uses TexZec's Touch Thru Metal technology to eliminate all of the moving parts that traditionally have limited Mean-Time-Between-Failure. The touch detection circuit consists of Commercial-Off-The-Shelf components, creating touch detection circuitry, which is simple and durable. This technology provides robust switch activation and a high level of environmental immunity, both mechanical and electrical. Replacement of all the T-45C multi-function displays with this design will improve the Mean-Time-Between-Failure and drastically reduce display life cycle costs. The design methodology described in this paper can be adapted to any new or replacement display.

  9. A research program to reduce interior noise in general aviation airplanes. Influence of depressurization and damping material on the noise reduction characteristics of flat and curved stiffened panels

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Streeter, B.; Koontz, S.; Roskam, J.

    1981-01-01

    Some 20 x 20 aluminum panels were studied in a frequency range from 20 Hz to 5000 Hz. The noise sources used were a swept sine wave generator and a random noise generator. The effect of noise source was found to be negligible. Increasing the pressure differential across the panel gave better noise reduction below the fundamental resonance frequency due to an increase in stiffness. The largest increase occurred in the first 1 psi pressure differential. The curved, stiffened panel exhibited similar behavior, but with a lower increase of low frequency noise reduction. Depressurization on these panels resulted in decreased noise reduction at higher frequencies. The effect of damping tapes on the overall noise reduction values of the test specimens was small away from the resonance frequency. In the mass-law region, a slight and proportional improvement in noise reduction was observed by adding damping material. Adding sound absorbtion material to a panel with damping material beneficially increased noise reduction at high frequencies.

  10. Recommendations resulting from the SPDS Community-Wide Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Data Systems Panel identified three critical functionalities of a Space Physics Data System (SPDS): the delivery of self-documenting data, the existence of a matrix of translators between various standard formats (IDFS, CDF, netCDF, HDF, TENNIS, UCLA flat file, and FITS), and a network-based capability for browsing and examining inventory records for the system's data holdings. The recommendations resulting from the workshop include the philosophy, funding, and objectives of a SPDS. Access to quality data is seen as the most important objective by the Policy Panel, with curation and information about the data being integral parts of any accessible data set. The Data Issues Panel concluded that the SPDS can supply encouragement, guidelines, and ultimately provide a mechanism for financial support for data archiving, restoration, and curation. The Software Panel of the SPDS focused on defining the requirements and priorities for SPDS to support common data analysis and data visualization tools and packages.

  11. Nanoparticle Phosphors Manufactured Using the Bicontinuous Cubic Phase Process

    DTIC Science & Technology

    1997-11-18

    due to the recent interest in developing emissive 13 flat panel displays, e.g. full-color low-voltage field eminer displays (FEDs), large area plasma...it was determined that the nanoparticles were 5 monocrystalline with a zinc-blende cubic lattice. 6 7 Example 2 - Photoluminescence studies 8

  12. Push/Push Fastener

    NASA Technical Reports Server (NTRS)

    Jackson, Steven A.

    1996-01-01

    Modified version of Nylatch (or equivalent) commerical quick-connect/quick-disconnect fastener for joining flat panels. Fastener tightened by pushing on knob on one side and loosened by pushing on knob on other side. Push/push operation of fastener advantageous in cold or otherwise hostile environments where gloves worn, in underwater operations, or if person handicapped.

  13. 77 FR 23130 - Revisions to the California State Implementation Plan, Northern Sierra and Sacramento...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... taking direct final action to approve revisions to the Northern Sierra Air Quality Management District (NSAQMD) and Sacramento Metropolitan Air Quality Management District (SMAQMD) portions of the California...) Northern Sierra Air Quality Management District. (i) Flexible Package Printing, Flat Wood Paneling Coatings...

  14. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  15. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen

    2013-10-15

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widelymore » used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors.Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.« less

  16. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    PubMed Central

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-01-01

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies. PMID:24089917

  17. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.

    PubMed

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C

    2013-10-01

    To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.

  18. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  19. Principles of phosphorescent organic light emitting devices.

    PubMed

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  20. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-31

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  1. Advanced aerosense display interfaces

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.

    1998-09-01

    High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.

  2. The Features of Self-Assembling Organic Bilayers Important to the Formation of Anisotropic Inorganic Materials in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    1999-01-01

    There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.

  3. Analysis on the 3D crosstalk in stereoscopic display

    NASA Astrophysics Data System (ADS)

    Choi, Hee-Jin

    2010-11-01

    Nowadays, with the rapid progresses in flat panel display (FPD) technologies, the three-dimensional (3D) display is now becoming a next mainstream of display market. Among the various 3D display techniques, the stereoscopic 3D display shows different left/right images for each eye of observer using special glasses and is the most popular 3D technique with the advantages of low price and high 3D resolution. However, current stereoscopic 3D displays suffer with the 3D crosstalk which means the interference between the left eye mage and right eye images since it degrades the quality of 3D image severely. In this paper, the meaning and causes of the 3D crosstalk in stereoscopic 3D display are introduced and the pre-proposed methods of 3D crosstalk measurement vision science are reviewed. Based on them The threshold of 3D crosstalk to realize a 3D display with no degradation is analyzed.

  4. Deblurring in digital tomosynthesis by iterative self-layer subtraction

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Kim, Jee Young; Jang, SunYoung; Cho, Min Kook; Cho, Seungryong; Kim, Ho Kyung

    2010-04-01

    Recent developments in large-area flat-panel detectors have made tomosynthesis technology revisited in multiplanar xray imaging. However, the typical shift-and-add (SAA) or backprojection reconstruction method is notably claimed by a lack of sharpness in the reconstructed images because of blur artifact which is the superposition of objects which are out of planes. In this study, we have devised an intuitive simple method to reduce the blur artifact based on an iterative approach. This method repeats a forward and backward projection procedure to determine the blur artifact affecting on the plane-of-interest (POI), and then subtracts it from the POI. The proposed method does not include any Fourierdomain operations hence excluding the Fourier-domain-originated artifacts. We describe the concept of the self-layer subtractive tomosynthesis and demonstrate its performance with numerical simulation and experiments. Comparative analysis with the conventional methods, such as the SAA and filtered backprojection methods, is addressed.

  5. Design of transparent conductors and periodic two-dimensional electron gases without doping

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen; Zhang, Lijun; Zunger, Alex; Perkins, John; Materials by Design Team; John D. Perkins Collaboration

    The functionality of transparency plus conductivity plays an important role in renewable energy and information technologies, including applications such as solar cells, touch-screen sensors, and flat panel display. However, materials with such seemingly contraindicated properties are difficult to come by. The traditional strategy for designing bulk transparent conductors (TCs) starts from a wide-gap insulator and finds ways to make it conductive by extensive doping. We propose a different strategy for TC design--starting with a metallic conductor and designing transparency by control of intrinsic interband transitions and intraband plasmonic frequency. We identified specific design principles for prototypical intrinsic TC classes and searched computationally for materials that satisfy them. The electron gases in the 3D intrinsic TCs demonstrate intriguing properties, such as periodic 2D electron gas regions with very high carrier density. We will discuss a more extended search of these functionalities, in parallel with stability and growability calculations

  6. Improved LED backlight with unique color and intensity control and NVIS capability

    NASA Astrophysics Data System (ADS)

    Herman, Robert; Zagar, Pete; Ulijasz, Ted; Hansen, Hans C.; Ellner, Fred

    2006-05-01

    Currently deployed conventional flat panel AMLCD displays employ fluorescent lamp backlights to achieve the required lighting levels for cockpits in high performance aircraft. Advances have been made in backlighting technology by replacing fluorescent lamps with high performance LEDs. However, these new LED-based backlights are lacking in control of color and luminance intensity especially when related to NVIS requirements in a cockpit. This paper describes a unique integration of LED, electronic, and optical components to meet the requirements of high performance aircraft over their extreme range of operating environments. The LED-based backlight utilizes state-of-art components to enable daylight, night, and NVIS requirements to be implemented in a simple cost-effective package. The performance results presented highlight the advantages of this new design when compared to currently available backlighting designs. Techniques as described in section 2 of this paper are covered under patent application to the US and International Patent Offices.

  7. Latest achievements in PET techniques

    NASA Astrophysics Data System (ADS)

    Del Guerra, Alberto; Belcari, Nicola; Motta, Alfonso; Di Domenico, Giovanni; Sabba, Nicola; Zavattini, Guido

    2003-11-01

    Positron emission tomography (PET) has moved from a distinguished research tool in physiology, cardiology and neurology to become a major tool for clinical investigation in oncology, in cardiac applications and in neurological disorders. Much of the PET accomplishments is due to the remarkable improvements in the last 10 years both in hardware and software aspects. Nowadays a similar effort is made by many research groups towards the construction of dedicated PET apparatus in new emerging fields such as molecular medicine, gene therapy, breast cancer imaging and combined modalities. This paper reports on some recent results we have obtained in small animal imaging and positron emission mammography, based on the use of advanced technology in the field of scintillators and photodetectors, such as Position-Sensitive Detectors coupled to crystal matrices, combined use of scintillating fibers and Hybrid-Photo-Diodes readout, and Hamamatsu flat panels. New ideas and future developments are discussed.

  8. Recent results concerning the stability of viscoelastic shear deformable plates under compressive edge loading

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Chandiramani, N. K.

    1989-01-01

    Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.

  9. Flat Urothelial Lesions With Atypia: Interobserver Concordance and Added Value of Immunohistochemical Profiling.

    PubMed

    Lawless, Margaret E; Tretiakova, Maria S; True, Lawrence D; Vakar-Lopez, Funda

    2018-03-01

    Distinguishing urothelial carcinoma in situ (CIS) from other flat lesions of the urinary bladder with cytologic atypia is critically important for the management of patients with bladder neoplasia. However, there is high interpathologist variability in making these distinctions. The aim of this study is to assess interobserver agreement between general and specialized genitourinary pathologists, and to compare these diagnoses with those rendered after an immunohistochemical panel is performed. We hypothesized that addition of a set of immunohistochemical stains would reduce the number of cases classified within intermediate categories of atypia of uncertain significance and low-grade dysplasia. Two genitourinary pathologists independently assessed haematoxylin and eosin (H&E)-stained sections of 127 bladder biopsies from each of the 4 International Society of Urological Pathology/World Health Organization categories of flat lesions diagnosed by general pathologists. A subset of biopsies from 49 patients was reassessed after staining with a 3-antibody panel (CD44, CK20, and p53) and the results were correlated with patient follow-up. Based on these immunohistochemistry (IHC) stains, 26 cases (53.1%) were recategorized. Of most clinical importance, 5 of 27 cases (18.5%) originally diagnosed as either atypia of uncertain significance or low-grade dysplasia were recategorized as CIS, and recurrent disease was identified on subsequent biopsies. None of the 10 cases diagnosed as CIS based on H&E stains were recategorized. This triad of IHC stains can improve the precision of pathologic diagnosis of histologically atypical urothelial lesions of flat bladder mucosa. We recommend that pathologists apply this set of IHC stains to such lesions they find problematic based on H&E stains.

  10. Thermostructural Behavior of a Hypersonic Aircraft Sandwich Panel Subjected to Heating on One Side

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1997-01-01

    Thermostructural analysis was performed on a heated titanium honeycomb-core sandwich panel. The sandwich panel was supported at its four edges with spar-like substructures that acted as heat sinks, which are generally not considered in the classical analysis. One side of the panel was heated to high temperature to simulate aerodynamic heating during hypersonic flight. Two types of surface heating were considered: (1) flat-temperature profile, which ignores the effect of edge heat sinks, and (2) dome-shaped-temperature profile, which approximates the actual surface temperature distribution associated with the existence of edge heat sinks. The finite-element method was used to calculate the deformation field and thermal stress distributions in the face sheets and core of the sandwich panel. The detailed thermal stress distributions in the sandwich panel are presented, and critical stress regions are identified. The study shows how the magnitudes of those critical stresses and their locations change with different heating and edge conditions. This technical report presents comprehensive, three-dimensional graphical displays of thermal stress distributions in every part of a titanium honeycomb-core sandwich panel subjected to hypersonic heating on one side. The plots offer quick visualization of the structural response of the panel and are very useful for hot structures designers to identify the critical stress regions.

  11. Effects of Blank Curvature and Tool Conditions on the Spring Back of Thin Sheet Panel Formed through Local Embossing and Edge L-Bending

    NASA Astrophysics Data System (ADS)

    Park, Keecheol; Park, Jongyoun; Nam, Jaebok

    2011-08-01

    Due to the application of thinner sheet steels, the stamped panels in the forming process, generally, are severely distorted. The wavy shape of embossed panel finally converted to residual stress embedded in the panel at final forming (edge L-bending) and it is known as the cause of twisting and oil canning of spring backed panel. Another important source of stamped shape deviation is the curvature of blank. The effects of blank curvature on the shape defects (panel curvature and twisting) after stamping were investigated from defective panel analysis, model experiment and stamping simulation. And the effect of tool conditions (BHF and bead height change) on spring backed shape of real TV bottom chassis were studied. The initial curvature of blank was remained in the flat area of stamped panels as width directional curvature. It converted from length direction curvature of blank. The curvature of initial blank reduced the wavy shape after local emboss forming, but twisting after edge L-bending was increased at large blank curvature cases. The effects of emboss forming conditions, the forming heights and blank holding force were studied and it was found that the wavy shape of stamped sheet was rapidly changed although the forming conditions altered very small amount.

  12. Static and aerothermal tests of a superalloy honeycomb prepackaged thermal protection system

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.; Shideler, John L.; Webb, Granville L.

    1993-01-01

    A reusable metallic thermal protection system has been developed for vehicles with maximum surface temperatures of up to 2000 F. An array of two 12- by 12-in. panels was subjected to radiant heating tests that simulated Space Shuttle entry temperature and pressure histories. Results indicate that this thermal protection system, with a mass of 2.201 lbm/ft(exp 2), can successfully prevent typical aluminum primary structure of an entry vehicle like the Space Shuttle from exceeding temperatures greater than 350 F at a location on the vehicle where the maximum surface temperature is 1900 F. A flat array of 20 panels was exposed to aerothermal flow conditions, at a Mach number of 6.75. The panels were installed in a worst-case orientation with the gaps between panels parallel to the flow. Results from the aerothermal tests indicated that convective heating occurred from hot gas flow in the gaps between the panels. Proposed design changes to prevent gap heating occurred from hot gas flow in the gaps between the panels. Proposed design changes to prevent gap heating include orienting panels so that gaps are not parallel to the flow and using a packaged, compressible gap-filler material between panels to block hot gas flow in the gaps.

  13. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  14. An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Xie, Z.

    2018-05-01

    The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.

  15. A review of sensing technologies for small and large-scale touch panels

    NASA Astrophysics Data System (ADS)

    Akhtar, Humza; Kemao, Qian; Kakarala, Ramakrishna

    2017-06-01

    A touch panel is an input device for human computer interaction. It consists of a network of sensors, a sampling circuit and a micro controller for detecting and locating a touch input. Touch input can come from either finger or stylus depending upon the type of touch technology. These touch panels provide an intuitive and collaborative workspace so that people can perform various tasks with the use of their fingers instead of traditional input devices like keyboard and mouse. Touch sensing technology is not new. At the time of this writing, various technologies are available in the market and this paper reviews the most common ones. We review traditional designs and sensing algorithms for touch technology. We also observe that due to its various strengths, capacitive touch will dominate the large-scale touch panel industry in years to come. In the end, we discuss the motivation for doing academic research on large-scale panels.

  16. Assessment of a New High-Performance Small-Animal X-Ray Tomograph

    NASA Astrophysics Data System (ADS)

    Vaquero, J. J.; Redondo, S.; Lage, E.; Abella, M.; Sisniega, A.; Tapias, G.; Montenegro, M. L. Soto; Desco, M.

    2008-06-01

    We have developed a new X-ray cone-beam tomograph for in vivo small-animal imaging using a flat panel detector (CMOS technology with a microcolumnar CsI scintillator plate) and a microfocus X-ray source. The geometrical configuration was designed to achieve a spatial resolution of about 12 lpmm with a field of view appropriate for laboratory rodents. In order to achieve high performance with regard to per-animal screening time and cost, the acquisition software takes advantage of the highest frame rate of the detector and performs on-the-fly corrections on the detector raw data. These corrections include geometrical misalignments, sensor non-uniformities, and defective elements. The resulting image is then converted to attenuation values. We measured detector modulation transfer function (MTF), detector stability, system resolution, quality of the reconstructed tomographic images and radiated dose. The system resolution was measured following the standard test method ASTM E 1695 -95. For image quality evaluation, we assessed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as a function of the radiated dose. Dose studies for different imaging protocols were performed by introducing TLD dosimeters in representative organs of euthanized laboratory rats. Noise figure, measured as standard deviation, was 50 HU for a dose of 10 cGy. Effective dose with standard research protocols is below 200 mGy, confirming that the system is appropriate for in vivo imaging. Maximum spatial resolution achieved was better than 50 micron. Our experimental results obtained with image quality phantoms as well as with in-vivo studies show that the proposed configuration based on a CMOS flat panel detector and a small micro-focus X-ray tube leads to a compact design that provides good image quality and low radiated dose, and it could be used as an add-on for existing PET or SPECT scanners.

  17. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    PubMed

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  18. Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery

    PubMed Central

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre. PMID:22942510

  19. 76 FR 4534 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... interior panels, exterior siding, and tileboard. A typical flat wood coating facility applies stains and..., Volatile Organic Compounds from Specific Processes. This action affects facilities that apply stains and... these emission limits: lb VOC per gallon material (grams Surface coatings, inks, or adhesives applied to...

  20. 21 CFR Appendix B to Subpart B of... - Scope of Product Coverage

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...

  1. 21 CFR Appendix B to Subpart B of... - Scope of Product Coverage

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...

  2. Transparent, conducting films based on metal/dielectric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario

    1999-07-01

    A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.

  3. 75 FR 21197 - Approval and Promulgation of Implementation Plans; Implementation Plan Revision; State of New Jersey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ...; asphalt pavement production plants; CTGs published in 2006: flat wood paneling, flexible packaging... new provisions that New Jersey designed to minimize emissions when a tank goes through a ``roof... approve them. Section 16.11 Asphalt Pavement Production Plants The New Jersey amendments to section 16.11...

  4. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  5. The exact solution of shear-lag problems in flat panels and box beams assumed rigid in the transverse direction

    NASA Technical Reports Server (NTRS)

    Hildebrand, Francis B

    1943-01-01

    A mathematical procedure is herein developed for obtaining exact solutions of shear-lag problems in flat panels and box beams: the method is based on the assumption that the amount of stretching of the sheets in the direction perpendicular to the direction of essential normal stresses is negligible. Explicit solutions, including the treatment of cut-outs, are given for several cases and numerical results are presented in graphic and tabular form. The general theory is presented in a from which further solutions can be readily obtained. The extension of the theory to cover certain cases of non-uniform cross section is indicated. Although the solutions are obtained in terms of infinite series, the present developments differ from those previously given in that, in practical cases, the series usually converge so rapidly that sufficient accuracy is afforded by a small number of terms. Comparisons are made in several cases between the present results and the corresponding solutions obtained by approximate procedures devised by Reissner and by Kuhn and Chiarito.

  6. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater.

    PubMed

    Park, Younghyun; Park, Seonghwan; Nguyen, Van Khanh; Kim, Jung Rae; Kim, Hong Suck; Kim, Byung Goon; Yu, Jaecheul; Lee, Taeho

    2017-02-01

    In order to confirm the effects of the low conductivity and biodegradability of wastewater, flat-panel air-cathode microbial fuel cells (FA-MFCs) were operated by supplying substrates with different volume ratios of domestic wastewater mixed with an artificial medium: the artificial medium only, 25% wastewater, 50% wastewater, 75% wastewater, 100% of wastewater with 500mg-COD/L by adding acetate, and raw domestic wastewater (230mg-COD/L). With the increase of wastewater ratio, the maximum power density and organic removal efficiency decreased from 187 to 60W/m 3 and 51.5 to 37.4%, respectively, but the Coulombic efficiency was maintained in the range of 18.0-18.9%. The FA-MFCs could maintain their low internal resistances and overcome the decreasing conductivity. The acetate concentration was more important than the total organics for power production. This study suggests that the FA-MFC configuration has great applicability for practical applications when supplied by domestic wastewater with low conductivity and biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Performance evaluation of a retrofit digital detector-based mammography system.

    PubMed

    Marshall, Nicholas W; van Ongeval, Chantal; Bosmans, Hilde

    2016-02-01

    A retrofit flat panel detector was integrated with a GE DMR+ analog mammography system and characterized using detective quantum efficiency (DQE). Technical system performance was evaluated using the European Guidelines protocol, followed by a limited evaluation of clinical image quality for 20 cases using image quality criteria in the European Guidelines. Optimal anode/filter selections were established using signal difference-to-noise ratio measurements. Only small differences in peak DQE were seen between the three anode/filter settings, with an average value of 0.53. For poly(methyl methacrylate) (PMMA) thicknesses above 60 mm, the Rh/Rh setting was the optimal anode/filter setting. The system required a mean glandular dose of 0.54 mGy at 30 kV Rh/Rh to reach the Acceptable gold thickness limit for 0.1 mm details. Imaging performance of the retrofit unit with the GE DMR+ is notably better than of powder based computed radiography systems and is comparable to current flat panel FFDM systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Imaging of the midpalatal suture in a porcine model: flat-panel volume computed tomography compared with multislice computed tomography.

    PubMed

    Hahn, Wolfram; Fricke-Zech, Susanne; Fialka-Fricke, Julia; Dullin, Christian; Zapf, Antonia; Gruber, Rudolf; Sennhenn-kirchner, Sabine; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza

    2009-09-01

    An investigation was conducted to compare the image quality of prototype flat-panel volume computed tomography (fpVCT) and multislice computed tomography (MSCT) of suture structures. Bone samples were taken from the midpalatal suture of 5 young (16 weeks) and 5 old (200 weeks) Sus scrofa domestica and fixed in formalin solution. An fpVCT prototype and an MSCT were used to obtain images of the specimens. The facial reformations were assessed by 4 observers using a 1 (excellent) to 5 (poor) rating scale for the weighted criteria visualization of the suture structure. A linear mixed model was used for statistical analysis. Results with P < .05 were considered to be statistically significant. The visualization of the suture of young specimens was significantly better than that of older animals (P < .001). The visualization of the suture with fpVCT was significantly better than that with MSCT (P < .001). Compared with MSCT, fpVCT produces superior results in the visualization of the midpalatal suture in a Sus scrofa domestica model.

  9. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  10. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  11. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  12. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less

  13. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  14. 3D Modelling of Urban Terrain (Modelisation 3D de milieu urbain)

    DTIC Science & Technology

    2011-09-01

    Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis and Studies Panel • SCI... Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These bodies are made up of national representatives as well as...of a part of it may be made for individual use only. The approval of the RTA Information Management Systems Branch is required for more than one

  15. 75 FR 18566 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2010-0014] Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Seventh Panel Meeting. DATES: May... ``the FACA'') shall report to and provide the Commissioner of Social Security independent advice and...

  16. 75 FR 38861 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2010-0037] Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Eighth Panel Meeting. DATES... referred to as ``the FACA'') shall report to and provide the Commissioner of Social Security independent...

  17. 76 FR 4146 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2011-0010] Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Tenth Panel Meeting. DATES... referred to as ``the FACA'') shall report to and provide the Commissioner of Social Security independent...

  18. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    PubMed

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  19. Sun-to-Wheels Exergy Efficiencies for Bio-Ethanol and Photovoltaics.

    PubMed

    Williams, Eric; Sekar, Ashok; Matteson, Schuyler; Rittmann, Bruce E

    2015-06-02

    The two main paths to power vehicles with sunlight are to use photosynthesis to grow biomass, converting to a liquid fuel for an internal combustion engine or to generate photovoltaic electricity that powers the battery of an electric vehicle. While the environmental attributes of these two paths have been much analyzed, prior studies consider the current state of technology. Technologies for biofuel and photovoltaic paths are evolving; it is critical to consider how progress might improve environmental performance. We address this challenge by assessing the current and maximum theoretical exergy efficiencies of bioethanol and photovoltaic sun-to-wheels process chains. The maximum theoretical efficiency is an upper bound stipulated by physical laws. The current net efficiency to produce motive power from silicon photovoltaic modules is estimated at 5.4%, much higher than 0.03% efficiency for corn-based ethanol. Flat-plate photovoltaic panels also have a much higher theoretical maximum efficiency than a C4 crop plant, 48% versus 0.19%. Photovoltaic-based power will always be vastly more efficient than a terrestrial crop biofuel. Providing all mobility in the U.S. via crop biofuels would require 130% of arable land with current technology and 20% in the thermodynamic limit. Comparable values for photovoltaic-based power are 0.7% and 0.081%, respectively.

  20. Military application of flat panel displays in the Vetronics Technology Testbed prototype vehicle

    NASA Astrophysics Data System (ADS)

    Downs, Greg; Roller, Gordon; Brendle, Bruce E., Jr.; Tierney, Terrance

    2000-08-01

    The ground combat vehicle crew of tomorrow must be able to perform their mission more effectively and efficiently if they are to maintain dominance over ever more lethal enemy forces. Increasing performance, however, becomes even more challenging when the soldier is subject to reduced crew sizes, a never- ending requirement to adapt to ever-evolving technologies and the demand to assimilate an overwhelming array of battlefield data. This, combined with the requirement to fight with equal effectiveness at any time of the day or night in all types of weather conditions, makes it clear that this crew of tomorrow will need timely, innovative solutions to overcome this multitude of barriers if they are to achieve their objectives. To this end, the U.S. Army is pursuing advanced crew stations with human-computer interfaces that will allow the soldier to take full advantage of emerging technologies and make efficient use of the battlefield information available to him in a program entitled 'Vetronics Technology Testbed.' Two critical components of the testbed are a compliment of panoramic indirect vision displays to permit drive-by-wire and multi-function displays for managing lethality, mobility, survivability, situational awareness and command and control of the vehicle. These displays are being developed and built by Computing Devices Canada, Ltd. This paper addresses the objectives of the testbed program and the technical requirements and design of the displays.

  1. Technology Needs for the Next Generation of NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2013-01-01

    In-Space propulsion technologies relevant to Mars presentation is for the 14.03 Emerging Technologies for Mars Exploration panel. The talk will address propulsion technology needs for future Mars science missions, and will address electric propulsion, Earth entry vehicles, light weight propellant tanks, and the Mars ascent vehicle. The second panel presentation is Technology Needs for the Next Generation of NASA Science Missions. This talk is for 14.02 Technology Needs for the Next Generation of NASA Science Missions panel. The talk will summarize the technology needs identified in the NAC's Planetary Science Decadal Survey, and will set the stage for the talks for the 4 other panelist.

  2. A swept wing panel in a low speed flexible walled test section

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1987-01-01

    The testing of two-dimensional airfoil sections in adaptive wall tunnels is relatively widespread and has become routine at all speeds up to transonic. In contrast, the experience with the three-dimensional testing of swept panels in adaptive wall test sections is very limited, except for some activity in the 1940's at NPL, London. The current interest in testing swept wing panels led to the work covered by this report, which describes the design of an adaptive-wall swept-wing test section for a low speed wind tunnel and gives test results for a wing panel swept at 40 deg. The test section has rigid flat sidewalls supporting the panel, and features flexible top and bottom wall with ribs swept at the same angle as the wing. When streamlined, the walls form waves swept at the same angle as the wing. The C sub L (-) curve for the swept wing, determined from its pressure distributions taken with the walls streamlined, compare well with reference data which was taken on the same model, unswept, in a test section deep enough to avoid wall interference.

  3. 76 FR 27143 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2010-0038] Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Eleventh Panel Meeting. DATES: May... amended, (hereinafter referred to as ``the FACA'') shall report to and provide the Commissioner of Social...

  4. Optimization of Elastically Tailored Tow-Placed Plates with Holes

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a design concept that has been demonstrated to be both beneficial and practical. The objective of the present paper is to demonstrate the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels. Preliminary panel designs that are to be manufactured and tested were determined through design studies for flat plates without holes under axial compression using an optimization program. These candidate designs were then analyzed with finite element models that accurately reflect the test conditions and geometries in order to decide upon the final designs for manufacture and testing. An advanced tow-placement machine is used to manufacture the test panels with varying fiber orientation angles. A total of six large panels measuring three feet by six feet, each of which is used to produce four specimens with or without holes, are fabricated. The panels were machined into specimens with holes and tested at NASA Langley Research Center. Buckling response and failure of panels without holes and with two different hole dimensions are presented. Buckling and failure loads of tow-steered specimens are significantly greater than the buckling and failure loads of traditional straight-fiber specimens.

  5. Optimization of Blended Wing Body Composite Panels Using Both NASTRAN and Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2006-01-01

    The blended wing body (BWB) is a concept that has been investigated for improving the performance of transport aircraft. A trade study was conducted by evaluating four regions from a BWB design characterized by three fuselage bays and a 400,000 lb. gross take-off weight (GTW). This report describes the structural optimization of these regions via computational analysis and compares them to the baseline designs of the same construction. The identified regions were simplified for use in the optimization. The regions were represented by flat panels having appropriate classical boundary conditions and uniform force resultants along the panel edges. Panel-edge tractions and internal pressure values applied during the study were those determined by nonlinear NASTRAN analyses. Only one load case was considered in the optimization analysis for each panel region. Optimization was accomplished using both NASTRAN solution 200 and Genetic Algorithm (GA), with constraints imposed on stress, buckling, and minimum thicknesses. The NASTRAN optimization analyses often resulted in infeasible solutions due to violation of the constraints, whereas the GA enforced satisfaction of the constraints and, therefore, always ensured a feasible solution. However, both optimization methods encountered difficulties when the number of design variables was increased. In general, the optimized panels weighed less than the comparable baseline panels.

  6. The ACT transport: Panacea for the 80's or designer's illusion (panel discussion)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A panel discussion was held which attempted to make an objective and pragmatic assessment of the standing of active control technology. The discussion focused on the standing of active control technology relative to civil air transport applications, the value as opposed to the cost of the projected benefits, the need for research, development, and demonstration, the role of government and industry in developing the technology, the major obstacles to its implementation, and the probable timing of the full utilization of active control technology in commercial transportation. An edited transcription of the prepared statements of the panel members and the subsequent open discussion between the panel and the audience is presented.

  7. Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric

    NASA Astrophysics Data System (ADS)

    Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.

    2018-05-01

    Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded

  8. Comparisons of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC

    NASA Technical Reports Server (NTRS)

    Hedahl, Marc O.

    1995-01-01

    Two contrasting models of gas-surface interactions are studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate is that of one of the solar panels on the Magellan spacecraft, and the freestream conditions are one of those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two plate system is not representative of the Magellan geometry, but is studied to explore possible experiments that might be used to differentiate between the two gas surface interaction models.

  9. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  10. Multipurpose Panel Display Device Investigation. [technology assessment and product development

    NASA Technical Reports Server (NTRS)

    Sliwa, R.

    1977-01-01

    A multipurpose panel was developed to provide a flexible control and a LED display panel with easily changeable nomenclature for use in applications where panel space is limited, but where a number of similar subsystems must be controlled, or where basic panel nomenclature and functions must be changed rapidly, as in the case of between mission changes of space shuttle payloads. In the first application, panel area limitations are overcome by time sharing a central control panel among several subsystems. In the latter case, entire control panel changes are effected by simply replacing a memory module, thereby reducing the extent of installation and checkout procedures between missions. Several types of control technologies (other than LED's) which show potential in meeting criteria for overcoming limitations of the panel are assessed.

  11. 75 FR 5353 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Georgia Institute of Technology and The University of Massachusetts, Proposal Review Panel for Chemistry... a.m.-8 p.m. Places: Department of Chemistry, Georgia Institute of Technology, Atlanta, GA 30332...

  12. Innovative Ballasted Flat Roof Solar PV Racking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peek, Richard T.

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction ofmore » the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.« less

  13. Design and construction of a photobioreactor for hydrogen production, including status in the field.

    PubMed

    Skjånes, Kari; Andersen, Uno; Heidorn, Thorsten; Borgvang, Stig A

    Several species of microalgae and phototrophic bacteria are able to produce hydrogen under certain conditions. A range of different photobioreactor systems have been used by different research groups for lab-scale hydrogen production experiments, and some few attempts have been made to upscale the hydrogen production process. Even though a photobioreactor system for hydrogen production does require special construction properties (e.g., hydrogen tight, mixing by other means than bubbling with air), only very few attempts have been made to design photobioreactors specifically for the purpose of hydrogen production. We have constructed a flat panel photobioreactor system that can be used in two modes: either for the cultivation of phototrophic microorganisms (upright and bubbling) or for the production of hydrogen or other anaerobic products (mixing by "rocking motion"). Special emphasis has been taken to avoid any hydrogen leakages, both by means of constructional and material choices. The flat plate photobioreactor system is controlled by a custom-built control system that can log and control temperature, pH, and optical density and additionally log the amount of produced gas and dissolved oxygen concentration. This paper summarizes the status in the field of photobioreactors for hydrogen production and describes in detail the design and construction of a purpose-built flat panel photobioreactor system, optimized for hydrogen production in terms of structural functionality, durability, performance, and selection of materials. The motivations for the choices made during the design process and advantages/disadvantages of previous designs are discussed.

  14. Comparative investigation of the detective quantum efficiency of direct and indirect conversion detector technologies in dedicated breast CT.

    PubMed

    Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A

    2015-06-01

    To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Acoustic fatigue and sound transmission characteristics of a ram composite panel design

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.; Chang, K. Y.; Kao, G. C.

    1972-01-01

    An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.

  16. Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel

    NASA Astrophysics Data System (ADS)

    Flanagan, M.; Goggins, J.; Doyle, A.; Weafer, B.; Ward, M.; Bizeul, M.; Canavan, R.; O'Bradaigh, C.; Doyle, K.; Harrison, N.

    2017-10-01

    Out-of-Autoclave manufacturing methods, specifically Automated Tape Placement (ATP) and induction welding, used in the fabrication of a stiffened thermoplastic demonstrator panel, are presented in this study. The demonstrator panel consists of two stiffeners induction welded to a flat skin, to form a typical load bearing aerospace sub-component. The skin of the panel is manufactured from uni-directional Carbon Fibre (CF) Polyetheretherkeytone (PEEK) using laser assisted Automated Tape Placement (ATP) and the stiffeners are press formed from woven CF-PEEK. The stiffeners are fusion bonded to the skin using a continuous induction welding process. A susceptor material is used at the interface to ensure the required heating is concentrated at the weldline. Microscopy was used to examine the manufactured coupons for defects. Destructive testing was carried out to evaluate the strength of the overall assembly. The work shows that assemblies manufactured using continuous induction welding and ATP are suitable for load bearing aerospace applications.

  17. Lightweight sidewalls for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    May, D. N.; Plotkin, K. J.; Selden, R. G.; Sharp, B. H.

    1985-01-01

    A theoretical and experimental study was performed to devise lightweight sidewalls for turboprop aircraft. Seven concepts for new sidewalls were analyzed and tested for noise reduction using flat panels of 1.2 m x 1.8 m (4 ft x 6 ft), some of which were aircraft-type constructions and some of which were simpler, easier-to-construct panels to test the functioning of an acoustic principle. Aircraft-application sidewalls were then conceived for each of the seven concepts, and were subjectively evaluated for their ability to meet aircraft nonacoustic design requirements. As a result of the above, the following sidewall concepts were recommended for further investigation: a sidewall in which the interior cavity is vented to ceiling and underfloor areas; sidewalls with wall-mounted resonators, one having a conventional trim panel and one a limp one; and a sidewall with a stiff outer wall and a limp trim panel. These sidewalls appear to promise lower weights than conventional sidewalls adjusted to meet similar acoustic requirements, and further development may prove them to be practical.

  18. W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.

    1997-01-01

    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements.

  19. Mineral Resources and the Environment.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This report presents the findings and recommendations of panels created by the Committee on Mineral Resources and the Environment (COMRATE) to study four topic areas of mineral resources and the environment. The topic areas studied by the panels were: technology, supply, the environment, and demand. Section I, the report of the technology panel,…

  20. Symmetric waterbomb origami.

    PubMed

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

Top