Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates
Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.
2015-09-03
Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less
Large amplitude flexural vibration of thin elastic flat plates and shells
NASA Technical Reports Server (NTRS)
Pandalia, K. A. V.
1972-01-01
The general equations governing the large amplitude flexural vibration of any thin elastic shell using curvilinear orthogonal coordinates are derived and consist of two coupled, nonlinear, partial differential equations in the normal displacement w and the stress function F. From these equations, the governing equations for the case of shells of revolution or flat plates can be readily obtained as special cases. The material of the shell or plate is isotropic and homogeneous and Hooke's law for the two-dimensional case is valid. It is suggested that the difference between the hardening type of nonlinearity in the case of flat plates and straight beams and the softening type of nonlinearity in the case of shells and rings can, in general, be traced to the amount of curvature present in the underformed median surface of the structure concerned.
NASA Astrophysics Data System (ADS)
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
High-Fidelity Numerical Modeling of Compressible Flow
2015-11-01
details on these aspects of the implementation were reported in an earlier paper by Poggie.42 C. Flowfield Two flat - plate turbulent boundary layer flows...work investigated flat plate turbulent boundary layer flows. The baseline case was a flow at Mach 2.3, under conditions similar to those employed in...analyzed. The solutions are compared to a spanwise- periodic flat - plate turbulent boundary layer developed at the same conditions and yield similar
Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2016-01-01
The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.
Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers
2016-02-26
though parameter variations were also performed. For the rotating cases, the wing was an aspect ratio 2 rectangular flat plate , and the root cutout (i.e...rectangular flat plate . 2 U (Side View) (a) 1A: Rectilinear pitch U (Side View) (b) 1B: Rectilinear surge (Top View) (Side View) (c) 2A: Rotational...0.5c φ (b) A=2 flat plate wing Figure 2: Schematic of the AVT-202 rotating wing kinematics and geometry, from Ref. 12. 3.2 Experimental Setup Rotating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakan Ozaltun; Pavel Medvedev
The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
NASA Astrophysics Data System (ADS)
Puzu, N.; Prasertsan, S.; Nuntadusit, C.
2017-09-01
The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.
Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity
NASA Technical Reports Server (NTRS)
Kandula, M.
2012-01-01
Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.
Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Zeman, Patrick L.
1991-01-01
The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.
Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces
NASA Astrophysics Data System (ADS)
Tsai, Scott; Bird, James C.; Stone, Howard A.
2008-11-01
Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
..., by reason of imports from Japan of diffusion-annealed, nickel-plated steel flat-rolled products... 45 days, or in this case by May 13, 2013. The Commission's views are due at Commerce within five.... Lisa R. Barton, Acting Secretary to the Commission. [FR Doc. 2013-07584 Filed 4-1-13; 8:45 am] BILLING...
Development of flat-plate solar plate collector: Evaporator
NASA Astrophysics Data System (ADS)
Abramzon, B.; Yaron, I.
1981-11-01
In the present study the thermal performance of a flat plate solar collector is analyzed theoretically for the case in which the working fluid may undergo a phase change within the tubes of the collector. In addition to the common domestic applications, such a collector - evaporator may be used as a generator of vapors for the production of mechanical or electrical energy, e.g., solar water pumps, solar power stations, etc., as well as for solar - powered absorption refrigeration machines, distillation installations, etc.
Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2018-01-01
The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.
Development of electromagnetic welding facility of flat plates for nuclear industry
NASA Astrophysics Data System (ADS)
Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag
2017-04-01
Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.
Changes in Flat Plate Wake Characteristics Obtained With Decreasing Plate Thickness
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2016-01-01
The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for four different Reynolds numbers based on plate thickness (D) and at constant plate length. The value of ?/D varies by a factor of approximately 20 in the computations (? being the boundary layer momentum thickness at the trailing edge). The separating boundary layers are turbulent in all the cases. One objective of the study is to understand the changes in wake characteristics as the plate thickness is reduced (increasing ?/D). Vortex shedding is vigorous in the low ?/D cases with a substantial decrease in shedding intensity in the largest ?/D case (for all practical purposes shedding becomes almost intermittent). Other characteristics that are significantly altered with increasing ?/D are the roll-up of the detached shear layers and the magnitude of fluctuations in shedding period. These effects are explored in depth. The effects of changing ?/D on the distributions of the time-averaged, near-wake velocity statistics are discussed.
Free vibration of rectangular plates with a small initial curvature
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A. A.; Oyediran, A. A.
1988-01-01
The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.
The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2016-01-01
The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca; Orozco, María Teresa; Wong Valenzuela, Raul; Husker, Allen Leroy; Kostoglodovc, Vlad; Ionescu, Constantin
2017-04-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Manea, V. C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R. W.; Husker, A.; Kostoglodov, V.
2017-01-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
...-Plated Flat-Rolled Steel Products From Japan: Postponement of Preliminary Determination of Antidumping... investigation of diffusion-annealed, nickel-plated flat-rolled steel products from Japan. See Diffusion- Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Initiation of Antidumping Duty Investigation...
A high performance porous flat-plate solar collector
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Clarke, V.; Reynolds, R.
1979-01-01
A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.
Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion
NASA Astrophysics Data System (ADS)
Moubogha Moubogha, Joseph; Astolfi, Jacques Andre
Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
...-Plated Flat-Rolled Steel Products From Japan; Scheduling of the Final Phase of an Antidumping... imports from Japan of diffusion-annealed, nickel- plated flat-rolled steel products, provided for... diffusion-annealed, nickel- plated flat-rolled steel products from Japan are being sold in the United States...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...-Plated Flat-Rolled Steel Products From Japan: Initiation of Antidumping Duty Investigation AGENCY: Import... products from Japan (``certain nickel-plated, flat-rolled steel''), filed in proper form by Thomas Steel... Antidumping Duty Petition on Diffusion-Annealed, Nickel- Plated Steel Flat-Rolled Products from Japan, dated...
Airfoil noise reductions through leading edge serrations
NASA Astrophysics Data System (ADS)
Narayanan, S.; Chaitanya, P.; Haeri, S.; Joseph, P.; Kim, J. W.; Polacsek, C.
2015-02-01
This paper provides an experimental investigation into the use of leading edge (LE) serrations as a means of reducing the broadband noise generated due to the interaction between the aerofoil's LE and impinging turbulence. Experiments are performed on a flat plate in an open jet wind tunnel. Grids are used to generate isotropic homogeneous turbulence. The leading edge serrations are in the form of sinusoidal profiles of wavelengths, λ, and amplitudes, 2h. The frequency and amplitude characteristics are studied in detail in order to understand the effect of LE serrations on noise reduction characteristics and are compared with straight edge baseline flat plates. Noise reductions are found to be insignificant at low frequencies but significant in the mid frequency range (500 Hz-8 kHz) for all the cases studied. The flat plate results are also compared to the noise reductions obtained on a serrated NACA-65 aerofoil with the same serration profile. Noise reductions are found to be significantly higher for the flat plates with a maximum noise reduction of around 9 dB compared with about 7 dB for the aerofoil. In general, it is observed that the sound power reduction level (ΔPWL) is sensitive to the amplitude, 2h of the LE serrations but less sensitive to the serration wavelength, λ. Thus, this paper sufficiently demonstrates that the LE amplitude acts as a key parameter for enhancing the noise reduction levels in flat plates and aerofoils.
Corrugated cover plate for flat plate collector
Hollands, K. G. Terry; Sibbitt, Bruce
1978-01-01
A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.
The effect of butterfly-scale inspired patterning on leading-edge vortex growth
NASA Astrophysics Data System (ADS)
Wilroy, Jacob Aaron
Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.
Wakefields of a Beam near a Single Plate in a Flat Dechirper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; Stupakov, Gennady
At linac-based, X-ray free electron lasers (FELs), there is interest in streaking the beam by inducing the transverse wakes in a flat dechirper, by passing the beam near to one of its two jaws. For LCLS-II - as has already been done for LCLS-I - this way of using the dechirper will e.g. facilitate two-color and fresh slice schemes of running the FEL. With the beam a distance from the near wall of say b ~ 0.25 mm and from the far wall by ≳ 5 mm, the second wall will no longer affect the results. The physics will bemore » quite different from the two plate case: with two plates the impedance has a resonance spike whose frequency depends on the plate separation 2a; in the single plate case this parameter no longer exists. Formulas for the longitudinal, dipole, and quadrupole wakes for a beam off-axis between two dechirper plates, valid for the range of bunch lengths of interest in an X-ray FEL, are given in reference 3. By taking the proper limit, we can obtain the corresponding wakes for a beam close to one dechirper plate and far from the other. This is the task we perform in this note.« less
Radar echo from a flat conducting plate - near and far
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.S.
1982-01-01
Over certain types of terrain, a radar fuze (or altimeter), by virtue of the horizontal component of its velocity, is likely to pass over various flat objects of limited size. The echo from such objects could have a duration less than that of one Doppler cycle, where the Doppler frequency is due to the vertical component of the velocity. If the terrain is principally made up of such objects, their echoes are in most cases entirely uncorrelated with each other. Hence, the total echo after mixing at the radar with the delayed transmitted wave would have a noise-like spectrum notmore » at all confined to the Doppler-frequency band where the desired echo signal is expected. This would seriously degrade the performance of a radar that utilizes correlation. This work shows that the echo from a square flat plate will be of duration greater than the time it takes to pass over the plate if the height h above it satisfies h > a/sup 2//lambda where a is the plate-edge dimension and lambda is the radar wavelength. The results presented here can be used to determine the spatial region wherein the echo exists, and the magnitude and phase of the echo from such a plate. I infer from these results that the case where the signal has a noise-like spectrum is not impossible but it is unlikely for the applications with which I am familiar.« less
78 FR 31577 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
..., Nickel-Plated Flat-Rolled Steel Products From Japan Determination On the basis of the record \\1... imports from Japan of diffusion-annealed, nickel-plated flat-rolled steel products, provided for primarily... flat-rolled steel products from Japan. Accordingly, effective March 27, 2013, the Commission instituted...
Toward Verification of USM3D Extensions for Mixed Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.
2013-01-01
The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.
NASA Astrophysics Data System (ADS)
Pandit, K. K.; Sarma, D.; Singh, S. I.
2017-12-01
An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.
Solar air heaters and their applications
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.
NASA Technical Reports Server (NTRS)
Geissler, W.
1983-01-01
A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.
NASA Astrophysics Data System (ADS)
Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.
2018-04-01
Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.
On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate
NASA Technical Reports Server (NTRS)
Webb, J. C.; Otto, S. R.; Lilley, G. M.
1994-01-01
The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.
NASA Astrophysics Data System (ADS)
Rai, Man Mohan
2018-05-01
The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x/D. Both these effects are examined in detail, and the important contributors are identified.
Evaluation of finger plate and flat plate connection design.
DOT National Transportation Integrated Search
2016-01-01
This project investigates the cause(s) of premature deterioration of MoDOT finger plate and flat plate expansion devices : under high traffic volumes and then uses that information to design new Load and Resistance Factor Design (LRFD) : finger plate...
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
Vortex shedding experiment with flat and curved bluff plates in water
NASA Technical Reports Server (NTRS)
Reed, D.; Nesman, T.; Howard, P.
1988-01-01
Vortex shedding experiments were conducted in a water flow facility in order to simulate the strong discrete 4000-Hz vibration detected in the Space Shuttle Main Engine (SSME) which is thought to be associated with the SSME LOX inlet tee splitter vanes on the Main Injector. For the case of a flat vane with a blunt trailing edge excited by flow induced vortex shedding, lock-in with the first bending mode of the plate was observed. A curved vane displayed similar behavior, with the lock-in being a more discrete higher amplitude response. Aluminum vanes were employed to decouple the first vane bending mode from the vortex shedding mode. The application of an asymmetric 30-deg trailing edge bevel to both the flat and curved vanes was found to greatly reduce the strength of the shed vortices.
Flow over a traveling wavy foil with a passively flapping flat plate
NASA Astrophysics Data System (ADS)
Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun
2012-05-01
Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.
Retaining Device For One-Piece Battery
Gilabert, Claude; Leturque, Michel; Verhoog, Roclof
2000-08-01
The present invention consists of a device for retaining a one-piece battery with a prismatic casing having two longitudinal walls and two transverse walls. The device contains two plates applied to respective transverse walls and at least one cinching mechanism for the plates consisting of at least one flat strip closed on itself surrounding the longitudinal walls and the transverse walls are provided with the plates. The device is characterized in that at least one of the plates contains at least one recessed housing and the strip closely follows the shape of the housing.
Collation of quarterly reports on air flat plate collectors
NASA Technical Reports Server (NTRS)
1977-01-01
The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.
Flat-plate solar array progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1984-01-01
The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.
Estimate of Joule Heating in a Flat Dechirper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; Stupakov, Gennady; Gjonaj, Erion
2017-02-10
We have performed Joule power loss calculations for a flat dechirper. We have considered the configurations of the beam on-axis between the two plates—for chirp control—and for the beam especially close to one plate—for use as a fast kicker. Our calculations use a surface impedance approach, one that is valid when corrugation parameters are small compared to aperture (the perturbative parameter regime). In our model we ignore effects of field reflections at the sides of the dechirper plates, and thus expect the results to underestimate the Joule losses. The analytical results were also tested by numerical, time-domain simulations. We findmore » that most of the wake power lost by the beam is radiated out to the sides of the plates. For the case of the beam passing by a single plate, we derive an analytical expression for the broad-band impedance, and—in Appendix B—numerically confirm recently developed, analytical formulas for the short-range wakes. While our theory can be applied to the LCLS-II dechirper with large gaps, for the nominal apertures we are not in the perturbative regime and the reflection contribution to Joule losses is not negligible. With input from computer simulations, we estimate the Joule power loss (assuming bunch charge of 300 pC, repetition rate of 100 kHz) is 21 W/m for the case of two plates, and 24 W/m for the case of a single plate.« less
46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...
46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...
Experimental investigation of jet-induced loads on a flat plate in hover out-of-ground effect
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.; Warcup, R. W.
1979-01-01
Effects of varying jet decay rate on jet-induced loads on a flat plate located in the plane of the jet exit perpendicular to the jet axis were investigated using a small-scale laboratory facility. Jet decay rate has been varied through use of two cylindrical centerbodies having either a flat or hemispherical tip, which were submerged various distances below the flat plate jet exit plane. Increased jet decay rate, caused by the presence of a center-body or plug in the jet nozzle, led to an increased jet-induced lift loss on the flat plate. Jet-induced lift losses reached 1 percent of the jet thrust for the quickest jet decay rates for plate areas equal to 100 times the effective jet exit area. The observed lift loss versus jet decay rate trend agreed well with results of previous investigations.
Visualization of vortex flow field around a flat plate with noncircular hole
NASA Astrophysics Data System (ADS)
Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.
2018-02-01
In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.
The effect of butterfly-scale inspired patterning on leading-edge vortex growth
NASA Astrophysics Data System (ADS)
Wilroy, Jacob; Lang, Amy
2015-11-01
Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied and the subsequent affect on the growth rate of the circulation in the LEV. For this experiment we used butterfly inspired grooves attached to a flat plate and compared the vortex formation to a smooth plate case as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 3.0 and is based on the flat plate travel length and chord length. We would like to thank the National Science Foundation REU Site Award 1358991 for funding this research.
NASA Technical Reports Server (NTRS)
Einstein, Thomas H.
1961-01-01
Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2017-01-01
The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x divided by D. Both these effects are examined in detail and the important contributors are identified.
Small bending and stretching of sandwich-type shells
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Upgrading Basements for Combined Nuclear Weapons Effects: Expedient Options
1976-05-01
reinforced concrete stairwell walls can be expected to be substantial in these cases, since they are supporting an axial load from higher floors. F...desirability) include: a. Stacked concrete block or brick b. Stacked timber * The latter situation is likely to occur only in load - bearing wall...concrete flat slab 4 Reinforced concrete flat plate 4 Load - bearing wall 3 The analysis of the floor systems for the 34 NSS buildings required the dynamic
Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ha, Tae Woong
1989-01-01
Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.
NASA Astrophysics Data System (ADS)
Zernial, W.
1982-12-01
The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.
Investigation of Heat Transfer to a Flat Plate in a Shock Tube.
1987-12-01
2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge
Elastic Buckling under Combined Stresses of Flat Plates with Integral Waffle-Like Stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris F.; Levin, L. Ross; Troutman, John L.
1953-01-01
Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
Elastic Buckling Under Combined Stresses of Flat Plates with Integral Waffle-like Stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris F; Levin, L Ross; Troutman, John L
1954-01-01
Theory and experiment were compared and found in good agreement for the elastic buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45 degree waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
Fuel cell separator plate with bellows-type sealing flanges
Louis, G.A.
1984-05-29
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Fuel cell separator plate with bellows-type sealing flanges
Louis, George A.
1986-08-05
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models
NASA Technical Reports Server (NTRS)
Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)
2000-01-01
Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.
Experimental studies of hypersonic shock-wave boundary-layer interactions
NASA Technical Reports Server (NTRS)
Lu, Frank K.
1992-01-01
Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the unsteadiness in the surface pressure was reduced compared to the flat-plate case.
Numerical study of the effect of earth tides on recurring short-term slow slip events
NASA Astrophysics Data System (ADS)
Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.
2017-12-01
Short-term slow slip events (SSEs) in the Nankai region are affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The effect of tidal stress on the SSEs is also examined numerically (e.g., Hawthorne and Rubin, 2013). In our previous study (Matsuzawa et al., 2017, JpGU-AGU), we numerically simulated SSEs in the Shikoku region, and reported that tidal stress makes the variance of recurrence intervals of SSEs smaller in relatively isolated SSE regions. However, the reason of such stable recurrence was not clear. In this study, we examine the tidal effect on short-term SSEs based on a flat plate and a realistic plate model (e.g., Matsuzawa et al., 2013, GRL). We adopt a rate- and state-dependent friction law (RS-law) with cutoff velocities as in our previous studies (Matsuzawa et al., 2013). We assume that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. In a flat plate model, the short-term SSE region is a circular patch with the radius of 6 km. In a realistic plate model, the short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we examine the stress perturbation by two different earth tides with the period of semidiurnal (M2) and fortnight (Mf) tide in this study. In the result of a flat plate case, amplitude of SSEs becomes smaller just after the slip at whole simulated area. Recurring SSEs become clear again within one year in the case with tides (M2 or Mf), while the recurrence becomes clear after seven years in the case without tides. Interestingly, the effect of the Mf tide is similar to the case with the M2 tide, even though the amplitude of the Mf tide (0.01 kPa) is two-order smaller than that of the M2 tide. In the realistic plate model of Shikoku, clear recurrence of short-term SSEs is found earlier than the case without tides, after the occurrence of long-term SSEs. These results suggest that stress perturbation by earth tides makes SSEs more episodic even in the situation that the loading in the surrounding area tends to cause temporal stable sliding.
Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia
NASA Astrophysics Data System (ADS)
Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.
2017-11-01
In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.
Advanced solar box and flat plate collector cookers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grupp, M.; Bergler, H.
Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.
Effect of leading-edge geometry on boundary-layer receptivity to freestream sound
NASA Technical Reports Server (NTRS)
Lin, Nay; Reed, Helen L.; Saric, W. S.
1991-01-01
The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Memorandum 1. Background 2. Scope of the Investigation 3. Respondent Selection 4. Discussion of Methodology a...: Scope of the Investigation The diffusion-annealed, nickel-plated flat-rolled steel products included in this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or...
Calculating forces on thin flat plates with incomplete vorticity-field data
NASA Astrophysics Data System (ADS)
Limacher, Eric; Morton, Chris; Wood, David
2016-11-01
Optical experimental techniques such as particle image velocimetry (PIV) permit detailed quantification of velocities in the wakes of bluff bodies. Patterns in the wake development are significant to force generation, but it is not trivial to quantitatively relate changes in the wake to changes in measured forces. Key difficulties in this regard include: (i) accurate quantification of velocities close to the body, and (ii) the effect of missing velocity or vorticity data in regions where optical access is obscured. In the present work, we consider force formulations based on the vorticity field, wherein mathematical manipulation eliminates the need for accurate near-body velocity information. Attention is restricted to nominally two dimensional problems, namely (i) a linearly accelerating flat plate, investigated using PIV in a water tunnel, and (ii) a pitching plate in a freestream flow, as investigated numerically by Wang & Eldredge (2013). The effect of missing vorticity data on the pressure side of the plate has a significant impact on the calculation of force for the pitching plate test case. Fortunately, if the vorticity on the pressure side remains confined to a thin boundary layer, simple corrections can be applied to recover a force estimate.
Boundary-Layer Bypass Transition Over Large-Scale Bodies
2016-12-16
shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine
Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.
2013-01-01
An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.
NASA Technical Reports Server (NTRS)
Borden, C. S.; Schwartz, D. L.
1984-01-01
The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.; Wilmoth, Richard G.
1995-01-01
The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
Properties of Special Types of Radiators
NASA Technical Reports Server (NTRS)
Parsons, S R
1921-01-01
This report discusses the general performance characteristics of three special classes of radiators: those with flat plate water tubes, fin and tube types, and types that whistle in an air stream. Curves and tables show the performance of representative radiators of each class and compare the flat plate and whistling types. Empirical equations are given for estimating the performance of flat plate radiators of various dimensions. This report also contains a brief discussion, with curves, showing the effect of yawing on the properties of a radiator.
1986-08-01
AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I
NASA Technical Reports Server (NTRS)
Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.
2015-01-01
This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.
Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate
NASA Technical Reports Server (NTRS)
Goldberg, U.; Reshotko, E.
1980-01-01
A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location.
Controlled Bending of a Thin Mirror to Regain Figure after Warping due to Edge-Cutting
NASA Astrophysics Data System (ADS)
Humphries, C. M.
1990-03-01
A thin circular Cer-Vit mirror, diameter 1.3 m, that had been polished flat was cut along 10 edges to form a 12-sided pseudo-elliptical plate. As a result of the edge-cutting, the mirror distorted and an experiment that investigated the effect of reverse stressing to counteract the distortion is described and analysed. The configuration adopted for stressing the mirror when installed as a driven coudé flat in the UK Infrared Telescope is also described. The reverse stressing results can be understood in terms of thin plate theory for pure bending and, in general, if the distortion is toroidal (including the case of a sphere) an orthogonal pair of bending moments can be chosen that will remove the undesired curvatures.
NASA Astrophysics Data System (ADS)
Abdulsalam, Alrowashed; Idris, Azni Bin; Ahmad, Thamer; Ahsan, Amimul
2017-01-01
This work overviews the solar radiation basics and insolation of different surfaces is presented. A complete solar radiation modelling and investigation on the effect of horizontal plate, yearly tilt, monthly tilt, and single-axis and double-axis tracking surface on the insolation are carried out to conduct performance evaluation using the case study in Dhahran city of Saudi Arabia. The increments received by insolation for the yearly tilt, monthly tilt, and single-axis and dual-axis tracking surface with respect to traditional flat-plate collector is estimated. The results show that the yearly optimal tilt angle due to the south is close to the 0.913 time latitude of Dhahran. It is found that the yearly irradiation gains using yearly and monthly optimal tilts relative to flat panel installation are 7% and 14%, respectively. The yearly insulation gains made by single-axis and dual-axis continuous tracking surfaces are 33% and 48%, respectively.
Method of manufacturing lightweight thermo-barrier material
NASA Technical Reports Server (NTRS)
Blair, Winford (Inventor)
1987-01-01
A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.
Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions
NASA Technical Reports Server (NTRS)
Bahrami, Parviz A.
2005-01-01
Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.
NASA Technical Reports Server (NTRS)
1983-01-01
The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.
NASA Technical Reports Server (NTRS)
Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.
2016-01-01
In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.
NASA Astrophysics Data System (ADS)
Kegerise, Michael A.; Rufer, Shann J.
2016-08-01
In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
The Case for the Large Scale Development of Solar Energy
ERIC Educational Resources Information Center
O'Reilly, S. A.
1977-01-01
Traces the history of solar energy development. Discusses global effects (temperature, particle and other pollution) of burning fossil fuels. Provides energy balance equations for solar energy distribution and discusses flat plate collectors, solar cells, photochemical and photobiological conversion of solar energy, heat pumps. (CS)
Stability analysis of the onset of vortex shedding for wakes behind flat plates
NASA Astrophysics Data System (ADS)
Wang, Shuai; Liu, Li; Zhang, Shi-Bo; Wen, Feng-Bo; Zhou, Xun
2018-04-01
Above a critical Reynolds number, wake flows behind flat plates become globally unstable, the leading modal instability in this case is known as Kelvin-Helmholtz mechanism. In this article, both local and BiGlobal linear instability analyses are performed numerically to study the onset of the shedding process. Flat plates with different base shapes are considered to assess geometry effects, and the relation between the critical shedding Reynolds number, Re_cr , and the boundary layer thickness is studied. Three types of base shapes are used: square, triangular and elliptic. It is found that the base shape has a great impact on the growth rate of least stable disturbance mode, thus would influence Re_cr greatly, but it has little effect on the vortex shedding frequency. The shedding frequency is determined mainly by boundary layer thickness and has little dependence on the Reynolds number and base shape. We find that for a fixed Reynolds number, increasing boundary layer thickness acted in two ways to modify the global stability characteristics: It increases the length of the absolute unstable region and it makes the flow less locally absolutely unstable in the near-wake region, and these two effects work against each other to destabilize or stabilize the flow.
Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary
NASA Astrophysics Data System (ADS)
Khan, W. A.; Khan, Z. H.; Rahi, M.
2014-06-01
Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307,
NASA Technical Reports Server (NTRS)
1980-01-01
The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.
Biomechanics of Tetrahymena escaping from a dead end
Kikuchi, Kenji
2018-01-01
Understanding the behaviours of swimming microorganisms in various environments is important for understanding cell distribution and growth in nature and industry. However, cell behaviour in complex geometries is largely unknown. In this study, we used Tetrahymena thermophila as a model microorganism and experimentally investigated cell behaviour between two flat plates with a small angle. In this configuration, the geometry provided a ‘dead end' line where the two flat plates made contact. The results showed that cells tended to escape from the dead end line more by hydrodynamics than by a biological reaction. In the case of hydrodynamic escape, the cell trajectories were symmetric as they swam to and from the dead end line. Near the dead end line, T. thermophila cells were compressed between the two flat plates while cilia kept beating with reduced frequency; those cells again showed symmetric trajectories, although the swimming velocity decreased. These behaviours were well reproduced by our computational model based on biomechanics. The mechanism of hydrodynamic escape can be understood in terms of the torque balance induced by lubrication flow. We therefore conclude that a cell's escape from the dead end was assisted by hydrodynamics. These findings pave the way for understanding cell behaviour and distribution in complex geometries. PMID:29491169
Lagrangian analysis of the laminar flat plate boundary layer
NASA Astrophysics Data System (ADS)
Gabr, Mohammad
2016-10-01
The flow properties at the leading edge of a flat plate represent a singularity to the Blasius laminar boundary layer equations; by applying the Lagrangian approach, the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.
Two-Piece Screens for Decontaminating Granular Material
NASA Technical Reports Server (NTRS)
Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis
2009-01-01
Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, J.W.; Swinson, W.F.
1975-12-01
The complete test results for a flat plate with two closely spaced nozzles attached are presented. Test loadings were 1:1, 1:2, and 2:1 biaxial planar tension loadings on the plate, axial thrust loadings applied separately to the nozzles, and bending moment loadings applied to the nozzles both within and normal to the plane of symmetry containing the nozzle axes. The test plate was 36 x 36 x 0.375 in., and the attached nozzles had outer diameters of 2.625 in. and wall thicknesses of 0.250 in. The nozzles were located in the center of the plate with their centers 3.0 in.more » apart and were considered to be free of weld distortions and irregularities in the junction region. 6 references. (auth)« less
Fabrication Techniques and Principles for Flat Plate Antennas
DOT National Transportation Integrated Search
1973-09-01
The report documents the fabrication techniques and principles selected to produce one and ten million flat plate antennas per year. An engineering analysis of the reliability, electrical integrity, and repeatability is made, and a cost analysis summ...
Sánchez, Alberto; García, Manuel; Sebastián, Miguel Angel; Camacho, Ana María
2014-01-01
This work presents a hybrid (experimental-computational) application for improving the vibration behavior of structural components using a lightweight multilayer composite. The vibration behavior of a flat steel plate has been improved by the gluing of a lightweight composite formed by a core of polyurethane foam and two paper mats placed on its faces. This composite enables the natural frequencies to be increased and the modal density of the plate to be reduced, moving about the natural frequencies of the plate out of excitation range, thereby improving the vibration behavior of the plate. A specific experimental model for measuring the Operating Deflection Shape (ODS) has been developed, which enables an evaluation of the goodness of the natural frequencies obtained with the computational model simulated by the finite element method (FEM). The model of composite + flat steel plate determined by FEM was used to conduct parametric study, and the most influential factors for 1st, 2nd and 3rd mode were identified using a multifactor analysis of variance (Multifactor-ANOVA). The presented results can be easily particularized for other cases, as it may be used in cycles of continuous improvement as well as in the product development at the material, piece, and complete-system levels. PMID:24618779
Fluctuating pressures in flow fields of jets
NASA Technical Reports Server (NTRS)
Schroeder, J. C.; Haviland, J. K.
1976-01-01
The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.
NASA Astrophysics Data System (ADS)
Jwo, Ching-Song; Cheng, Tseng-Tang; Cho, Hung-Pin; Chiang, Wei-Tang; Chen, Sih-Li; Chen, Chien-Wei; Jian, Ling-You
2011-12-01
This paper presents a reduced fan noise method, with increased fan-benefit analysis of various performances. The experimental approach adopts changes in the outlet in the form of two fans (flat tongue and a V-Type tongue plate) in order to measure the noise under the two forms of value and volume of supply air fan, shaft power consumption, operating current, and static pressure. The results showed that the tongue plate and the V-plane tongue plate noise between the value of the measurement location of 6.7 in the tongue plate in the plane below the noise level is about V-tongue plate 1 ~ 1.5dB (A). Air flow rate testing showed that the flat plate and the V-Type tongue plate between the tongue plate V-Type flow rate value, the measurement location of 3.4 in the tongue plate in the plane was more than the V-Type flow rate tongue plate 5 to 5.5%. Shaft power testing of measurement model 3, and measurement model 4, showed that the tongue plate in the plane V-tongue plate was more than 8%, 5%. The measurement models 3 and 4 and 5 showed more than the V-Type plane tongue plate 1%, 2.7%, and 2.6%. The measurement models 6 and 8 showed that, the flat tongue plate is less than the V-tongue plate of 2.9% and 2.3%. Static pressure testing showed that the flat tongue plate in particular measurement models (3,4,8,9), the static value of V-tongue plate than the 11.1% higher, respectively, 9%, 4.3%, and 3.7%. The results summarized above suggest that, in the specific measurement points, when parallel to the tongue plate the V-tongue board has better performance.
Using thermal and compositional modeling to assess the role of water in Alaskan flat slab subduction
NASA Astrophysics Data System (ADS)
Robinson, S. E.; Porter, R. C.; Hoisch, T. D.
2017-12-01
Although plate tectonic theory is well established in the geosciences, the mechanisms and details of various plate-tectonics related phenomena are not always well understood. In some ( 10%) convergent plate boundaries, subduction of downgoing oceanic plates is characterized by low angle geometries and is termed "flat slab subduction." The mechanism(s) driving this form of subduction are not well understood. The goal of this study is to explore the role that water plays in these flat slab subduction settings. This is important for a better understanding of the behavior of these systems and for assessing volcanic hazards associated with subduction and slab rollback. In southern Alaska, the Pacific Plate is subducting beneath the North American plate at a shallow angle. This low-angle subduction within the region is often attributed to the subduction of the Yakutat block, a terrane accreting to the south-central coast of Alaska. This flat slab region is bounded by the Aleution arc to the west and the strike-slip Queen Charlotte fault to the east. Temperature and compositional models for a 500-km transect across this subduction zone in Alaska were run for ten million years (the length of time that flat slab subduction has been ongoing in Alaska) and allow for interpretation of present-day conditions at depth. This allows for an evaluation of two hypotheses regarding the role of water in flat-slab regions: (1) slab hydration and dehydration help control slab buoyancy which influences whether flat slab subduction will be maintained or ended. (2) slab hydration/dehydration of the overlying lithosphere impacts deformation within the upper plate as water encourages plate deformation. Preliminary results from thermal modeling using Thermod8 show that cooling of the mantle to 500 °C is predicted down to 100 km depth at 10 million years after the onset of low-angle subduction (representing present-day). Results from compositional modeling in Perple_X show the maximum amount of water that can be held in the system assuming crustal (basalt and metabasalt) and mantle (peridotite) compositions. These models will be compared with seismic velocity models created from EarthScope Transportable Array data in the region in order to determine amounts of serpentinite and other water-bearing rocks within the flat slab subduction system.
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate
NASA Technical Reports Server (NTRS)
Cunningham, Fred G.
1963-01-01
A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.
NASA Technical Reports Server (NTRS)
Lee, Henry C.; Klopfer, Goetz
2011-01-01
This report documents how OVERFLOW, a computational fluid dynamics code, predicts plume impingement of underexpanded axisymmetric jets onto both perpendicular and inclined flat plates. The effects of the plume impinging on a range of plate inclinations varying from 90deg to 30deg are investigated and compared to the experimental results in Reference 1 and 2. The flow fields are extremely complex due to the interaction between the shock waves from the free jet and those deflected by the plate. Additionally, complex mixing effects create very intricate structures in the flow. The experimental data is very limited, so these validation studies will focus only on cold plume impingement on flat and inclined plates. This validation study will help quantify the error in the OVERFLOW simulation when applied to stage separation scenarios.
Unsteady conjugate heat transfer analysis for impinging jet cooling
NASA Astrophysics Data System (ADS)
Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.
2016-10-01
The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.
Researcher and Mechanic with Solar Collector in Solar Simulator Cell
1976-08-21
Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2004-08-01
Shallow flat subduction is a relatively common feature at present-day subduction zones. Several mechanisms to explain this feature have been proposed, and can be subdivided into three groups: overthrusting of the subducting plate, subduction of a plume-generated oceanic plateau, and slab suction forces. We developed a numerical model to investigate these mechanisms and tested it through a comparison of the model results with the observations of the Peru flat slab where all three mechanisms seem to be contributing. The ratio of contributions of overthrusting continent to plateau subduction is in the range of 1:1 to 1:2, and the role of plate suction forces is likely to be significant. By applying the overthrusting continent and plateau subduction mechanisms separately, we were able to determine the most important model parameters for each of the mechanisms. Overthrusting easily results in flat subduction, and the flat slab length is primarily a function of slab age, overriding plate motion and mantle viscosity. An oceanic plateau is much less likely to cause flat subduction, and favorable conditions for flat subduction include a young slab age, long-lived plateau buoyancy after subduction, a strong mantle, and addition of slab suction forces that are large enough to further reduce the subduction dip angle, once the plateau initiates this flattening. Furthermore, we found that even though today flat subduction can be explained with the dominant model parameters within a reasonable range, for a slightly hotter, younger Earth, these flat subduction conditions are much less favorable, and so this style of subduction was probably not present in the past. This contradicts earlier predictions that flat subduction was a more wide-spread phenomenon in the early stages of plate tectonics in a younger earth.
Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders
NASA Technical Reports Server (NTRS)
Mettu, Sambi R.; Raju, Ivatury S.; Forman, Royce G.
1992-01-01
Flaws resulting from improper welding and forging are usually modeled as cracks in flat plates, hollow cylinders or spheres. The stress intensity factor solutions for these crack cases are of great practical interest. This report describes some recent efforts at improving the stress intensity factor solutions for cracks in such geometries with emphasis on hollow cylinders. Specifically, two crack configurations for cylinders are documented. One is that of a surface crack in an axial plane and the other is a part-through thumb-nail crack in a circumferential plane. The case of a part-through surface crack in flat plates is used as a limiting case for very thin cylinders. A combination of the two cases for cylinders is used to derive a relation for the case of a surface crack in a sphere. Solutions were sought which cover the entire range of the geometrical parameters such as cylinder thickness, crack aspect ratio and crack depth. Both the internal and external position of the cracks are considered for cylinders and spheres. The finite element method was employed to obtain the basic solutions. Power-law form of loading was applied in the case of flat plates and axial cracks in cylinders and uniform tension and bending loads were applied in the case of circumferential (thumb-nail) cracks in cylinders. In the case of axial cracks, the results for tensile and bending loads were used as reference solutions in a weight function scheme so that the stress intensity factors could be computed for arbitrary stress gradients in the thickness direction. For circumferential cracks, since the crack front is not straight, the above technique could not be used. Hence for this case, only the tension and bending solutions are available at this time. The stress intensity factors from the finite element method were tabulated so that results for various geometric parameters such as crack depth-to-thickness ratio (a/t), crack aspect ratio (a/c) and internal radius-to-thickness ratio (R/t) or the crack length-to-width ratio (2c/W) could be obtained by interpolation and extrapolation. Such complete tables were then incorporated into the NASA/FLAGRO computer program which is widely used by the aerospace community for fracture mechanics analysis.
Effect of free-stream turbulence on boundary layer transition.
Goldstein, M E
2014-07-28
This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Llinas’ Phase Reset Mechanism Delays the Onset of Chaos in Shark and Dolphin Wall Turbulence
2014-02-10
eruption due to plate tectonics . (The plate becomes locally thin and is unable to prevent the high-pressure hot magma from erupting.) The vorticity...flat plate value. The spacing between riblet peaks s+= 10 is used unless noted. KM gives the "strength" of the riblets, where the terms "weak" and...exhibit spanwise variations in skin friction coefficients and integral boundary layer properties, even in flat plate experiments where great care has
Design and installation package for the Sunmat Flat Plate solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.
Analysis of turbulent free-convection boundary layer on flat plate
NASA Technical Reports Server (NTRS)
Eckert, E R G; Jackson, Thomas W
1950-01-01
A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.
Certification and verification for Calmac flat plate solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.
Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate
NASA Astrophysics Data System (ADS)
Lee, Gwang-Se; Cheong, Cheolung
2013-10-01
The aim of this study is to develop an efficient methodology for frequency-domain prediction of broadband trailing edge noise from a blunt flat plate where non-zero pressure gradient may exist in its boundary layer. This is achieved in two ways: (i) by developing new models for point pressure spectra within the boundary layer over a flat plate, and (ii) by deriving a simple formula to approximate the effect of convective velocity on the radiated noise spectrum. Firstly, two types of point pressure spectra-required as input data to predict the trailing edge noise in the frequency domain-are used. One is determined using the semi-analytic (S-A) models based on the boundary-layer theory combined with existing empirical models. It is shown that the prediction using these models show good agreements with the measurements where zero-pressure gradient assumption is valid. However, the prediction show poor agreement with that obtained from large eddy simulation results where negative (favorable) pressure gradient is observed with the boundary layer. Based on boundary layer characteristics predicted using the large eddy simulations, new model for point wall pressure spectra is proposed to account for the effect of favorable pressure gradient over the blunt flat plate on the wall pressure spectra. Sound spectra that were predicted using these models are compared with measurements to validate the proposed prediction scheme. The advantage of the semi-analytic model is that it can be applied to problems at Reynolds numbers for which the empirical model is not available. In addition, it is expected that the current models can be applied to the cases where favorable pressure gradient exists in the boundary layer over a blunt flat plate. Secondly, in order to quantitatively analyze contributions of the pressure field within the turbulent boundary layer on the flat plate to trailing edge noise, total pressure over the surface of airfoil is decomposed into its two constituents: incident pressure generated in the boundary layer without a trailing edge and the pressure formed by the scattering of the incident pressure at the trailing edge. The predictions made using each of the incident and scattered pressures reveal that the convective velocity of turbulence in the boundary layer dominantly affects the radiated sound pressure spectrum, both in terms of the gross behavior of the overall acoustic pressure spectrum through the scattered pressure and in terms of the narrow band small fluctuations of the spectrum through the incident pressure. The interaction term between the incident and the scattered is defined and the incident is shown to contribute to the radiated acoustic pressure through the interaction term. Based on this finding, a simple model to effectively compute the effects of convection velocities of the turbulence on the radiated sound pressure spectrum is proposed. It is shown that the proposed method can effectively and accurately predict the broadband trailing edge noise from the plate with considering both the incident and the scattered contributions.
Three-flat test with plates in horizontal posture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannoni, Maurizio; Molesini, Giuseppe
2008-04-20
Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.
Comparisons of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.
1995-01-01
Two contrasting models of gas-surface interactions are studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate is that of one of the solar panels on the Magellan spacecraft, and the freestream conditions are one of those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two plate system is not representative of the Magellan geometry, but is studied to explore possible experiments that might be used to differentiate between the two gas surface interaction models.
Freeman, J., J. Whitmore, N. Blair, and A.P. Dobos. 2014. Validation of Multiple Tools for Flat Plate -61497. Blair, N., A. Dobos, and N. Sather. 2012. Case Studies Comparing System Advisor Model (SAM -54676. Lopez, A., B. Roberts, D. Heimiller, N. Blair, and G. Porro. 2012. U.S. Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
.... Excluded from the scope of the orders are flat-rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin...
Model 0102 Flat Plate Antenna for Use in Automobile Radar Anticipatory Crash Sensors
DOT National Transportation Integrated Search
1973-09-01
The report analyzed alternative methods of construction and production costs for a flat plate antenna based on the use of etched circuit techniques. The antenna is proposed for use in certain new automotive radar anticipatory crash sensor systems now...
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
NASA Technical Reports Server (NTRS)
Mayers, J; Budiansky, Bernard
1955-01-01
An analysis is presented of the postbuckling behavior of a simply supported square flat plate with straight edges compressed beyond the buckling load into the plastic range. The method of analysis involves the application of a variational principle of the deformation theory of plasticity in conjunction with computations carried out on a high-speed calculating machine. Numerical results are obtained for several plate proportions and for one material. The results indicate plate strengths greater than those that have been found experimentally on plates that do not satisfy straight-edge conditions. (author)
Effects of Reynolds number on orifice induced pressure error
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Gloss, B. B.
1982-01-01
Data previously reported for orifice induced pressure errors are extended to the case of higher Reynolds number flows, and a remedy is presented in the form of a porous metal plug for the orifice. Test orifices with apertures 0.330, 0.660, and 1.321 cm in diam. were fabricated on a flat plate for trials in the NASA Langley wind tunnel at Mach numbers 0.40-0.72. A boundary layer survey rake was also mounted on the flat plate to allow measurement of the total boundary layer pressures at the orifices. At the high Reynolds number flows studied, the orifice induced pressure error was found to be a function of the ratio of the orifice diameter to the boundary layer thickness. The error was effectively eliminated by the insertion of a porous metal disc set flush with the orifice outside surface.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.
2006-01-01
Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.
Computation of Tone Noise From Supersonic Jet Impinging on Flat Plates
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Blech, Richard A. (Technical Monitor)
2005-01-01
A supersonic jet impinging normally on a flat plate has both practical importance and theoretical interests. The physical phenomenon is not fully understood yet. Research concentrates either on the hydrodynamics (e.g., lift loss for STOVL) or on the aeroacoustic loading. In this paper, a finite volume scheme - the space-time conservation element and solution element (CE/SE) method - is employed to numerically study the near-field noise of an underexpanded supersonic jet from a converging nozzle impinging normally on a flat plate. The numerical approach is of the MILES type (monotonically integrated large eddy simulation). The computed results compare favorably with the experimental findings.
NASA Technical Reports Server (NTRS)
Tsou, P.; Stolte, W.
1978-01-01
The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.
Experimental study on flat plate air solar collector using a thin sand layer
NASA Astrophysics Data System (ADS)
Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel
2016-07-01
A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.
Turbulent Combustion Study of Scramjet Problem
2015-08-01
boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and
Airborne Aero-Optics Laboratory - Transonic (AAOL-T)
2016-10-03
122–151. [30] DeGraaff, D. B. and Eaton, J. K., “Reynolds-Number Scaling of the Flat - Plate Turbulent Boundary Layer ,” Journal of Fluid Mechanics, Vol...elevation angle of the turret is fixed at 120 o . The inflow turbulence data are generated by a separate flat - plate boundary layers simulation. The...aero-optical distortion magnitude for turbulent boundary layers . Subsonic Flow over a Cylindrical Turret with a Flat Window. The flow over a
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.
Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.
1995-01-01
An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.
NASA Technical Reports Server (NTRS)
Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat
1994-01-01
A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.
An experimental study of an explosively driven flat plate launcher
NASA Astrophysics Data System (ADS)
Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team
2017-06-01
For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.
Thermal Creep Force: Analysis And Application
2016-06-01
University Press, 1952. [18] Y. H. Kuo, “On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers,” The Journal of...observed [19]. Thus, for uniform flow past a flat plate the Stokes drag force on both sides of the plate is 212 5.91 , 2D D F U C LW U Lρ µ...immersed bodies,” A.I.Ch.E. Journal , vol. 7, no. 1, pp. 20–25, 1961. [20] Z. Janour, Resistance of a Plate in Parallel Flow at Low Reynolds Numbers
Aerodynamic properties of a flat plate with cavity for optical-propagation studies
NASA Technical Reports Server (NTRS)
Buell, D. A.
1979-01-01
Transonic wind-tunnel tests were performed on a flat plate with and without a cube-shaped cavity and antiresonance devices. Measurements were made of the optical propagation and aerodynamic properties of the boundary and shear layers. The model and its velocity profiles and pressures are described.
NASA Technical Reports Server (NTRS)
1983-01-01
A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.
Designing Flat-Plate Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.
Safety review package for University of Central Florida flat-plate heat pipe experiment
NASA Technical Reports Server (NTRS)
Chow, Louis C.
1998-01-01
A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.
NASA Astrophysics Data System (ADS)
Diestra Cruz, Heberth Alexander
The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
NASA Technical Reports Server (NTRS)
Perkins, S. C., Jr.; Mendenhall, M. R.
1980-01-01
A correlation method to predict pressures induced on an infinite plate by a jet exhausting normal to the plate into a subsonic free stream was extended to jets exhausting at angles to the plate and to jets exhausting normal to the surface of a body revolution. The complete method consisted of an analytical method which models the blockage and entrainment properties of the jet and an empirical correlation which accounts for viscous effects. For the flat plate case, the method was applicable to jet velocity ratios up to ten, jet inclination angles up to 45 deg from the normal, and radial distances up to five diameters from the jet. For the body of revolution case, the method was applicable to a body at zero degrees angle of attack, jet velocity ratios 1.96 and 3.43, circumferential angles around the body up to 25 deg from the jet, axial distances up to seven diameters from the jet, and jet-to-body diameter ratios less than 0.1.
Imaging the Peruvian flat slab with Rayliegh wave tomography
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, Sanja
In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.
NASA Astrophysics Data System (ADS)
Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles
2014-11-01
A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).
The transference of heat from a hot plate to an air stream
NASA Technical Reports Server (NTRS)
Elias, Franz
1931-01-01
The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.
Apparatus and method for rapid cooling of large area substrates in vacuum
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2012-11-06
The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Borisov, I. I.; Dashevsky, Yu. J.; Panchenko, N. A.; Kovalenko, A. S.
2014-12-01
Results of an experimental study of flat-plate film cooling effectiveness achieved with an inlet double jet scheme are reported. At low ( m = 0.5) and medium ( m = 1.0) blowing ratio the average film cooling effectiveness is about 20 % greater of the traditional two-row scheme of round holes data, while at higher m = 1.5 it is close to it. The free-stream turbulence (≈ 7 %) influences weekly on the average flat-plate film cooling effectiveness. The flow acceleration decreases the film cooling effectiveness down to 25 % when the pressure gradient parameter K is ranged from 0.5·10-6 to 3.5·10-6.
Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting
NASA Technical Reports Server (NTRS)
Mcdonald, R. R.
1982-01-01
Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.
NASA Astrophysics Data System (ADS)
Chong, Tze Pei; Vathylakis, Alexandros
2015-10-01
Results of an experimental study on turbulent flow over a flat plate with a serrated sawtooth trailing edge are presented in this paper. After tripping the boundary layer to become turbulent, the broadband noise sources at the sawtooth serrated trailing edge is studied by several experimental techniques. Broadband noise reduction by the serrated sawtooth trailing edge can be realistically achieved in the flat plate configuration. The variations of wall pressure power spectral density and the spanwise coherence (which relates to the spanwise correlation length) in a sawtooth trailing edge play a minor role in the mechanisms underpinning the reduction of self noise radiation. Conditional-averaging technique was applied in the boundary layer data where a pair of pressure-driven oblique vortical structures near the sawtooth side edges is identified. In the current flat plate configuration, the interaction between the vortical structures and the local turbulent boundary layer results in a redistribution of the momentum transport and turbulent shear stress near the sawtooth side edges as well as the sawtooth tip, thus affecting the efficiency of self noise radiation.
NASA Technical Reports Server (NTRS)
Schmidt, Rodney C.; Patankar, Suhas V.
1988-01-01
The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence; Smith, Justin
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.
1971-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.
2013-07-01
plates usually experiences separation near or at the leading-edge, creating an aerodynamic shear layer that either reattaches to form a separation...blunt-body shedding. At low angle-of-attack, however, flat plates do not exhibit strong blunt-body shedding, thus, is an unlikely driver. Additionally...range from 0 – 10% for typical flat plate membrane models in low-Re flow. Two distinct regions of membrane vibration relative to the tensioning
NASA Technical Reports Server (NTRS)
Rodkiewicz, C. M.; Gupta, R. N.
1971-01-01
The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.
2015-12-02
layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental...without SBLI and with SBLI. To calculate the steady flat – plate solution with no shock, a characteristic boundary condition according to Harris is used.39
A Didactic Experiment and Model of a Flat-Plate Solar Collector
ERIC Educational Resources Information Center
Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2011-01-01
We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... measuring at least 10 times the thickness. Universal mill plate (i.e., flat-rolled products rolled on four... determinations. If the Department chooses as facts available a calculated dumping margin from the investigation... questionnaire. See Certain Cut-to-Length Carbon-Quality Steel Plate Products from the Republic of Korea: Final...
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)
NASA Astrophysics Data System (ADS)
Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.
2017-11-01
A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.
Rarefied flow past a flat plate at incidence
NASA Technical Reports Server (NTRS)
Dogra, Virendra K.; Moss, James N.; Price, Joseph M.
1988-01-01
Results of a numerical study using the direct simulation Monte Carlo (DSMC) method are presented for the transitional flow about a flat plate at 40 deg incidence. The plate has zero thickness and a length of 1.0 m. The flow conditions simulated are those experienced by the Shuttle Orbiter during reentry at 7.5 km/s. The range of freestream conditions are such that the freestream Knudsen number values are between 0.02 and 8.4, i.e., conditions that encompass most of the transitional flow regime. The DSMC simulations show that transitional effects are evident when compared with free molecule results for all cases considered. The calculated results demonstrate clearly the necessity of having a means of identifying the effects of transitional flow when making aerodynamic flight measurements as are currently being made with the Space Shuttle Orbiter vehicles. Previous flight data analyses have relied exclusively on adjustments in the gas-surface interaction models without accounting for the transitional effect which can be comparable in magnitude. The present calculations show that the transitional effect at 175 km would increase the Space Shuttle Orbiter lift-drag ratio by 90 percent over the free molecule value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Septier, A.
1960-03-01
In the simultaneous injection of two beams identical except in direction in an FFAG cyclotron, two beams of equal intensity and energy are needed. The two beams can be produced either by alternating the direction of a single beam by very short, rectangular, high-voltage pulses fed to a deflector, or by chopping the beam with a static apparatus. The second method was investigated because of its simplicity. The principles and properties of the electrostatic biprism are presented. Three cases are then considered: a wire stretched between two plates, a grid between two plates, and a plate between two flat conductors.more » (T.R.H.)« less
The effect of butterfly scales on flight efficiency and leading edge vortex formation
NASA Astrophysics Data System (ADS)
Lang, Amy; Wilroy, Jacob; Wahidi, Redha; Slegers, Nathan; Heilman, Micahel; Cranford, Jacob
2016-11-01
It is hypothesized that the scales on a butterfly wing lead to increased flight efficiency. Recent testing of live butterflies tracked their motion over 246 flights for 11 different specimens. Results show a 37.8 percent mean decrease in flight efficiency and a flapping amplitude reduction of 6.7 percent once the scales were removed. This change could be largely a result of how the leading edge vortex (LEV) interacts with the wing. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment butterfly inspired grooves were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth case as the plate translated vertically through a tow tank at Re = 1500, 3000, and 6000. Using DPIV, the vortex formation was documented and a maximum vortex formation time of 4.22 was found based on the flat plate travel distance and chord length. Results indicate that the patterned surface slows down the growth of the vortex which corroborates the flight test results. Funding from NSF CBET Fluid Dynamcis is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.
2013-12-01
The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.
Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.
1972-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.
Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System
NASA Astrophysics Data System (ADS)
Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao
The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.
NASA Astrophysics Data System (ADS)
Sunderland, Zofia; Patorski, Krzysztof
2016-12-01
A big challenge for standard interferogram analysis methods such as Temporal Phase Shifting or Fourier Transform is a parasitic set of fringes which might occur in the analyzed fringe pattern intensity distribution. It is encountered, for example, when transparent glass plates with quasi-parallel surfaces are tested in Fizeau or Twyman-Green interferometers. Besides the beams reflected from the plate front surface and the interferometer reference the beam reflected from the plate rear surface also plays important role; its amplitude is comparable with the amplitude of other beams. In result we face three families of fringes of high contrast which cannot be easily separated. Earlier we proposed a competitive solution for flatness measurements which relies on eliminating one of those fringe sets from the three-beam interferogram and separating two remaining ones with the use of 2D Continuous Wavelet Transform. In this work we cover the case when the intensity of the reference beam is significantly higher than the intensities of two object beams. The main advantage of differentiating beam intensities is the change in contrast of individual fringe families. Processing of such three-beam interferograms is modified but also takes advantage of 2D CWT. We show how to implement this method in Twyman-Green and Fizeau setups and compare this processing path and measurement procedures with previously proposed solutions.
NASA Technical Reports Server (NTRS)
Johnson, S.
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.
Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Kergerise, Michael A.; Rufer, Shann J.
2016-01-01
In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
Experimental investigation of a jet inclined to a subsonic crossflow
NASA Technical Reports Server (NTRS)
Aoyagi, K.; Snyder, P. K.
1981-01-01
Experimental investigations have been conducted to determine the surface-pressure distribution on a flat plate and a body of revolution with a jet issuing at a large angle to the free stream and to obtain a better understanding of the entrainment mechanism close to the jet exit by quantitative mean velocity surveys. Pressure data were obtained with a flat plate model at several nozzle injection angles using a single round nozzle. For the body of revolution model, data were obtained with a round jet exhausting perpendicular to the crossflow and with two round jets spaced two to six nozzle diameters apart. Mean velocity measurements were obtained with laser velocimeter surveys near the base of a round jet exhausting normal to a flat plate. For the flat plate model, the pressure field shifts downstream and the entrainment effect decreases with decreasing nozzle injection angle. For the body of revolution model with two jets, the jet-induced effect of the rear jet on the surface-pressure distribution was less than the front jet. The flow regions close to the jet are defined by the laser surveys, but further mean velocity surveys are required to understand the entrainment mechanism.
Numerical modeling of the transitional boundary layer over a flat plate
NASA Astrophysics Data System (ADS)
Ivanov, Dimitry; Chorny, Andrei
2015-11-01
Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.
Experimental and numerical study of water-filled vessel impacted by flat projectiles
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yu Bo
2014-05-01
To understand the failure modes and impact resistance of double-layer plates separated by water, a flat-nosed projectile was accelerated by a two-stage light gas gun against a water-filled vessel which was placed in an air-filled tank. Targets consisted of a tank made of two flat 5A06 aluminum alloy plates held by a high strength steel frame. The penetration process was recorded by a digital high-speed camera. The same projectile-target system was also used to fire the targets placed directly in air for comparison. Parallel numerical tests were also carried out. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were able to capture the main physical behavior. It was also found that the impact resistance of double layer plates separated by water was lager than that of the target plates in air. Tearing was the main failure models of the water-filled vessel targets which was different from that of the target plates in air where the shear plugging was in dominate.
A Parametric Study of Jet Interactions with Rarefied Flow
NASA Technical Reports Server (NTRS)
Glass, C. E.
2004-01-01
Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique
NASA Astrophysics Data System (ADS)
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.
Retaining latch for a water pit gate
Beale, A.R.
1997-11-18
A retaining latch is described for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame. 4 figs.
Takao, Masaki; Nishii, Takashi; Sakai, Takashi; Sugano, Nobuhiko
2014-06-01
Anterior sacroiliac joint plate fixation for unstable pelvic ring fractures avoids soft tissue problems in the buttocks; however, the lumbosacral nerves lie in close proximity to the sacroiliac joint and may be injured during the procedure. A 49 year-old woman with a type C pelvic ring fracture was treated with an anterior sacroiliac plate using a computed tomography (CT)-three-dimensional (3D)-fluoroscopy matching navigation system, which visualized the lumbosacral nerves as well as the iliac and sacral bones. We used a flat panel detector 3D C-arm, which made it possible to superimpose our preoperative CT-based plan on the intra-operative 3D-fluoroscopic images. No postoperative complications were noted. Intra-operative lumbosacral nerve visualization using computer navigation was useful to recognize the 'at-risk' area for nerve injury during anterior sacroiliac plate fixation. Copyright © 2013 John Wiley & Sons, Ltd.
Arc Evolution in Response to the Subduction of Buoyant Features
NASA Astrophysics Data System (ADS)
Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele
2015-04-01
The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.
2009 Insensitive Munitions and Energetic Materials Technology Symposium
2009-05-14
Multilayer Structure 1D STIMULI Flat end rod Round end rod Flat cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate... cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate Constant Temperature Rising Temperature Multilayer...Propellants Plasticizer mixed into the Propellant - Dough NO SURFACE COATING Formulation Impetus (J/g) Flame Temp (K) Mw (g/mole) A
Testing flat plate photovoltaic modules for terrestrial environment
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.
1979-01-01
New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.
Postbuckling and Growth of Delaminations in Composite Plates Subjected to Axial Compression
NASA Technical Reports Server (NTRS)
Reeder, James R.; Chunchu, Prasad B.; Song, Kyongchan; Ambur, Damodar R.
2002-01-01
The postbuckling response and growth of circular delaminations in flat and curved plates are investigated as part of a study to identify the criticality of delamination locations through the laminate thickness. The experimental results from tests on delaminated plates are compared with finite element analysis results generated using shell models. The analytical prediction of delamination growth is obtained by assessing the strain energy release rate results from the finite element model and comparing them to a mixed-mode fracture toughness failure criterion. The analytical results for onset of delamination growth compare well with experimental results generated using a 3-dimensional displacement visualization system. The record of delamination progression measured in this study has resulted in a fully 3-dimensional test case with which progressive failure models can be validated.
Palmer, Antony L; Bradley, David A; Nisbet, Andrew
2015-03-08
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Duffy, R. E.
1984-01-01
Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.
On the aeroacoustic tonal noise generation mechanism of a sharp-edged plate.
Moreau, Danielle J; Brooks, Laura A; Doolan, Con J
2011-04-01
This letter presents an experimental study on the tonal noise generated by a sharp-edged flat plate at low-to-moderate Reynolds number. Flow and far-field noise data reveal that, in this particular case, the tonal noise appears to be governed by vortex shedding processes. Also related to the existence of the tonal noise is a region of separated flow slightly upstream of the trailing edge. Hydrodynamic fluctuations at selected vortex shedding frequencies are strongly amplified by the inflectional mean velocity profile in the separated shear layer. The amplified hydrodynamic fluctuations are diffracted by the trailing edge, producing strong tonal noise.
The effect of free-stream turbulence on heat transfer from a flat plate
NASA Technical Reports Server (NTRS)
Sugawara, Sugao; Sato, Takashi; Komatsu, Hiroyasu; Osaka, Hiroichi
1958-01-01
Turbulence was generated by using screens, and the turbulence percentage was measured by a hot-wire anemometer both in the boundary layer and the free stream. The local heat-transfer coefficient was measured at 12 locations along the plate for the cases of various turbulence levels. The transition Reynolds number from laminar to turbulent flow decreases as the main-stream turbulence level increases. In the range of laminar heat transfer the effect of turbulence in the main flow was not great, but in the range of turbulent heat transfer the heat-transfer coefficient increases according to the increase of turbulence.
Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco
NASA Astrophysics Data System (ADS)
Pujiyanto, Hamdani
2017-01-01
A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.
Influence of end plates on aerodynamic characteristics of bluff bodies
NASA Astrophysics Data System (ADS)
Shmigirilov, Rodion; Ryabinin, Anatoly
2018-05-01
Aerodynamic characteristics of flat plate oriented normally to the flow are studied in the wind tunnel. The experiments are carried out without end plates and with round end plates of different diameter. We obtain that end plates increase the base pressure, the drag coefficient and decrease the length of recirculation region.
On the role of subducting oceanic plateaus in the development of shallow flat subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-08-01
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.
Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis
NASA Technical Reports Server (NTRS)
Granon, L. A.; Coleman, M. G.
1980-01-01
The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.
Performance of a three-dimensional Navier-Stokes code on CYBER 205 for high-speed juncture flows
NASA Technical Reports Server (NTRS)
Lakshmanan, B.; Tiwari, S. N.
1987-01-01
A vectorized 3D Navier-Stokes code has been implemented on CYBER 205 for solving the supersonic laminar flow over a swept fin/flat plate junction. The code extends MacCormack's predictor-corrector finite volume scheme to a generalized coordinate system in a locally one dimensional time split fashion. A systematic parametric study is conducted to examine the effect of fin sweep on the computed flow field. Calculated results for the pressure distribution on the flat plate and fin leading edge are compared with the experimental measurements of a right angle blunt fin/flat plate junction. The decrease in the extent of the separated flow region and peak pressure on the fin leading edge, and weakening of the two reversed supersonic zones with increase in fin sweep have been clearly observed in the numerical simulation.
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi
2018-06-01
A new acoustic metamaterial plate (AMP) is proposed herein. The plate incorporates Helmholtz resonators that are periodically embedded at intervals shorter than acoustic wavelengths. This metamaterial plate exhibits extraordinary sound transmission loss (STL) at the resonance frequency of the Helmholtz resonators compared to a conventional flat plate. The STL of the AMP can be theoretically analyzed using the effective mass density and flexural rigidity. At the resonant frequency, the dynamic density of the AMP becomes much larger than that of a conventional solid flat plate with the same mass. When the Helmholtz resonant frequency is tuned to the coincidence frequency of the AMP, the dip in transmission loss owing to the coincidence effect is not observed. The frequency band, wherein high STL occurs, is narrow; however, the frequency band can be widened by embedding multiple resonators with slightly different resonant frequencies. Numerical experiments are also performed to demonstrate the acoustic performance of the proposed system. In the simulation, Helmholtz resonators with the 2.1-kHz resonant frequency are embedded at 20-mm intervals inside a 6-mm-thick flat glass plate. Analytical solutions of this system agree well with numerical solutions for various incidence angles of incoming plane waves. In this configuration, we find that the degradation of STL caused by the coincidence effect is nearly eliminated for waves that are incident at random angles.
Evolution of the long-wavelength, subduction-driven topography of South America since 150 Ma
NASA Astrophysics Data System (ADS)
Flament, N. E.; Gurnis, M.; Williams, S.; Bower, D. J.; Seton, M.; Müller, D.
2014-12-01
Subduction to the west of South America spans 6000 km along strike and has been active for over 250 Myr. The influence of the history of subduction on the geodynamics of South America has been profound, driving mountain building and arc volcanism in the Andean Cordillera. Here, we investigate the long-wavelength changes in the topography of South America associated with subduction and plate motion and their interplay with the lithospheric deformation associated with the opening of the South Atlantic. We pay particular attention to the topographic expression of flat-lying subduction zones. We develop time-dependent geodynamic models of mantle flow and lithosphere deformation to investigate the evolution of South American dynamic and total topography since the late Jurassic (150 Ma). Our models are semi-empirical because the computational cost of fully dynamic, evolutionary models is still prohibitive. We impose the kinematics of global plate reconstructions with deforming continents in forward global mantle convection models with compositionally distinct crust and continental lithosphere embedded within the thermal lithosphere. The shallow thermal structure of subducting slabs is imposed, allowing us to investigate the evolution of dynamic topography around flat slab segments in time-dependent models. Multiple cases are used to investigate how the evolution of South American dynamic topography is influenced by mantle viscosity, the kinematics of the opening of the South Atlantic and alternative scenarios for recent and past flat-slab subduction. We predict that the migration of South America over sinking oceanic lithosphere resulted in continental tilt to the west until ~ 45 Ma, inverting to an eastward tilt thereafter. This first-order result is consistent with the reversal of the drainage of the Amazon River system. We investigate which scenarios of flat-slab subduction since the Eocene are compatible with geological constraints on the evolution of the Solimoes Basin, the Chaco Basin, the Sierras Pampeanas and the Central Patagonian Basin. To broadly constrain mantle viscosity, we compare models to the total subsidence inferred from well data offshore Argentina and Brazil, and to mantle tomography, since the initial and boundary conditions are based on independent plate reconstructions.
Subduction zone evolution and low viscosity wedges and channels
NASA Astrophysics Data System (ADS)
Manea, Vlad; Gurnis, Michael
2007-12-01
Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile budget such that the dehydration front moves to shallower depths. Our flat-slab models shed some light on puzzling flat subduction systems, like in Central Mexico, where there is no deformation within the overriding plate above the flat segment. The lack of in-plane compression in Central Mexico suggests the presence of a low viscosity shear zone above the flat slab.
NASA Technical Reports Server (NTRS)
Wilson, John C.
1995-01-01
Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate
NASA Technical Reports Server (NTRS)
Chung, Paul M.
1961-01-01
Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.
Preliminary design review package on air flat plate collector for solar heating and cooling system
NASA Technical Reports Server (NTRS)
1977-01-01
Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.
In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.
Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.
2000-01-01
A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.
Thermal performance evaluation of the Semco (liquid) solar collector
NASA Technical Reports Server (NTRS)
1979-01-01
Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.
Latent heat effects of the major mantle phase transitions on low-angle subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2001-08-01
Very low to zero shallow dip angles are observed at several moderately young subduction zones with an active trenchward moving overriding plate. We have investigated the effects of latent heat for this situation, where mantle material is pushed through the major mantle phase transitions during shallow low-angle subduction below the overriding plate. The significance of the buoyancy forces, arising from the latent heat effects, on the dynamics of the shallowly subducting slab is examined by numerical modeling. When a 32-Ma-old slab is overridden with 2.5 cm/yr by a continent, flat subduction occurs with a 4-5 cm/yr convergence rate. When latent heat is included in the model, forced downwellings cause a thermal anomaly and consequently thermal and phase buoyancy forces. Under these circumstances, the flat slab segment subducts horizontally about 350 km further and for about 11 Ma longer than in the case without latent heat, before it breaks through the 400-km phase transition. The style of subduction strongly depends on the mantle rheology: increasing the mantle viscosity by one order of magnitude can change the style of subduction from steep to shallow. Similarly, an overriding velocity of less than 1 cm/yr leads to steep subduction, which gradually changes to flat subduction when increasing the overriding velocity. However, these model parameters do not change the aforementioned effect of the latent heat, provided that low-angle subduction occurs. In all models latent heat resulted in a substantial increase of the flat slab length by 300-400 km. Varying the olivine-spinel transition Clapeyron slope γ from 1 to 6 MPa/K reveals a roughly linear relation between γ and the horizontal length of the slab. Based on these results, we conclude that buoyancy forces due to latent heat of phase transitions play an important role in low-angle subduction below an overriding plate.
Forced Convection and Sedimentation Past a Flat Plate
NASA Technical Reports Server (NTRS)
Pelekasis, Nikolaos A.; Acrivos, Andreas
1995-01-01
The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, convected steadily past a horizontal flat plate and sedimenting under the action of gravity, is examined. It is shown that, in the limit as Re approaches infinity and epsilon approaches 0, where Re is the bulk Reynolds number and epsilon is the ratio of the particle radius a to the characteristic length scale L, the analysis for determining the particle concentration profile has several aspects in common with that of obtaining the temperature profile in forced-convection heat transfer from a wall to a fluid stream moving at high Reynolds and Prandtl numbers. Specifically, it is found that the particle concentration remains uniform throughout the O(Re(exp -1/2)) thick Blasius boundary layer except for two O(epsilon(exp 2/3)) thin regions on either side of the plate, where the concentration profile becomes non-uniform owing to the presence of shear-induced particle diffusion which balances the particle flux due to convection and sedimentation. The system of equations within this concentration boundary layer admits a similarity solution near the leading edge of the plate, according to which the particle concentration along the top surface of the plate increases from its value in the free stream by an amount proportional to X(exp 5/6), with X measuring the distance along the plate, and decreases in a similar fashion along the underside. But, unlike the case of gravity settling on an inclined plate in the absence of a bulk flow at infinity considered earlier, here the concentration profile remains continuous everywhere. For values of X beyond the region near the leading edge, the particle concentration profile is obtained through the numerical solution of the relevant equations. It is found that, as predicted from the similarity solution, there exists a value of X at which the particle concentration along the top side of the plate attains its maximum value phi(sub m) and that, beyond this point, a stagnant sediment layer will form that grows steadily in time. This critical value of X is computed as a function of phi(sub s), the particle volume fraction in the free stream. In contrast, but again in conformity with the similarity solution, for values of X sufficiently far removed from the leading edge along the underside of the plate, a particle-free region is predicted to form adjacent to the plate. This model, with minor modifications, can be used to describe particle migration in other shear flows, as, for example, in the case of crossflow microfiltration.
Skin-friction gauge for use in hypervelocity impulse facilities
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Simmons, J. M.; Paull, A.
1992-01-01
A transducer is presented which can measure as rise-time of about 20 microsec, and is thereby applicable to measurements in the high-enthalpy flows associated with hypervelocity impulse facilities. Results are presented which demonstrate the effectiveness of the concept in the case of skin-friction measurements conducted on a flat plate at Mach 3.2. The calibration used was against theoretical skin-friction values in a simple flow.
On the rotation and pitching of flat plates
NASA Astrophysics Data System (ADS)
Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.
2016-11-01
Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.
Reducing cylinder drag by adding a plate
NASA Astrophysics Data System (ADS)
Frolov, Vladimir A.; Kozlova, Anna S.
2017-10-01
Reducing the drag of bodies is a central problem of modern aerohydrodynamics. The paper presents theoretical and experimental studies of a new method for reducing the drag of a circular cylinder. To reduce the drag we propose to install a flat plate along the flow in front of the cylinder. The theoretical investigation of the drag was carried out using FlowSimulation software. An experimental study of the body drag was performed in an open wind tunnel. The drag coefficient results of the cylinder depended on the different locations of the flat plate relative to the cylinder. The following geometric characteristics of the cylinder/plate are studied: the width of the gap between the cylinder and the plate and the meridional angle of the plate with respect to the cylinder. On the basis of Numerical and Physical Modeling, the values of the drag coefficient for the cylinder/plate are presented. The results included establishment the locations of the cylinder/plate which give the value of the drag coefficient for the combination of the two bodies. That total drag coefficient of the cylinder/plate can be less than the cylinder alone.
Dehumidification System with Steam Permeability Films
NASA Astrophysics Data System (ADS)
Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo
In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.
Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine
2017-05-16
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J
1958-01-01
The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.
Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1974-01-01
Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.
Tribometer for Lubrication Studies in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1998-01-01
The NASA Lewis Research Center has developed a new way to evaluate the liquid lubricants used in ball bearings in space mechanisms. For this evaluation, a liquid lubricant is exercised in the rolling contact vacuum tribometer shown in the photo. This tribometer, which is essentially a thrust bearing with three balls and flat races, has contact stresses similar to those in a typical preloaded, angular contact ball bearing. The rotating top plate drives the balls in an outward-winding spiral orbit instead of a circular path. Upon contact with the "guide plate," the balls are forced back to their initial smaller orbit radius; they then repeat this spiral orbit thousands of times. The orbit rate of the balls is low enough, 2 to 5 rpm, to allow the system to operate in the boundary lubrication regime that is most stressful to the liquid lubricant. This system can determine the friction coefficient, lubricant lifetime, and species evolved from the liquid lubricant by tribodegradation. The lifetime of the lubricant charge is only few micrograms, which is "used up" by degradation during rolling. The friction increases when the lubricant is exhausted. The species evolved by the degrading lubricant are determined by a quadrupole residual gas analyzer that directly views the rotating elements. The flat races (plates) and 0.5-in.-diameter balls are of a configuration and size that permit easy post-test examination by optical and electron microscopy and the full suite of modern surface and thin-film chemical analytical techniques, including infrared and Raman microspectroscopy and x-ray photoelectron spectroscopy. In addition, the simple sphere-on-a-flat-plate geometry allows an easy analysis of the contact stresses at all parts of the ball orbit and an understanding of the frictional energy losses to the lubricant. The analysis showed that when the ball contacts the guide plate, gross sliding occurs between the ball and rotating upper plate as the ball forced back to a smaller orbit radius. The friction force due to gross sliding is sensed by the piezoelectric force transducer behind the guide plate and furnishes the coefficient of friction for the system. This tribometer has been used to determine the relative lifetimes of Fomblin Z-25, a lubricant often used in space mechanisms, as a function of the material of the plates against which it was run. The balls were 440C steel in all cases; the plate materials were aluminum, chromium (Cr), 440C steel (17 wt % Cr), and 4150 steel (1 wt % Cr). As shown in the bar graph, the lifetime is greatest for the plate material with least chromium, thus implicating chromium as a tribochemically active element attacking Fomblin Z-25.
NASA Astrophysics Data System (ADS)
Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.
2017-11-01
The transverse injection of a pulsed jet into a supersonic flow for thrust vectoring in solid rocket motors is investigated. The gas flow through the injection nozzle is controlled by a piston which performs reciprocating motion. Reynolds-averaged Navier-Stokes equations and the ( k- ɛ) turbulence model equations are discretized using the finite volume method and moving grids. The pressure distributions on the plate surface obtained using various approaches to the description of the flow field and difference schemes are compared. The solution obtained for the case of injection of a pulsed jet is compared with the solution for the case where a valve prevents gas flow through the injection nozzle. The dependence of the control force produced by gas injection on time is investigated.
NASA Astrophysics Data System (ADS)
Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.
2018-02-01
The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E; Stowell, Elbridge Z
1942-01-01
A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1983-11-15
A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.
OUT Success Stories: Solar Hot Water Technology
DOE R&D Accomplishments Database
Clyne, R.
2000-08-01
Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.
NASA Technical Reports Server (NTRS)
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
UTD analysis of electromagnetic scattering by flat structures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sikta, F. A.; Peters, L., Jr.
1981-01-01
The different scattering mechanisms that contribute to the radar cross of finite flat plates were identified and analyzed. The geometrical theory of diffraction, the equivalent current and the corner diffraction are used for this study. A study of the cross polarized field for a monopole mounted on a plate is presented, using novel edge wave mechanism in the analysis. The results are compared with moment method solutions as well as measured data.
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-07-01
Flat subduction near Peru occurs only where the thickened crust of the Nazca Ridge subducts. Furthermore, the South-America continent shows a westward absolute plate motion. Both the overriding motion of South-America and the subduction of the Nazca Ridge have been proposed to explain the flat slab segment below South Peru. We have conducted a series of numerical model experiments to investigate the relative importance of both mechanisms. Results suggest that the average upper mantle viscosity should be about 3.5 × 1020 Pa s or less and basaltic crust should be able to survive 600 to 800°C ambient temperature before transforming into eclogite to explain the slab geometry below Peru. The effect of the overriding plate is estimated to be as large or twice as large as that of the plateau subduction.
Accuracy of the Kirchoff formula in determining acoustic shielding with the use of a flat plate
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Davis, J. E.
1977-01-01
It has been suggested that if jet engines of aircraft were placed at above the wing instead of below it, the wing would provide a partial shielding of the noise generated by the engines relative to observers on the ground. The shielding effects of an idealized three-dimensional barrier in the presence of an idealized engine noise source was predicted by the Kirchoff formula. Based on the good agreement between experimental measurements and the numerical results of the current study, it was concluded that the Kirchoff approximation provides a good qualitative estimate of the acoustic shielding of a point source by a rectangular flat plate for measurements taken in the far field of the flat plate at frequencies ranging from 1 kHz to 20 kHz. At frequencies greater than 4 kHz the Kirchoff approximation provides accurate quantitative predictions of acoustic shielding.
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.
1984-01-01
Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.
Sharp acoustic vortex focusing by Fresnel-spiral zone plates
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis
2018-05-01
We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnel-spiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters.
The Effect of Turbulence on the Drag of Flat Plates
NASA Technical Reports Server (NTRS)
Schubauer, G B; Dryden, H L
1937-01-01
in determining the effect of turbulence on the forces exerted on bodies in the air stream of a wind tunnel, it is commonly assumed that the indications of the standard Pitot-static tube used to determine the air speed are not dependent on the turbulence. To investigate the truth of this assumption, the drag of a normally exposed flat plate, the difference in pressure between the front and rear of a thin circular disk, the rate of rotation of a vane anemometer, and the pressure developed by a standard Pitot-static tube were measured in an air stream for several conditions of turbulence. The results may be interpreted as indicating that there is no appreciable effect of turbulence on the vane anemometer and the standard pitot-static tube, but that there is small effect on the drag of a flat plate and the pressure difference between front and rear of a disk.
Accurate stratospheric particle size distributions from a flat plate collection surface
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Mackinnon, I. D. R.
1985-01-01
Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sato, H.; Van Horne, A.
2015-12-01
We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.
NASA Technical Reports Server (NTRS)
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
Experimental investigation of turbulent wall jet
NASA Astrophysics Data System (ADS)
Andre, Matthieu A.; Bardet, Philippe M.
2011-11-01
Water jet flowing on a flat plate surrounded by quiescent air constitutes a standard case for the study of the interaction between turbulence and the liquid-air interface. This is of particular interest in the understanding of heat and mass transfers across interfaces. The structure of the surface has a great influence on the rate of the transfers which is critical for chemical processes like separation or absorption; pool-type nuclear reactor; climate modeling etc. This study focuses on high Froude (8 to 12) and Weber (3300 to 7400) numbers at which the surface exhibits small wavelength and large amplitude deformations, such as ligaments, surface break up with air entrainment and droplets projection. The experiment features a high velocity (up to 7.5 m/s) water wall jet (19.05mm thick at the nozzle exit) flowing on a flat plate (Re =105 to 1 . 5 .105). High speed movies and PLIF visualization show the evolution of the surface from smooth to 2D structures, then 3D disturbances as the turbulence arising from the wall interacts with the surface.
Aeolian processes aboard a space station: Saltation and particle trajectory analysis
NASA Technical Reports Server (NTRS)
White, B. R.; Greeley, R.; Iversen, J. D.; Leach, R. N.
1986-01-01
The Carousel wind tunnel (CWT) proposed to study aeolian processes aboard a space station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel test section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simulate flat plate turbulent boundary layer flow. The two dimensional flat plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricted to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.
NASA Astrophysics Data System (ADS)
Kapania, R. K.; Mohan, P.
1996-09-01
Finite element static, free vibration and thermal analysis of thin laminated plates and shells using a three noded triangular flat shell element is presented. The flat shell element is a combination of the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element derived from the Linear Strain Triangular (LST) element with a total of 18 degrees of freedom (3 translations and 3 rotations per node). Explicit formulations are used for the membrane, bending and membrane-bending coupling stiffness matrices and the thermal load vector. Due to a strong analogy between the induced strain caused by the thermal field and the strain induced in a structure due to an electric field the present formulation is readily applicable for the analysis of structures excited by surface bonded or embedded piezoelectric actuators. The results are presented for (i) static analysis of (a) simply supported square plates under doubly sinusoidal load and uniformly distributed load (b) simply supported spherical shells under a uniformly distributed load, (ii) free vibration analysis of (a) square cantilever plates, (b) skew cantilever plates and (c) simply supported spherical shells; (iii) Thermal deformation analysis of (a) simply supported square plates, (b) simply supported-clamped square plate and (c) simply supported spherical shells. A numerical example is also presented demonstrating the application of the present formulation to analyse a symmetrically laminated graphite/epoxy laminate excited by a layer of piezoelectric polyvinylidene flouride (PVDF). The results presented are in good agreement with those available in the literature.
NASA Astrophysics Data System (ADS)
Linkimer, L.; Beck, S. L.; Zandt, G.; Alvarado, P. M.; Anderson, M. L.; Gilbert, H. J.; Zhang, H.
2011-12-01
We obtain earthquake locations and a detailed three-dimensional model of the subduction zone velocity structure in west-central Argentina by applying a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks. In this region, the flat subduction of the Nazca Plate including the Juan Fernandez Ridge is spatially correlated in the overriding South America Plate with a gap in the arc volcanism and the thick-skinned, basement-cored uplifts of the Sierras Pampeanas. Our model shows the subducting Nazca Plate as a mostly continuous band of increased (2-6%) P- and S- wave velocities (Vp and Vs). The lithospheric mantle of the South America Plate appears to be heterogeneous but mostly characterized by Vp of 8.0-8.2 km/s, Vs of 4.5-4.7 km/s, and Vp/Vs ratio of 1.75-1.78, which is consistent with either a depleted lherzolite or harzburgite. We observe a region of higher Vp/Vs ratio (1.78-1.80) that we correlated with up to 10% hydration of mantle peridotites above the flat slab. In addition, we observe localized regions of lower Vp/Vs ratio (1.71-1.73) in the mantle above the westernmost part of the flat slab, suggesting orthopyroxene enrichment. Our velocity observations are consistent with the presence of Paleozoic carbonate rocks in the Precordillera and the differences in composition for the Sierras Pampeanas basement: a more mafic composition for Cuyania Terrane in the west and a more felsic composition for the Pampia Terrane in the east. Additionally, we present new contours for the Wadati-Benioff Zone (WBZ). The top of the WBZ of the Nazca Plate is nearly flat at ~100 km depth approximately within the region of latitude 28-32°S and longitude 70-68.5°W. We determined that WBZ is a single layer of seismicity with thickness of 10-15 km, which may correspond to the dehydration of the subducting oceanic mantle. We found that the flat slab region is wider (~240 km) than the Juan Fernandez Ridge offshore (~100 km), and together with the shape of the slab contours may reflect the response of the geometry of the slab to the southward migration of the buoyant ridge. The non-uniform spatial distribution of the slab seismicity may reflect the variability in the hydration state of the subducting Nazca Plate with greater release of water from the subducted ridge region.
NASA Astrophysics Data System (ADS)
Linkimer, L.; Beck, S. L.; Zandt, G.; Alvarado, P. M.; Anderson, M. L.; Gilbert, H. J.; Zhang, H.
2013-05-01
We obtain earthquake locations and a detailed three-dimensional model of the subduction zone velocity structure in west-central Argentina by applying a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks. In this region, the flat subduction of the Nazca Plate including the Juan Fernandez Ridge is spatially correlated in the overriding South America Plate with a gap in the arc volcanism and the thick-skinned, basement-cored uplifts of the Sierras Pampeanas. Our model shows the subducting Nazca Plate as a mostly continuous band of increased (2-6%) P- and S- wave velocities (Vp and Vs). The lithospheric mantle of the South America Plate appears to be heterogeneous but mostly characterized by Vp of 8.0-8.2 km/s, Vs of 4.5-4.7 km/s, and Vp/Vs ratio of 1.75-1.78, which is consistent with either a depleted lherzolite or harzburgite. We observe a region of higher Vp/Vs ratio (1.78-1.80) that we correlated with up to 10% hydration of mantle peridotites above the flat slab. In addition, we observe localized regions of lower Vp/Vs ratio (1.71-1.73) in the mantle above the westernmost part of the flat slab, suggesting orthopyroxene enrichment. Our velocity observations are consistent with the presence of Paleozoic carbonate rocks in the Precordillera and the differences in composition for the Sierras Pampeanas basement: a more mafic composition for Cuyania Terrane in the west and a more felsic composition for the Pampia Terrane in the east. Additionally, we present new contours for the Wadati-Benioff Zone (WBZ). The top of the WBZ of the Nazca Plate is nearly flat at ~100 km depth approximately within the region of latitude 28-32°S and longitude 70-68.5°W. We determined that WBZ is a single layer of seismicity with thickness of 10-15 km, which may correspond to the dehydration of the subducting oceanic mantle. We found that the flat slab region is wider (~240 km) than the Juan Fernandez Ridge offshore (~100 km), and together with the shape of the slab contours may reflect the response of the geometry of the slab to the southward migration of the buoyant ridge. The non-uniform spatial distribution of the slab seismicity may reflect the variability in the hydration state of the subducting Nazca Plate with greater release of water from the subducted ridge region.
Investigation of Low-Pressure Turbine Endwall Flows: Simulations and Experiments (Postprint)
2015-01-01
direction) minor semiaxis of 0.0417Cx (0.25in). Measured in the axial direction, the flat plate leading edge was located at x=-3.958Cx (23.75in) where...for public release; distribution unlimited. plate boundary layer is δ∗ = 1.721s/Re0.5s . For s = 4.833Cx, Reδ∗ = 1.721 √ s/CxRe = 1, 200. At this...boundary which was located at x=-1.4Cx. The following approximations hold for a turbulent flat plate boundary layer: δ99 = 0.37s Re0.2s , δ∗ = 0.046s
Application of a new K-tau model to near wall turbulent flows
NASA Technical Reports Server (NTRS)
Thangam, S.; Abid, R.; Speziale, Charles G.
1991-01-01
A recently developed K-tau model for near wall turbulent flows is applied to two severe test cases. The turbulent flows considered include the incompressible flat plate boundary layer with the adverse pressure gradients and incompressible flow past a backward facing step. Calculations are performed for this two-equation model using an anisotropic as well as isotropic eddy-viscosity. The model predictions are shown to compare quite favorably with experimental data.
Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels
NASA Technical Reports Server (NTRS)
Treble, F. C.
1976-01-01
A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.
Qualification testing of flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.
1982-01-01
The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.
NASA Technical Reports Server (NTRS)
Simon, F.
1975-01-01
A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.
Progress in hypersonic turbulence modeling
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1991-01-01
A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.
Skin friction and heat transfer correlations for high-speed low-density flow past a flat plate
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Baganoff, Donald
1991-01-01
The independent and dependent variables associated with drag and heat transfer to a flat plate at zero incidence in high-speed, rarefied flow are analyzed anew to reflect the importance of kinetic effects occurring near the plate surface on energy and momentum transfer, rather than following arguments normally used to describe continuum, higher density flowfields. A new parameter, the wall Knudsen number Knx,w, based on an estimate of the mean free path length of molecules having just interacted with the surface of the plate, is introduced and used to correlate published drag and heat transfer data. The new parameter is shown to provide better correlation than either the viscous interaction parameter X or the widely-used slip parameter Voo for drag and heat transfer data over a wide range of Mach numbers, Reynolds numbers, and plate-to-freestream stagnation temperature ratios.
Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate
NASA Astrophysics Data System (ADS)
Fenn, Alan J.
1990-05-01
The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.
Resonant Interaction of a Rectangular Jet with a Flat-Plate
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.
2014-01-01
A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.
Bremicker, K; Gosch, D; Kahn, T; Borte, G
2015-11-01
Chest radiography is the most common diagnostic modality in intensive care units with new mobile flat-panels gaining more attention and availability in addition to the already used storage phosphor plates. Comparison of the image quality of mobile flat-panels and needle-image plate storage phosphor system in terms of bedside chest radiography. Retrospective analysis of 84 bedside chest radiographs of 42 intensive care patients (20 women, 22 men, average age: 65 years). All images were acquired during daily routine. For each patient, two images were analyzed, one from each system mentioned above. Two blinded radiologists evaluated the image quality based on ten criteria (e.g., diaphragm, heart contour, tracheal bifurcation, thoracic spine, lung structure, consolidations, foreign material, and overall impression) using a 5-point visibility scale (1 = excellent, 5 = not usable). There was no significant difference between the image quality of the two systems (p < 0.05). Overall some anatomical structures such as the diaphragm, heart, pulmonary consolidations and foreign material were considered of higher diagnostic quality compared to others, e.g., tracheal bifurcation and thoracic spine. Mobile flat-panels achieve an image quality which is as good as those of needle-image plate storage phosphor systems. In addition, they allow immediate evaluation of the image quality but in return are much more expensive in terms of purchase and maintenance.
Ballistic Impact of Braided Composites With a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike
2004-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites indicate that composites of this type can reasonably be considered as a lightweight alternative to metals for fan cases in commercial jet engines.
Aziz, Asim; Siddique, J I; Aziz, Taha
2014-01-01
In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.
Aziz, Asim; Siddique, J. I.; Aziz, Taha
2014-01-01
In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301
Flow past a Flat Plate with a Vortex/sink Combination
NASA Technical Reports Server (NTRS)
Mourtos, N. J.
1984-01-01
An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only: and (2) the Helmholtz solution of totally separated flow over the plate.
Acoustic radiation damping of flat rectangular plates subjected to subsonic flows
NASA Technical Reports Server (NTRS)
Lyle, Karen Heitman
1993-01-01
The acoustic radiation damping for various isotropic and laminated composite plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has been predicted. The predictions are based on the linear vibration of a flat plate. The fluid loading is characterized as the perturbation pressure derived from the linearized Bernoulli and continuity equations. Parameters varied in the analysis include Mach number, mode number and plate size, aspect ratio and mass. The predictions are compared with existing theoretical results and experimental data. The analytical results show that the fluid loading can significantly affect realistic plate responses. Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation damping values than similar aluminum plates, except near plate divergence conditions resulting from aeroelastic instability. Universal curves are presented where the acoustic radiation damping normalized by the mass ratio is a linear function of the reduced frequency. A separate curve is required for each Mach number and plate aspect ratio. In addition, acoustic radiation damping values can be greater than or equal to the structural component of the modal critical damping ratio (assumed as 0.01) for the higher subsonic Mach numbers. New experimental data were acquired for comparison with the analytical results.
NASA Astrophysics Data System (ADS)
Wang, Chunbai; Mitra, Ambar K.
2016-01-01
Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Sentelhas, Paulo C; Gillespie, Terry J; Santos, Eduardo A
2007-03-01
In general, leaf wetness duration (LWD) is a key parameter influencing plant disease epidemiology, since it provides the free water required by pathogens to infect foliar tissue. LWD is used as an input in many disease warning systems, which help growers to decide the best time to spray their crops against diseases. Since there is no observation standard either for sensor or exposure, LWD measurement is often problematic. To assess the performance of electronic sensors, LWD measurements obtained with painted cylindrical and flat plate sensors were compared under different field conditions in Elora, Ontario, Canada, and in Piracicaba, São Paulo, Brazil. The sensors were tested in four different crop environments--mowed turfgrass, maize, soybean, and tomatoes--during the summer of 2003 and 2004 in Elora and during the winter of 2005 in Piracicaba. Flat plate sensors were deployed facing north and at 45 degrees to horizontal, and cylindrical sensors were deployed horizontally. At the turfgrass site, both sensors were installed 30 cm above the ground, while at the crop fields, the sensors were installed at the top and inside the canopy (except for maize, with a sensor only at the top). Considering the flat plate sensor as a reference (Sentelhas et al. Operational exposure of leaf wetness sensors. Agric For Meteorol 126:59-72, 2004a), the results in the more humid climate at Elora showed that the cylindrical sensor overestimated LWD by 1.1-4.2 h, depending on the crop and canopy position. The main cause of the overestimation was the accumulation of big water drops along the bottom of the cylindrical sensors, which required much more energy and, consequently, time to evaporate. The overall difference between sensors when evaporating wetness formed during the night was around 1.6 h. Cylindrical sensors also detected wetness earlier than did flat plates--around 0.6 h. Agreement between plate and cylinder sensors was much better in the drier climate at Piracicaba. These results allow us to caution that cylindrical sensors may overestimate wetness for operational LWD measurements in humid climates and that the effect of other protocols for angling or positioning this sensor should be investigated for different crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less
Bovine dedifferentiated adipose tissue (DFAT) cells
Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V
2013-01-01
Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism. PMID:23991361
Large Angle Unsteady Aerodynamic Theory of a Flat Plate
NASA Astrophysics Data System (ADS)
Manar, Field; Jones, Anya
2016-11-01
A purely analytical approach is taken for the evaluation of the unsteady loads on a flat plate. This allows for an extremely low cost theoretical prediction of the plate loads in the style of Wagner and Theodorsen, without making the assumption of small angle of attack or small disturbance flow. The forces and moments are evaluated using the time rate of change of fluid momentum, expressed as an integral of the vorticity field. The flow is taken as inviscid and incompressible with isolated vorticity bound to the plate and in the shed wake. The bound vorticity distribution on the plate is solved exactly using conformal mapping of the plate to a cylinder. In keeping with the original assumption of Wagner, the wake vorticity is assumed to remain stationary in an inertial reference frame and convection is disregarded. Formulation in this manner allows for a closed form solution of Wagner's problem valid at all angles of attack. Separation from the leading edge of the plate can also be included to further increase the fidelity of the model at high angles.
An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes
NASA Astrophysics Data System (ADS)
Hsieh, Jui-Ching; Lin, David T. W.; Huang, Hsin-Jung; Yang, Tzu-Wei
2014-04-01
This study investigates the compatibility of aluminum flat-plate heat pipes (FPHPs) used for filling acetone as a working fluid after long-term operation of and the non-condensable gas (NCG) exhausting process. The rate of NCG generation substantially decreased after conducting the NCG exhausting process, proving the compatibility of acetone with the aluminum FPHPs. However, the thermal resistance was not enhanced because hydroxide bayerite (Al(OH)3) was generated as a product of the reaction.
2015-09-28
release. Rotary encoder Brushless servo motor Wind tunnel bottom wall Stainless steel shaft Shaft coupling Wind tunnel top wall Titanium flat plate...illustrating the flat plate mounted to a virtual spring-damper system in the wind tunnel test section. 2 DISTRIBUTION A: Distribution approved for...non-dimensional ratios. For example the non-dimensional stiffness, k∗ = 2k/(ρU2∞c 2h), can be kept constant even if the wind speed, U∞, chord, c, and
Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows
2014-10-28
goes into the kinetic energy of the electrons rather than heating of the surrounding gas.24 The examples of these include corona discharge and micro...Moreau, G. Artana, and G. Touchard, “Influence of a DC corona discharge on the airflow along an inclined flat plate,” J. Electrostat. 51–52, 300 306...10), 2554 2564 (2007). 42E. Moreau, G. Artana, and G. Touchard, “Surface corona discharge along an insulating flat plate in air applied to
Visualization of leading edge vortices on a series of flat plate delta wings
NASA Technical Reports Server (NTRS)
Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.
1991-01-01
A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.
NASA Technical Reports Server (NTRS)
Librescu, L.; Chandiramani, N. K.
1989-01-01
Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2015-05-01
This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.
A computational study on the influence of insect wing geometry on bee flight mechanics
Feaster, Jeffrey; Bayandor, Javid
2017-01-01
ABSTRACT Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. PMID:29061734
A computational study on the influence of insect wing geometry on bee flight mechanics.
Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid
2017-12-15
Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.
An analysis of oscillatory hydromagnetic couette flow through a porous medium in a rotating system
NASA Astrophysics Data System (ADS)
Rajesh, K.; Govindarajan, A.; Vidhya, M.; Siva, E. P.
2018-04-01
Analysis of an exact solution of oscillatory Ekman boundary layer flow through a porous medium bounded by two horizontal flat plates is found. One of the plates is at rest and the other one is oscillating in its own plane. The whole of the system rotates about an axis normal to the plates. The effects of Coriolis force and the permeability of the porous medium on the flow field are studied. It is seen that even in the special case of resonance (w = 2Ω) the solution obtained by Mazumder is incorrect as contended by Ganapathy. It is found that the amplitude of the resultant velocity |A0| for the steady part increases with either an increase in the permeability parameter k0 (or) an increase in the rotation parameter R. But the above profiles have a reverse trend when there is an increase in the Hartmann number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ader, C.; Voirin, E.; McGee, M.
An error was found in an edge stress coefficient used to calculate stresses in thin windows. This error is present in “Roark’s Formulas for Stress and Strain” 7th and 8th Edition. The 6th Edition is correct. This guideline specially discusses a major difference in regards to a coefficient used in calculating the edge stress in “Roark’s Formulas for Stress and Strain” 6th Edition compared to the 7th and 8th Editions. In Chapter 10: Flat Plates under “Circular plates under distributed load producing large deflections,” Case 3, which is “Fixed and held. Uniform pressure q over entire plate.” The coefficient formore » a fixed edge condition in the 6th Edition1 K4 = 0.476 while in the 7th and 8th Edition2, the coefficient is 1.73 which is significant difference.« less
Ion-plasma gun for ion-milling machine
Kaminsky, Manfred S.; Campana, Jr., Thomas J.
1976-01-01
An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.
78 FR 25666 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
...) sensor blockage. The existing AD also provides for optional terminating action for the AFM revision, which involves replacing AoA sensor conic plates with AoA sensor flat plates. Since we issued that AD, we have determined that the replacement of AoA sensor conic plates is necessary to address the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
.... On its domestic sales, Benteler would be able to choose the duty rate during customs entry procedures...: Metal stampings (crash cans, reinforcement plates, flange plates); bumper beams; toe hooks; cross member shells; side tubes; steel blanks; brackets; gussets; closing plates; castings of aluminum; flat-rolled...
Existence of equilibria in articulated bearings
NASA Astrophysics Data System (ADS)
Buscaglia, G.; Ciuperca, I.; Hafidi, I.; Jai, M.
2007-04-01
The existence of equilibrium solutions for a lubricated system consisting of an articulated body sliding over a flat plate is considered. Though this configuration is very common (it corresponds to the popular tilting-pad thrust bearings), the existence problem has only been addressed in extremely simplified cases, such as planar sliders of infinite width. Our results show the existence of at least one equilibrium for a quite general class of (nonplanar) slider shapes. We also extend previous results concerning planar sliders.
NASA Astrophysics Data System (ADS)
Comte, D.; Farías, M.; Roecker, S. W.; Brandon, M. T.
2017-12-01
The 2015 Illapel interplate earthquake Mw 8.4 generated a large amount of aftershocks that was recorded by the Chile-Illapel Aftershock Experiment (CHILLAX) during a year after the mainshock. Using this database, along with previous seismological campaigns, an improved 3D body wave tomographic image was obtained, allowing us to visualize first-order lithospheric discontinuities. This new analysis confirms not only the presence of this dense block, but also that the Benioff zone extends with a 30° dip even below the 100 km depth, where the Nazca plate has been interpreted to be flat. Recent results of seismic anisotropy show that the oceanic plate has been detached at depths greater than 300 km. We propose that: i) The dry, cold mantle beneath the continental crust is an entrapped mantle, cooled by the slab flattening, while the western part would be hydrated by slab-derived fluid; ii) The Nazca plate would be faulted and is now subducting with a normal dip beneath the flattened slab segment. Considering that the slab segment is detached from deeper part of the subducted plate, slab pull on the flat segment would be reduced, decreasing its eastward advance. In the western side, the flat segment of the slab has been observed to be slightly folded. We propose that the current normal subduction is related to the slab break-off resulting from the loss of a slab-pull force, producing the accretion of the slab beneath the dry and cold mantle. Considering that the flat slab segment does not occur at depths shallower than 100 km, rollback of the slab is not expected. In turn, suction forces would have induced the shortening in the flat segment considering its eastward slowing down due to slab break-off, thus producing a breakthrough faulting. This proposition implies that the underplated flat slab segment, along with the overlying dense and dry mantle may be delaminated by gravitional instabilities and ablative subduction effects.
High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry
Banishev, Alexandr A.; Shaw, William L.; Bassett, Will P.; ...
2016-02-16
Pulsed lasers can launch thin metal foils at km s -1, but for precision measurements in shock compression science and shock wave spectroscopy, where one-dimensional shock compression is vital, flyer plate impacts with targets must have a high degree of flatness and minimal tilt, and the flyer speeds and impact times at the target must be highly reproducible. We have developed an apparatus that combines ultrafast stroboscopic optical microscopy with photon Doppler velocimetry to study impacts of laser-launched Al and Cu flyer plates with flat, transparent glass targets. The flyer plates were 0.5 mm in diameter, and ranged from 12-100more » μm thick, with flyer speeds up to 6.25 km s -1. The velocity variations over 30-60 launches from the same flyer plate optic can be as low as 0.6%, and the impact time variations can be as low as 0.8 ns. Stroboscopic image streams (reconstructed movies) show uniform, flat impacts with a glass target. As a result, these stroboscopic images can be used to estimate the tilt in the flyer-target impact to be <1mrad.« less
NASA Technical Reports Server (NTRS)
Vaughan, Victor L , Jr; Ramsen, John A
1957-01-01
Results of an investigation of the hydrodynamic characteristics over an extended speed range of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion are presented. Comparisons between these data and data over a lower speed range on a similar aspect-ratio-0.25 flat plate but having one-half the thickness are presented. These comparisons show no significant differences at the low speeds. At high speeds and high angles of attack, where extensive cavitation was present, the lift coefficients were lower than would have been indicated by the results of the previous investigations and the present investigation at the lower angles of attack. A brief discussion and comparison of ventilation are presented which shows two types of planing bubble formation and the effect of increasing the thickness of the model on the ventilation boundary.
Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.
Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A
2012-09-01
The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.
Interference drag in a simulated wing-fuselage juncture
NASA Technical Reports Server (NTRS)
Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.
1984-01-01
The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6
NASA Technical Reports Server (NTRS)
Johnson, C. B.; Kaufman, L. G., II
1974-01-01
An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.
NASA Technical Reports Server (NTRS)
Biaglow, James A.; Trout, Arthur M.
1977-01-01
Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
Root-Contact/Pressure-Plate Assembly For Hydroponic System
NASA Technical Reports Server (NTRS)
Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.
1994-01-01
Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.
Normal and lateral Casimir forces between deformed plates
NASA Astrophysics Data System (ADS)
Emig, Thorsten; Hanke, Andreas; Golestanian, Ramin; Kardar, Mehran
2003-02-01
The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length λ: For λ≪H we find a slower decay ˜H-4, compared to the H-5 behavior predicted by PWS which we show to be valid only for λ≫H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of λ≈2.5 H. With increasing H/λ≳0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.
a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate
NASA Astrophysics Data System (ADS)
Cappietti, L.; Chopard, B.
We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were usedmore » in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.« less
Process for manufacturing hollow fused-silica insulator cylinder
Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.
2001-01-01
A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2014-12-01
This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.
Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips
NASA Astrophysics Data System (ADS)
Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen
2017-11-01
Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.
Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges
NASA Astrophysics Data System (ADS)
Sunderland, Zofia; Patorski, Krzysztof
2015-09-01
When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.
NASA Astrophysics Data System (ADS)
Tahavvor, Ali Reza
2017-03-01
In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... that ensure instant release onto a rigidly supported flat horizontal steel plate, which is 2 inches thick and 2 feet square. The plate shall have a clean, dry surface and any microfinish of not less than...
On the Impact Between a Water Free Surface and a Rigid Structure
NASA Astrophysics Data System (ADS)
Wang, An
In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3 cm below the mean water level, a ''flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.
Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects
Sun, Zhigang; Wang, Xianqiao
2014-01-01
Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.
Strength of Rectangular Flat Plates Under Edge Compression
NASA Technical Reports Server (NTRS)
Schuman, Louis; Back, Goldie
1931-01-01
Flat rectangular plates of duralumin, stainless iron, monel metal, and nickel were tested under loads applied at two opposite edges and acting in the plane of the plate. The edges parallel to the direction of loading were supported in V grooves. The plates were all 24 inches long and varied in width from 4 to 24 inches by steps of 4 inches, and in thickness from 0.015 to 0.095 inch by steps of approximately 0.015 inch. There were also a few 1, 2, 3, and 6 inch wide specimens. The loads were applied in the testing machine at the center of a bar which rested along the top of the plate. Load was applied until the plate failed to take any more load. The tests show that the loads carried by the plates generally reached a maximum for the 8 or 12 inch width and that there was relatively small drop in load for the greater widths. Deflection and set measurement perpendicular to the plane of the plate were taken and the form of the buckle determined. The number of buckles were found to correspond in general to that predicted by the theory of buckling of a plate uniformly loaded at two opposite edges and simply supported at the edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.
1997-07-01
Experimental data for isothermal pressure drop and heat transfer in single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. A single-pass, U-type, counterflow PHE, with three different chevron plate arrangements is employed: two symmetric plate arrangements with {beta} = 30/30{degree} and 60/60{degree}, and a mixed-plate arrangement with {beta} = 30/60{degree}. With water flow rates in the turbulent flow regime (600 < Re < 10{sup 4} and 2 < Pr < 6), effects of the chevron corrugation inclination angle {beta} on Nu and f characteristics of the PHE are investigated. As {beta} increases and compared tomore » a flat-plate pack, up to 2 to 5 times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Based on the experimental data for Re {le} 1,000, predictive correlations of the form Nu = C{sub 1}{beta} Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}{beta} Re{sup p2({beta})} are devised. Also, at constant pumping power and depending upon {beta}, the heat transfer is found to be enhanced over 1.8 times that in equivalent flat-plate channels.« less
NASA Astrophysics Data System (ADS)
Tambunan, D. R. S.; Sibagariang, Y. P.; Ambarita, H.; Napitupulu, F. H.; Kawai, H.
2018-03-01
The characteristics of absorber plate of a flat plate solar collector play an important role in the improvement of the performance. In this work, a numerical analysis is carried out to explore the effect of absorptivity and emissivity of absorber plate to the performance of the solar collector of a solar water heater. For a results comparison, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. It is employed to heat water in a container by exposing to the solar radiation in Medan city of Indonesia. The transient governing equations are developed. The governing equations are discretized and solved using the forward time step marching technique. The results reveal that the experimental and numerical results show good agreement. The absorptivity of the plate absorber and emissivity of the glass cover strongly affect the performance of the solar collector.
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD ...
19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD AND SILVER WERE AMONG THE MATERIALS PLATED ONTO PARTS MADE OF COPPER, STAINLESS STEEL AND STEEL. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
Vibration analyses of an inclined flat plate subjected to moving loads
NASA Astrophysics Data System (ADS)
Wu, Jia-Jang
2007-01-01
The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Trimpi, R. L.
1974-01-01
An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.
Eddy current X-Y scanner system
NASA Technical Reports Server (NTRS)
Kurtz, G. W.
1983-01-01
The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.
Environmental testing of flat plate solar cell modules
NASA Technical Reports Server (NTRS)
Griffith, J.; Dumas, L.; Hoffman, A.
1978-01-01
Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.
High Performance Flat Plate Solar Thermal Collector Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockenbaugh, Caleb; Dean, Jesse; Lovullo, David
2016-09-01
This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.
Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors
NASA Technical Reports Server (NTRS)
1981-01-01
An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.
NASA Technical Reports Server (NTRS)
Librescu, L.; Stein, M.
1990-01-01
The effects of initial geometrical imperfections on the postbuckling response of flat laminated composite panels to uniaxial and biaxial compressive loading are investigated analytically. The derivation of the mathematical model on the basis of first-order transverse shear deformation theory is outlined, and numerical results for perfect and imperfect, single-layer and three-layer square plates with free-free, clamped-clamped, or free-clamped edges are presented in graphs and briefly characterized. The present approach is shown to be more accurate than analyses based on the classical Kirchhoff plate model.
Compressible Navier-Stokes equations: A study of leading edge effects
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Karbhari, P. R.
1987-01-01
A computational method is developed that allows numerical calculations of the time dependent compressible Navier-Stokes equations.The current results concern a study of flow past a semi-infinite flat plate.Flow develops from given inflow conditions upstream and passes over the flat plate to leave the computational domain without reflecting at the downstream boundary. Leading edge effects are included in this paper. In addition, specification of a heated region which gets convected with the flow is considered. The time history of this convection is obtained, and it exhibits a wave phenomena.
2016-02-26
zero-pressure- gradient boundary layer to develop over a flat plate . As shown in figure 6.1, the flat plate contains an insert to allow for a thin...B. J. ‘Triadic scale interactions in a turbulent boundary layer ’ J. Fluid Mech., 767, R4 (2015). 6. Luhar, M., Sharma, A. S. & McKeon, B. J. ‘A... boundary layer ’, Paper H22.00003, 68th Meeting of the American Physical Society Division of Fluid Dynamics, Boston, MA, Nov., 2015. Duvvuri
NASA Technical Reports Server (NTRS)
Shuford, Charles L , Jr
1958-01-01
A summary is given of the background and present status of the pure-planing theory for rectangular flat plates and v-bottom surfaces. The equations reviewed are compared with experiment. In order to extend the range of available planing data, the principal planing characteristics for models having sharp bottom surfaces having constant angles of dead rise of 20 degrees and 40 degrees. Planing data were also obtained for flat-plate surfaces with very slightly rounded chines for which decreased lift and drag coefficients are obtained.
Near Continuum Velocity and Temperature Coupled Compressible Boundary Layer Flow over a Flat Plate
NASA Astrophysics Data System (ADS)
He, Xin; Cai, Chunpei
2017-04-01
The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate's leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.
NASA Astrophysics Data System (ADS)
Yadong, HUANG; Benmou, ZHOU
2018-05-01
Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.
NASA Astrophysics Data System (ADS)
Elbing, Brian R.
2006-11-01
Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.
Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate
NASA Technical Reports Server (NTRS)
Schubauer, G B; Skramstad, H K
1948-01-01
This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sogin, H.H.; Goldstein, R.J.
1960-02-01
Experiments were performed on mass transfer by forced convection from naphthalene strips on a flat plate to an air stream at ordinary temperature and pressure. Turbulence was induced in the boundary layer by means of a wire strip. In all cases there was a hydrodynamic starting length upstream of the strips. The ratio of this inert length to the total length was varied from about 0.80 to 0.96. The flow was practically incompressible with Reynolds number, based on the total length, varying from 175,000 to 486,000. The Schmidt number was 2.5. The experimental results fell in proximity to the Sebanmore » step function factor when they were reduced after the massmomentum analysis of Deissler and Loeffler for a surface of uniform vapor pressure. When Karman's formulation of the mass- momentum analogy was assumed, the data fell between the values predicted by the Seban and by the Rubesin expression for the step function factor. The results were well correlated by the Colburn analogy in conjunction with the Rubesin step function factor. (auth)« less
Mantle flow through a tear in the Nazca slab inferred from shear wave splitting
NASA Astrophysics Data System (ADS)
Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh
2017-07-01
A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.
When Boundary Layers Collide: Plumes v. Subduction Zones
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.
2014-12-01
Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.
Some measurements of time and space correlation in wind tunnel
NASA Technical Reports Server (NTRS)
Favre, A; Gaviglio, J; Dumas, R
1955-01-01
Results are presented of research obtained by means of an apparatus for measurement of time and space correlation and of a spectral analyzer in the study of the longitudinal component of turbulence velocities in a wind tunnel downstream of a grid of meshes. Application to the case of a flat-plate boundary layer is illustrated. These researches were made at the Laboratoire de Mecanique de l'Atmosphere de l'I.M.F.M. for the O.N.E.R.A.
NASA Technical Reports Server (NTRS)
Cook, W. J.
1972-01-01
The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.
Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project
NASA Technical Reports Server (NTRS)
Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.
2014-01-01
NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.
Borens, Olivier; Kloen, Peter; Richmond, Jeffrey; Roederer, Goetz; Levine, David S; Helfet, David L
2009-05-01
To determine the results of "biologic fixation" with a minimally invasive plating technique using a newly designed low profile "Scallop" plate in the treatment of pilon fractures. Retrospective case series. A tertiary referral center. Seventeen patients were treated between 1999 and 2001 for a tibial plafond fracture at the Hospital for Special Surgery with a newly designed low-profile plate. Eleven of the fractures (65%) were high-energy injuries. Two fractures were open. Staged surgical treatment with open reduction and fixation of the fibular fracture and application of an external fixator was performed in 12 cases. As soon as the soft tissues and swelling allowed, i.e. skin wrinkling, the articular surface was reconstructed and simply reduced, if necessary through an small incision, and the articular block was fixed to the diaphysis using a medially placed, percutaneously introduced flat scallop plate. In the remaining five cases the operation was performed in one session. Time to healing and complications including delayed union, non-union, instrument failure, loss of fixation, infection, quality of reduction and number of reoperations were evaluated. Quality of results and outcome were graded using the ankle-hindfoot-scale and a modified rating system. All patients went on to bony union at an average time of 14 weeks. There were no plate failures or loss of fixation/reduction. Two superficial wound-healing problems resolved with local wound care. At an average follow up of 17 months (range 6-29 months) eight patients (47%) had an excellent result; seven (41%) had a fair result whereas two (12%) had a poor result. The average ankle-hindfoot-score was 86.1 (range 61-100). Four patients have had the hardware removed and one of them is awaiting an ankle arthrodesis. Based on these initial results, it appears that a minimally invasive surgical technique including new low profile plate can decrease soft tissue problems while leading to fracture healing and obtaining results comparable with other more recent series. We believe that this new "Scallop Plate" is effective for the treatment of pilon fractures and should be used in conjunction with a staged procedure in the acute trauma setting.
Understanding pyrotechnic shock dynamics and response attenuation over distance
NASA Astrophysics Data System (ADS)
Ott, Richard J.
Pyrotechnic shock events used during stage separation on rocket vehicles produce high amplitude short duration structural response that can lead to malfunction or degradation of electronic components, cracks and fractures in brittle materials, local plastic deformation, and can cause materials to experience accelerated fatigue life. These transient loads propagate as waves through the structural media losing energy as they travel outward from the source. This work assessed available test data in an effort to better understand attenuation characteristics associated with wave propagation and attempted to update a historical standard defined by the Martin Marietta Corporation in the late 1960's using out of date data acquisition systems. Two data sets were available for consideration. The first data set came from a test that used a flight like cylinder used in NASA's Ares I-X program, and the second from a test conducted with a flat plate. Both data sets suggested that the historical standard was not a conservative estimate of shock attenuation with distance, however, the variation in the test data did not lend to recommending an update to the standard. Beyond considering attenuation with distance an effort was made to model the flat plate configuration using finite element analysis. The available flat plate data consisted of three groups of tests, each with a unique charge density linear shape charge (LSC) used to cut an aluminum plate. The model was tuned to a representative test using the lowest charge density LSC as input. The correlated model was then used to predict the other two cases by linearly scaling the input load based on the relative difference in charge density. The resulting model predictions were then compared with available empirical data. Aside from differences in amplitude due to nonlinearities associated with scaling the charge density of the LSC, the model predictions matched the available test data reasonably well. Finally, modeling best practices were recommended when using industry standard software to predict shock response on structures. As part of the best practices documented, a frequency dependent damping schedule that can be used in model development when no data is available is provided.
NASA Astrophysics Data System (ADS)
Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.
2015-02-01
This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.
Use of PZT's for adaptive control of Fabry-Perot etalon plate figure
NASA Technical Reports Server (NTRS)
Skinner, WIlbert; Niciejewski, R.
2005-01-01
A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
Lamb wave band gaps in a double-sided phononic plate
NASA Astrophysics Data System (ADS)
Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng
2013-02-01
In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
...- rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin-free steel''), whether or not...
Three-dimensional flat shell-to-shell coupling: numerical challenges
NASA Astrophysics Data System (ADS)
Guo, Kuo; Haikal, Ghadir
2017-11-01
The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.
Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance
NASA Astrophysics Data System (ADS)
Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath
2017-12-01
Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.
NASA Astrophysics Data System (ADS)
Long, J.; New, T. H.
2016-07-01
Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.
Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane
NASA Astrophysics Data System (ADS)
Johnson, Jamie J.
In response to the need for more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the computational optimization of a pressure side film cooling array on a modern turbine inlet vane. Latin hypersquare sampling, genetic algorithm reproduction, and Reynolds-Averaged Navier Stokes (RANS) computational fluid dynamics (CFD) as an evaluation step are used to assess a total of 1,800 film cooling designs over 13 generations. The process was efficient due to the Leo CFD code's ability to estimate cooling mass flux at surface grid cells using a transpiration boundary condition, eliminating the need for remeshing between designs. The optimization resulted in a unique cooling design relative to the baseline with new injection angles, compound angles, cooling row patterns, hole sizes, a redistribution of cooling holes away from the over-cooled midspan to hot areas near the shroud, and a lower maximum surface temperature. To experimentally confirm relative design trends between the optimized and baseline designs, flat plate infrared thermography assessments were carried out at design flow conditions. Use of flat plate experiments to model vane pressure side cooling was justified through a conjugate heat transfer CFD comparison of the 3-D vane and flat plate which showed similar cooling performance trends at multiple span locations. The optimized flat plate model exhibited lower minimum surface temperatures at multiple span locations compared to the baseline. Overall, this work shows promise of optimizing film cooling to reduce design cycle time and save cooling mass flow in a gas turbine.
Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
Du, Gang; Sun, Mao
2012-05-07
We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sensitivity analysis of the add-on price estimate for the silicon web growth process
NASA Technical Reports Server (NTRS)
Mokashi, A. R.
1981-01-01
The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.
Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan
2014-01-01
Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.
NASA Technical Reports Server (NTRS)
Creager, Marcus O.
1959-01-01
An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Moorthy, Jayashree
1995-01-01
A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-04-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma =(Uinf / \\setmn √{kBTinf / m}) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2016-11-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-01-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2016-10-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf / {kBTinf /m}) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf / ∖ sqrt{kBTinf / m})in the range
Computer programs to predict induced effects of jets exhausting into a crossflow
NASA Technical Reports Server (NTRS)
Perkins, S. C., Jr.; Mendenhall, M. R.
1984-01-01
A user's manual for two computer programs was developed to predict the induced effects of jets exhausting into a crossflow. Program JETPLT predicts pressures induced on an infinite flat plate by a jet exhausting at angles to the plate and Program JETBOD, in conjunction with a panel code, predicts pressures induced on a body of revolution by a jet exhausting normal to the surface. Both codes use a potential model of the jet and adjacent surface with empirical corrections for the viscous or nonpotential effects. This program manual contains a description of the use of both programs, instructions for preparation of input, descriptions of the output, limitations of the codes, and sample cases. In addition, procedures to extend both codes to include additional empirical correlations are described.
Flow past a flat plat with a vortex/sink combination
NASA Technical Reports Server (NTRS)
Mourtos, N. J.
1985-01-01
An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only; and (2) the Helmholtz solution of totally separated flow over the plate.
Large area x-ray detectors for cargo radiography
NASA Astrophysics Data System (ADS)
Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.
2007-04-01
Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.
Optimum Suction Distribution for Transition Control
NASA Technical Reports Server (NTRS)
Balakumar, P.; Hall, P.
1996-01-01
The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.
Development of an economic solar heating system with cost efficient flat plate collectors
NASA Astrophysics Data System (ADS)
Eder-Milchgeisser, W.; Burkart, R.
1980-10-01
Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.
Design and Fabrication of Quadrupole Ion Mass Spectrometer for Upper Atmosphere.
1981-09-30
34 diameter con-flat flange were T.I.G. welded to the end of each of three bowls. All bowls were then electro- polished, cleaned and sent out to have...plated surface was .0001" to .0002" thick. After gold plating, the hemispheres were mated and T.I.G. welded to form a sphere with a con-flat flange at...Valve Rotatable Conflat to fit k" Swage Lock Weld Adaptors. 5 2 3/4" Conflat Flanges machined to fit Swage Lock unions. 12 10-24 x 2 " Brass Screws necket
The Interference Effects on an Airfoil of a Flat Plate at Mid-span Position
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1931-01-01
This report gives the results of an investigation of the mutual interference of an airfoil and a flat plate inserted at mid-span position. The tests were conducted in the Variable-Density Wind Tunnel of the National Advisory Committee for Aeronautics at a high value of the Reynolds Number. The interference effects of this combination were found to be small. Supplementary tests indicated that the use of fillets decreases both the lift and drag slightly. A bibliography of publication dealing with interference between wings and bodies, and with the effects of cut-outs and fillets is included.
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.
Improved ATIR concentrator photovoltaic module
NASA Astrophysics Data System (ADS)
Adriani, Paul M.; Mao, Erwang
2013-09-01
Novel aggregated total internal reflection (ATIR) concentrator photovoltaic module design comprises 2-D shaped primary and secondary optics that effectively combine optical efficiency, low profile, convenient range of acceptance angles, reliability, and manufacturability. This novel optical design builds upon previous investigations by improving the shapes of primary and secondary optics to enable improved long-term reliability and manufacturability. This low profile, low concentration (5x to 10x) design fits well with one-axis trackers that are often used for flat plate crystalline silicon photovoltaic modules in large scale ground mount installations. Standard mounting points, materials, and procedures apply without changes from flat plate modules.
Technology developments toward 30-year-life of photovoltaic modules
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
As part of the United States National Photovoltaics Program, the Jet Propulsion Laboratory's Flat-Plate Solar Array Project (FSA) has maintained a comprehensive reliability and engineering sciences activity addressed toward understanding the reliability attributes of terrestrial flat-plate photovoltaic arrays and to deriving analysis and design tools necessary to achieve module designs with a 30-year useful life. The considerable progress to date stemming from the ongoing reliability research is discussed, and the major areas requiring continued research are highlighted. The result is an overview of the total array reliability problem and of available means of achieving high reliability at minimum cost.
Cost estimates for flat plate and concentrator collector arrays
NASA Technical Reports Server (NTRS)
Shimada, K.
1982-01-01
The current module and installation costs for the U.S. National Photovoltaic Program's grid-connected systems are significantly higher than required for economic viability of this alternative. Attention is accordingly given to the prospects for installed module cost reductions in flat plate, linear focus Fresnel concentrator, and point focus Fresnel concentrator candidate systems. Cost projections indicate that all three systems would meet near-term and midterm goals, provided that module costs of $2.80/W(p) and $0.70/W(p), respectively, are met. The point focus Fresnel system emerges as the most viable for the near term.
Vortical structures of supersonic flow over a delta-wing on a flat plate
NASA Astrophysics Data System (ADS)
Wang, D. P.; Xia, Z. X.; Zhao, Y. X.; Wang, Q. H.; Liu, B.
2013-02-01
Employing the nanoparticle-based planar laser scattering (NPLS), supersonic flow over a delta-winged vortex generator on a flat plate was experimentally investigated in a supersonic quiet wind tunnel at Ma = 2.68. The fine structures of the flow field, shock waves, separation vortices, wake, and boundary layer transition were observed in the NPLS images. According to the time-correlation of the NPLS images and the measurement results of particle image velocimetry, the structural model of the flow field was improved further, and coherent wake structures were observed, which is of significance theoretically and in engineering application.
Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
2001-01-01
Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. With cooling, the surface temperature decreased to approximately 1910 F--a drop of approximately 440 F. This preliminary study demonstrates that a near-net-shape silicon nitride airfoil can be fabricated and that silicon nitride can sustain severe thermal shock and the thermal gradients induced by cooling and, thus, is a viable candidate for cooled components.
Reconfiguration of a flexible flat plate under snow loading
NASA Astrophysics Data System (ADS)
Gosselin, Frédérick; de Langre, Emmanuel
2015-11-01
Snow and wind constitute two of the main sources of mechanical loading on terrestrial plants. Plants bend and twist with large amplitude to bear these loads. For the past ten years, various authors have sought to decompose the problem of plant reconfiguration under fluid flow into its fundamental mechanical ingredients by studying the reconfiguration of simple flexible structures such as beams, plates, rods and strips. Here, we adopt a similar approach to these studies and consider the snow interception of a flexible flat plate. We performed two sets of experiments on thin flexible rectangular plates supported at their center: in the first one, a plate was subjected to real snowing events; in the second one, a plate was loaded with glass beads acting as a granular media similar to snow. Moreover, a theoretical model coupling the Elastica formulation to a loading with a set angle of repose is developed. The model is found to be in good agreement with the experiments on glass beads. Asymptotic scaling laws can be found similarly to the Vogel exponents of reconfiguring structures. For the real snow loading, it is found that the cohesive force in snow which is highly dependent on the snow temperature complicate things greatly.
Pressure wave propagation studies for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1992-01-01
The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.
Vortex dynamics and surface pressure fluctuations on a normal flat plate
NASA Astrophysics Data System (ADS)
Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.; Ferrari, Simon W.; Hu, Yaoping
2016-11-01
The effect of vortex formation and interactions on surface pressure fluctuations is examined in the wake of a normal flat plate by analyzing Direct Numerical Simulations at Re =1200. A novel local maximum score-based 3D method is used to track vortex development in the region close to the plate where the major contributions to the surface pressure are generated. Three distinct vortex shedding regimes are identified by changes in the lift and drag fluctuations. The instances of maximum drag coincide with impingement of newly formed vortices on the plate. This results in large and concentrated areas of rotational and strain contributions to generation of pressure fluctuations. Streamwise vortex straining and chordwise stretching are correlated with the large ratios of streamwise to chordwise normal stresses and regions of significant rotational contribution to the pressure. In contrast at the minimum drag, the vorticity field close to the plate is disorganized, and vortex roll-up occurs farther downstream. This leads to a uniform distribution of pressure. This study was supported by Alberta Innovates Technology Futures (AITF) and Natural Sciences and Engineering Research Council of Canada (NSERC).
Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1989-01-01
An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.
Spray Formation during the Impact of a Flat Plate on Water Surface
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2015-11-01
Spray formation during the impact of a flat plate on a water surface is studied experimentally. The plate is mounted on a two-axis carriage that can slam the plate vertically into the water surface as the carriage moves horizontally along a towing tank. The plate is 122 cm by 38 cm and oriented with adjustable pitch and roll angle. The port (lower) edge of the plate is positioned with a 3-mm gap from one of the tank walls. A laser sheet is created in a plane oriented perpendicular to the axis of the horizontal motion of the carriage. The temporal evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique at a frame rate of 800 Hz. Experiments are performed with a fixed plate trajectory in a vertical plane, undertaken at various speeds. Two types of spray are found when the plate has nonzero pitch and roll angles. The first type is composed of a cloud of high-speed droplets and ligaments generated as the port edge of the plate hits the water surface during the initial impact. The second type is a thin sheet of water that grows from the starboard edge of the plate as it moves below the local water level. The geometrical features of the spray are found to be dramatically affected by the impact velocity. The support of the Office of Naval Research under grant N000141310587 is gratefully acknowledged.
2007 Insensitive Munitions and Energetic Materials Technology Symposium
2007-10-18
Flat end rod Round end rod Flat cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate Constant Temperature...while the press is running • No one allowed in the facility before dough -up • Maximum pressures, torque and temperatures set. • First warnings and
NASA Astrophysics Data System (ADS)
Dholey, S.
2018-04-01
In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ < 0), the solution does not exist after a certain value of λ depending upon the values of β. In this case, separation appears inside the layer only for a negative value of β, and for a positive value of β, the boundary layer solution is terminated after a certain distance from the plate surface with an attached flow solution with no point of inflection. The concerning issue of the steady flow (β = 0) case has also been considered and two types of attached flow solutions have been found—one with a point of inflection and the other with no point of inflection, in a definite range of λ (-1.246 58 ≤ λ ≤ -1.07). However, this range decreases with an increase in |β| when β < 0. A novel result which arises from the heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.
Imaging the Juan de Fuca subduction plate using 3D Kirchoff Prestack Depth Migration
NASA Astrophysics Data System (ADS)
Cheng, C.; Bodin, T.; Allen, R. M.; Tauzin, B.
2014-12-01
We propose a new Receiver Function migration method to image the subducting plate in the western US that utilizes the US array and regional network data. While the well-developed CCP (common conversion point) poststack migration is commonly used for such imaging; our method applies a 3D prestack depth migration approach. The traditional CCP and post-stack depth mapping approaches implement the ray tracing and moveout correction for the incoming teleseismic plane wave based on a 1D earth reference model and the assumption of horizontal discontinuities. Although this works well in mapping the reflection position of relatively flat discontinuities (such as the Moho or the LAB), CCP is known to give poor results in the presence of lateral volumetric velocity variations and dipping layers. Instead of making the flat layer assumption and 1D moveout correction, seismic rays are traced in a 3D tomographic model with the Fast Marching Method. With travel time information stored, our Kirchoff migration is done where the amplitude of the receiver function at a given time is distributed over all possible conversion points (i.e. along a semi-elipse) on the output migrated depth section. The migrated reflectors will appear where the semicircles constructively interfere, whereas destructive interference will cancel out noise. Synthetic tests show that in the case of a horizontal discontinuity, the prestack Kirchoff migration gives similar results to CCP, but without spurious multiples as this energy is stacked destructively and cancels out. For 45 degree and 60 degree dipping discontinuities, it also performs better in terms of imaging at the right boundary and dip angle. This is especially useful in the Western US case, beneath which the Juan de Fuca plate subducted to ~450km with a dipping angle that may exceed 50 degree. While the traditional CCP method will underestimate the dipping angle, our proposed imaging method will provide an accurate 3D subducting plate image without heavy computation. This will provide further thoughts for geodynamic research on the evolution of western US.
Utilization of Additive Manufacturing for Aerospace Heat Exchangers
2016-02-29
is made up of flat plates that are layered on top of each other creating air passages in between the plates where the hot liquid and cold liquid flow...electron beam- based) for two-dimensional scanning of the heat source on the powder layer , stages that decrease the build plate and increase the powder...build plate and result in uneven coating of subsequent powder layers or complete failure of the system to recoat. The perturbations in recoater
Numerical Analysis of a Radiant Heat Flux Calibration System
NASA Technical Reports Server (NTRS)
Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.
1998-01-01
A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.
Drag measurements of an axisymmetric nacelle mounted on a flat plate at supersonic speeds
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Wilcox, Floyd J., Jr.
1995-01-01
An experimental investigation was conducted to determine the effect of diverter wedge half-angle and nacelle lip height on the drag characteristics of an assembly consisting of a nacelle fore cowl from a typical high-speed civil transport (HSCT) and a diverter mounted on a flat plate. Data were obtained for diverter wedge half-angles of 4.0 deg, 6.0 deg, and 8.0 deg and ratios of the nacelle lip height above a flat plate to the boundary-layer thickness (h(sub n)/delta) of approximately 0.87 to 2.45. Limited drag data were also obtained on a complete nacelle/diverter configuration that included fore and aft cowls. Although the nacelle/diverter drag data were not corrected for base pressures or internal flow drag, the data are useful for comparing the relative drag of the configuration tested. The tests were conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.50, 1.80, 2.10, and 2.40 and Reynolds numbers ranging from 2.00 x 10(exp 6) to 5.00 x 10(exp 6) per foot. The results of this investigation showed that the nacelle/diverter drag essentially increased linearly with increasing h(sub n)/delta except near 1.0 where the data showed a nonlinear behavior. This nonlinear behavior was probably caused by the interaction of the shock waves from the nacelle/diverter configuration with the flat-plate boundary layer. At the lowest h(sub n)/delta tested, the diverter wedge half-angle had virtually no effect on the nacelle/diverter drag. However, as h(sub n)/delta increased, the nacelle/diverter drag increased as diverter wedge half-angle increased.
Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector
NASA Astrophysics Data System (ADS)
Herrero Martín, R.; García, A.; Pérez-García, J.
2012-11-01
Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.
Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing
NASA Astrophysics Data System (ADS)
Hord, Kyle
Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.
In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.
Elastic and plastic buckling of simply supported solid-core sandwich plates in compression
NASA Technical Reports Server (NTRS)
Seide, Paul; Stowell, Elbridge Z
1950-01-01
A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.
Near Field Trailing Edge Tone Noise Computation
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2002-01-01
Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.
Uranium nitride behavior at thermionic temperatures
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1973-01-01
The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.
Roll plane analysis of on-aircraft antennas
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Marhefka, R. J.; Byu, C. L.
1974-01-01
Roll plane radiation patterns of on-aircraft antennas are analyzed using high frequency solutions. Aircraft-antenna pattern performance in which the aircraft is modelled in its most basic form is presented. The fuselage is assumed to be a perfectly conducting elliptic cylinder with the antennas mounted near the top or bottom. The wings are simulated by arbitrarily many sided flat plates and the engines by circular cylinders. The patterns in each case are verified by measured results taken on simple models as well as scale models of actual aircraft.
NASA Technical Reports Server (NTRS)
Hom, Kam W.
1994-01-01
In this video, several examples of electromagnetic field and surface-current animation sequences are shown to demonstrate the visualization capabilities of the EM-ANIMATE computer program. These examples show the animation of total and scattered electric near fields from test bodies of a flat plate, a corner reflector, and a sphere. These test cases show the electric-field behavior caused by different scattering mechanisms through the animation of electromagnetic data from the EM-ANIMATE routine.
Synchronized Schlieren method for vortex shedding in cascade during acoustic resonance
NASA Astrophysics Data System (ADS)
Nagashima, T.; Tanida, Y.
1986-10-01
An evaluation is made of synchronized schlieren optical system methods for the simultaneous visualization of both the acoustic wave and vortex shedding phenomena encountered during acoustic resonance excited by vortex shedding from the trailing edges of cascade blades. Attention is given to the case of parallel flat plate blades in throughflow velocities of up to 100 m/s. The acoustic wavefront is found to appear in the trailing edge region and travel upstream when a pair of vortices of opposite sign are fully developed at the trailing edge.
NASA Technical Reports Server (NTRS)
Tetervin, Neal
1957-01-01
By use of the linear theory of boundary-layer stability and Schlichting's formula for the maximum amplification of a disturbance, an approximate relation is derived between the Reynolds number on a cone and the Reynolds number on a flat plate for equal closeness to transition. The indication is that the ratio of the cone Reynolds number for transition, based on the distance to the cone apex, to the plate Reynolds number for transition, based on the distance to the leading edge, is not in general equal to 3, as has been suggested by other investigators, but varies from 3 when transition occurs at the minimum critical Reynolds number to unity when transition occurs at a large multiple of the critical Reynolds number.
NASA Astrophysics Data System (ADS)
Anastassiu, Hristos T.
2003-04-01
The physical optics approximation is employed in the derivation of a closed form expression for the radar cross section (RCS) of a flat, perfectly conducting plate of various shapes, located over a dielectric, possibly lossy half-space. The half-space is assumed to lie in the far field region of the plate. The well-known "four-path model" is invoked in a first-order approximation of the half-space contribution to the scattering mechanisms. Numerical results are compared to a reference, Moment Method solution, and the agreement is investigated, to assess the accuracy of the approximations used. The analytical expressions derived can facilitate very fast RCS calculations for realistic scatterers, such as ships in a sea environment, or aircraft flying low over the ground.
Spray formation during the vertical impact of a flat plate on a quiescent water surface
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2017-11-01
Spay formation during the impact of a rigid flat plate (122 cm by 38 cm) on a quiescent water surface is studied experimentally. The plate is mounted on a carriage that is driven by an electric servo motor that can slam the plate vertically into the water surface under feedback-controlled motions at various speeds. The long edges of the plate are kept horizontal and the short edges are set at various angles (roll angles) with respect to the quiescent water surface. A laser light sheet is created in a vertical plane at the middle of the long edges of the plate. The evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique. Two types of spray are found with nonzero roll angles. The first type is a cloud of high-speed droplets and ligaments that are generated when the plate's leading edge impacts the free surface. The second type is a thin water sheet that is connected to the trailing edge of the plate via a crater and is formed after the trailing edge moves below the local water level. In a reference frame moving with the plate, the profiles of the crater collapse when scaled with a power law function of time. The characteristics of the two types of spray are found to be affected by both the roll angle and the impact velocity. The support of the Office of Naval Research is gratefully acknowledged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.
1999-02-01
Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with {beta} = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with {beta} = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 10{sup 4} regime, data for Nu and f are presented. The results show significant effects of both the chevron angle {beta} and surface area enlargementmore » factor {phi}. As {beta} increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing {phi} also has a similar, though smaller effect. Based on experimental data for Re {ge} 1000 and 30 deg {le} {beta} {le} 60 deg, predictive correlations of the form Nu = C{sub 1}({beta}) D{sub 1}({phi}) Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}({beta}) D{sub 2}({phi}) Re{sup p2({beta})} are devised. Finally, at constant pumping power, and depending upon Re, {beta}, and {phi}, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.« less
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2016-09-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range
NASA Astrophysics Data System (ADS)
Jakkareddy, Pradeep S.; Balaji, C.
2016-09-01
This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.
Using laser radiation for the formation of capillary structure in flat ceramic heat pipes
NASA Astrophysics Data System (ADS)
Nikolaenko, Yu. E.; Rotner, S. M.
2012-12-01
The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.
Termination of flat conductor cable to NASA/MSFC plugs
NASA Technical Reports Server (NTRS)
Angele, W.
1972-01-01
Data, supplemented with artwork, are presented on the major steps involved with terminating flat conductor cable (FCC) to MSFC's FCC plugs. Cable and shield preparation steps include material cutting, insulation stripping, and plating of exposed conductors. Methods and equipment required to terminate FCC to each of four MSFC plugs are described.
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1981-01-01
A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.
Key technique study and application of infrared thermography in hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
LI, Ming; Yang, Yan-guang; Li, Zhi-hui; Zhu, Zhi-wei; Zhou, Jia-sui
2014-11-01
The solutions to some key techniques using infrared thermographic technique in hypersonic wind tunnel, such as temperature measurement under great measurement angle, the corresponding relation between model spatial coordinates and the ones in infrared map, the measurement uncertainty analysis of the test data etc., are studied. The typical results in the hypersonic wind tunnel test are presented, including the comparison of the transfer rates on a thin skin flat plate model with a wedge measured with infrared thermography and thermocouple, the experimental study heating effect on the flat plate model impinged by plume flow and the aerodynamic heating on the lift model.
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.
Hall effects on hydromagnetic free convection flow along a porous flat plate with mass transfer
NASA Astrophysics Data System (ADS)
Hossain, M. A.; Rashid, R. I. M. A.
1987-01-01
Effect of Hall current on the unsteady free convection flow of a viscous incompressible and electrically conducting fluid, in presence of foreign gases (such as H2, CO2, H2O, NH3), along an infinite vertical porous flat plate subjected to a transpiration velocity inversely proportional to the square-root of time is investigated in the presence of a uniform transverse magnetic field. The results are discussed with the effects of the parameters Gc (the Grashof number for mass transfer), m (the Hall parameter) and Sc (the Schmidt number) for Pr = 0.71, which represents air.
Terrestrial photovoltaic collector technology trends
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E.
1984-01-01
Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.
Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1977-01-01
Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.
Free Surface Effects on the Wake of a Flat Plate.
1984-11-08
D-i46 98 FREE SURFCE’EFFECTS ON THE MAKE OF A FLAT PLTE(U) i/l 9(8 NAVAL RESEARCH LAB WASHINGTON DC T F SWEAN ET AL. 08 NOV 84 NRL-MR...5426UNCLASSIFIED F/ 20/4 NL 11111 ~ L.0 2 4 11111L .563 I -A 16 CEO -- . . IV NRL Memorandum Rpot52 Free Surface iEffwcs on the Wake of Al lit Plate T . F. SWEAlJ...13b. TIME COVERED 14. DATE OF REPORT (YeasrUonitDay) S.PAGE COUNT .0 - Interim IFROM _ TO T 1984 November 8 FS23 16 SUPPLEMENTARY NOTATION 17 COSATI
PLIF Temperature and Velocity Distributions in Laminar Hypersonic Flat-plate Flow
NASA Technical Reports Server (NTRS)
OByrne, S.; Danehy, P. M.; Houwing, A. F. P.
2003-01-01
Rotational temperature and velocity distributions have been measured across a hypersonic laminar flat-plate boundary layer, using planar laser-induced fluorescence. The measurements are compared to a finite-volume computation and a first-order boundary layer computation, assuming local similarity. Both computations produced similar temperature distributions and nearly identical velocity distributions. The disagreement between calculations is ascribed to the similarity solution not accounting for leading-edge displacement effects. The velocity measurements agreed to within the measurement uncertainty of 2 % with both calculated distributions. The peak measured temperature was 200 K lower than the computed values. This discrepancy is tentatively ascribed to vibrational relaxation in the boundary layer.
NASA Astrophysics Data System (ADS)
Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk
2018-06-01
This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.
An investigation of the flow characteristics in the blade endwall corner region
NASA Technical Reports Server (NTRS)
Hazarika, Birinchi K.; Raj, Rishi S.
1987-01-01
Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.
Transitional and turbulent flat-plate boundary layers with heat transfer
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz
2010-11-01
We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.
Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements
NASA Astrophysics Data System (ADS)
Johnson, Tyler; Lang, Amy
2009-11-01
Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.
Dilatation-dissipation corrections for advanced turbulence models
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1992-01-01
This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.
Heat transfer and fluid mechanics measurements in transitional boundary layer flows
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.; Buddhavarapu, J.
1985-01-01
Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.
Deflection and trapping of a counter-rotating vortex pair by a flat plate
NASA Astrophysics Data System (ADS)
Nitsche, Monika
2017-12-01
The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.
Blended-Wing-Body Structural Technology Study
NASA Technical Reports Server (NTRS)
Starnes, James H.
1998-01-01
In most studies of stability of plates, the axial stress has been taken as uniform compression throughout flat rectangular plates. Buckling of isotropic plates under a compressive stress that varies linearly from one loaded edge to the other has been studied by Libove et al. Cases of practical interest exist, however, in which the axial stress is not uniform but varies from tension at both loaded edges to compression in the middle. An example is the stability of the crown of the hat stiffened panel, a candidate configuration of the upper and lower skin of the Blended Wing Body (BWB) Aircraft. The BWB Aircraft is an advanced long-range ultra-high-capacity airliner with the principal feature being the pressurized wide double-deck body which is blended into the wing. In the present research, analytical methods are used to investigate the local stability of the crown in order to minimize its weight while optimizing its buckling strength. The crown is modeled as a rectangular laminated composite plate subjected to a second degree parabolic variation of axial stresses in the longitudinal direction. A varying tension-compression- tension axial stresses are induced in the crown of the stiffeners due to bending. The change in axial stresses is equilibrated by nonuniform shear stresses along the plate edges and transverse normal stresses.
Libbey-Owens-Ford solar collector static load test
NASA Technical Reports Server (NTRS)
1978-01-01
The test article is a flat plate solar collector that uses liquid as the heat transfer medium. The absorber plate is copper and has a double tempered glass cover. Test requirements and procedures are described and results are presented in a table. Results demonstrate that the collector performed satisfactorily.
Bulldozing of Basal Continental Mantle Lithosphere During Flat-Slab Subduction
NASA Astrophysics Data System (ADS)
Axen, G. J.; van Wijk, J.; Currie, C. A.
2017-12-01
Flat-slab subduction occurs along 10% of subduction margins, forming magmatic gaps and causing inland migration of upper-plate deformation. We suggest that basal continental mantle lithosphere (CML) can be bulldozed ahead of the flat portion of horizontally-subducted oceanic lithosphere, forming a growing and advancing keel of thickened CML. This process fills the asthenospheric mantle wedge with CML, precluding melting. The bulldozed CML keel may transmit tectonic stresses ahead of the flat slab itself, causing upper-plate deformation ahead of the slab hinge. We designed 2-D numerical models after the North American Laramide orogeny, with subduction of a thick, buoyant oceanic plateau (conjugate Shatsky Rise) and with the continent advancing trenchward over the initial slab hinge. This results in slab-flattening, and removal of CML material. In our models, the thickness of the CML layer removed by this process depends on overriding plate rheology and is up to 25 km. The removed material is bulldozed ahead of the hinge and may fill up the asthenospheric wedge. Low-density (depleted) CML favors formation of bulldozed keels, which increase in width as CML strength decreases. Regular-density and/or stronger CML forms smaller bulldozed keels that are more likely to sink with the slab as eclogitization and densification proceed. When the flat slab rolls back, it leaves a step in the CML at the farthest extent of the slab. Relics of this step may remain below North America or may have dripped off. We interpret an upper-mantle fast-velocity anomaly below SE New Mexico and W Texas as a drip/keel, and the step in lithosphere thickness in southwestern Colorado as a fossil step, caused by the removal of the CML layer. Our model predicts that the Laramide bulldozed CML keel may have aided in stress transmission that caused basement uplifts as far as NE Wyoming and subsurface folds even farther N and E. Modern examples may exist in South American flat slab segments.
Assessing the role of slab rheology in coupled plate-mantle convection models
NASA Astrophysics Data System (ADS)
Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John
2015-11-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemella, Johann; Bane, Karl; Fisher, Alan
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less
Zemella, Johann; Bane, Karl; Fisher, Alan; ...
2017-10-19
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less
Scattering of turbulent-jet wavepackets by a swept trailing edge.
Piantanida, Selene; Jaunet, Vincent; Huber, Jérôme; Wolf, William R; Jordan, Peter; Cavalieri, André V G
2016-12-01
Installed jet noise is studied by means of a simplified configuration comprising a flat plate in the vicinity of a round jet. The effects of Mach number, jet-plate radial distance, and trailing-edge sweep angle are explored. Acoustic measurements are performed using a traversable 18-microphone azimuthal array, providing pressure data at 360 points on a cylindrical surface surrounding the jet-plate system. Key observations include a decrease, with increasing Mach number, of the relative level of the scattered field in comparison to the uninstalled jet; an exponential dependence of the scattered sound pressure level on the radial jet-plate separation; and considerable sideline noise reductions with increasing sweep angle, with which there is an overall reduction in acoustic efficiency. The measurements are compared with results obtained using a kinematic wavepacket source model, whose radiation is computed in two ways. A TGF for a semi-infinite flat plate is used to provide a low-order approximation of the scattering effect. Use of a more computationally intensive boundary element method provides additional precision. Good agreement between model predictions and experiment, encouraging from the perspective of low-cost prediction strategies, demonstrates that the models comprise the essential sound generation mechanisms.
Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets
NASA Technical Reports Server (NTRS)
Siegel, R.
1975-01-01
A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
Increasing thermal efficiency of solar flat plate collectors
NASA Astrophysics Data System (ADS)
Pona, J.
A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.
Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.
Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate
NASA Astrophysics Data System (ADS)
Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan
2017-08-01
In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.
Impingement heat transfer from turbulent air jets to flat plates: A literature survey
NASA Technical Reports Server (NTRS)
Livingood, J. N. B.; Hrycak, P.
1973-01-01
Heat transfer characteristics of single and multiple turbulent air jets impinging on flat surfaces have been studied by many investigators. Results of many of these studies are summarized. Suggested correlations for use in the design of cooled turbine blades are noted, and areas where further research would be advisable are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, C.M.
1963-05-01
PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... test scenarios: driving over a 1-inch thick steel plate lying flat on the pavement (a plate often used... provide specific recommendations for other surrogate vehicle design considerations that should be... perform as designed (e.g., driving in the dark or in adverse weather)? What information should be...
Topical Treatment of Cutaneous Leishmaniasis W/WR279396 Phase II Study. Addendum
2006-07-01
France) g. Tape so seal plates h. Sterile flat-bottom 96-well plates i. Inverted microscope with trail (France) j . Cryomarkers 2. Check list 2...Subinvestigators: Nathalie Messaoud Amor Zaâtour Abdelkarim El Fahem Nabil Haj Hmida OBJECTIVE To collaborate with the monitoring visit SUNDAY 19/02
NASA Technical Reports Server (NTRS)
Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.
1969-01-01
Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.
Design Guideline for New Generation of High-Temperature Guarded Hot Plate
NASA Astrophysics Data System (ADS)
Wu, J.; Hameury, J.; Failleau, G.; Blahut, A.; Vachova, T.; Strnad, R.; Krause, M.; Rafeld, E.; Hammerschmidt, U.
2018-02-01
This paper complements the existing measurement standards and literature for high-temperature guarded hot plates (HTGHPs) by addressing specific issues relating to thermal conductivity measurement of technical insulation at high temperatures. The examples given are focused on the designs of HTGHPs for measuring thin thermal insulation. The sensitivity studies have been carried out on major influencing factors that affect the thermal conductivity measurements using HTGHPs, e.g., the uncertainty of temperature measurements, plate flatness and center-guard gap design and imbalance. A new configuration of center-guard gap with triangular shape cross section has been optimized to obtain the same thermal resistance as a 2 mm wide gap with rectangular shape cross section that has been used in the HTGHPs at NPL and LNE. Recommendations have been made on the selections of heater plate materials, high-temperature high-emissivity coatings and miniature temperature sensors. For the first time, thermal stress analysis method has been applied to the field of HTGHPs, in order to estimate the effect of differential thermal expansion on the flatness of thin rigid specimens during thermal conductivity tests in a GHP.
Blade motion and nutrient flux to the kelp, Eisenia arborea.
Denny, Mark; Roberson, Loretta
2002-08-01
Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.
Use of Plasma Actuators as a Moving-Wake Generator
NASA Technical Reports Server (NTRS)
Corke, Thomas C.; Thomas, Flint O.; Klapetzky Michael J.
2007-01-01
The work documented in this report tests the concept of using plasma actuators as a simple and easy way to generate a simulated moving-wake and the disturbances associated with it in turbines. This wake is caused by the blades of the upstream stages of the turbine. Two types of devices, one constructed of arrays of NACA 0018 airfoils, and the one constructed of flat plates were studied. The airfoils or plates were equipped with surface mounted dielectric barrier discharge (DBD) plasma actuators, which were used to generate flow disturbances resembling moving-wakes. CTA hot-wire anemometry and flow visualization using a smoke-wire were used to investigate the wake independence at various spacings and downstream locations. The flat plates were found to produce better results than the airfoils in creating large velocity fluctuations in the free-stream flow. Different dielectric materials, plasma actuator locations, leading edge contours, angles of attack and plate spacings were investigated, some with positive results. The magnitudes of the velocity fluctuations were found to be comparable to existing mechanical moving-wake generators, thus proving the feasibility of using plasma actuators as a moving-wake generator.
Vortex detection through pressure measurements
NASA Astrophysics Data System (ADS)
Bhide, Aditi
Vortex Generators (VGs) are known to hinder boundary layer separation, a frequently unwanted phenomenon when it comes to external flows over aircraft wings, on-ground vehicles or internal flows within pipes, diffusers and turbomachinery. Boundary layer separation leads to loss of lift, higher drag and subsequently, energy losses. The vortices generated inhibit boundary layer separation. This thesis is an effort to discern the strength and location of these generated vortices using an array of VGs over a flat plate. Such information may be useful in the future in active control systems for streamwise vortices, which have been proposed to relaminarize turbulent boundary layers. Flow over flat plates, simulated using wind tunnel experiments, is studied for pressure variation using an array of pressure ports mounted over the plate and connected to suitable pressure sensors. Pressure coefficient and Velocity maps are generated using the data obtained from the Kirsten Wind Tunnel data acquisition system. These represent the nature of the flow field over the plate and are used to locate the vortices and determine their strength. It was found that the vortices can be detected using this method and their strength and location can be estimated.
The effect of butterfly-scale inspired patterning on leading-edge vortex growth
NASA Astrophysics Data System (ADS)
Wilroy, Jacob; Lang, Amy; Wahidi, Redha
2014-11-01
Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, we designed an experiment to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically we are interested in the secondary vorticity generated by the LEV interacting at the patterned surface and how this can affect the growth rate of the circulation in the LEV. For this experiment we used rapid-prototyped longitudinal and transverse square grooves attached to a flat plate and compared the vortex formation as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 0.6 and is based on the flat plate travel length and chord length. Support for this research came from NSF REU Grant 1358991 and CBET 1335848.
Vortex boundary-layer interactions
NASA Technical Reports Server (NTRS)
Bradshaw, P.
1986-01-01
Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.
A deformation analysis of flat flexible gear and its equation of original curved surfaces
NASA Technical Reports Server (NTRS)
Yunwen, S.
1985-01-01
The equation of the original curved surface of end harmonic gearing is determined by displacement analysis of flat flexible gear. The displacement analysis is also used to calculate the strength and rigidity of the gear. The latter is regarded as a circular plate with two concentrated loads, since its torsional rigidity is much larger than its bending rigidity. Small-deflection theory of thin plates is used to solve for the displacement of any point in the middle plane of the gear. New expressions are given for radial and tangential displacements of the middle plane under asymmetrical loading. A digital computer is used to obtain numerical values for the displacements.
Flat-plate solar array project. Volume 5: Process development
NASA Technical Reports Server (NTRS)
Gallagher, B.; Alexander, P.; Burger, D.
1986-01-01
The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.
An experimental investigation with artificial sunlight of a solar hot-water heater
NASA Technical Reports Server (NTRS)
Simon, F. F.
1976-01-01
Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.
NASA Technical Reports Server (NTRS)
Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.
1984-01-01
A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.
A lift formula applied to low-Reynolds-number unsteady flows
NASA Astrophysics Data System (ADS)
Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu
2013-09-01
A lift formula for a wing in a rectangular control volume is given in a very simple and physically lucid form, providing a rational foundation for calculation of the lift of a flapping wing in highly unsteady and separated flows at low Reynolds numbers. Direct numerical simulations on the stationary and flapping two-dimensional flat plate and rectangular flat-plate wing are conducted to assess the accuracy of the lift formula along with the classical Kutta-Joukowski theorem. In particular, the Lamb vector integral for the vortex force and the acceleration term of fluid for the unsteady inertial effect are evaluated as the main contributions to the unsteady lift generation of a flapping wing.
Transmission of heat from a flat plate to a fluid flowing at a high velocity
NASA Technical Reports Server (NTRS)
Crocco, Luigi
1932-01-01
The writer, starting with the consideration of the hydrodynamic and thermodynamic equations for the turbulent boundary layer of a flat plate when it is necessary to take into account the heat produced by friction, arrives at the conclusion that the transmission of the heat follows the same law that is valid when the frictional heat is negligible, provided the temperature of the fluid is considered to be that which the fluid would reach if arrested adiabatically. It is then shown how the same law holds good for faired bodies, and some applications of the law are made to the problems of flight at very high speeds.
A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.
Transparent Solar Concentrator for Flat Panel Display
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung
2012-06-01
A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.
Henderson, O.A.
1962-07-17
An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)
NASA Astrophysics Data System (ADS)
Oki, Sae; Suzuki, Ryosuke O.
2017-05-01
The performance of a flat-plate thermoelectric (TE) module consisting of square truncated pyramid elements is simulated using commercial software and original TE programs. Assuming that the temperatures of both the hot and cold surfaces are constant, the performance can be varied by changing the element shape and element alignment pattern. When the angle between the edge and the base is 85° and the small square surfaces of all n-type element faces are connected to the low-temperature surface, the efficiency becomes the largest among all the 17 examined shapes and patterns. By changing the shape to match the temperature distribution, the performance of the TE module is maximized.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
Storage containers for radioactive material
Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.
1981-01-01
A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or
NASA Technical Reports Server (NTRS)
Levy, Samuel; Krupen, Philip
1943-01-01
The von Karman equations for flat plates are solved beyond the buckling load up to edge strains equal to eight time the buckling strain, for the extreme case of rigid clamping along the edges parallel to the load. Deflections, bending stresses, and membrane stresses are given as a function of end compressive load. The theoretical values of effective width are compared with the values derived for simple support along the edges parallel to the load. The increases in effective width due to rigid clamping drops from about 20 percent near the buckling strain to about 8 percent at an edge strain equal to eight times the buckling strain. Experimental values of effective width in the elastic range reported in NACA Technical Note No. 684 are between the theoretical curves for the extremes of simple support and rigid clamping.
Mobility power flow analysis of an L-shaped plate structure subjected to distributed loading
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Cimmerman, B.
1990-01-01
An analytical investigation based in the Mobility Power Flow (MPF) method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to distributed excitation. The principle of the MPF method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the MPF. In the considered coupled plate structure, MPF expressions are derived for distributed mechanical excitation which is independent of the structure response. However using a similar approach with some modifications excitation by an acoustic plane wave can be considered. Some modifications are required to deal with the latter case are necessary because the forces (acoustic pressure) acting on the structure are dependent on the response of the structure due to the presence of the scattered pressure.
Skin friction enhancement in a model problem of undulatory swimming
NASA Astrophysics Data System (ADS)
Ehrenstein, Uwe; Eloy, Christophe
2013-10-01
To calculate the energy costs of swimming, it is crucial to evaluate the drag force originating from skin friction. In this paper we examine the assumption, known as the 'Bone-Lighthill boundary-layer thinning hypothesis', that undulatory swimming motions induce a drag increase because of the compression of the boundary layer. Studying analytically an incoming flow along a flat plate moving at a normal velocity as a limit case of a yawed cylinder in uniform flow under the laminar boundary layer assumption, we demonstrate that the longitudinal drag scales as the square root of the normal velocity component. This analytical prediction is interpreted in the light of a three-dimensional numerical simulation result for a plate of finite length and width. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is proposed and solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 %.
Thin-layer approximation and algebraic model for separated turbulent flows
NASA Technical Reports Server (NTRS)
Baldwin, B.; Lomax, H.
1978-01-01
An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.
NASA Astrophysics Data System (ADS)
Chuvakhov, P. V.
2014-01-01
An exact expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for a convective two-equation differential closure RANS operator split along a curvilinear coordinate is derived. It is shown by examples of numerical modeling of supersonic flows over a flat plate and a compression corner with separation that application of the exact system of eigenvalues and eigenvectors to the Roe approach for approximate solution of the Riemann problem gives rise to an increase in the convergence rate, better stability and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.
2003-01-01
A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.
2009-08-14
3 is presented in Figure 12. These cases simulate the smallest na- nochannels with H = 0.1 /im and correspond to the near free -molecular flow with a...nal energy flux (or heat transfer rate) from a free stream with p, T.S to a flat plate with surface temperature T aligned with the flow is, 25 S2... Simulation of Nanoscale Flows on 3D Unstructured Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9950-06-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Exploiting similarity in turbulent shear flows for turbulence modeling
NASA Technical Reports Server (NTRS)
Robinson, David F.; Harris, Julius E.; Hassan, H. A.
1992-01-01
It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.
Exploiting similarity in turbulent shear flows for turbulence modeling
NASA Astrophysics Data System (ADS)
Robinson, David F.; Harris, Julius E.; Hassan, H. A.
1992-12-01
It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.
Numerical investigation of the self-starting of a vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Chen; Colonius, Tim
2014-11-01
The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at sub-scale Reynolds number in order to investigate the self-starting capability of a vertical-axis wind turbine (VAWT). By investigating a single blade fixed at various angle of attacks, the leading edge vortex (LEV) is shown to play an important role in the starting mechanism for both flat-plate and NACA 0018 blades. Depending on the angle of attack of the blade, as the LEV grows, the corresponding low pressure region results in a thrust in the tangential direction, which produces a positive torque to VAWT. Due to the characteristics of the blades, a NACA 0018 blade produces a larger thrust over a wider range of angle of attacks than a flat-plate blade. Therefore, a VAWT with NACA 0018 blades can self-start more easily than one with flat-plate blades. Moreover, by investigating the starting torque of three-bladed VAWTs fixed at various orientations, the optimal orientation that produces the largest torque to start both VAWTs is with a blade parallel to the flow and facing downstream. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.
Survey and evaluation of current design of evacuated collectors. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, B. J.
The general development of these collectors, is described and a description of numerous evacuated collectors is given which vary from collectors that have been widely used in various applications to others which are still being developed in the laboratory. A table summarizing all of the available collectors, along with their characteristics, is presented. There are four evacuated collectors which have been tested, used in demonstration sites, and developed for the market. These collectors are described in detail, and they are compared in performance and cost with a well-engineered, double glazed, selectively coated, flat plate collector. A rather simple model systemmore » of about 2000 ft/sup 2/ of collector area for each of the four evacuated collectors and the flat plate collector is described, along with the support structure and the piping for each. Details of the cost are presented in order to compare collector costs with component costs. All of the available efficiency curves of collectors were plotted for comparison with the efficiency curve of a good, flat plate collector. To show the extent of use of evacuated collectors, a list according to manufacturers and to location of all of the sites at which these collectors are being used is presented.« less
Growth of Chlorella vulgaris and associated bacteria in photobioreactors
Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.
2012-01-01
Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882
Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture
NASA Astrophysics Data System (ADS)
Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka
2011-09-01
Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.
Physics of heat pipe rewetting
NASA Technical Reports Server (NTRS)
Chan, S. H.
1992-01-01
Although several studies have been made to determine the rewetting characteristics of liquid films on heated rods, tubes, and flat plates, no solutions are yet available to describe the rewetting process of a hot plate subjected to a uniform heating. A model is presented to analyze the rewetting process of such plates with and without grooves. Approximate analytical solutions are presented for the prediction of the rewetting velocity and the transient temperature profiles of the plates. It is shown that the present rewetting velocity solution reduces correctly to the existing solution for the rewetting of an initially hot isothermal plate without heating from beneath the plate. Numerical solutions have also been obtained to validate the analytical solutions.
Transient heat transfer in viscous rarefied gas between concentric cylinders. Effect of curvature
NASA Astrophysics Data System (ADS)
Gospodinov, P.; Roussinov, V.; Dankov, D.
2015-10-01
The thermoacoustic waves arising in cylindrical or planar Couette rarefied gas flow between rotating cylinders is studied in the cases of suddenly cylinder (active) wall velocity direction turn on. An unlimited increase in the radius of the inner cylinder flow can be interpreted as Couette flow between the two flat plates. Based on the developed in previous publications Navier-Stockes-Fourier (NSF) model and Direct Simulation Monte Carlo (DSMC) method and their numerical solutions, are considered transient processes in the gas phase. Macroscopic flow characteristics (velocity, density, temperature) are received. The cylindrical flow cases for fixed velocity and temperature of the both walls are considered. The curvature effects over the wave's distribution and attenuation are studied numerically.
Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck
2015-02-01
Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.
NASA Astrophysics Data System (ADS)
Channumsin, Sittiporn; Ceriotti, Matteo; Radice, Gianmarco
2018-02-01
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth's gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100 days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.
Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element
NASA Astrophysics Data System (ADS)
Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.
1992-05-01
A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.
NASA Astrophysics Data System (ADS)
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2015-01-01
This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.
Effect of Plate Curvature on Blast Response of Structural Steel Plates
NASA Astrophysics Data System (ADS)
Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao
2018-04-01
In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.
Koller, Anja Pia; Löwe, Hannes; Schmid, Verena; Mundt, Sabine; Weuster-Botz, Dirk
2017-02-01
Light-dependent growth of microalgae can vary remarkably depending on the cultivation system and microalgal strain. Cell size and the pigmentation of each strain, as well as reactor geometry have a great impact on absorption and scattering behavior within a photobioreactor. In this study, the light-dependent, cell-specific growth kinetics of a novel green algae isolate, Scenedesmus obtusiusculus, was studied in a LED-illuminated flat-plate photobioreactor on a lab-scale (1.8 L, 0.09 m 2 ). First, pH-controlled batch processes were performed with S. obtusiusculus at different constant incident photon flux densities. The best performance was achieved by illuminating S. obtusiusculus with 1400 μmol photons m -2 s -1 at the surface of the flat-plate photobioreactor, resulting in the highest biomass concentration (4.95 ± 0.16 g CDW L -1 within 3.5 d) and the highest specific growth rate (0.22 h -1 ). The experimental data were used to identify the kinetic parameters of different growth models considering light inhibition for S. obtusiusculus. Light attenuation within the flat-plate photobioreactor was considered by varying light transfer models. Based on the identified kinetic growth model of S. obtusiusculus, an optimum growth rate of 0.22 h -1 was estimated at a mean integral photon flux density of 1072 μmol photons m -2 s -1 with the Beer-Lambert law and 1590 μmol photons m -2 s -1 with Schuster's light transfer model in the flat-plate photobioreactor. LED illumination was, thus, increased to keep the identified optimum mean integral photon flux density constant in the batch process assuming Schuster's light transfer model. Compared to the same constant incident photon flux density (1590 μmol photons m -2 s -1 ), biomass concentration was up to 24% higher using the lighting profile until a dry cell mass concentration of 14.4 ± 1.4 g CDW L -1 was reached. Afterward, the biomass concentration remained constant, whereas cell growth continued in the batch process with constant incident photon flux density. Finally, biomass concentration was 15.5 ± 1.5 g CDW L -1 and, thus, 7% higher compared to the corresponding batch process with lighting profile. Biotechnol. Bioeng. 2017;114: 308-320. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
21 CFR 177.1970 - Vinyl chloride-lauryl vinyl ether copolymers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... of the flask at 150 °F for 2 hours using a hot plate while also maintaining gentle mechanical agitation. Filter the contents of the flask rapidly through No. 42 Whatman filter paper with the aid of suction. Transfer the filtrate to flat glass dishes that are warmed on a hot plate and evaporate the...
Investigating Convective Heat Transfer with an Iron and a Hairdryer
ERIC Educational Resources Information Center
Gonzalez, Manuel I.; Lucio, Jesus H.
2008-01-01
A simple experimental set-up to study free and forced convection in undergraduate physics laboratories is presented. The flat plate of a domestic iron has been chosen as the hot surface, and a hairdryer is used to generate an air stream around the plate. Several experiments are proposed and typical numerical results are reported. An analysis and…
Analysis of thermal stresses and metal movement during welding
NASA Technical Reports Server (NTRS)
Muraki, T.; Pattee, F. M.; Masubuchi, K.
1974-01-01
Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.
Design and Manufacture of Elastically Tailored Tow Placed Plates
NASA Technical Reports Server (NTRS)
Tatting, Brain F.; Guerdal, Zafer; Jegley, Dawn (Technical Monitor)
2002-01-01
Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a relatively novel design concept that has been demonstrated to be both beneficial and practical. In particular, for structures with highly non-uniform stress states, such as the case of a flat panel with a central hole subjected to in-plane loading, the concept is likely to provide substantial improvements in load carrying capability. The objective of the present study is to determine the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels with holes. In this study software was created that translates standard finite element models with traditional laminate definitions into ones that possess stacking sequences with curvilinear fiber paths that are directly manufacturable using an advanced tow placement machine. Preliminary designs for the manufacturing and testing phase were determined through rudimentary design studies for flat plates without holes under axial compression. These candidate designs were then analyzed using finite element models that accurately reflect the test conditions and geometries in order to select final designs for testing. A total of six large panels, measuring three feet by six feet, each of which are used to produce four specimens with or without holes, were fabricated and delivered to NASA for machining and testing.
Bradley, David A.; Nisbet, Andrew
2015-01-01
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film‐measured doses with treatment planning system‐calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple‐channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single‐channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier‐type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat‐film scanning. This effect has been overlooked to date in the literature. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:26103181
Zargarzadeh, Leila; Elliott, Janet A W
2013-10-22
The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.
Micromachined silicon electrostatic chuck
Anderson, R.A.; Seager, C.H.
1996-12-10
An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.
An analytical investigation of transient effects on rewetting of heated thin flat plates
NASA Technical Reports Server (NTRS)
Platt, J. A.
1993-01-01
The rewetting of a hot surface is a problem of prime importance in the microgravity application of heat pipe technology, where rewetting controls the time before operations can be re-established following depriming of a heat pipe. Rewetting is also important in the nuclear industry (in predicting behavior during loss-of-coolant accidents), as well as in the chemical and petrochemical industries. Recently Chan and Zhang have presented a closed-form solution for the determination of the rewetting speed of a liquid film flowing over a finite (but long) hot plate subject to uniform heating. Unfortunately, their physically unreasonable initial conditions preclude a meaningful analysis of start-up transient behavior. A new nondimensionalization and closed-form solution for an infinitely-long, uniformly-heated plate is presented. Realistic initial conditions (step change in temperature across the wetting front) and boundary conditions (no spatial temperature gradients infinitely far from the wetting front) are employed. The effects of parametric variation on the resulting simpler closed-form solution are presented and compared with the predictions of a 'quasi-steady' model. The time to reach steady-state rewetting is found to be a strong function of the initial dry-region plate temperature. For heated plates it is found that in most cases the effect of the transient response terms cannot be neglected, even for large times.
NASA Astrophysics Data System (ADS)
Lavoie, J. Andre; Morton, John
1993-07-01
A crush test fixture for measuring energy absorption of flat plate specimens from an earlier study was redesigned to eliminate the problem of binding of the load transfer platen with the guide posts. Further modifications were to increase the stroke, and combine the two scaled text fixtures into one. This new crush text fixture was shown to produce load-displacement histories exhibiting well developed sustained crushing loads over long strokes. An experimental study was conducted on two material systems: AS4/3502 graphite/epoxy, and a hybrid AS4-Kevlar/3502 composite. The effect of geometric scaling of specimen size, the effect of ply level and sublaminate-level scaling of the stacking sequence of the full scale specimens, and the effect of trigger mechanism on the energy absorption capability were investigated. The new crush test fixture and flat plate specimens produced peak and sustained crushing loads that were lower than obtained with the old crush text fixture. The trigger mechanism used influenced the specific sustained crushing stress (SSCS). The results indicated that to avoid any reduction in the SSCS when scaling from the 1/2 scale to full scale specimen size, the sublaminate-level scaling approach should be used, in agreement with experiments on tubes. The use of Kevlar in place of the graphite 45 deg plies was not as effective a means for supporting and containing the 0 deg graphite plies for rushing of flat plates and resulted in a drop in the SSCS. This result did not correlate with that obtained for tubes.
NASA Technical Reports Server (NTRS)
Lavoie, J. Andre; Morton, John
1993-01-01
A crush test fixture for measuring energy absorption of flat plate specimens from an earlier study was redesigned to eliminate the problem of binding of the load transfer platen with the guide posts. Further modifications were to increase the stroke, and combine the two scaled text fixtures into one. This new crush text fixture was shown to produce load-displacement histories exhibiting well developed sustained crushing loads over long strokes. An experimental study was conducted on two material systems: AS4/3502 graphite/epoxy, and a hybrid AS4-Kevlar/3502 composite. The effect of geometric scaling of specimen size, the effect of ply level and sublaminate-level scaling of the stacking sequence of the full scale specimens, and the effect of trigger mechanism on the energy absorption capability were investigated. The new crush test fixture and flat plate specimens produced peak and sustained crushing loads that were lower than obtained with the old crush text fixture. The trigger mechanism used influenced the specific sustained crushing stress (SSCS). The results indicated that to avoid any reduction in the SSCS when scaling from the 1/2 scale to full scale specimen size, the sublaminate-level scaling approach should be used, in agreement with experiments on tubes. The use of Kevlar in place of the graphite 45 deg plies was not as effective a means for supporting and containing the 0 deg graphite plies for rushing of flat plates and resulted in a drop in the SSCS. This result did not correlate with that obtained for tubes.
A model for correlating flat plate film cooling effectiveness for rows of round holes
NASA Astrophysics Data System (ADS)
Lecuyer, M. R.; Soechting, F. O.
1985-09-01
An effective method of cooling, that has found widespread application in aircraft gas turbines, is the injection of a film of cooling air through holes into the hot mainstream gas to provide a buffer layer between the hot gas and the airfoil surface. Film cooling has been extensively investigated and the results have been reported in the literature. However, there is no generalized method reported in the literature to predict the film cooling performance as influenced by the major variables. A generalized film cooling correlation has been developed, utilizing data reported in the literature, for constant velocity and flat plate boundary layer development. This work provides a basic understanding of the complex interaction of the major variables effecting film cooling performance.
Comments on Reynolds number effects in wall-bounded shear layers
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R.
1991-01-01
The effect of Reynolds number on the structure of turbulent boundary layers and channel flows is discussed. Published data are reexamined in light of the following questions: (1) does the boundary layer turbulence structure change after the well known Reynolds number limit viz, when Re(theta) is greater than 6000?; (2) is it possible to disturb a high Reynolds number flat plate turbulent boundary layer near the wall such that the recovery length is O(100 delta)?; and (3) how close is the numerically simulated low Reynolds number flat plate turbulence structure to that observed experimentally? The turbulence structure appears to change continuously with Reynolds number virtually throughout the bounday layer and sometimes in unexpected manners at high Reynolds numbers.
NASA Technical Reports Server (NTRS)
Dow, J. W.
1972-01-01
A numerical solution of the turbulent mass transport equation utilizing the concept of eddy diffusivity is presented as an efficient method of investigating turbulent mass transport in boundary layer type flows. A FORTRAN computer program is used to study the two-dimensional diffusion of ammonia, from a line source on the surface, into a turbulent boundary layer over a flat plate. The results of the numerical solution are compared with experimental data to verify the results of the solution. Several other solutions to diffusion problems are presented to illustrate the versatility of the computer program and to provide some insight into the problem of mass diffusion as a whole.
Recent progress in terrestrial photovoltaic collector technology
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1982-01-01
The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.
Comparison of three different collectors for process heat applications
NASA Astrophysics Data System (ADS)
Brunold, Stefan; Frey, R.; Frei, Ulrich
1994-09-01
In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
Use of Glass Reinforced Concrete (GRC) as a substrate for photovoltaic modules
NASA Technical Reports Server (NTRS)
Eirls, J. L.
1980-01-01
A substrate for flat plate photovoltaic solar panel arrays using a glass fiber reinforced concrete (GRC) material was developed. The installed cost of this GRC panel is 30% less than the cost goal of the Near Term Low-Cost Flat Plate Photovoltaic Solar Array Program. The 4 ft by 8 ft panel is fabricated from readily available inexpensive materials, weighs a nominal 190 lbs., has exceptionally good strength and durability properties (rigid and resists weathering), is amenable to mass production and is easily installed on simple mountings. Solar cells are encapsulated in ethylene/vinyl acetate with Tedlar backing and Korad cover film. The laminates are attached to the GRC substrate with acrylic transfer tape and edge sealed with silicone RTV adhesive.
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.
1972-01-01
An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.
Photovoltaic module encapsulation design and materials selection, volume 1
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.
1982-01-01
Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.
NASA Astrophysics Data System (ADS)
Pal, Dulal; Mondal, Hiranmoy
2018-03-01
The paper is devoted to the study of thermophoresis and Soret-Dufour effects on magnetohydrodynamic mixed convective heat and mass transfer over an inclined flat plate with non-uniform heat source/sink. Governing non-linear coupled ordinary differential equations are solved numerically using Runge-Kutta Fehlberg technique with shooting scheme. The effects of various physical parameters on the velocity, temperature, and concentration profiles are depicted graphically. The values of skin-friction coefficient, Nusselt number and Sherwood number are presented in a tabular form. It is found that increase in thermophoretic and chemical reaction parameters retard the velocity and concentration distributions in the boundary layer.
Nondestructive Evaluation (NDE) Capabilities Data Book (3rd Edition)
1997-11-01
include: 4340 Steel Flat Plate Panels Bolt Holes in i85 Scvcnth Stage Compressor Disks Visual Inspection of Fatigue Cracks in Inconel 718 and HaynEs 188...safety engineer * The maintenance engineer * Thc manufacturing / production process engineer • The liaison (rework and repair) engineer a ’[ lhc life...TC03: Through crnck from an offset hole in a plate TC04: Through crack from hole in a lug TC05: Through crack from hole in plate with a row of holcs
Large volume flow-through scintillating detector
Gritzo, Russ E.; Fowler, Malcolm M.
1995-01-01
A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies
Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923
Detached Eddy Simulation of Film Cooling over a GE Flat Plate
NASA Technical Reports Server (NTRS)
Roy, Subrata
2005-01-01
The detached eddy simulation of film cooling has been utilized for a proprietary GE plate-pipe configuration. The blowing ratio was 2.02, the velocity ratio was 1.26, and the temperature ratio was 1.61. Results indicate that the mixing processes downstream of the hole are highly anisotropic. DES solution shows its ability to depict the dynamic nature of the flow and capture the asymmetry present in temperature and velocity distributions. Further, comparison between experimental and DES time-averaged effectiveness is satisfactory. Numerical values of span-averaged effectiveness show better prediction of the experimental values at downstream locations than a steady state Glenn HT solution. While the DES method shows obvious promise, there are several issues that need further investigation. Despite an accurate prediction in the hole vicinity, the simulation still falls short in the region x = 10d to 100d. This should be investigated. Also the model used flat plate. Actual turbine blade should be modeled in the future if additional finding is available.
Effects of the inclination angle on the performance of flat plate solar collector
NASA Astrophysics Data System (ADS)
Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.
2018-03-01
Double glasses cover is typically used in a flat plate solar collector to decrease heat losses to ambient. The working principal of the cover is to allow the solar irradiation hit the plate absorber and blocks it using natural convection mechanism in the enclosure between the glasses. The performance of the enclosure to block the heat loss to the surrounding affected by the inclination angle of the collector. The objective of this study is to explore the effect of the inclination angle to the performance of the solar collector. Numerical simulation using commercial code Computational Fluid Dynamic (CFD) has been carried out to explore the fluid flow and heat transfer characteristics in the enclosure. In the result, streamline, vector velocity, and contour temperature are plotted. It was shown that the inclination angle strongly affects the performance of the collector. The average heat transfer coefficient decreases with increasing inclination angle. This fact suggests that too high inclination angle is not recommended for solar collector.
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Trimpi, R. L.
1973-01-01
An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.
Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)
2000-01-01
We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.
Radiation hydrodynamic effects in two beryllium plates with an idealized aluminum joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkov, S.A.; Mkhitarian, L.S.; Vinokurov, O.A.
A beryllium capsule formed from two hemispherical shells with a thin bond is one possible ignition target for the National Ignition Facility [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)] Nonuniformities in density, opacity, and interface position at the joint between these hemishells will initiate two-dimensional (2-D) perturbations of the shock wave and material behind the shock as the shock passes through the shell perpendicular to the joint width. Rarefaction of material flow behind the shock front can cause the interface between the shell and joint material to oscillate in position. The amplitude of thesemore » oscillations may be comparable to the joint width. The evolution of these perturbations is studied by numerically simulating shock passage through flat beryllium plates containing aluminum joints. Using the MIMOSA-ND code [D. Sofronov {ital et al.}, Vopr. At. Nauki Tekh., Ser: Mat. modelirovanie fizicheskih processov {bold 2}, 3 (1990)] two different cases are calculated{emdash}a wide (10 {mu}m) and a narrow (1 {mu}m) joint of aluminum between two 150 {mu}m long semiinfinite beryllium plates. Both cases showed good agreement with an analytic representation of the oscillation behavior. For the narrow joint, a special technique allows the calculation of mixing between the joint and surrounding material caused by the Kelvin{endash}Helmholtz instability. {copyright} {ital 1999 American Institute of Physics.}« less
Pyramidal-Reflector Solar Heater
NASA Technical Reports Server (NTRS)
1982-01-01
Motor-driven reflector compensates for seasonal changes in Sun's altitude. System has flat-plate absorbers mounted on north side of attic interior. Skylight window on south-facing roof admits Sunlight into attic, lined with mirrors that reflect light to absorbers. Reflectors are inner surfaces of a pyramid lying on its side with window at its base and absorber plates in a cross-sectional plane near its apex.
NASA Technical Reports Server (NTRS)
Gupta, R. N.
1972-01-01
The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.
NASA Technical Reports Server (NTRS)
Herr, Joel L.
1993-01-01
The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is studied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the Maxwell-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow geometry consisting of a single semi-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case. The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.
EFFECTS OF PLATING DENSITY AND CULTURE TIME ON BONE MARROW STROMAL CELL CHARACTERISTICS
Neuhuber, Birgit; Swanger, Sharon A.; Howard, Linda; Mackay, Alastair; Fischer, Itzhak
2008-01-01
Objective Bone marrow stromal cells (MSC) are multipotent adult stem cells that have emerged as promising candidates for cell therapy in disorders including cardiac infarction, stroke and spinal cord injury. While harvesting methods used by different laboratories are relatively standard, MSC culturing protocols vary widely. This study is aimed at evaluating the effects of initial plating density and total time in culture on proliferation, cell morphology, and differentiation potential of heterogeneous MSC cultures and more homogeneous cloned subpopulations. Methods Rat MSC were plated at 20, 200 and 2000 cells/cm2 and grown to 50% confluency. The numbers of population doublings and doubling times were determined within and across multiple passages. Changes in cell morphology and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages were evaluated and compared among early, intermediate and late passages, as well as between heterogeneous and cloned MSC populations. Results We found optimal cell growth at a plating density of 200 cells/cm2. Cultures derived from all plating densities developed increased proportions of flat cells over time. Assays for chondrogenesis, osteogenesis and adipogenesis showed that heterogeneous MSC plated at all densities sustained the potential for all three mesenchymal phenotypes through at least passage 5; the flat subpopulation lost adipogenic and chondrogenic potential. Conclusion Our findings suggest that the initial plating density is not critical for maintaining a well-defined, multipotent MSC population. Time in culture, however, affects cell characteristics, suggesting that cell expansion should be limited, especially until the specific characteristics of different MSC subpopulations are better understood. PMID:18495329
NASA Technical Reports Server (NTRS)
Schetz, J. A.; Jakubowski, A. K.
1982-01-01
The effect of the angle of a jet to a crossflow, the performance of dual jet configurations, and a jet injected from a body of revolution as opposed to a flat plate were investigated during experiments conducted in the 7x10 tunnel at NASA Ames at Velocities from 14.5 m/sec to 35.8 m/sec (47.6 to 117.4 ft/sec.). Pressure distributions are presented for single and dual jets over a range of velocity ratios from 2 to 10, spacings from 2 to 6 diameters and injection angles of 90, 75, 60, and 105 degrees. For the body of revolution tests, the ratio of the jet to body diameters was set as large (1/2) in order to be more representative of V/STOL aircraft applications. Flat plate tests involved dual jets both aligned and in side by side configurations. The effects of the various parameters and the differences between the axisymmetric and planar body geometrics on the nature, size, shape, and strength of the interaction regions on the body surfaces are shown. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.
Economic analysis of solar assisted absorption chiller for a commercial building
NASA Astrophysics Data System (ADS)
Antonyraj, Gnananesan
Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.
Seismicity and structure of Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Lim, H.; Kim, Y.; Clayton, R. W.
2015-12-01
We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).
Process and apparatus for indirect-fired heating and drying
Abbasi, Hamid Ali; Chudnovsky, Yaroslav
2005-04-12
A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.
1976-01-01
A large variety of two dimensional flows can be accommodated by the program, including boundary layers on a flat plate, flow inside nozzles and diffusers (for a prescribed potential flow distribution), flow over axisymmetric bodies, and developing and fully developed flow inside circular pipes and flat ducts. The flows may be laminar or turbulent, and provision is made to handle transition.
Development of Surfaces Optically Suitable for Flat Solar Panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.
1978-01-01
Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.
Tectonic evolution of the Mexico flat slab and patterns of intraslab seismicity.
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Sandiford, D.
2017-12-01
The Cocos plate slab is horizontal for about 250 km beneath the Guerrero region of southern Mexico. Analogous morphologies can spontaneously develop in subduction models, through the presence of a low-viscosity mantle wedge. The Mw 7.1 Puebla earthquake appears to have ruptured the inboard corner of the Mexican flat slab; likely in close proximity to the mantle wedge corner. In addition to the historical seismic record, the Puebla earthquake provides a valuable constraint through which to assess geodynamic models for flat slab evolution. Slab deformation predicted by the "weak wedge" model is consistent with past seismicity in the both the upper plate and slab. Below the flat section, the slab is anomalously warm relative to its depth; the lack of seismicity in the deeper part of the slab fits the global pattern of temperature-controlled slab seismicity. This has implications for understanding the deeper structure of the slab, including the seismic hazard from source regions downdip of the Puebla rupture (epicenters closer to Mexico City). While historical seismicity provides a deformation pattern consistent with the weak wedge model , the Puebla earthquake is somewhat anomalous. The earthquake source mechanism is consistent with stress orientations in our models, however it maps to a region of relatively low deviatoric stress.
Results and current status of the NPARC alliance validation effort
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Jones, Ralph R.
1996-01-01
The NPARC Alliance is a partnership between the NASA Lewis Research Center (LeRC) and the USAF Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national CFD capability, centered on the NPARC Navier-Stokes computer program. The three main tasks of the Alliance are user support, code development, and validation. The present paper is a status report on the validation effort. It describes the validation approach being taken by the Alliance. Representative results are presented for laminar and turbulent flat plate boundary layers, a supersonic axisymmetric jet, and a glancing shock/turbulent boundary layer interaction. Cases scheduled to be run in the future are also listed. The archive of validation cases is described, including information on how to access it via the Internet.
Analytical Bistatic k Space Images Compared to Experimental Swept Frequency EAR Images
NASA Technical Reports Server (NTRS)
Shaeffer, John; Cooper, Brett; Hom, Kam
2004-01-01
A case study of flat plate scattering images obtained by the analytical bistatic k space and experimental swept frequency ISAR methods is presented. The key advantage of the bistatic k space image is that a single excitation is required, i.e., one frequency I one angle. This means that prediction approaches such as MOM only need to compute one solution at a single frequency. Bistatic image Fourier transform data are obtained by computing the scattered field at various bistatic positions about the body in k space. Experimental image Fourier transform data are obtained from the measured response to a bandwidth of frequencies over a target rotation range.
Behavior of turbulent boundary layers on curved convex walls
NASA Technical Reports Server (NTRS)
Schmidbauer, Hans
1936-01-01
The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Leonard, B. P.
1994-01-01
The modified mixing length (MML) turbulence model was installed in the Proteus Navier-Stokes code, then modified to make it applicable to a wider range of flows typical of aerospace propulsion applications. The modifications are based on experimental data for three flat-plate flows having zero, mild adverse, and strong adverse pressure gradients. Three transonic diffuser test cases were run with the new version of the model in order to evaluate its performance. All results are compared with experimental data and show improvements over calculations made using the Baldwin-Lomax turbulence model, the standard algebraic model in Proteus.
NASA Technical Reports Server (NTRS)
Halstead, D. W.; Tripp, L. L.; Tamekuni, M.; Baker, L. L.; Viswanathan, A. V.
1976-01-01
Program is used to predict buckling of rectangular flat and curved laminated plates subjected to in-plane normal and shearing loads, with each lamina composed of orthotropic material with arbitrary orientation of orthotropic axes.
Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Swafford, Timothy W.; Reddy, T. S. R.
1991-01-01
A compressible flow code that can predict the nonlinear unsteady aerodynamics associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions, although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior.
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
Reynolds number influence on the formation of vortical structures on a pitching flat plate
Tropea, Cameron
2017-01-01
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871
NASA Astrophysics Data System (ADS)
Liu, J.; Wu, S. P.
2017-04-01
Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.
Direct Measurements of Skin Friction
NASA Technical Reports Server (NTRS)
Dhawan, Satish
1953-01-01
A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.
Flat-plate solar array project. Volume 6: Engineering sciences and reliability
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Smokler, M. I.
1986-01-01
The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
NASA Technical Reports Server (NTRS)
Schetz, J. A.; Vanovereem, J.
1975-01-01
An experimental study of skin friction reduction in a Mach 3.0 air steam with gaseous injection through a tangential slot, a porous wall section, and combinations of the two was conducted. The primary data obtained were wall shear values measured directly with a floating element balance and also inferred from Preston Tube measurements. Detailed profiles at several axial stations, wall pressure distributions and schlieren photographs are presented. The data indicate that a slot provides the greatest skin friction reduction in comparison with a reference flat plate experiment. The porous wall section arrangement suffers from an apparent roughness-induced rise in skin friction at low injection rates compared to the flat plate. The combination schemes demonstrated a potential for gain.