Science.gov

Sample records for flat sediment dynamics

  1. The role of biophysical interactions within the ijzermonding tidal flat sediment dynamics

    NASA Astrophysics Data System (ADS)

    De Backer, Annelies; Van Colen, Carl; Vincx, Magda; Degraer, Steven

    2010-05-01

    This paper focuses on the importance of biophysical interactions on short-term and long-term sediment dynamics. Therefore, various biological (macrobenthos, photopigments, colloidal EPS) and physical parameters (grain size, water content, sediment stability, bed level) were determined (bi)monthly in nine sampling plots on the IJzermonding tidal flat (Belgium, 51°08'N, 2°44'E) during three consecutive years (July 2005-June 2008). Results showed that sediment stability varied on the short timescale and was directly influenced by biota, while bed level varied mainly on the long-term due to interannual variability. The short-term dynamic relationships between mud content, water content, fucoxanthin and macrobenthos density resulted in a seasonal mud deposition and erosion cycle, and directly influenced sediment stability. Moreover, macrobenthos was proven to be the most important parameter determining sediment stability. On the long-term, a shift was observed from high fucoxanthin/chl a concentration, high mud content and zero to moderate densities of Corophium volutator towards low fucoxanthin/chl a and mud content and high Corophium densities, which resulted in a transition from net accretion to net erosion. However, most measured variables proved to be poor predictors for these long-term bed level changes, indicating that external physical forces, such as waves and storminess, probably were the most important factors triggering long-term sediment dynamics. Nevertheless, biota indirectly influenced bed level changes by mediating short-term changes in sediment stability, thereby influencing the erodability of the sediment. The macrobenthos, and especially the mud shrimp Corophium, was suggested as the (indirect) driving destabilising factor for the sampling plots in the IIzermonding when considering the long-term evolution.

  2. Creation Of Constructed Tidal Flats Using Ocean Dredged Sediment

    NASA Astrophysics Data System (ADS)

    Park, S.; Yi, B.; Lee, I.; Sung, K.

    2007-12-01

    The enforcement of London dumping convention (1972) and protocols (1996) which are comprehensive assessment system for ocean dumping wastes needs environmentally sound treatment and/or reuse of dredged sediment. Creation of constructed tidal flats using dredged sediments could be one of the useful alternatives among other dredged sediment treatments. In this study, the pilot-scale constructed tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary, Korea. The reed was transplanted from the adjacent reed community after construction, and then the survival and growth rate of the planted reed was measured. Also the changes of Chemical Oxygen Demand (COD), Ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted reed decreased as the mixing ratio of dredged sediment increased. The survival rate of reed in the constructed tidal flat with 100% dredged sediment was 54% while that in the tidal flat with 0% dredged sediment (original soil of Nakdong river estuary) was 90%. There was little difference of length and diameter of the reed shoot among the 4 different constructed tidal flats. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, the consistent tendency in the change of COD and IL in the other tidal flats was not found possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment can be possible considering the growth rate of transplanted reeds and the contaminated ocean dredged sediment might be biologically remediated considering the results of decrease of organic matter and increased heterotrophic microbial number in the tidal flat with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the constructed tidal flats should be necessary to evaluate the success of creation of constructed flats using

  3. Flat Subduction and Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C. R.; Dávila, F. M.; Eakin, C. M.; Crameri, F.

    2014-12-01

    Mantle dynamics manifests at the surface via the horizontal motions of plates and the vertical deflections that influence topography and the non-hydrostatic geoid. The pioneering work of Mitrovica et al. (1989) and Gurnis (1990) on this dynamic topography revolutionized our understanding of sedimentary basin formation, sea level changes and continental flooding. The temporal evolution of subduction can explain the migration of basins and even the drainage reversal of the Amazon (Shephard et al., 2012; Eakin et al., 2014). Until recently, flat subduction has been seen as enhancing downward deflection of the overriding plate and increasing flooding. However, this interpretation depends crucially on the details of the morphology and density structure of the slab, which controls the loci and amplitude of the deflection. We tend to ignore morphological details in mantle dynamics because flow can smooth out short wavelength variations. We have shown instead that details matter! Using South America as a natural laboratory because of the large changes in morphology of the Nazca slab along strike, we show that downward deflection of the overriding plate and hence basin formation, do not occur over flat segments but at the leading edge, where slabs plunge back into the mantle. This is true in both Argentina and Peru. The temporal evolution from a 'normally' dipplng slab to a flat slab leads to uplift over flat segments rather than enhanced subsidence. Critical for this result is the use of a detailed morphological model of the present-day Nazca slab with a spatial resolution of 50-100 km and based on relocated seismicity and magnetotelluric results. The density structure of the slab, due to age and the presence of overthickened crust from aseismic ridge subduction is essential. Overthickened crust leads to buoyant slabs. We reproduce formation and deposition of the Acres-Solimoes basin and the evolution of the Amazon drainage basin in Peru as well as the Mar Chiquita

  4. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  5. Child dermal sediment loads following play in a tide flat.

    PubMed

    Shoaf, Marley B; Shirai, Jeffry H; Kedan, Golan; Schaum, John; Kissel, John C

    2005-09-01

    Dermal contact with sediment is sometimes identified as a pathway of concern in risk assessments. Dermal exposure to sediment is poorly characterized and exposure assessors may rely on default soil adherence values. The purpose of this study was to obtain sediment adherence data for a genuine exposure scenario, child play in a tide flat. This study reports direct measurements of sediment loadings on five body parts (face, forearms, hands, lower legs and feet) after play in a tide flat. Each of nine subjects participated in two timed sessions and pre- and post-activity sediment loading data were collected. Geometric mean (geometric standard deviation) dermal loadings (mg/cm(2)) on the face, forearm, hands, lower legs and feet for the combined sessions were 0.04 (2.9), 0.17 (3.1), 0.49 (8.2), 0.70 (3.6) and 21 (1.9), respectively. Participants' parents completed questionnaires regarding their child's typical activity patterns during tide flat play, exposure frequency and duration, clothing choices, bathing practices and clothes laundering. Data presented in this paper supplement very limited prior adherence data for sediment contact scenarios. Results will be useful to risk assessors considering exposure scenarios involving child activities at a coastal shoreline or tide flat.

  6. Dynamics of intertidal flats in the Loire estuary

    NASA Astrophysics Data System (ADS)

    Kervella, Stephane; Sottolichio, Aldo; Bertier, Christine

    2014-05-01

    Tidal flats form at the edges of many tidal estuaries, and are found in broad climatic regions. Their evolution plays a fundamental role in maintaining the morphodynamic equilibrium of an estuary. The Loire estuary is one of the largest macrotidal systems of the french atlantic coast. Since 200 years, its geometry has been drastically modified through channeling, deepening, embanking, infilling of secondary channels, etc. These works altered many intertidal areas. In the recent years, efforts for the rectification of the morphology have been made in order to restore the ecology of the estuary. In this context, it is crucial to better understand the dynamics of intertidal flats, still poorly understood in this estuary. The aim of this work is to analyse a series of original observations conducted for the first time in two intertidal flats of the central Lore estuary between 2008 and 2010. The tidal flats are situated in the northern bank, at 12 and 17 km upstream from the mouth respectively. Six Altus altimeters were deployed at two cross shore transects, measuring continuously and at a high-frequency bed altimetry and water level, providing information on tide and waves. At the semi-diurnal tidal scale, the surficial sediment of intertidal flats is permanently mobilized. Altimetry variations are low, and their amplitude varies as a function of tides and river flow. At the scale of several months, the sedimentation is controlled by the position of the turbidity maximum (and therefore by the river flow) and also by the tidal amplitude. During low river flow periods, altimetry variations are only due to tidal cycles. During decaying tides, suspended sediment settle mainly on the lower part of the tidal flats, forming fluid mud layers of several cm thick, which can consolidate rapidly; under rising tides, the increasing of tidal currents promotes erosion. During periods of high river flow, the turbidity maximum shifts to the lower estuary. The higher suspended sediment

  7. A numerical investigation of fine sediment transport at intertidal flat

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Chen, S.; Ogston, A. S.

    2010-12-01

    A detailed numerical model is developed to study the hydrodynamic and fine sediment transport processes at tidal flats. The critical science issues to be investigated here are to quantify the main mechanisms causing landward and seaward transports. Prior modeling studies have identified the settling-lag effects as the main mechanism causing landward fine sediment transport. Field studies have also observed pronounced landward transport due to the movement of shallow-water’s turbid edge which is associated with bed erodibility and wetting-drying process. Recent 3D coastal numerical modeling of Skagit tidal flat (Chen et al. 2010, J. Geophys. Res., in press) is able to model settling-lag-induced landward transport. However, the observed short residence time for river-delivered sediment cannot be reproduced by the model, suggesting that a key offshore transport mechanism is not captured by the exiting coastal models. Field studies carried out in the ongoing Tidal Flat DRI have observed the so-called ebb tide sediment pulse, which seems to support the export of sediment through channels (Nowacki et al. 2010, this meeting) that balances landward fluxes. Both the bed erosion at water’s edge and ebb tide sediment pulse occur at a very shallow water depths. Conventional coastal models have difficulties in resolving the shallow flow at the wetting and drying seabed and some numerical approximations, such as specifying a minimum artificial flow depth, are often adopted. Therefore, a small-scale study is necessary before an appropriate parameterization for these transport mechanisms can be adopted by an estuarine/coastal model. In this study, a two-dimensional-vertical numerical model solving Reynolds-averaged Navier-Stokes equations with a Volume of Fluid (VOF) scheme to track the free surface evolution is adopted. The VOF scheme allows a more realistic simulation of the wetting and drying processes. For the simulation of tidal flow over a flat of constant slope (slope

  8. Transformations of sulfur compounds in marsh-flat sediments

    SciTech Connect

    Swider, K.T.; Mackin, J.E. )

    1989-09-01

    Measurements were made in mud-flat sediments from Flax Pond salt marsh to characterize the rates and mechanisms of sulfur cycling in an organic-rich coastal marine environment. Approximately 13 mmoles/m{sup 2} of reduced sulfur are generated annually in the mud flat and the dominant solid-phase product is pyrite. Ion activity products involving dissolved iron and sulfide species indicate approximate saturation with respect to metastable iron sulfide phases, showing that pyrite is not likely to be the first-formed Fe-bearing sulfide. Comparison of {Sigma}H{sub 2}S vs. SO{sup =}{sub 4} relationships in anoxic incubation experiments with those occurring in the undisturbed sediment permits evaluation of possible mechanisms involved in the transformation of metastable iron monosulfides to pyrite. Oxidants (e.g. MnO{sub 2}) that are introduced into the surface sediment, either by animal activity or physical events, are apparently necessary to cause major oxidation of FeS and {Sigma}H{sub 2}S to pyrite and sulfate. Solid-phase sulfur analyses and net {Sigma}H{sub 2}S accumulation in sediment pore waters are consistent with major sulfide oxidation, indicating that approximately 95% of the sulfide generated in the mud flat is reoxidized to sulfate and roughly half of this oxidation involves dissolved sulfide. The major factors limiting reduced sulfur burial are physical and biological disturbances and a low abundance of reactive solid-phase iron (2 wt%).

  9. Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii

    USGS Publications Warehouse

    Presto, M.K.; Ogston, A.S.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    A multi-year study was conducted on a shallow fringing reef flat on Molokai, Hawaii to determine the temporal and spatial dispersal patterns of terrigenous suspended sediment. During this study, trade-wind conditions existed for the majority of the year on the reef flat. The trade-wind conditions produced strong currents and resuspended moderate amounts of sediment on the reef flat on a daily basis during the year of study, resulting in an overwhelming contribution to the total sediment flux. The magnitude and direction of the trade winds relative to the orientation of the coastline, the shallow-relief and broad morphology, and tidal elevation, provided the primary control of the physical processes that resuspended and transported sediment on the reef flat over the period of record. Spatial data indicate that much of the terrigenous sediment resuspended on the reef flat is transported predominantly alongshore and is confined to the inner- to mid-reef flat. Evidence for the limited across-shore mixing and transport is provided by the dominantly alongshore wind-driven currents during trade-wind conditions and the well-defined across-shore gradient in percentage calcium carbonate of the suspended sediment. Regions of slightly offshore suspended-sediment transport along the reef flat can be attributed to the circulation pattern set up by the interaction between the trade winds, coastal morphology, and anthropogenic coastal structures (i.e., fish ponds and wharf). The regions in which sediment were seen to move offshore provide the strongest link between the sediment dynamics on reef flat and fore reef, and qualitatively appears to be correlated with low coral coverage on the fore reef. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii

    NASA Astrophysics Data System (ADS)

    Presto, M. K.; Ogston, A. S.; Storlazzi, C. D.; Field, M. E.

    2006-03-01

    A multi-year study was conducted on a shallow fringing reef flat on Molokai, Hawaii to determine the temporal and spatial dispersal patterns of terrigenous suspended sediment. During this study, trade-wind conditions existed for the majority of the year on the reef flat. The trade-wind conditions produced strong currents and resuspended moderate amounts of sediment on the reef flat on a daily basis during the year of study, resulting in an overwhelming contribution to the total sediment flux. The magnitude and direction of the trade winds relative to the orientation of the coastline, the shallow-relief and broad morphology, and tidal elevation, provided the primary control of the physical processes that resuspended and transported sediment on the reef flat over the period of record. Spatial data indicate that much of the terrigenous sediment resuspended on the reef flat is transported predominantly alongshore and is confined to the inner- to mid-reef flat. Evidence for the limited across-shore mixing and transport is provided by the dominantly alongshore wind-driven currents during trade-wind conditions and the well-defined across-shore gradient in percentage calcium carbonate of the suspended sediment. Regions of slightly offshore suspended-sediment transport along the reef flat can be attributed to the circulation pattern set up by the interaction between the trade winds, coastal morphology, and anthropogenic coastal structures (i.e., fish ponds and wharf). The regions in which sediment were seen to move offshore provide the strongest link between the sediment dynamics on reef flat and fore reef, and qualitatively appears to be correlated with low coral coverage on the fore reef.

  11. Nitrogen turnover in a tidal flat sediment: assimilation and dissimilation by bacteria and benthic microalgae

    NASA Astrophysics Data System (ADS)

    Dähnke, K.; Moneta, A.; Veuger, B.; Soetaert, K.; Middelburg, J. J.

    2012-06-01

    In a short-term (24 h) 15N-labeling experiment, we investigated reactive nitrogen cycling in a tidal flat sediment, focusing on the relative importance of assimilatory versus dissimilatory processes and the role of benthic microalgae therein. 15N-labeled ammonium and nitrate were added separately to homogenized sediment, and 15N was subsequently traced into sediment and dissolved inorganic nitrogen (DIN) pools. Integration of results in a N-cycle model allowed us to quantify rates for the major assimilatory and dissimilatory processes in the sediment. Overall, results indicate that the balance between assimilation and dissimilation in this tidal mudflat was mainly dependent on the nitrogen source. Nitrate was utilized almost exclusively dissimilatory via denitrification, whereas ammonium was rapidly assimilated, with about a quarter of this assimilation due to benthic microalgae (BMA). Benthic microalgae significantly affect assimilation of ammonium, because in the absence of BMA activity the sediments turns from a net ammonium sink to a net source. Nitrification rates were initially very high, but declined rapidly suggesting that nitrification rates are low in undisturbed sediments, and that in a dynamic environment like tidal flats, intense and fast nitrification/denitrification of ammonium is common. The driving mechanisms for assimilation or dissimilation accordingly appear to be ruled to a large extent by external physical forcing, with the entire system being capable of rapid shifts following environmental changes.

  12. A one-dimensional biomorphodynamic model of tidal flats: Sediment sorting, marsh distribution, and carbon accumulation under sea level rise

    NASA Astrophysics Data System (ADS)

    Zhou, Zeng; Ye, Qinghua; Coco, Giovanni

    2016-07-01

    We develop a biomorphodynamic model to investigate sediment and vegetation dynamics on a schematic intertidal flat characterized by an initially well-mixed sand-mud mixture. Major interactions between tides, wind waves, salt marshes, sediment transport and sea level rise (SLR) are taken into account. For a bare flat under only tidal action, the model predicts a convex cross-shore profile with the surficial distribution of mud and sand on the upper and lower part of the intertidal flat, respectively. When wind waves are strong, the intertidal flat is highly eroded resulting in a concave profile near the high water mark. This behavior is pronouncedly altered when the intertidal flat is vegetated with the presence of salt marshes. Numerical results suggest that a considerable amount of mud can still remain in the vegetated region even when wave action is strong. A steeper transition zone forms at the boundary between salt marshes and bare flats because of the differential sediment deposition in the two neighboring regions. The inclusion of wind waves is found to considerably enhance the size of the marsh-edge transition zone. For the numerical experiments designed in this study, the profile shape and sediment sorting behavior of tidal flats are not significantly modified by a gradual rising sea level. However, the impacts of SLR on vegetated tidal flats are still manifold: (a) driving the landward migration of intertidal zone and salt marshes; (b) enhancing sediment erosion on intertidal flats; and (c) drowning salt marshes under limited sediment supply with the constrain of seawalls. Finally, model results suggest that organic carbon accumulation on marshlands may be enhanced with an increasing SLR rate provided that salt marshes are not drowned.

  13. Forced Convection and Sedimentation Past a Flat Plate

    NASA Technical Reports Server (NTRS)

    Pelekasis, Nikolaos A.; Acrivos, Andreas

    1995-01-01

    The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, convected steadily past a horizontal flat plate and sedimenting under the action of gravity, is examined. It is shown that, in the limit as Re approaches infinity and epsilon approaches 0, where Re is the bulk Reynolds number and epsilon is the ratio of the particle radius a to the characteristic length scale L, the analysis for determining the particle concentration profile has several aspects in common with that of obtaining the temperature profile in forced-convection heat transfer from a wall to a fluid stream moving at high Reynolds and Prandtl numbers. Specifically, it is found that the particle concentration remains uniform throughout the O(Re(exp -1/2)) thick Blasius boundary layer except for two O(epsilon(exp 2/3)) thin regions on either side of the plate, where the concentration profile becomes non-uniform owing to the presence of shear-induced particle diffusion which balances the particle flux due to convection and sedimentation. The system of equations within this concentration boundary layer admits a similarity solution near the leading edge of the plate, according to which the particle concentration along the top surface of the plate increases from its value in the free stream by an amount proportional to X(exp 5/6), with X measuring the distance along the plate, and decreases in a similar fashion along the underside. But, unlike the case of gravity settling on an inclined plate in the absence of a bulk flow at infinity considered earlier, here the concentration profile remains continuous everywhere. For values of X beyond the region near the leading edge, the particle concentration profile is obtained through the numerical solution of the relevant equations. It is found that, as predicted from the similarity solution, there exists a value of X at which the particle concentration along the top side of the plate attains its maximum value phi(sub m) and that, beyond this

  14. Thermal Diffusivity and Strength of Tidal Flat Sediments During a Tidal Simulation

    DTIC Science & Technology

    2009-01-01

    saturated) were determined for each sediment type (i.e., kaolinite , quartz sand, bentonite, strontium carbonate and iron oxide). Because tidal...flat sediments are often distributed across grain size classes, mixtures of sand and clay (clay being either kaolinite or bentonite) were also

  15. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhou, Li; Zhang, Fan; Ding, Yingjun; Gao, Jinrong; Chen, Jing; Yan, Hongqiang; Shao, Wei

    2013-09-15

    The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.

  16. Historical sediment record and distribution of polychlorinated biphenyls (PCBs) in sediments from tidal flats of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhang, Fan; Zhang, Tiancheng; Yan, Hongqiang; Shao, Wei; Zhou, Li; Tong, Hebing

    2014-12-15

    The spatial and temporal variations and sources of polychlorinated biphenyls (PCBs) in sediment of tidal flat from Haizhou Bay, China were investigated. PCBs concentrations in surface sediments ranged from 1.33 to 6.27ngg(-1) dry weight. Low-chlorinated PCBs, dominated by the tri-PCB homologs, were identified as the prevalent contaminate of surface sediments. These results were in agreement with the fact that tri-PCB homologs are the dominant contaminants in China. In surface sediment, the highest level appeared in the estuary, and it decreased with distance from the Linhong River estuary. PCBs concentrations started to rise from the mid-1950s, and reached a maximum in 2005. PCBs in sediment might originate from surface runoff and discharges of local source as well as slight atmospheric deposition, based on PCA. Additionally, the PCBs levels in the sediments were considered to rarely pose hazard to the aquatic and human health, based on Sediment Quality Guidelines (SQGs).

  17. Site-specific features influence sediment stability of intertidal flats

    NASA Astrophysics Data System (ADS)

    Defew, Emma C.; Tolhurst, Trevor J.; Paterson, David M.

    The factors that influence the sediment stability and the transport of estuarine mudflats are not yet fully understood but knowledge of them is essential in coastal engineering applications and pollution ecology studies. The suggestion that variation in predictive models of sediment stability might be due to site-specific characteristics is investigated using data from four estuarine mudflats (Eden Estuary, Scotland, the Biezelingsche Ham, Zandkreek, and Molenplaat mudflats in The Netherlands). These estuaries differ in their environmental conditions, macrofaunal species composition and local features (e.g. Enteromorpha mats, migratory biofilms). Stable and unstable sediments were compared, and mean chlorophyll-a concentrations and granulometry of the sediments were significantly different between the two groups. Step-wise multiple linear regressions were applied to the sediment stability data of all sites to establish the influences on erosion threshold of microphytobenthic biomass, water content, granulometry, organic carbon content and the abundance of dominant macrofaunal species. The stability of each site was influenced by different factors. Sediment stability of the Eden Estuary was affected by the Enteromorpha bloom; Biezelingsche Ham was influenced by the highly migratory nature of the diatom biofilms and the abundance of Corophium volutator; the polychaete worm Arenicola marina had a net negative effect on sediment stability of the Zandkreek; and the Molenplaat was influenced by microphytobenthic biomass. This research highlights the need for site-specific calibration of models and suggests that a universal proxy parameter for sediment stability is unlikely to be obtained.

  18. Seasonal transfer and net accumulation of fine sediment on a muddy tidal flat: Willapa Bay, Washington

    NASA Astrophysics Data System (ADS)

    Boldt, Katherine V.; Nittrouer, Charles A.; Ogston, Andrea S.

    2013-06-01

    Tidal flats act as natural laboratories in which fundamental sediment-transport processes can be directly related to resulting seabed deposits. These environments represent important repositories for terrestrial particles (including organic carbon) entering marine dispersal systems. Along the coast of the US Pacific Northwest, tides, waves, currents, and storms create year-round energetic environments that evolve on myriad time scales, from semi-diurnal to interannual. In southern Willapa Bay, WA, an extensive tidal flat is accreting at a distance away from local fluvial sources. During winter, freshwater input and the peak suspended-sediment concentration (SSC) are one-to-two orders of magnitude greater than in summer, and wind- and wave-generated shear stresses prevent sediment from accumulating on the tidal flat. Temporary deposits form as a drape across secondary channels off the Bear River Channel. Sedimentary structures from these deposits reveal 15-30cm of physically stratified sediment underlain by a discrete shell-hash layer 2-8cm thick. The presence of relatively uniform excess 210Pb activities in the sediment above the shell hash, and only supported activities below indicate rapid deposition of the surficial sediment. During summer, the distribution of bed shear stresses is not significantly weaker than in winter due to the effect of local basin geometry on fetch, yet the SSC is much less, likely due to reduced fluvial sediment supply and enhanced benthic biological factors. Progressively through the summer, tidal currents and wind waves remove the temporary channel deposits and expose the buried shell-hash layer, and concurrent seabed changes allow the tidal flats to trap this remobilized sediment. Accumulation rates determined by 210Pb analysis for cores collected on the tidal flats show mean accretion at 1.4mm/yr, which can be accounted for by local river sources. The mass of sediment stored in the temporary channel drapes during winter is

  19. Dynamical simulations of sedimenting spheres

    SciTech Connect

    Ladd, A.J.C. )

    1993-02-01

    The sedimentation of monodisperse suspensions of rigid spheres has been studied by dynamical simulation; computational techniques are described and numerical results are reported. It has been found that there is a slow relaxation of the suspension microstructure during sedimentation, so that compared with the initial equilibrium distribution, there is an increased number of pairs of particles near contact; this leads to a 5%--10% increase in the average sedimentation velocity. Individual particle velocities fluctuate about the mean fall speed; these fluctuations are large and persist for long times. The resulting hydrodynamically induced dispersion of the particles can be characterized by strongly anisotropic diffusion coefficients; however, the dispersion process is non-Fickian at high solids concentrations.

  20. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii

    USGS Publications Warehouse

    Ogston, A.S.; Storlazzi, C.D.; Field, M.E.; Presto, M.K.

    2004-01-01

    Corals are known to flourish in various turbid environments around the world. The quantitative distinction between clear and turbid water in coral habitats is not well defined nor are the amount of sediment in suspension and rates of sedimentation used to evaluate the condition of reef environments well established. This study of sediment resuspension, transport, and resulting deposition on a fringing reef flat off Molokai, Hawaii, uses a year of time-series data from a small, instrumented tripod. It shows the importance of trade winds and ocean wave heights in controlling the movement of sediment. Sediment is typically resuspended daily and the dominant controls on the magnitude of events (10-25 mg/l) are the trade-wind-generated waves and currents and tidal elevation on the reef flat. The net flux of sediment on this reef is primarily along the reef flat in the direction of the prevailing trade winds (to the west), with a secondary direction of slightly offshore, towards a zone of low coral abundance. These results have application to reef studies and reef management in other areas in several ways. First, the observed resuspension and turbidity results from fine-grained terrigenous sediment that appears to be trapped and recycled on the reef flat. Thus corals are subjected to light attenuation by the same particles repeatedly, however small the amount. Secondly, the measurements show high temporal variability (from daily to seasonal scales) of sediment resuspension, indicating that single measurements are inadequate to accurately describe conditions on a reef flat. ?? Springer-Verlag 2004.

  1. Hydrodynamics and sediment suspension in shallow tidal channels intersecting a tidal flat

    NASA Astrophysics Data System (ADS)

    Pieterse, Aline; Puleo, Jack A.; McKenna, Thomas E.

    2016-05-01

    A field study was conducted on a tidal flat intersected by small tidal channels (depth <0.1 m, width <2 m) within a tidal marsh. Data were collected in the channels, and on the adjacent tidal flat that encompasses approximately 1600 m2 in planform area. Hydrodynamic processes and sediment suspension between the channels and adjacent flat were compared. Shear stress and turbulent kinetic energy were computed from high frequency velocity measurements. Maximum water depth at the field site varied from 0.11 m during the lowest neap high tide to 0.58 m during a storm event. In the channel intersecting the tidal flat, the shear stress, turbulence and along-channel velocity were ebb dominant; e.g. 0.33 m/s peak velocity for ebb compared to 0.19 m/s peak velocity for flood. Distinct pulses in velocity occurred when the water level was near the tidal flat level. The velocity pulse during flood tide occurred at a higher water level than during ebb tide. No corresponding velocity pulse on the tidal flat was observed. Sediment concentrations peaked at the beginning and end of each tidal cycle, and often had a secondary peak close to high tide, assumed to be related to sediment advection. The influence of wind waves on bed shear stress and sediment suspension was negligible. Water levels were elevated during a storm event such that the tidal flat remained inundated for 4 tidal cycles. The water did not drain from the tidal flat into the channels during the storm, and no velocity pulses occurred. Along-channel velocities, turbulent kinetic energy, and shear stresses were therefore smaller in the channels during storm conditions than during non-storm conditions.

  2. Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach

    NASA Astrophysics Data System (ADS)

    Dellwig, O.; Hinrichs, J.; Hild, A.; Brumsack, H.-J.

    2000-12-01

    This study presents geochemical evidence for a change in depositional energy conditions of tidal flat sediments (southern North Sea) from the Holocene, i.e. human unaffected, to present-day conditions. We investigated Holocene and present tidal flat sediments and suspended particulate matter (SPM) from the NW German coastal area (Spiekeroog Island back-barrier area and Jade Bay), as well as sediments from the Helgoland Island mud hole area. Samples were analysed for bulk parameters (TC, TIC), major (Al, Ca, Fe, Mg, K, P, Si, Ti), and trace elements (Ba, Pb, Rb, Sr, V, Zn, Zr). Enrichment factors versus average shale reveal four groups of elements for the investigated Holocene and present sediments. Fe, Mg, K, Ba, Rb, and V show a shale-like behaviour and enrichments of Ca and Sr reflect the occurrence of carbonate, whereas higher levels of P, Pb, and Zn in the present samples are due to pollution. The fourth group consists of Si, Ti, and Zr, which may be used as indicators of depositional energy because these elements are concentrated by particle sorting effects. The most pronounced geochemical difference between the Holocene and present tidal flat sediments is an enrichment of Zr in the present samples. As Zr is commonly associated with heavy minerals, this enrichment indicates a higher depositional energy environment in the present sediments, which can be traced to modern dike building. The same effect, i.e. increasing current velocities, is responsible for a general depletion of fine-grained, Al-rich, material in the present sediments. The examination of SPM shows that large amounts of this fine-grained material are present in the water column and may be transported from the intertidal system into the open North Sea. The comparison of a calculated Holocene clay accumulation rate with modern estimates of SPM deposition in the German Bight reveals about a two-fold higher deposition of fine material in the Holocene tidal flats. As the sediments from the Helgoland

  3. Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats

    DTIC Science & Technology

    2011-09-30

    these channels. This suggests a mechanism by which sediment temporarily stored in winter channel deposits is subsequently reworked before and during...accretes over longer time scales in equilibrium with the space provided. The preservation of laminated deposits (65-90 cm thick) buried 155-230 cm...from the banks and flats (upper tier) were collected in July 2009, and show (from left to right) mottled sediment away from channels, and laminated

  4. Balance of assimilative and dissimilative nitrogen processes in a diatom-rich tidal flat sediment

    NASA Astrophysics Data System (ADS)

    Dähnke, K.; Moneta, A.; Veuger, B.; Soetaert, K.; Middelburg, J. J.

    2012-10-01

    Tidal flat sediments are subject to repetitive mixing and resuspension events. In a short-term (24 h) 15N-labelling experiment, we investigated reactive nitrogen cycling in a tidal flat sediment following an experimentally induced resuspension event. We focused on (a) the relative importance of assimilatory versus dissimilatory processes and (b) the role of benthic microalgae therein. 15N-labelled substrate was added to homogenized sediment, and 15N was subsequently traced into sediment and dissolved inorganic nitrogen (DIN) pools. Integration of results in a N-cycle model allowed us to quantify the proportion of major assimilatory and dissimilatory processes in the sediment. Upon sediment disturbance, rates of dissimilatory processes like nitrification and denitrification were very high, but declined rapidly towards a steady state. Once this was reached, the balance between assimilation and dissimilation in this tidal mudflat was mainly dependent on the nitrogen source: nitrate was utilized almost exclusively dissimilatory via denitrification, whereas ammonium was rapidly assimilated, with about a quarter of this assimilation due to benthic microalgae (BMA). Benthic microalgae significantly affected the nitrogen recycling balance in sediments, because in the absence of BMA activity the recovering sediment turned from a net ammonium sink to a net source. The driving mechanisms for assimilation or dissimilation accordingly appear to be ruled to a large extent by external physical forcing, with the entire system being capable of rapid shifts following environmental changes. Assimilatory pathways gain importance under stable conditions, with a substantial contribution of BMA to total assimilation.

  5. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  6. China's Yangtze estuary. II. Phosphorus and polycyclic aromatic hydrocarbons in tidal flat sediments

    NASA Astrophysics Data System (ADS)

    Xu, Shiyuan; Gao, Xiaojiang; Liu, Min; Chen, Zhenlou

    2001-11-01

    Concentrations of phosphorus (P) and polycyclic aromatic hydrocarbons (PAHs) were determined in tidal flat sediments from the Yangtze estuary and Hangzhou Bay. The amount of total P in surface sediments ranges from 18.0 to 31.4 μmol g -1 along the southern coast. The spatial and temporal distribution of P in tidal flats is closely related to geomorphological location and contaminant input, especially in association with variations in hydrodynamic conditions. Speciation of P in sediments was extracted sequentially. Results show that calcium phases are dominant in the total P of tidal flat sediments, which is similar to marine sediments. The main diffusion of dissolved P is from overlying water to sediment in the coastal environment of the Yangtze estuary. Two sediment cores from the Baoshan (BS) and Donghai (DH) sites were extracted for PAH analysis. The total concentration of PAHs ranges from 0.061 to 7.618 μg g -1 at the BS site, and from 0.005 to 2.370 μg g -1 at the DH site. The distribution of total and individual PAHs in the sediment shows a subsurface maximum, following by decreased levels to the surface and with depth. The pattern of PAH abundance suggests that there has been significant petroleum contamination in the Yangtze estuary. A few individual PAHs, such as acenaphthalene and anthracene in surface samples of the two cores, are in excess of current sediment quality criteria in the Yangtze estuary. The present study suggests that anthropogenic activities enhance contaminant inputs to the estuary.

  7. Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment.

    PubMed

    Choi, Dong Han; Kim, Yoon-Gon; Hwang, Chung Yeon; Yi, Hana; Chun, Jongsik; Cho, Byung Cheol

    2006-03-01

    A rod-shaped bacterium, designated CL-TF13T, was isolated from a tidal flat in Ganghwa, Korea. Analysis of the 16S rRNA gene sequence revealed an affiliation with the genus Tenacibaculum. The sequence similarities between CL-TF13T and type strains of members of the genus Tenacibaculum were from 94.2 to 97.4%. Cells were motile by means of gliding. Strain CL-TF13T grew on solid medium as pale-yellow colonies with an irregular spreading edge. The strain was able to grow in NaCl at a range of 3-5%. They grew within a temperature range of 5-40 degrees C and at pH range of 6-10. The major fatty acids were summed feature 3 (C(16:1)omega7c and/or iso-C(15:0) 2-OH, 19.6%), iso-C(15:0) (18.8%) and iso-C(17:0) 3-OH (13.6%). Fatty acids such as C(18:3)omega6c (6,9,12) (1.5%) and summed feature 4 (iso I- and/or anteiso B-C(17:1), 1.3%) were uniquely found in minor quantities in CL-TF13T among Tenacibaculum species. The DNA G + C content was 30 mol%. According to physiological data, fatty-acid composition and 16S rRNA gene sequence, CL-TF13T could be assigned to the genus Tenacibaculum but distinguished from the recognized species of the genus. Therefore, strain CL-TF13T (= KCCM 42115T = JCM 13039T) represents a novel species, for which the name Tenacibaculum litoreum sp. nov. is proposed.

  8. Morphological controls in sandy estuaries: the influence of tidal flats and bathymetry on sediment transport

    NASA Astrophysics Data System (ADS)

    Robins, Peter Edward; Davies, Alan G.

    2010-06-01

    The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/ h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/ h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/ h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.

  9. Remedial Investigation Report: White Phosphorus Contamination of Salt Marsh Sediments at Eagle River Flats, Alaska

    DTIC Science & Technology

    1992-03-31

    and Vince 1984), for Kenai Flats (Rosenberg 1986), for Chickaloon Flats (Nieland 1971) and for Pot- ter Marsh (Batten et al. 1978). Below is a...mudflats in upper Cook Inlet ( Vince and Snow 1984) are 5-12 mm per year. The deposited sediments become the substrate of the ponds, mudflats and marshes...D.C., p 449-458. Snelson, A. (1980) Personal communication as reported in Berkowitz et al. (1981). Snow, A.A. and S.W. Vince (1984) Plant zonation in

  10. White Phosphorus Contamination of Salt Marsh Pond Sediments at Eagle River Flats, Alaska.

    DTIC Science & Technology

    1993-10-01

    Snow and Vince 1984), Kenai freshwater streams but also occasionally flood Flats (Rosenberg 1986), Chickaloon Flats (Nieland during very high tides. The... Vince and Snow 1984)are5--12mmper salinity of the sediment pore water was usually year. higher than that of the pond water. In the semi- The deposited...Sciences, Washington, D.C., p. 449-458. Amsterdam: Elsevier, p. 167-191 Snow, A.A. and S.W. Vince (1984) Plant zonation Mitsch, W.J. and J.G. Gosselink

  11. Sediment transport on macrotidal flats in Garolim Bay, west coast of Korea: significance of wind waves and asymmetry of tidal currents

    NASA Astrophysics Data System (ADS)

    Lee, Hee J.; Jo, Hyung R.; Chu, Yong S.; Bahk, Kyung S.

    2004-05-01

    A self-recording instrument, named Tidal Sediment Dynamics Observational System (TISDOS), was built to monitor transport characteristics of nearbed sediments on tidal flats. It was deployed on a tidal flat in the semi-enclosed Garolim Bay, west coast of Korea, over a 15-day period between 5 and 20 January 2002 to examine sediment-transport processes during winter seasons. The measurements involved brief durations of high waves allowing for observation of wave effects upon the sediment transport on the tidal flat. Time series of various hydrodynamic parameters (water depth, current velocities, wave height, suspended sediment concentration, and bed level) from point measurements show characteristic interrelationships between parameters on both temporal and spatial scales. The tidal flat is dominated by flooding currents up to 2 times stronger than ebb currents. The current speeds measured simultaneously at two stations along a cross-shore transect varied in harmony with water depth, reaching the maximum during spring tide that was steadily decreased onshore. The onshore decrease in current speed was compatible with a fining textural trend from sand on the lower flat to mud toward the upper flat. Both the maximum water depth and current speed during individual tidal cycles also show semi-diurnal asymmetry that was highlighted during spring tide. Waves were of critical importance in resuspending bed material and thus yielding higher suspended sediment concentrations. On the middle flat, the suspended sediment concentrations were highest, exceeding 400 mg/l at 0.5 m above the seabed during large waves (relative wave height, 0.33) under weakest neap currents. In this wavy climate, the suspended sediment concentration increased over time during ebb, in strong contrast with a gradual decrease through time after mid-flood peaks under tidal currents without waves. The daily vertical flux of suspended sediments trapped in a plastic bottle also indicates the significance of

  12. Effects of natural oyster reefs (Crassostrea gigas) on the sediment balance of Oosterschelde tidal flats

    NASA Astrophysics Data System (ADS)

    Paiva, João; de Vries, Mindert

    2014-05-01

    The realization of the storm surge barrier and the two secondary dams not only changed the hydrodynamics, but also the geomorphological characteristics of the Oosterschelde estuary (SW Netherlands) creating a disequilibrium between erosion and sedimentation. This has lead in the last 25 years to a sand deficit in the Oosterschelde resulting in the erosion of the tidal flats (Smaal & Nienhuis, 1992; Nienhuis & Smaal 1994). Due to these phenomena the habitat for intertidal soft-bottom benthic fauna is slowly disappearing, and with it food sources for estuarine birds that use these areas as foraging grounds (Mulder & Louters, 1994). Erosion of tidal flats also locally exposes deeper peat layers, potentially resulting in reduced water clarity and primary production (Nienhuis & Smaal 1994). Adding to these problems an increased risk of dike failures and flooding during storm surges is expected, as the dikes gradually become more exposed to wave action. In this research the effect of oysters (Crassostrea gigas) as ecosystem engineers, on the sediment balance in the Oosterschelde was studied. In our analysis we compared long term bathymetry data for transects with and without oyster reefs. Based on height differences, the transects sedimentation/erosion rates were calculated and used to determine if there was a difference between transects without oyster reefs and transects crossing oyster reefs. From the long term analysis, the overall erosional trend of the Oosterschelde tidal flats is clear. The mean observed erosion was - 0,012 m per year. When considering the sections crossing oyster reefs , a mean accumulation of sediment of + 0,007 m per year was observed. The results suggest that these ecosystem engineers, that cover large areas in the Oosterschelde slow down the erosion of the tidal flats in the Oosterschelde, as they act as sediment accumulators and stabilizers. We estimate at least 70000 m3 of sediment per year is accreted on tidal flats due to the effect of

  13. Hydromorphology of tidal flats: interactions between hydrodynamics, sediment transport, vegetation and morphology (Invited)

    NASA Astrophysics Data System (ADS)

    Le Hir, P.; Verney, R.; Bassoullet, P.; Cayocca, F.

    2010-12-01

    Hydrodynamics of tidal flats are first summarised, as resulting from morphology and tidal forcing. Two contrasted configurations are considered: the case where tidal flat is somehow closed and dominant currents are cross-shore, and the case where the flat is opened to a channel system (for instance in estuaries) where long-shore flow is dominant. Maximum tidal currents are discussed, using literature results (e.g. Friedrichs and Aubrey, 1996). Typical convex profiles of tidal dominated systems can be justified: the slope reduction in the upper flat induces a flow acceleration that compensates the flow decay predicted by Friedrichs and Aubrey (1996). Tidal asymmetries and their consequences on sediment transport are also discussed. The importance of wind-induced currents in very shallow waters is illustrated by field measurements (Baie du Mont St-Michel, Seine estuary) and computations. Last, a simple model of cross-shore wave propagation is presented, showing that bottom friction is likely to induce the saturation of wave heights (maximum ratio of wave height over water depth), whatever the offshore wave regime (Le Hir et al., 2000). Dealing with sediment transport, the bottom shear stress distribution is suggested as the relevant parameter for comparing tidal and wave effects. This is confirmed by process-based sediment transport models. Using morphological models that compute erosion, advection and deposition of fine sediments under currents and wave forcing, realistic cross-shore profiles can be simulated (Roberts et al., 2000; Waeles et al., 2004). Starting from any initial condition, the profile converges towards equilibrium, coherently with uniform stress distribution. Depending on the wave forcing, larger slopes appear, generating concave profiles near the low and high water levels, where waves duration is higher (Waeles et al., 2004). The shore profile also depends on the sediment characteristics (settling velocity and shear strength). Similarly, biota are

  14. Morphology and sedimentation on open-coast intertidal flats of the Changjiang Delta, China

    USGS Publications Warehouse

    Fan, D.; Li, C.; Wang, D.; Wang, P.; Archer, A.W.; Greb, S.F.

    2004-01-01

    On many intertidal flats, lateral aggradation and reworking by large tidal channels is the dominant sedimentary process. On the open-coast intertidal flats of the Changjiang Delta large laterally migrating tidal channels are absent. Instead, numerous shallow tidal creeks cut across the intertidal flats. On these flats, vertical rather than lateral migration dominates sedimentation. Observations over semidiurnal tidal cycles show that both flood and ebb tides have the potential to deposit their own mud-sand couplets, but four couplets per day are rarely preserved. Reworking by tidal currents and/or weak waves results in loss of tidal couplets or amalgamation of two or more thin couplets into a single thick couplet. Measurements of preserved couplets show that they can represent a single flooding or ebbing event (half day) to a period of several neap-spring cycles. Diastems within amalgamated couplets are generally not distinguishable. The key agent for reworking open-coast intertidal flat deposits is not tidal creek migration but seasonal storm waves. Seasonal storm deposits consist of a basal scour and sand-dominant laminae with mud pebbles, grading upward to mud-dominated layers of fair-weather deposits. Sand-dominated layers are also reworked.

  15. Dynamics of Flat Bunches with Second Harmonic RF

    SciTech Connect

    Sen, Tanaji; Bhat, Chandra; Kim, Hyung Jin; Ostiguy, Jean-Francois; /Fermilab

    2010-05-01

    We investigate the dynamics of longitudinally flat bunches created with a second harmonic cavity in a high energy collider. We study Landau damping in a second harmonic cavity with analytical and numerical methods. The latter include particle tracking and evolution of the phase space density. The results are interpreted in the context of possible application to the LHC. A possible path to a luminosity upgrade at the LHC is through the creation of longitudinally flat bunches. They can increase the luminosity roughly by 40% when the beam intensities are at the beam-beam limit. Lower momentum spread which can reduce backgrounds and make collimation easier as well lower peak fields which can mitigate electron cloud effects are other advantages. Use of a second harmonic rf system is a frequently studied method to create such flat bunches. Here we consider some aspects of longitudinal dynamics of these bunches in the LHC at top energy. First we consider intensity limits set by the loss of Landau damping against rigid dipole oscillations. Next we describe numerical simulations using both particle tracking and evolution of the phase space density. These simulations address the consequences of driving a bunch at a frequency that corresponds to the maximum of the synchrotron frequency.

  16. The Dynamics of Sediment Oxygenation in Marsh Rhizospheres

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.

    2014-12-01

    Many marsh grasses are capable of internal oxygen transport from aboveground sources to belowground roots and rhizomes, where oxygen may leak across the rhizodermis and oxygenate the surrounding sediment. In the field, the extent of sediment oxygenation in marshes was assessed in the rhizosphere of the marsh grass; Spartina anglica, inserting 70 optical fiber oxygen sensors into the rhizosphere. Two locations with S. anglica growing in different sediment types were investigated. No oxygen was detected in the rhizospheres indicating that belowground sediment oxygenation in S. anglica has a limited effect on the bulk anoxic sediment and is restricted to sediment in the immediate vicinity of the roots. In the laboratory, the presence of 1.5mm wide and 16mm long oxic root zones was demonstrated around root tips of S. anglica growing in permeable sandy sediment using planar optodes recording 2D-images of the oxygen distribution. Oxic root zones in S. anglica growing in tidal flat deposits were significantly smaller. The size of oxic roots zones was highly dynamic and affected by tidal inundations as well as light availability. Atmospheric air was the primary oxygen source for belowground sediment oxygenation, whereas photosynthetic oxygen production only played a minor role for the size of the oxic root zones during air-exposure of the aboveground biomass. During tidal inundations (1.5 h) completely submerging the aboveground biomass cutting off access to atmospheric oxygen, the size of oxic root zones were reduced significantly in the light and oxic root zones were completely eliminated in darkness. Sediment oxygenation in the rhizospheres of marsh grasses is of significant importance for marshes ability to retain inorganic nitrogen before it reaches the coastal waters. The presence of oxic roots zones promotes coupled nitrification-denitrification at depth in the sediment, which can account for more than 80% of the total denitrification in marshes.

  17. Dynamical mean-field theory for flat-band ferromagnetism

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong-Son; Tran, Minh-Tien

    2016-09-01

    The magnetically ordered phase in the Hubbard model on the infinite-dimensional hyper-perovskite lattice is investigated within dynamical mean-field theory. It turns out for the infinite-dimensional hyper-perovskite lattice the self-consistent equations of dynamical mean-field theory are exactly solved, and this makes the Hubbard model exactly solvable. We find electron spins are aligned in the ferromagnetic or ferrimagnetic configuration at zero temperature and half filling of the edge-centered sites of the hyper-perovskite lattice. A ferromagnetic-ferrimagnetic phase transition driven by the energy level splitting is found and it occurs through a phase separation. The origin of ferromagnetism and ferrimagnetism arises from the band flatness and the virtual hybridization between macroscopically degenerate flat bands and dispersive ones. Based on the exact solution in the infinite-dimensional limit, a modified exact diagonalization as the impurity solver for dynamical mean-field theory on finite-dimensional perovskite lattices is also proposed and examined.

  18. Sedimentation dynamics about salt features

    SciTech Connect

    Lowrie, A.; Blake, D.W.

    1985-02-01

    Detailed side-scan sonar and gridded bathymetric surveys on continental margins reveal the existence of numerous submarine canyons. Recently published compilations of current velocities in submarine canyons indicate that alternating and undirectionaly flows often exceed 20-30 cm/sec with peak velocities ranging from 70 to 100 cm/sec. Current meters attached to the ocean floor have been lost at current velocities of 190 cm/sec. Such velocities are ample to transport sand-size sediments. The results of DSDP Leg 96 show the existence of massive sands and gravels on the Louisiana slope, deposited during the last glacial advance. Thus, present physical oceanographic data may be an analog to conditions during glacially induced lowered sea levels. Salt ridges and domes underlie much of the Louisiana slope, determining morphology. Submarine canyons lace the slope. Given a prograding shelf, the net sediment transport routes will be down the submarine canyons. Sediment deposition patterns around the salt ridges and domes include parallel-bedded foredrifts on the upslope side, lee drifts on the downslope side, and moats along the lateral flanks of the salt features. Major differences exist between the sedimentation patterns around a ridge and a dome. The size and shape of the flow pattern will determine whether there can be a flow over the salt feature with a resulting turbulent wave that may influence sedimentation. Sedimentation patterns about salt features on the present slope should be applicable to similar paleoenvironments.

  19. Turnover of postlarval bivalves in sediments of tidal flats in Königshafen (German Wadden sea)

    NASA Astrophysics Data System (ADS)

    Armonies, W.

    1994-06-01

    After larval settlement, juvenile bivalves may rapidly re-enter the water column and attain secondary dispersal by byssus-drifting. In order to estimate the quantitative importance of byssus-drifting, the abundance of drifters in the water column, their re-entry into the sediment, and their density in the ambient sediment were measured simultaneously over 3 months on a tidal flat in Königshafen near the Island of Sylt in the North Sea. Turnover of juvenile clams Macoma balthica and cockles Cerastoderma edule was more than once per week in summer, showing strong short-term variability because of semi-lunar rhythms of drifting activity. While there is currently no evidence for active habitat selection in settling M. balthica and C. edule larvae, it is suggested that habitat selection occurs following postlarval migrations.

  20. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats

    NASA Astrophysics Data System (ADS)

    Granadeiro, José P.; Dias, Maria P.; Martins, Ricardo C.; Palmeirim, Jorge M.

    2006-05-01

    Estuarine sediment flats are essential feeding areas for waders, but their exploitation is constrained by the movements of tides. In this cyclic environment the exposure period of sediment flats decreases several fold from upper to lower flats, and the moving tidal waterline briefly creates particular conditions for waders and their prey. This study attempts to determine how the exposure period and the movement of the tide line influence the use of space and food resources by waders across the sediment flats. Wader counts and observations of feeding behaviour were carried out in all phases of the tidal cycle, in plots forming a transect from upper to lower flats, thus representing a gradient of exposure periods. Pecking, prey intake, and success rates varied little along the gradient. Some species actively followed the tide line while foraging, whereas others are evenly spread over the exposed flats. Black-tailed Godwit, Dunlin and Avocet were 'tide followers', whereas Grey Plover, Redshank and Bar-tailed Godwit were 'non-followers'. Densities of 'followers' near the tide line were up to five times higher than elsewhere. Species differed markedly in the way they used space on the flats, but in general the rate of biomass acquisition (in grams of ash-free dry weight per time exposed) was much higher in lower flats. However, this preference was insufficient to counter the much longer exposure of the upper flats, so the total amount of biomass consumed on the latter was greater. Therefore, it was in these upper flats that waders fulfilled most of their energetic needs. Consequently, upper flats are of particular importance for the conservation of wader assemblages, but because they are usually closer to shore they tend to suffer the highest pressure from disturbance and land reclamation.

  1. The behavior of heavy metals in tidal flat sediments during fresh water leaching.

    PubMed

    Li, QuSheng; Liu, YaNan; Du, YeFeng; Cui, ZhiHong; Shi, Lei; Wang, LiLi; Li, HongJie

    2011-02-01

    Many of the coastal tidal flats in China that were polluted with heavy metals are now being reclaimed for arable land. The safety of these soils for agriculture is of great concern. The present study investigated the sediment chemical properties, concentrations, and speciation of heavy metals at different levels of desalination during a controlled leaching experiment. After leaching with fresh water, the average reductions in the heavy metal species examined in 0-65 cm depth sediment were 32.1% for Pb, 26.2% for Cd, 14.0% for Zn, 13.8% for Cu, and 11.0% for Cr, while the Ni concentration in sediment did not change significantly. The amounts of Cd, Pb, Cr, Cu, and Zn bound to the reducible fraction, the amounts of Cd, Pb, and Zn bound to the exchangeable fraction, the amounts of Pb, Cr, Cu, and Zn associated with the carbonate fraction, and the Cu associated with the oxidizable fraction all decreased significantly. Complexation with salt anions, ion exchange between the cations and the metal ions, removal of SO4(2-), dissolution of carbonate, and the redox potential variations all contributed to the decreases in Pb, Cd, Zn, Cu, and Cr. These results suggest that leaching with fresh water can also remove a fraction of the heavy metal contamination when it diminishes sediment salinity.

  2. Lagoon and tidal flat sedimentation of the Upper Devonian Nisku Formation in southern Alberta

    SciTech Connect

    Slingsby, A. ); Kissling, D.L. )

    1991-06-01

    Since 1985, 26 oil pools containing 64 million bbl of oil in place have been discovered in the Nisku Formation in southern Alberta. The thoroughly dolomitized Nisku Formation varies from 20 to 30 m thick in southern Alberta and northern Montana. It overlies anhydrites and shaly carbonates of the Southesk or Duperow formations and underlies anhydrites of the Stettler or Potlatch formation. Burrowed, nodular-bedded skeletal wackestone, deposited over a shallow marine shelf, forms the basal Nisku Formation. These strata are succedded diachronously and unconformably by several tidal-flat and lagoon facies that include (1) southeast-thinning washover fans of cross-bedded peloidal grainstone; (2) laminated mudstone to current-bedded peloidal and intraclastic grainstone sourced within the lagoon; (3) stromatolitic mudstones; (4) laminated anhydrite beds precipitated during salina episodes; (5) Amphipora and brachiopod wackestones and thrombolites containing Renalcis, serpulids, and ostracoes, marking a brief marine invasion; and (6) brackish or freshwater shale and mudstone containing fragmented lycopod leaves and antiarch fish remains. These sediments are overlain by cross-bedded, peloidal, and calcisiltite grainstone and stromatolitic mudstone deposited in tidal channels and over shoals. All facies have been subjected to periodic subareal exposure which has produced leaching, solution collapse brecciation, teepee structures, and nodular-mosaic and void-filling anhydrite. Permeable reservoirs exist where leached, dolomitized tidal flat and lagoon sediments contain intercrystalline and pelmoldic porosity and little anhydrite cement.

  3. Isolation and Characterization of Metal-Reducing Shewanella Species from Tidal Flat Sediments of Southwest Coast, Korea

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Lee, J.; Lee, S.; Hur, H.

    2005-12-01

    Although microbe-metal interactions play important roles in the metal geochemistry and organic matter mineralization in tidal flat sediments, study of microbial metal reduction by bacteria isolated from tidal flat sediments is beginning to be studied in Korea. The objective of this study was to explore Fe(III) and metal reduction by metal-reducing bacteria isolated from Tidal Flat Sediments of Southwest Coast, Korea. 10 bacteria strains were isolated from tidal flat sediments of Southwest Coast, Korea. The taxonomic characterization of these strains indicated that they belong to the genus Shewanella. These strains were able to reduce ferric iron of several ferric compounds [FeCl3, Fe-citrate, FeOOH] and metals such as As(V) and Se(VI) using short chain fatty acids as the electron donors. These bacteria exhibited diverse mineral formation capabilities including the formation of magnetite (Fe3O4), siderite (FeCO3), vivianite [Fe3(PO4)28H2O], AsS, and Se(0). One (HN-41) of the isolates reduced akaganeite (FeOOH) and formed mono-dispersed (~ 30 nm) magnetite (Fe3O4) nanoparticles . These results indicate that microbial Fe(III) reduction may not only play important roles in iron and carbon biogeochemistry as well as immobilization of metal contaminants in tidal flat sediment.

  4. Beach and reef-flat sediments along the south shore of Molokai, Hawaii

    USGS Publications Warehouse

    Calhoun, R.S.; Field, M.E.; ,

    2000-01-01

    As part of the U.S. Geological Survey's multi-disciplinary Coral Reef Project addressing the health and geological variability of coral reef systems, sediment components and their distribution along the fringing reef on the south shore of the Hawaiian island of Molokai are being examined. Particular interest is being paid to the types and origin of sediment found on the reef. The south shore of Molokai is sheltered by one of the largest fringing reefs in the US. At approximately 50 km in length, up to 1.5 km in width, and covered by 90% live coral in many locations, the reef seemingly should be able to provide ample sediment for large carbonate beaches. However, siliciclastic grains supplied by erosion of the basaltic uplands of Molokai are often the most conspicuous individual nearshore sediment type. Coralline algae and coral are the most common carbonate components of the beaches. On the nearshore reef-flat, chemically-altered carbonate grains, particularly coralline algae, are the most abundant component. Molluscs and Halimeda may be common in specific locations, but are usually minor components. Sediment calcium carbonate levels increase to the west from a minimum at Kamalo, and are high along the east shore of Molokai. However, these general island-scale trends may be overridden by local influences, such as protected stream mouths or high carbonate growth rates. Additionally, trends seen on the beach and nearshore environments may not reflect trends a few hundred meters offshore since shore normal trends are more pronounced than shore parallel ones.

  5. Statistical characterization of spatiotemporal sediment dynamics in the Venice lagoon

    NASA Astrophysics Data System (ADS)

    Carniello, Luca; D'Alpaos, Andrea; Botter, Gianluca; Rinaldo, Andrea

    2016-05-01

    Characterizing the dynamics of suspended sediment is crucial when investigating the long-term evolution of tidal landscapes. Here we apply a widely tested mathematical model which describes the dynamics of cohesive and noncohesive sediments, driven by the combined effect of tidal currents and wind waves, using 1 year long time series of observed water levels and wind data from the Venice lagoon. The spatiotemporal evolution of the computed suspended sediment concentration (SSC) is analyzed on the basis of the "peak over threshold" theory. Our analysis suggests that events characterized by high SSC can be modeled as a marked Poisson process over most of the lagoon. The interarrival time between two consecutive over threshold events, the intensity of peak excesses, and the duration are found to be exponentially distributed random variables over most of tidal flats. Our study suggests that intensity and duration of over threshold events are temporally correlated, while almost no correlation exists between interarrival times and both durations and intensities. The benthic vegetation colonizing the central southern part of the Venice lagoon is found to exert a crucial role on sediment dynamics: vegetation locally decreases the frequency of significant resuspension events by affecting spatiotemporal patterns of SSCs also in adjacent areas. Spatial patterns of the mean interarrival of over threshold SSC events are found to be less heterogeneous than the corresponding patterns of mean interarrivals of over threshold bottom shear stress events because of the role of advection/dispersion processes in mixing suspended sediments within the lagoon. Implications for long-term morphodynamic modeling of tidal environments are discussed.

  6. Dynamic simulation of particle sedimentation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongzhen; Prosperetti, Andrea

    2004-11-01

    The sedimentation of 1024 spheres has been simulated via a recently developed method:Physalis Method. Particles are initially randomly distributed and periodic boundary conditions are assumed. The time evolution of the particle spatial distribution is studied by meassuering the structure factor. Properties of particles velocity distribution, e.g. variance, time autocorrelation, have been studied. The effects of particle rotation and collision are discussed.

  7. Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats Sediment Flux through the Mekong Tidal River, Delta and Mangrove Shoreline Instrumentation to Support Investigation of Large Tropical Deltas

    DTIC Science & Technology

    2013-09-30

    Contrasting Mesotidal Flats Sediment Flux through the Mekong Tidal River, Delta and Mangrove Shoreline Instrumentation to Support Investigation of Large...scales), and thereby validate localized measurements and numerical models of sediment transport for diverse tidal systems (tidal flats, mangrove forests...Sediment Flux through the Mekong Tidal River, Delta and Mangrove Shoreline Instrumentation to Support Investigation of Large Tropical Deltas 5a. CONTRACT

  8. Mercury dynamics in lake sediments

    NASA Astrophysics Data System (ADS)

    Feyte, Stéphane; Gobeil, Charles; Tessier, André; Cossa, Daniel

    2012-04-01

    Triplicate porewater depth-profiles of pH and concentrations of total Hg (HgT), methylmercury (MeHg), Fe, Mn, sulfate, total sulfide, total zero-valent sulfur, organic C and major ions were determined at two sampling dates in a perennially oxygenated basin and a seasonally anoxic basin from Lake Tantaré, a Canadian Shield lake. The vertical distribution of HgT, MeHg, acid volatile sulfide, total S, Fe, Mn, Al and organic C were also determined in dated sediment cores from the same lake basins and from the deepest site of two other lakes, one also located in the Canadian Shield and the other in the Northeastern part of the Appalachian Mountains. Application of a one-dimensional transport-reaction equation to the dissolved HgT and MeHg profiles constrains the depth intervals (zones) where these species are produced or consumed in the sedimentary column and yields estimates of net reaction rates of HgT or MeHg in each of the zones as well as their fluxes at the sediment-water interface. Dissolved HgT and MeHg diffused from the overlying water into the sediments, except for MeHg at one of the sampling dates in the perennially oxygenated basin. About 97% and 50% of the MeHg flux to the sediments is presently deposited with settling particles in the perennially oxygenated and seasonally anoxic basins, respectively. Removal of porewater HgT and MeHg occurred at all dates and sampling sites. Comparison of the consumption zones of porewater HgT and MeHg with the profiles of ancillary parameters, coupled with thermodynamic calculations, suggest that pure Hg mineral phases do not form in the sediments, that HgT and MeHg adsorption onto authigenic Fe oxyhydroxides occurs in minor proportions, and that the association of HgT and MeHg to Fe sulfide phases or sulfidized organic matter is possible. Assuming that the net consumption of MeHg in the porewaters was essentially due to demethylation, an apparent first-order rate constant for MeHg demethylation of 0.04-0.8 d-1 was

  9. Processes Controlling Transfer of Fine-Grained Sediment within and Between Channels and Flats on Intertidal Flats

    DTIC Science & Technology

    2010-09-30

    through channel bed reworking with less transfer between channels and surrounding flats. Figure 5. Uncalibrated...surface elevation, current magnitude, and bed elevation. There is an approximately 2 cm reworking of the channel seabed when the tide is low and flow...within the braided tidal-channel system act to deliver, rework and rapidly export sand and mud to the seaward edge of the flat. Hydrodynamic

  10. Biomarkers of peat-forming plants and their signal in tidal flat sediments of the german bight

    NASA Astrophysics Data System (ADS)

    Wöstmann, R.; Köller, C.; Rullkötter, J.

    2003-04-01

    Induced by the Holocene sea level rise a number of different peat layers developed in the surface of today´s Wadden Sea of NW Germany. Furthermore, lipid analysis of Wadden Sea sediments showed a significant component of terrestrial organic matter derived from erosion of peat layers in this highly dynamic area. In order to characterise these peats and their remnants in tidal flat sediments in a paleochemotaxonomical way, recent plant material as well as different types of peats were selected for biomarker investigation. Recent plant material was linked paleochemotaxonomically to deposited peats and Wadden Sea sediments by means of selected biomarkers. A significant variation of the n-alkane distribution pattern between raised bog plants and fen plants was detected. The raised bog plants showed an n-alkane maximum at n-C31, the fen plants at n-C27 and n-C29. This is in agreement with results of the botanical and geochemical analysis of different types of Holocene peat layers in this area. In the selected Wadden Sea sediment core the n-alkane distribution showed an odd over even carbon number predominance with maxima at n-C27, n-C29 or n-C31, indicating an origin from different peat types. In addition, pentacyclic triterpenoids are characteristic biomarkers for bog and fen plant communities. Their distribution patterns and total amounts allow a clear distinction between raised-bog-forming plants and fen-peat-forming plants. Whereas all analysed fen-peat-forming plants were barren of triterpenoids, raised-bog-forming plants like Erica tetralix contain triterpenoids at a level of more than 10% of the total lipid extract. All other bog-forming plants also contain high amounts of triterpenoids like a-amyrin, ß-amyrin, friedelin, lupeol, multiflorenon and taraxerol. However, individual triterpenoids are not plant-specific biomarkers because of possible diagenetic effects. When triterpenoids are found in fen peats they are due to the influence of non-peat-forming plant

  11. Distribution and sources of polycyclic aromatic hydrocarbons in intertidal flat surface sediments from the Yangtze estuary, China

    NASA Astrophysics Data System (ADS)

    Liu, M.; Hou, L. J.; Yang, Y.; Zou, H.; Lu, J.; Wang, X.

    2001-11-01

    Polycyclic aromatic hydrocarbons (PAHs) in surface sediments taken from intertidal flats in the Yangtze estuary and adjacent coastal areas were determined by GC-MS. The results have shown that total PAH concentration ranged from 0.263-6.372 mg/kg in tidal flat surface sediments from the study area. Mean concentration level is 1.662 mg/kg. The concentration levels of total PAHs varied dramatically with in the region. They are characteristically at maximum near sewage discharge points. Petroleum-derived contamination may be a dominant source in the study area based on the distributions of Flu/Pyr and two and three-ringed and four-ringed congeners in surface sediments. A pyrolytic origin was responsible for higher PAH concentration levels at three sampling sites. The degree of sediment contamination by PAHs in the study area is low to moderate in comparison with other estuarine and tidal flat surface sediments elsewhere. However, anthracene and fluorene exceed the effects of low range (ER-L) values, showing a primary potential impact for the Yangtze estuarine tidal flat ecosystem.

  12. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.

    PubMed

    Yamamoto, Tamiji; Kondo, Shunsuke; Kim, Kyung-Hoi; Asaoka, Satoshi; Yamamoto, Hironori; Tokuoka, Makoto; Hibino, Tadashi

    2012-11-01

    In order to prove that hot air-dried crushed oyster shells (HACOS) are effective in reducing hydrogen sulfide in muddy tidal flat sediments and increasing the biomass, field experiments were carried out. The concentration of hydrogen sulfide in the interstitial water, which was 16 mg SL(-1) before the application of HACOS, decreased sharply and maintained almost zero in the experimental sites (HACOS application sites) for one year, whereas it was remained at ca. 5 mg SL(-1) in the control sites. The number of macrobenthos individuals increased to 2-4.5 times higher than that in the control site. Using a simple numerical model, the effective periods for suppression of hydrogen sulfide were estimated to be 3.2-7.6 and 6.4-15.2 years for the experimental sites with 4 and 8 tons per 10 × 10 × 0.2m area, respectively. From these results, it is concluded that HACOS is an effective material to remediate muddy tidal flats.

  13. Numerical Experiments on Sediment Pulse Dynamics

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Nelson, P. A.

    2015-12-01

    Local channel morphology is highly dependent on sediment supply from upstream reaches. Sediment pulses are introduced to channels during natural and anthropogenic disturbances such as landslides, dam removal, or gravel augmentation. Flume studies have shown that sediment pulses tend to evolve through some combination of translation and dispersion, but the relative importance of the sediment pulse size, the grain size of the pulse material, flow unsteadiness, and channel nonuniformity is poorly understood. Here we use a one-dimensional morphodynamic model to simulate the evolution of various sediment pulses in a straight, rectangular channel. The model is capable of determining transcritical flows, using the energy equation for subcritical nodes and a reduced momentum equation for supercritical nodes. Bed evolution and grain size sorting are handled with the mixed-grain-size Exner equation for sediment continuity. A stratigraphy submodel allows the vertical grain size distribution created during deposition to provide feedbacks on morphodynamic processes encountered during degradation. We explore how pulse characteristics such as total mass, feed timing, and grain size distribution affect pulse translation and dispersion. We also consider the influence of steady versus unsteady water discharge and the existence of background sediment feed. Finally, we examine the effect of variations in channel width by varying the amplitude and wavelength of downstream sinusoidal width undulations. Preliminary results suggest that smaller sediment pulses experience a greater degree of translation than larger pulses. Width variations, particularly those of larger amplitudes, were found to result in increased pulse dispersion. Our results suggest that morphodynamic models can facilitate understanding of what controls sediment pulse dynamics, and they may improve predictions and the potential effectiveness of river restoration techniques such as dam removal and gravel augmentation.

  14. Effects of infauna harvesting on tidal flats of a coastal lagoon (Ria Formosa, Portugal): implications on phosphorus dynamics.

    PubMed

    Falcão, M; Caetano, M; Serpa, D; Gaspar, M; Vale, C

    2006-03-01

    The systematic collection of benthic organisms in tidal flats of coastal lagoons should be taken into account for the management of these systems, once sediment disturbance affects biogeochemical processes by favouring pore water renewal during tidal inundation. The objective of the present work was to evaluate the effects of infauna harvesting on the phosphorus dynamics of muddy and sandy intertidal areas in the Ria Formosa. Sediment cores and overlying water were collected during August 2000 and February 2001 from reworked and undisturbed sediment before and after flooding. Results obtained showed that during the first minutes of flooding there was a marked decrease of phosphate in pore water of disturbed sediments. However, phosphate tidal fluxes from sandy sediment were clearly higher (17 nmol cm(-2) d(-1) in summer and 3 nmol cm(-2) d(-1) in winter) than in muddy sediment (0.4 nmol cm(-2) d(-1) in summer and -0.01 nmol cm(-2) d(-1) in winter). After muddy sediment disturbance concentrations of iron oxides increased quickly (from 5 to 16 micromol g(-1)) and phosphate was sorbed onto these iron oxides, resulting in a buffering of phosphate pore water concentrations at low values in the oxidized sediment zone. The estimated P-output from muddy sediment decreased one to two orders of magnitude after sediment disturbance in contrast to sandy sediments in which the impact of infauna harvesting was minimal. Consequently, the P-cycle is influenced by the disruption of muddy habitats in tide-driven systems. Such information could be useful for the management of the lagoon.

  15. Surface sedimentation and sediment property of 2014~2015 years on the Dongho open-coast intertidal flat, Gochang coast of southwestern Korea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kang, Na Yeong; Kang, Sol Ip

    2016-04-01

    The Dongho intertidal flat, located on the southwestern coast of Korea, is macro-tide, open-coast, linear shoreline, and sand substrates. In the Dongho intertidal flat, this study has focused on characteristics of surface sedimentation and sediment properties during 2014~2015 years. Can cores (30×17×5 cm3) were sampled at 4 sites with 150 m interval from shoreline to lower intertidal area during the 6 seasons from spring (June) in 2014 to summer (Aug.) in 2015. The 24 can cores of the intertidal flat were analyzed for sediment texture, porosity, wet density, grain density, and shear strength at 2, 10, and 25 cm parts from the top. Sediment type is mostly sand (S) facies of the Folk scheme, and mean grain size and skewness of the sediments are 0.93~2.70 ϕ and -0.50~0.41, respectively. Sediment properties show porosity of 9~32%, wet density of 1.88~2.45 g/cm3, grain density of 2.62~3.09 g/cm3, and shear strength of 8~64 kPa. The cancore peels represent planar and inclined stratification and bioturbated faintly stratification with some shell fragments. The stratification weaken from the shoreline to the lower intertidal site. This is indicative of waning influences of sea wave in the Dongho intertidal flat. Keywords: macro-tide, open-coast, can core, intertidal flat, Gochang coast Acknowledgements: This study was supported by the research grant from the Korean Ministry of Oceans and Fisheries (PJT200538). This presentation is an interim result of the coastal research program in the study area.

  16. Random Forest Classification of Sediments on Exposed Intertidal Flats Using ALOS-2 Quad-Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Wang, W.; Yang, X.; Liu, G.; Zhou, H.; Ma, W.; Yu, Y.; Li, Z.

    2016-06-01

    Coastal zones are one of the world's most densely populated areas and it is necessary to propose an accurate, cost effective, frequent, and synoptic method of monitoring these complex ecosystems. However, misclassification of sediments on exposed intertidal flats restricts the development of coastal zones surveillance. With the advent of SAR (Synthetic Aperture Radar) satellites, polarimetric SAR satellite imagery plays an increasingly important role in monitoring changes in coastal wetland. This research investigated the necessity of combining SAR polarimetric features with optical data, and their contribution in accurately sediment classification. Three experimental groups were set to make assessment of the most appropriate descriptors. (i) Several SAR polarimetric descriptors were extracted from scattering matrix using Cloude-Pottier, Freeman-Durden and Yamaguchi methods; (ii) Optical remote sensing (RS) data with R, G and B channels formed the second feature combinations; (iii) The chosen SAR and optical RS indicators were both added into classifier. Classification was carried out using Random Forest (RF) classifiers and a general result mapping of intertidal flats was generated. Experiments were implemented using ALOS-2 L-band satellite imagery and GF-1 optical multi-spectral data acquired in the same period. The weights of descriptors were evaluated by VI (RF Variable Importance). Results suggested that optical data source has few advantages on sediment classification, and even reduce the effect of SAR indicators. Polarimetric SAR feature sets show great potentials in intertidal flats classification and are promising in classifying mud flats, sand flats, bare farmland and tidal water.

  17. Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem

    NASA Astrophysics Data System (ADS)

    Stevens, Heike; Simon, Meinhard; Brinkhoff, Thorsten

    2009-04-01

    Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates, the oxic layer, and the oxic-anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and starch. MPN counts of bulk water and aggregate samples ranged between 0.18 × 101 and 1.1 × 106 cells per milliliter and those of the sediment surface and the transition zone between 0.8 × 101 and 5.1 × 107 cells per gram dry weight. Marine Broth and F. vesiculosus yielded the highest values of all substrates tested and corresponded to 2.3-32% of 4,6-diamidinophenyl indole cell counts. Strains of seven phylogenetic classes were obtained: Actinobacteria, Bacilli, α- and γ-Proteobacteria, Sphingobacteria, Flavobacteria, and Planctomycetacia. Only with agar-agar as substrate could organisms of all seven classes be isolated.

  18. Short-term measurements of exposure and inundation of sediment areas in a tide-less wind flat system at the Southern Baltic Sea coast

    NASA Astrophysics Data System (ADS)

    Karsten, U.; Baudler, H.; Himmel, B.; Jaskulke, R.; Ewald, H.; Schumann, R.

    2012-12-01

    Wind flats are typical coastal landscape elements of the tide-less Southern Baltic Sea. These sediment areas exhibit an irregular and unpredictable pattern of emersion and flooding as a function of the prevailing wind direction and speed. Consequently, wind flats represent very specific and unique coastal habitats that, however, are ecologically poorly understood. The irregular and unpredictable water level fluctuations cause strong physico-chemical gradients which favour the development of laminated microbial mats. These micro-ecosystems accumulate organic material, enrich the sediment with nutrients and reduce erosion of sand particles. In the present study we developed a new autonomous measuring device for precise water level changes and recorded for the first time under in-situ conditions the irregular flooding events of the wind flat Bock (Zingst Peninsula, German Baltic Sea coast). The measured water level changes were compared and correlated with the closest gauging station and the prevailing wind conditions (direction, speed) to better understand the effects of hydrology and meteorology on duration and intensity of inundation. From the 12 measuring periods of over 2.5 years we noted that about half of the time the wind flat was fully exposed and dry, and the other half at least wet with < 1 cm water levels. The strongest flooding of up to 20 and 50 cm water height was a relatively rare event, which, however, depended on wind speed and direction, i.e. wind speed above 8 m s- 1 from north to northeast direction. The undertaken measurements on exposure and inundation intervals of this unique sedimentary ecosystem describe well the wind-driven high dynamics and strong gradients in the environmental parameters, and explain well the abundant occurrence of microbial mats in wind flats.

  19. Contaminated sediment dynamics in peatland headwaters

    NASA Astrophysics Data System (ADS)

    Shuttleworth, Emma; Clay, Gareth; Evans, Martin; Hutchinson, Simon; Rothwell, James

    2016-04-01

    Peatlands are an important store of soil carbon, provide multiple ecosystem services, and when located in close proximity to urban and industrial areas, can also act as sinks of atmospherically deposited heavy metals. The near-surface layer of the blanket peats of the Peak District National Park, UK, is severely contaminated with high concentrations of anthropogenically derived, atmospherically deposited lead (Pb). These peats are severely degraded, and there is increasing concern that erosion is releasing considerable quantities of this legacy pollution into surface waters. Despite substantial research into Pb dynamics in peatlands formal description of the possible mechanisms of contaminated sediment mobilisation is limited. However, there is evidence to suggest that a substantial proportion of contaminated surface sediment may be redistributed elsewhere in the catchment. This study uses the Pb contamination stored near the peat's surface as a fingerprint to trace contaminated sediment dynamics and storage in three severely degraded headwater catchments. Erosion is exposing high concentrations of Pb on interfluve surfaces, and substantial amounts of reworked contaminated material are stored on other catchment surfaces (gully walls and floors). We propose a variety of mechanisms as controls of Pb release and storage on the different surfaces, including: (i) wind action on interfluves; (ii) the aspect of gully walls, and (iii) gully depth. Vegetation also plays an important role in retaining contaminated sediment on all surfaces.

  20. Residues of organochlorine pesticides in intertidal flat surface sediments from coastal zone of Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Han, Xiumei; Zheng, Rong; Zhao, Jiale; Ma, Chao; Gao, Xiaojiang

    2014-09-01

    Sixteen surface sediment samples were collected and analysed to evaluate the residues of organochlorine pesticides (OCPs) from intertidal flat in Jiangsu Province. Overall, 22 OCPs were detected with total concentrations of OCPs ranging widely from 0.96 to 12.14 ng/g (dry wt). Total hexachlorocyclohexane (HCH) and total dichlorodiphenyltrichloroethane (DDT) levels varied from <0.01 to 0.67 ng/g and from 0.23 to 4.85 ng/g, respectively. DDTs were the predominant compounds. The dominance of β-HCH indicated a history of HCH pollution. According to the ratios of ( p, p'-DDD+ p, p'-DDE)/ p, p'-DDT and o,p'-DDT/ p, p'-DDT, new input of DDTs did not occur in most sites, and the main sources were historical usage of technical DDTs. OCPs such as dieldrin, endrin, p, p'-DDD, and p, p'-DDT exceeded the effects range low, showing adverse biological effects that would occasionally occur at some sites of the study area.

  1. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea.

    PubMed

    Jung, Min Young; Jung, Min-Young; Paek, Woon Kee; Park, In-Soon; Han, Jeong-Ran; Sin, Yeseul; Paek, Jayoung; Rhee, Moon-Soo; Kim, Hongik; Song, Hong Seok; Chang, Young-Hyo

    2010-12-01

    A Gram-positive, rod-shaped, endospore-forming organism, strain BL3-6(T), was isolated from tidal flat sediments of the Yellow Sea in the region of Tae-An. A 16S rRNA gene sequence analysis demonstrated that this isolate belongs to the Bacillus cereus group, and is closely related to Bacillus mycoides (99.0% similarity), Bacillus thuringiensis (99.0%), Bacillus weihenstephanensis (99.0%), Bacillus cereus (98.9%), Bacillus anthracis (98.8%), and Bacillus pseudomycoides (98.1%). The phylogenetic distance from any validly described Bacillus species outside the Bacillus cereus group was less than 95.6%. The DNA G+C content of the strain was 39.4 mol% and the major respiratory quinone was menaquinone-7. The major cellular fatty acids were iso-C(14:0) (17.8%), iso-C(16:0) (15.8%), and iso-C(12:0) (11.3%). The diagnostic amino acid of the cell wall was meso-diaminopimelic acid and the major cell wall sugar was galactose. The results of DNA-DNA hybridization (<55.6%) and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain BL3-6(T) from the published Bacillus species. BL3-6(T) therefore represents a new species, for which the name Bacillus gaemokensis sp. nov. is proposed, with the type strain BL3-6(T) (=KCTC 13318(T) =JCM 15801(T)).

  2. Flat bands, Dirac cones, and atom dynamics in an optical lattice

    SciTech Connect

    Apaja, V.; Hyrkaes, M.; Manninen, M.

    2010-10-15

    We study atoms trapped with a harmonic confinement in an optical lattice characterized by a flat band and Dirac cones. We show that such an optical lattice can be constructed which can be accurately described with the tight-binding or Hubbard models. In the case of fermions the release of the harmonic confinement removes fast atoms occupying the Dirac cones while those occupying the flat band remain immobile. Using exact diagonalization and dynamics we demonstrate that a similar strong occupation of the flat band does not happen in the bosonic case and furthermore that the mean-field model is not capable of describing the dynamics of the boson cloud.

  3. Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland

    NASA Astrophysics Data System (ADS)

    Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.

    2015-12-01

    Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.

  4. Selection via flatness as a dynamical effect in evolution models with finite population

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Hu, Chin-Kun

    2010-07-01

    We investigate the phenomenon of selection via flatness. In the static case, the finiteness of the population does not seriously influence the increase of mean fitness of population due to flatness around a peak. The effect is proportional to 1/L , where L is the genome length. We investigated the two peak model (high peak and a flat peak). We find that the selection of flatness for long genome lengths occurs as a dynamic phenomenon in the case of evolution with small populations. We found that two factors are crucial to define the role of flatness: special initial distribution (the population is located at centers of peaks) allows flat peak to attract more population, and the large value of mutations per population per virus life cycle sometimes also increases the role of flatness. We suggested simple criteria to identify the phenomenon of dynamical arresting of population around flat peak by experiment. We infer that selection via robustness is possible in evolution as a nonequilibrium phenomenon.

  5. A dynamic simulation of a flat-plate collector system

    NASA Astrophysics Data System (ADS)

    Annino, A.

    1983-04-01

    A numerical model for the performance of a flat plate solar collector array is presented, with account taken of thermal transients and calculation on a microcomputer. The system modeled consists of a flat plate array, the heat transfer fluid, an insulated storage tank, an exchange loop for heating a secondary fluid, and a load maintained by a pump. The one-dimensional analysis includes equations for the energy balances, with consideration given to heat losses to the outside. A function is defined for the total incident solar radiation, and behavior is simulated over the entire 24-hr day, weighted by the highest and lowest recorded temperatures. Good agreement has been found with experimental data.

  6. Carbon, nutrient and trace metal cycling in sandy sediments: A comparison of high-energy beaches and backbarrier tidal flats

    NASA Astrophysics Data System (ADS)

    Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen

    2015-06-01

    In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation

  7. Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats

    DTIC Science & Technology

    2010-09-30

    muds, no thick or extensive mud deposits have been found buried within the tidal flats. Thin (~1-2 cm) lamine are found in vibracores (Fig. 3), and...studies (by Ogston), tidal reworking of the flat is documented to resuspend regularly the upper 2-3 cm of the flat surface and consequently wash out most...projects. Those studying the seabed incorporate radiochemical and textural data to document the processes (e.g., physical reworking , bioturbation

  8. Bathymetric and sediment facies maps for China Bend and Marcus Flats, Franklin D. Roosevelt Lake, Washington, 2008 and 2009

    USGS Publications Warehouse

    Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.; Barton, Gary J.

    2011-01-01

    The U.S. Geological Survey (USGS) created bathymetric and sediment facies maps for portions of two reaches of Lake Roosevelt in support of an interdisciplinary study of white sturgeon (Acipenser transmontanus) and their habitat areas within Franklin D. Roosevelt Lake, Washington. In October 2008, scientists from the USGS used a boat-mounted multibeam echo sounder (MBES) to describe bathymetric data to characterize surface relief at China Bend and Marcus Flats, between Northport and Kettle Falls, Washington. In March 2009, an underwater video camera was used to view and record sediment facies that were then characterized by sediment type, grain size, and areas of sand deposition. Smelter slag has been identified as having the characteristics of sand-sized black particles; the two non-invasive surveys attempted to identify areas containing black-colored particulate matter that may be elements and minerals, organic material, or slag. The white sturgeon population in Lake Roosevelt is threatened by the failure of natural recruitment, resulting in a native population that consists primarily of aging fish and that is gradually declining as fish die and are not replaced by nonhatchery reared juvenile fish. These fish spawn and rear in the riverine and upper reservoir reaches where smelter slag is present in the sediment of the river lake bed. Effects of slag on the white sturgeon population in Lake Roosevelt are largely unknown. Two recent studies demonstrated that copper and other metals are mobilized from slag in aqueous environments with concentrations of copper and zinc in bed sediments reaching levels of 10,000 and 30,000 mg/kg due to the presence of smelter slag. Copper was found to be highly toxic to 30-day-old white sturgeon with 96-h LC50 concentrations ranging from 3 to 5 (u or mu)g copper per liter. Older juvenile and adult sturgeons commonly ingest substantial amounts of sediment while foraging. Future study efforts in Lake Roosevelt should include sampling of

  9. Effects of watershed land-cover on the biogeochemical properties of estuarine tidal flat sediments: A test in a densely-populated subtropical island

    NASA Astrophysics Data System (ADS)

    Morita, Akiko; Touyama, Shouji; Kuwae, Tomohiro; Nishimura, Osamu; Sakamaki, Takashi

    2017-01-01

    The effects of watershed land cover on the biogeochemical properties of estuarine tidal flat sediment were examined in estuarine tidal flats of 16 watersheds in a densely populated, subtropical island of Japan. Despite the small sizes of the watersheds (<16.5 km2), a redundancy analysis showed that river water quality explained 62% of the cross-estuary variation in the biogeochemical properties of estuarine tidal flat sediment by the first two ordination axes. We also found that the dissolved nutrient concentrations of river water and pheophytin a content of tidal flat sediment were positively related to agricultural and urbanized land cover in the watersheds. These results indicate that human nutrient inputs significantly increase algae-derived deposits in estuaries with relatively more developed watersheds. The δ13C of particulate organic matter (POM) was negatively related to watershed forest cover. This suggests that terrestrially derived-origin POM deposits are substantial in the estuaries connected to watersheds with relatively high forest cover. However, the chemical properties of tidal flat sediment were not related to chemical indicators of POM in the base flow. We hypothesize that substantial terrestrially derived POM is discharged to estuaries of high-forest-cover watersheds during high flow, and this partially controls the chemical properties of estuarine sediments. Our results demonstrate that the chemical properties of estuarine tidal flats are associated with watershed land cover, and that the dominant processes controlling estuarine sediment properties differ among watersheds depending on land cover composition.

  10. Colonization dynamics of ciliate morphotypes modified by shifting sandy sediments.

    PubMed

    Risse-Buhl, Ute; Felsmann, Katja; Mutz, Michael

    2014-08-01

    Sandy stream-bed sediments colonized by a diverse ciliate community are subject to various disturbance regimes. In microcosms, we investigated the effect of sediment shifting on the colonization dynamics of 3 ciliate morphotypes differing in morphology, behavior and feeding strategy. The dynamics of the ciliate morphotypes inhabiting sediment pore water and overlying water were observed at 3 sediment shifting frequencies: (1) stable sediments, (2) periodically shifting sediments such as migrating ripples, and (3) continuously shifting sediments as occurring during scour events of the uppermost sediment. Sediment shifting significantly affected the abundance and growth rate of the ciliate morphotypes. The free-swimming filter feeder Dexiostoma campylum was vulnerable to washout by sediment shifting since significantly higher numbers occurred in the overlying water than in pore water. Abundance of D. campylum only increased in pore water of stable sediments. On the contrary, the vagile grasper feeder Chilodonella uncinata and the sessile filter feeder Vorticella convallaria had positive growth rates and successfully colonized sediments that shifted periodically and continuously. Thus, the spatio-temporal pattern of sediment dynamics acts as an essential factor of impact on the structure, distribution and function of ciliate communities in sand-bed streams.

  11. The dynamic structure of a flat small intestinal mucosa studied on the explanted rat jejunum.

    PubMed

    Loehry, C A; Grace, R

    1974-04-01

    Small pieces of jejunum with an intact blood supply were explanted to the anterior abdominal wall in rats. Six weeks after explantation the mucosa appeared totally flat in many areas, both histologically and under the dissecting microscope. The structure of the flattened mucosa was shown to be identical to that in coeliac disease with hypertrophied intervillous ridges. A dynamic study with tritium-labelled thymidine demonstrated a considerably increased turnover in the flat mucosa with some disorganization of cell production and migration.

  12. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Implications for the Dynamics of Flat-Slabs

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline; Long, Maureen; Beck, Susan; Wagner, Lara; Tavera, Hernando

    2014-05-01

    -slab anisotropy beneath all stations. Splitting is however is weakest and nulls most prevalent above the incoming Nazca Ridge where the slab is at its most shallow. This suggests the main source for the local S anisotropy may be from a thin mantle wedge layer sandwiched between the slab and upper plate. The deepest local S events sample a large volume of dipping slab material and provide increasing evidence for distinct anisotropy within the subducting slab itself that has fast polarizations parallel to the slab strike. Our detailed shear wave splitting study therefore reveals the presence of complex and multi-layered anisotropy across the Peruvian flat-slab region. We are able to characterize different sources of anisotropy in the sub-slab mantle, slab, asthenospheric wedge and the over-riding plate, each with their own implications for the regional subduction dynamics.

  13. Temperature dependent droplet impact dynamics on flat and textured surfaces

    SciTech Connect

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  14. Temporal artifacts in flat dynamic x-ray detectors

    NASA Astrophysics Data System (ADS)

    Overdick, Michael; Solf, Torsten; Wischmann, Hans-Aloys

    2001-06-01

    Flat X-ray detectors based on CsI:Tl scintillators and amorphous silicon photodiodes are known to exhibit temporal artefacts (ghost images) which decay over time. Previously, these temporal artefacts have been attributed mainly to residual signals from the amorphous silicon photodiodes. More detailed experiments presented here show that a second class of effects, the so-called gain effects, also contributes significantly to the observed temporal artefacts. Both the residual signals and the photodiode gain effect have been characterized under various exposure conditions in the study presented here. The results of the experiments quantitatively show the decay of the temporal artefacts. Additionally, the influence of the detector's reset light on both effects in the photodiode has been studied in detail. The data from the measurements is interpreted based on a simple trapping model which suggests a strong link between the photodiode residual signals and the photodiode gain effect. For the residual signal effect a possible correction scheme is described. Furthermore, the relevance of the remaining temporal artefacts for the applications is briefly discussed for both the photodiode residual signals and the photodiode gain effect.

  15. Temperature dependent droplet impact dynamics on flat and textured surfaces

    NASA Astrophysics Data System (ADS)

    Alizadeh, Azar; Bahadur, Vaibhav; Zhong, Sheng; Shang, Wen; Li, Ri; Ruud, James; Yamada, Masako; Ge, Liehui; Dhinojwala, Ali; Sohal, Manohar

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling, and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially on hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures combined with an increased work of adhesion can explain the decreased retraction. The present findings serve as a starting point to guide further studies of dynamic fluid-surface interaction at various temperatures.

  16. Remedial Investigation Report: White Phosphorus Contamination of Salt Marsh Sediments at Eagle River Flats, Alaska

    DTIC Science & Technology

    1992-03-31

    Vince 1984), for Kenai Flats (Rosenberg 1986), for Chickaloon Flats (Nieland 1971) and for Pot- ter Marsh (Batten et al. 1978). Below is a...We have not measured sedimenta- tion rates at ERF, but rates determined on other mudflats in upper Cook Inlet ( Vince and Snow 1984) are 5-12 mm per...A. (1980) Personal communication as reported in Berkowitz et al. (1981). Snow, A.A. and S.W. Vince (1984) Plant zonation in an Alaskan salt marsh. I

  17. Diverse metal reduction and nano- mineral formation by metal-reducing bacteria enriched from inter-tidal flat sediments

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, B.; Seo, H.; Roh, Y.

    2009-12-01

    Dissimilatory metal-reducing bacteria utilize diverse metal oxides as electron acceptors and couple this microbial metal reduciton to growth. However, the microbe-metal interactions playing important roles in the metal geochemistry and organic matter degradation in the tidal flat sediments have not been uncovered enough to employ in various environmental and industrial applications. The objective of this study was to examine biomineralization and bioremediation by the facultative metal-reducing bacteria isolated from the inter-tidal flat sediments in southwestern of Korea. 16S-rRNA analysis showed bacterial consortium mainly consists of genus of Clostridium sp. The enriched bacteria were capable of reducing diverse metals such as iron oxide, maganese oxide, Cr(VI) and Se(VI) during glucose fermentation process at room temperature. The bacteria reduced highly toxic and reactive elements such as Cr(VI) and Se(VI) to Cr(III) and Se(0). The results showed that microbial processes induced transformation from toxic states of heavy metals to less toxic and mobile states in natural environments. Andthe bacteria also reduced iron oxyhydroxide such as ferrihydrite and akaganeite (β-FeOOH) and formed nanometer-sized magnetite (Fe3O4). This study indicates microbial processes not only can be used for bioremediation of inorganic contaminants existing in the marine environments, but also form the magnetite nanoparticles which are exhibit superparamagnetic properties that can be useful for relevant medical and industrial applications.

  18. Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats

    DTIC Science & Technology

    2009-01-01

    reworking , bioturbation) impacting seabed characteristics. Researchers analyzing boundary- layer processes also utilize these data to determine...PUBLICATIONS Boldt, K., Nittrouer, C.,and Ogston, A. (2009) Linking sediment transport processes to laminated seabed deposits in a fine-grained

  19. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  20. Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion

    NASA Astrophysics Data System (ADS)

    Volkenborn, Nils; Robertson, Dylan Martin; Reise, Karsten

    2009-03-01

    Bioturbating lugworms ( Arenicola marina) were excluded from 400 m² plots of intertidal sand which initiated sequences of direct and indirect changes in the structure of the benthic community. The sessile, tube-building species Polydora cornuta and Lanice conchilega took advantage of the absence of lugworms and settled preferentially on lugworm exclusion plots. The protruding tubes provided attachment for an ephemeral development of algal tufts ( Berkeleya colonies and Enteromorpha thalli) which in turn enhanced settlement of the juvenile drifting clams Mya arenaria and Macoma balthica. This causal chain of enhanced bivalve settlement in the presence of above-ground structures, like animal tubes and algae, on lugworm exclusion plots occurred in 2 years at different tidal zones with different tube builders, algae and juvenile clams. A significant response of L. conchilega in a year with relatively low lugworm abundances at the entire site suggests that not only the actual absence of large bioturbators was responsible for the establishment of tube-dwelling species, but also a cumulative change of the sediment in exclusion plots since the onset of the experiment. While the sediment on lugworm plots remained permeable, fine particles and organic matter accumulated at exclusion plots. It is suggested that these differences in sediment characteristics were the product of divergent benthic engineering by sediment destabilizing lugworms on control plots and sediment stabilizing species on exclusion plots. Cumulative changes of the sedimentary habitat and cascading effects in the benthic community may explain the persistence of patches that are dominated by either sediment stabilizing or destabilizing species in the assemblage mosaic of intertidal sediments.

  1. Terrigenous sediment provenance from geochemical tracers, south Molokai reef flat, Hawaii

    USGS Publications Warehouse

    Takesue, R.K.

    2010-01-01

    Land-derived runoff is one of the greatest threats to coral-reef health. Identification of runoff sources is an important step in erosion mitigation efforts. A geochemical sediment provenance study was done in uplands and across the adjacent fringing reef on the southeast shore of Molokai, Hawaii, to determine whether sediment runoff originated from hillsides or gulches. Source-region identification was based on geochemical differences between alkalic basalt, which outcrops on hillsides, and tholeiitic basalt, which outcrops in gulches. In Kawela watershed, copper to iron ratios (Cu/Fe) were distinct in hillside soil versus gulch sediment and suggest that hillside erosion is the predominant mechanism of sediment delivery to the nearshore. This suggests that runoff-mitigation efforts should take steps to reduce hillside erosion. Cadmium to thorium ratios (Cd/Th) in nearshore sediment suggest that there is a high-Cd source of runoff east of Kamalo Gulch. This compositional difference is consistent with the predominance of tholeiitic basalt on the eastern end of Molokai.

  2. Dynamics of flat slab subduction beneath Peru: Insights from seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline; Long, Maureen; Wagner, Lara; Beck, Susan; Tavera, Hernando

    2015-04-01

    Around 10% of subduction zones worldwide today exhibit shallow or flat subduction, but we have yet to fully understand how and why some slabs flatten. The largest flat slab segment that exists in the world today lies beneath much of Peru extending 1500 km in length from 3 °S to 15 °S. At the southern end of the Peruvian flat slab region the Nazca Ridge, an aseismic ridge feature with ~18 km thick oceanic crust, is presently being subducted. By utilising seismic anisotropy we investigate the role of this ridge in terms of the deformation of the surrounding mantle, as well as the dynamics of the broader flat slab region. To achieve this we conduct shear wave splitting analyses at 49 stations distributed across southern Peru, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We present detailed shear wave splitting results for both teleseismic events (SKS, PKS, sSKS) that sample the upper mantle column beneath the stations, as well as direct S from local events that constrain anisotropy above the flat slab. Teleseismic results reveal distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. It appears likely that the *KS splitting measurements reflect trench-normal mantle flow beneath the flat slab, but that shallower layers of anisotropy modify the splitting signal. The local S results, which are sensitive to the supra-slab anisotropy, reveal that the thin mantle layer between the flat slab and the overriding continental crust is likely the main source of shallower anisotropy. The local S splitting measurements again show dramatic variability along strike. North of the Nazca Ridge we observe consistent trench-parallel splitting, while south of the ridge fast

  3. Sediment dynamics in the Adriatic Sea investigated with coupled models

    USGS Publications Warehouse

    Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.

    2004-01-01

    Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.

  4. Physical and Biological Effects on Tide Flat Sediment Stability and Strength - Phase 2

    DTIC Science & Technology

    2011-09-30

    forcings, such as insolation, rainfall, benthic microalgae and seagrass (Zostera japonica) abundance, these variations did not always result in...m2 in the winter to a high of >3000 shoots/m2 in late summer. (B) Is chlorophyll a content in mg/g dry sediment (a proxy for benthic microalgae ...Another area of insight regarding physical/biological interactions involves the impact of microphytobenthos (MPB) or benthic microalgae on the

  5. Sediment dynamics in an overland flow-prone forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Elsenbeer, Helmut

    2010-05-01

    Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.

  6. Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes

    PubMed Central

    Graue, Jutta; Engelen, Bert; Cypionka, Heribert

    2012-01-01

    To follow the anaerobic degradation of organic matter in tidal-flat sediments, a stimulation experiment with 13C-labeled Spirulina biomass (130 mg per 21 g sediment slurry) was conducted over a period of 24 days. A combination of microcalorimetry to record process kinetics, chemical analyses of fermentation products and RNA-based stable-isotope probing (SIP) to follow community changes was applied. Different degradation phases could be identified by microcalorimetry: Within 2 days, heat output reached its maximum (55 μW), while primary fermentation products were formed (in μmol) as follows: acetate 440, ethanol 195, butyrate 128, propionate 112, H2 127 and smaller amounts of valerate, propanol and butanol. Sulfate was depleted within 7 days. Thereafter, methanogenesis was observed and secondary fermentation proceeded. H2 and alcohols disappeared completely, whereas fatty acids decreased in concentration. Three main degraders were identified by RNA-based SIP and denaturant gradient gel electrophoresis. After 12 h, two phylotypes clearly enriched in 13C: (i) Psychrilyobacter atlanticus, a fermenter known to produce hydrogen and acetate and (ii) bacteria distantly related to Propionigenium. A Cytophaga-related bacterium was highly abundant after day 3. Sulfate reduction appeared to be performed by incompletely oxidizing species, as only sulfate-reducing bacteria related to Desulfovibrio were labeled as long as sulfate was available. PMID:21918576

  7. Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio; Gomes, Henrique; Koslowski, Tim; Napoletano, Andrea

    2017-02-01

    In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of shape dynamics, finding that the spatial metric has characteristics of a wormhole—two asymptotically flat ends and a minimal-area sphere, or "throat," in between. In this paper, we investigate whether that solution can emerge as a result of gravitational collapse of matter. With this goal, we study the simplest kind of spherically symmetric matter: an infinitely-thin shell of dust. Our system can be understood as a model of a star accreting a thin layer of matter. We solve the dynamics of the shell exactly and find that, indeed, as it collapses, the shell leaves in its wake the wormhole metric. In the maximal-slicing time we use for asymptotically flat solutions, the shell only approaches the throat asymptotically and does not cross it in a finite amount of time (as measured by a clock "at infinity"). This leaves open the possibility that a more realistic cosmological solution of shape dynamics might see this crossing happening in a finite amount of time (as measured by the change of relational or shape degrees of freedom).

  8. Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Volkman, J. K.; Rohjans, D.; Rullkötter, J.; Scholz-Böttcher, B. M.; Liebezeit, G.

    2000-07-01

    The sources and diagenesis of organic matter in a sediment core from the Swinnplate backbarrier area near Spiekeroog Island in the northwest German Wadden Sea have been examined using stable carbon isotopes, 14C-ages and lipid biomarker data. Twenty-two core sections were analysed from the surface to a depth of 90 cm, representing sedimentation over the past approximately 200 years. Total organic carbon (TOC) contents were highly variable (0.1-1%), as was the grain size with some core sections containing up to 50% of clay and silt (mud fraction). These data indicate a highly variable depositional regime in which organic matter is extensively degraded both before and after incorporation into the sediments. The TOC content was strongly correlated with the abundance of the mud fraction, indicating the importance of organic matter sorption onto particles for preservation of both marine and terrestrial organic matter. Sediments near the top of the core were enriched in marine organic matter, but terrestrial organic matter predominated in most core sections. Some samples showed higher TOC contents than might be predicted from the TOC-grain size relationship. Isotope and biomarker studies showed that these contained additional terrestrial organic matter from peats, possibly eroded from areas to the west of the investigated area. The organic matter in these layers had the lightest values of δ 13C (about -26‰ compared with a more typical mixed marine-terrestrial value of -24‰). Most of the n-alkane distributions show a strong predominance of odd-carbon-number alkanes typical of the distributions found in higher plant waxes. All core sections contained abundant long-chain alcohols and triterpenoid alcohols such as α-amyrin, β-amyrin, lupeol, taraxerol, taraxerone and friedelin from higher plants. The dihydroxy triterpenoid betulin was particularly abundant confirming that eroded peats are a major source of the lipids. Further confirmation was obtained from AMS

  9. Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Roos, Pieter G.; Colbeth, Richard E.; Mollov, Ivan; Munro, Peter; Pavkovich, John; Seppi, Edward J.; Shapiro, Edward G.; Tognina, Carlo A.; Virshup, Gary F.; Yu, J. Micheal; Zentai, George; Kaissl, Wolfgang; Matsinos, Evangelos; Richters, Jeroen; Riem, Heinrich

    2004-05-01

    The dynamic range of many flat panel imaging systems are fundamentally limited by the dynamic range of the charge amplifier and readout signal processing. We developed two new flat panel readout methods that achieve extended dynamic range by changing the read out charge amplifier feedback capacitance dynamically and on a real-time basis. In one method, the feedback capacitor is selected automatically by a level sensing circuit, pixel-by-pixel, based on its exposure level. Alternatively, capacitor selection is driven externally, such that each pixel is read out two (or more) times, each time with increased feedback capacitance. Both methods allow the acquisition of X-ray image data with a dynamic range approaching the fundamental limits of flat panel pixels. Data with an equivalent bit depth of better than 16 bits are made available for further image processing. Successful implementation of these methods requires careful matching of selectable capacitor values and switching thresholds, with the imager noise and sensitivity characteristics, to insure X-ray quantum limited operation over the whole extended dynamic range. Successful implementation also depends on the use of new calibration methods and image reconstruction algorithms, to insure artifact free rebuilding of linear image data by the downstream image processing systems. The multiple gain ranging flat panel readout method extends the utility of flat panel imagers and paves the way to new flat panel applications, such as cone beam CT. We believe that this method will provide a valuable extension to the clinical application of flat panel imagers.

  10. Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Tripathee, R.; Schäfer, K. V. R.; Jaffé, P. R.

    2013-12-01

    Estuarine and coastal wetlands exhibit high rates of carbon burial and storage in anaerobic sediments, but the extent to which carbon sequestration is offset by methane (CH4) emissions from these ecosystems remains unclear. In this study we combine measurements of sediment-air CH4 fluxes with monitoring of belowground CH4 pools in a New Jersey tidal marsh in order to clarify mechanistic links between environmental drivers, subsurface dynamics, and atmospheric emissions. Measurements were conducted in an unvegetated mud flat and adjacent low marsh vegetated with Spartina alterniflora and Phragmites australis. Pore water measurements throughout the year revealed long-term CH4 storage in mud flat sediments, leading to a seasonal lag in emissions that extended into winter months. CH4 reservoirs and fluxes in vegetated sediments were well described by an empirical temperature-response model, while poor model agreement in unvegetated sediments was attributed to decouplings between production and flux due to storage processes. This study highlights the need to incorporate sediment gas exchange rates and pathways into biogeochemical process models.

  11. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    PubMed Central

    Mueller, Philip; Thoss, Heiko; Kaempf, Lucas; Güntner, Andreas

    2013-01-01

    Knowledge of Suspended Sediments Dynamics (SSD) across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological records for flood frequencies and magnitudes, but depositional processes and detrital layer formation in lakes are not yet fully understood. This study presents a novel buoy system designed to continuously measure suspended sediment concentration and relevant boundary conditions at a high spatial and temporal resolution in surface water bodies. The buoy sensors continuously record turbidity as an indirect measure of suspended sediment concentrations, water temperature and electrical conductivity at up to nine different water depths. Acoustic Doppler current meters and profilers measure current velocities along a vertical profile from the water surface to the lake bottom. Meteorological sensors capture the atmospheric boundary conditions as main drivers of lake dynamics. It is the high spatial resolution of multi-point turbidity measurements, the dual-sensor velocity measurements and the temporally synchronous recording of all sensors along the water column that sets the system apart from existing buoy systems. Buoy data collected during a 4-month field campaign in Lake Mondsee demonstrate the potential and effectiveness of the system in monitoring suspended sediment dynamics. Observations were related to stratification and mixing processes in the lake and increased turbidity close to a catchment outlet during flood events. The rugged buoy design assures continuous operation in terms of stability, energy management and sensor logging throughout the study period. We conclude that

  12. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  13. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    PubMed

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  14. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  15. Aceticlastic and NaCl-Requiring Methanogen “Methanosaeta pelagica” sp. nov., Isolated from Marine Tidal Flat Sediment

    PubMed Central

    Iino, Takao; Suzuki, Ken-Ichiro; Yamaguchi, Kaoru; Kamagata, Yoichi

    2012-01-01

    Among methanogens, only 2 genera, Methanosaeta and Methanosarcina, are known to contribute to methanogenesis from acetate, and Methanosaeta is a specialist that uses acetate specifically. However, Methanosaeta strains so far have mainly been isolated from anaerobic digesters, despite the fact that it is widespread, not only in anaerobic methanogenic reactors and freshwater environments, but also in marine environments, based upon extensive 16S rRNA gene-cloning analyses. In this study, we isolated an aceticlastic methanogen, designated strain 03d30qT, from a tidal flat sediment. Phylogenetic analyses based on 16S rRNA and mcrA genes revealed that the isolate belongs to the genus Methanosaeta. Unlike the other known Methanosaeta species, this isolate grows at Na+ concentrations of 0.20 to 0.80 M, with an optimum concentration of 0.28 M. Quantitative estimation using real-time PCR detected the 16S rRNA gene of the genus Methanosaeta in the marine sediment, and relative abundance ranged from 3.9% to 11.8% of the total archaeal 16S rRNA genes. In addition, the number of Methanosaeta organisms increased with increasing depth and was much higher than that of Methanosarcina organisms, suggesting that aceticlastic methanogens contribute to acetate metabolism to a greater extent than previously thought in marine environments, where sulfate-reducing acetate oxidation prevails. This is the first report on marine Methanosaeta species, and based on phylogenetic and characteristic studies, the name “Methanosaeta pelagica” sp. nov. is proposed for this novel species, with type strain 03d30q. PMID:22344667

  16. Monitoring Large-Scale Sediment Transport Dynamics with Multibeam Sonar

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Simmons, S. M.; Best, J. L.; Keevil, G. M.; Oberg, K.; Czuba, J. A.

    2009-05-01

    Multibeam Echo-Sounder systems have developed rapidly over recent decades and are routinely deployed to provide high-resolution bathymetric information in and range of environments. Modern data handling and storage technologies now facilitate the logging of the raw acoustic back-scatter information that was previously discarded by these systems. This paper describes methodologies that exploit this logging capability to quantify both the concentration and dynamics of suspended sediment within the water column. This development provides a multi-purpose tool for the holistic surveying of sediment transport dynamics by imaging suspended sediment concentration, the associated flows and providing concurrent high-resolution bathymetry. Results obtained a RESON 7125 MBES are presented from both well constrained dock-side testing and full field deployment over dune bedforms in the Mississippi. The capacity of the system to image suspended sediment structures is demonstrated and a novel methodology for estimating 2D flow velocities, based on frame cross-correlation methods, is introduced. The results demonstrate the capability of MBES systems to successfully map spatial and temporal variations in suspended sediment concentration throughout a 2D swath and application of the velocity estimation algorithms allow real-time holistic monitoring of turbulent flow processes and suspended sediment fluxes at a scale previously unrealisable. Turbulent flow over a natural dune bedform on the Mississippi is used to highlight the process information provided and the insights that can be gleaned for this technical development.

  17. Sediment pollution and dynamic in the Mar Piccolo of Taranto (southern Italy): insights from bottom sediment traps and surficial sediments.

    PubMed

    Bellucci, Luca Giorgio; Cassin, Daniele; Giuliani, Silvia; Botter, Margherita; Zonta, Roberto

    2016-07-01

    Major and trace element, PAH, and PCB concentrations were measured in surface sediments and particles from sediment traps collected in the First and Second Basin of the Mar Piccolo (Gulf of Taranto) in two periods (June-July and August-September, 2013). The aim of the study was to evaluate pollution degree, sediment transport and particle redistribution dynamic within the area. Results confirm the higher contamination of sediments from the First Basin observed by previous researches, particularly for Cu, Hg, Pb, total PAHs, and total PCBs. Advective transport from the First to the Second Basin appears to be the leading transfer mechanism of particles and adsorbed contaminants, as evidenced by measured fluxes and statistical analyses of contaminant concentrations in surficial sediments and particles from sediment traps. Long-range selective transports of PAHs and microbial anaerobic degradation processes for PCBs have been also observed. These results are limited to a restricted time window but are consistent with the presence of transport fluxes at the bottom of the water column. This mechanism deserves further investigation and monitoring activities, potentially being the main responsible of pollutant delivering to the less contaminated sectors of the Mar Piccolo.

  18. Static and Dynamic Parameters in Patients With Degenerative Flat Back and Change After Corrective Fusion Surgery

    PubMed Central

    2016-01-01

    Objective To evaluate characteristics of static and dynamic parameters in patients with degenerative flat back (DFB) and to compare degree of their improvement between successful and unsuccessful surgical outcome groups Methods Forty-seven patients with DFB were included who took whole spine X-ray and three-dimensional motion analysis before and 6 months after corrective surgery. Forty-four subjects were selected as a control group. As static parameters, thoracic kyphosis (TK), thoracolumbar junction (TLJ), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), and pelvic tilt (PT) were measured. As dynamic parameters, maximal and minimal angle of pelvic tilt, lower limb joints, and thoracic and lumbar vertebrae column (dynamic TK and LL) in sagittal plane were obtained. Results The DFB group showed smaller TK and larger LL, pelvic posterior tilt, hip flexion, knee flexion, and ankle dorsiflexion than the control group. Most of these parameters were significantly corrected by fusion surgery. Dynamic spinal parameters correlated with static spinal parameters. The successful group obtained significant improvement in maximal and minimal dynamic LL than the unsuccessful group. Conclusion The DFB group showed characteristic lower limb and spinal angles in dynamic and static parameters. Correlation between static and dynamic parameters was found in spinal segment. Dynamic LL was good predictor of successful surgical outcomes. PMID:27606275

  19. Sediment dynamics in Darwin Harbour, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, X. H.; Williams, D. K.

    2012-12-01

    The sediment dynamics of Darwin Harbour is studied by a sediment model (Wang, 2002) and a hydrodynamic model based on FVCOM. The sediment model bathymetry includes the high resolution Darwin Harbour coastal lines and sea surface area. The hydrodynamic model is forced by tides at the ocean open boundary with constant salinity and temperature. 20 sigma layers with 3/4 logarithmic layers near the surface/bottom and 13 evenly distributed layers in the middle are used in the model. The sediment model focuses on suspended fine sediment, and is initialized with limited bed thickness and one sediment type. The observed tidal elevation, currents and the suspended sediment concentration (SSC) data were used to calibrate the model. The simulation finds that the SSC in the harbour reaches its maximum at the bottom near Nightcliff Jetty and in the channel at spring and neap tide with a value of 10.0 and 0.1 g m-3, respectively. During spring tides, vertical averaged residual flux of SSC is mainly landward with a value of 0.8 g m-2s-1. During neap tide, vertical averaged residual flux of SSC is seaward with peak value of 0.05 g m-2s-1. Erosion happens near Darwin City and deposition appears near East Arm Wharf. An eddy in the East Arm found by David (2009) is also well reproduced by the model.

  20. A distributed analysis of Human impact on global sediment dynamics

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2012-12-01

    Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.

  1. Seasonal sediment dynamics shape temperate bedrock reef communities

    USGS Publications Warehouse

    Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Storlazzi, Curt

    2016-01-01

    Mobilized seafloor sediment can impact benthic reef communities through burial, scour, and turbidity. These processes are ubiquitous in coastal oceans and, through their influence on the survival, fitness, and interactions of species, can alter the structure and function of benthic communities. In northern Monterey Bay, California, USA, as much as 30% of the seafloor is buried or exposed seasonally, making this an ideal location to test how subtidal temperate rocky reef communities vary in the presence and absence of chronic sediment-based disturbances. Designated dynamic plots were naturally inundated by sediment in summer (50 to 100% cover) and swept clean in winter, whereas designated stable plots remained free of sediment during our study. Multivariate analyses indicated significant differences in the structure of sessile and mobile communities between dynamic and stable reef habitats. For sessile species, community structure in disturbed plots was less variable in space and time than in stable plots due to the maintenance of an early successional state. In contrast, community structure of mobile species varied more in disturbed plots than in stable plots, reflecting how mobile species distribute in response to sediment dynamics. Some species were found only in these disturbed areas, suggesting that the spatial mosaic of disturbance could increase regional diversity. We discuss how the relative ability of species to tolerate disturbance at different life history stages and their ability to colonize habitat translate into community-level differences among habitats, and how this response varies between mobile and sessile communities.

  2. Can Human-made Saltpans Represent an Alternative Habitat for Shorebirds? Implications for a Predictable Loss of Estuarine Sediment Flats

    NASA Astrophysics Data System (ADS)

    Dias, Maria P.; Lecoq, Miguel; Moniz, Filipe; Rabaça, João E.

    2014-01-01

    Estuarine areas worldwide are under intense pressure due to human activities such as upstream dam building. Shorebirds strongly depend on estuarine intertidal flats during migration and wintering periods and so are particularly vulnerable to such impacts, whose magnitude will depend on the availability of alternative feeding habitats. In this study we analyze if man-made saltpans can represent an alternative habitat for wintering and migrating shorebirds in the Guadiana estuary, a wetland that is already experiencing environmental changes due to the building of the Alqueva reservoir, the largest in Western Europe. We compared the use of mudflats and saltpans as feeding areas by several shorebird species before the construction of the dam. A dataset with 26 years of counts data was also analyzed in order to detect any long-term trend in shorebirds abundance. We concluded that saltpans, in particular the fully mechanized, can be used as an alternative habitat by larger species during winter and southward migration, thus playing a major role in minimizing the possible effects of sediment loss due to dam building. In contrast, smaller species were particularly dependent on mudflats to feed. A significant change in population trends, from positive to negative, was detected for two species. Although we still have no evidence that this is directly linked to dam building, this result and documented changes that limit primary productivity justifies the implementation of a long-term monitoring scheme of shorebird populations in this estuary. We also reinforce the need to manage the saltpans as key habitats for shorebirds.

  3. Entamoeba marina n. sp.; a New Species of Entamoeba Isolated from Tidal Flat Sediment of Iriomote Island, Okinawa, Japan.

    PubMed

    Shiratori, Takashi; Ishida, Ken-Ichiro

    2016-05-01

    The genus Entamoeba includes anaerobic lobose amoebae, most of which are parasites of various vertebrates and invertebrates. We report a new Entamoeba species, E. marina n. sp. that was isolated from a sample of tidal flat sediment collected at Iriomote Island, Okinawa, Japan. Trophozoites of E. marina were 12.8-32.1 μm in length and 6.8-15.9 μm in width, whereas the cysts were 8.9-15.8 μm in diam. and contained four nuclei. The E. marina cells contained a rounded nucleus with a small centric karyosome and uniformly arranged peripheral chromatin. Although E. marina is morphologically indistinguishable from other tetranucleated cyst-forming Entamoeba species, E. marina can be distinguished from them based on the combination of molecular phylogenetic analyses using SSU rDNA gene and the difference of collection sites. Therefore, we propose E. marina as a new species of the genus Entamoeba.

  4. Dynamical interaction effects on an electric dipole moving parallel to a flat solid surface

    SciTech Connect

    Villo-Perez, Isidro; Abril, Isabel; Garcia-Molina, Rafael; Arista, Nestor R.

    2005-05-15

    The interaction experienced by a fast electric dipole moving parallel and close to a flat solid surface is studied using the dielectric formalism. Analytical expressions for the force acting on the dipole, for random and for particular orientations, are obtained. Several features related to the dynamical effects on the induced forces are discussed, and numerical values are obtained for the different cases. The calculated energy loss of the electric dipole provides useful estimations which could be of interest for small-angle scattering experiments using polar molecules.

  5. Temporal dynamics and spatial heterogeneity of microalgal biomass in recently reclaimed intertidal flats of the Saemangeum area, Korea

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Oh; Lee, Yeonjung; Park, Jinsoon; Ryu, Jongseong; Hong, Seongjin; Son, SeungHyun; Lee, Shing Yip; Nam, Jungho; Koh, Chul-Hwan; Khim, Jong Seong

    2016-10-01

    Trophodynamics of intertidal mudflats are significantly driven by microphytobenthos (MPB) production but spatial and temporal dynamics of this production source is poorly known. To understand the temporal dynamics and spatial heterogeneity of intertidal MPB, benthic chlorophyll a, phaeopigments, and sediment properties were determined in Gyehwa (sandy) and Gwanghwal (muddy) tidal flats of Saemangeum area over a year at 97 stations. This study set out to: (i) characterize the spatial-temporal patterns in MPB biomass on a year-round basis, (ii) identify the abiotic and biotic factors associated with MPB distributions, (iii) investigate the use of satellite-derived chlorophyll a data and verify with in field measurements, and (iv) determine minimum required sample size for in situ biomass measurement. Concentrations of benthic chlorophyll a and phaeopigments were greater in winter and spring with a high magnitude of variance than in summer and fall at both areas. Benthic chlorophyll a and phaeopigments tended to decrease approaching lower tidal zone, being associated with the corresponding decrease in shore level and/or exposure duration. Compared to available data on macrozoobenthos distribution, the spatial variation of microalgal biomass seems to be attributed to distribution of deposit-feeders. A significant positive correlation (p < 0.001) between in situ MPB biomass and satellite-derived normalized difference vegetation index (NDVI) values was observed, but was much weaker in the lower tidal zone. Mirroring algal heterogeneity, the minimum required sample size for in situ biomass measurement were greater in blooming season and sandy bottom, suggesting that sampling design for spatio-temporal mapping of MPB should consider the sampling season and/or abiotic and biotic features of study area. Overall, spatio-temporal dynamics of intertidal MPB seem to be influenced by a combination of abiotic and biotic factors.

  6. Continuous monitoring bed-level dynamics on an intertidal flat: introducing novel stand-alone high-resolution SED-sensors

    NASA Astrophysics Data System (ADS)

    Hu, Zhan; Lenting, Walther; van der Wal, Daphne; Bouma, Tjeerd

    2015-04-01

    Tidal flat morphology is continuously shaped by hydrodynamic force, resulting in highly dynamic bed elevations. The knowledge of short-term bed-level changes is important both for understanding sediment transport processes as well as for assessing critical ecological processes such as e.g. vegetation recruitment chances on tidal flats. Due to the labour involved, manual discontinuous measurements lack the ability to continuously monitor bed-elevation changes. Existing methods for automated continuous monitoring of bed-level changes lack vertical accuracy (e.g., Photo-Electronic Erosion Pin sensor and resistive rod) or limited in spatial application by using expensive technology (e.g., acoustic bed level sensors). A method provides sufficient accuracy with a reasonable cost is needed. In light of this, a high-accuracy sensor (2 mm) for continuously measuring short-term Surface-Elevation Dynamics (SED-sensor) was developed. This SED-sensor makes use of photovoltaic cells and operates stand-alone using internal power supply and data logging system. The unit cost and the labour in deployments is therefore reduced, which facilitates monitoring with a number of units. In this study, the performance of a group of SED-sensors is tested against data obtained with precise manual measurements using traditional Sediment Erosion Bars (SEB). An excellent agreement between the two methods was obtained, indicating the accuracy and precision of the SED-sensors. Furthermore, to demonstrate how the SED-sensors can be used for measuring short-term bed-level dynamics, two SED-sensors were deployed for 1 month at two sites with contrasting wave exposure conditions. Daily bed-level changes were obtained including a severe storm erosion event. The difference in observed bed-level dynamics at both sites was statistically explained by their different hydrodynamic conditions. Thus, the stand-alone SED-sensor can be applied to monitor sediment surface dynamics with high vertical and temporal

  7. Signal crayfish as zoogeomorphic agents: diel patterns of fine sediment suspension in a crayfish-affected river and the implications for fine sediment fluxes and dynamics

    NASA Astrophysics Data System (ADS)

    Rice, Stephen; Johnson, Matthew; Reeds, Jake; Longstaff, Holly; Extence, Chris

    2013-04-01

    The signal crayfish (Pacifasticus leniusculus) is a formidable invasive species that has had a deleterious impact on native freshwater fauna across Europe. We contend that the impact of this animal extends beyond ecology into geomorphology and hypothesise that crayfish are significant agents of fine sediment recruitment and mobilisation, with potentially profound impacts on water quality, substrate quality and fine sediment fluxes. Building on pioneering work by colleagues at Queen Mary University, London this poster considers the role of crayfish in fine sediment suspension in a lowland, gravel-bed river. The hypothesis that nocturnal increases in crayfish activity are associated with a greater frequency of sediment suspension events and increases in ambient turbidity, is tested. Strong diel fluctuations in water turbidity were recorded at several sites on the Brampton Arm of the River Nene in England, a river heavily populated by signal crayfish, during August and September 2012. With the exception of three summer flood events, stage measurements during the same period were essentially flat, ruling out a hydraulic cause for overnight rises in turbidity. Water samples collected at midnight and at midday at one site confirm this diel pattern for suspended sediment concentration. Higher mean turbidity values overnight are associated with an increase in the magnitude and frequency of isolated turbidity spikes or events and this is consistent with crayfish nocturnalism. In particular, we suspect that turbidity events are caused by the construction and maintenenance of burrows and by interactions between crayfish and the river bed while foraging, fighting and avoiding each other. Tying the diel SSC signal directly to crayfish activity proved difficult, but several lines of argument presented here suggest that crayfish are the most likely cause of the diel pattern. These results provide substantial support for the idea that signal crayfish are important zoogeomorphic

  8. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  9. Strings matter: Dynamics and evolution of cosmic string networks in flat spacetime

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Maria

    1990-12-01

    This research inquires into the dynamics and evolution of cosmic string networks in flat spacetime. It involves the study of the statistical properties of string networks and the dynamics of long strings, including the scaling density; the fractal nature of string substructure; and the effectiveness of the gravitational damping mechanism, regarding the long strings' wiggles. Methodologically, it employs both numerical (within the framework of an exact soluble model in flat spacetime) and analytical analyses. The central propositions of this research are a follows: (1) for a string network in equilibrium, when the energy density of the network is low, the dominant part of the string is in the form of closed loops of the smallest allowed size, and a certain critical density the system undergoes a phase transition characterized by formation of very long strings; (2) for an evolving network, the typical curvature radius of long strings, and the characteristic distance between them, are both comparable to the evolution time, and at the same time, long strings possess a significant small-scale structure, which plays an important role in the energy distribution of the produced loops: and (3) gravitational radiation is rather effective in damping the small-scale structure, but only for large amplitude waves.

  10. Strings matter: Dynamics and evolution of cosmic string networks in flat spacetime

    SciTech Connect

    Sakellariadou, M.

    1990-01-01

    This research inquires into the dynamics and evolution of cosmic string networks in flat spacetime. It involves the study of the statistical properties of string networks and the dynamics of long strings, including the scaling density; the fractal nature of string substructure; and the effectiveness of the gravitational damping mechanism, regarding the long strings' wiggles. Methodologically, it employs both numerical (within the framework of an exact soluble model in flat spacetime) and analytical analyses. The central propositions of this research are a follows: (1) for a string network in equilibrium, when the energy density of the network is low, the dominant part of the string is in the form of closed loops of the smallest allowed size, and a certain critical density the system undergoes a phase transition characterized by formation of very long strings; (2) for an evolving network, the typical curvature radius of long strings, and the characteristic distance between them, are both comparable to the evolution time, and at the same time, long strings possess a significant small-scale structure, which plays an important role in the energy distribution of the produced loops: and (3) gravitational radiation is rather effective in damping the small-scale structure, but only for large amplitude waves.

  11. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    NASA Astrophysics Data System (ADS)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  12. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.

    PubMed

    Briones, Alejandro M; Ervin, Jamie S; Putnam, Shawn A; Byrd, Larry W; Gschwender, Lois

    2010-08-17

    A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line

  13. Spatial dynamics of overbank sedimentation in floodplain systems

    USGS Publications Warehouse

    Pierce, A.R.; King, S.L.

    2008-01-01

    Floodplains provide valuable social and ecological functions, and understanding the rates and patterns of overbank sedimentation is critical for river basin management and rehabilitation. Channelization of alluvial systems throughout the world has altered hydrological and sedimentation processes within floodplain ecosystems. In the loess belt region of the Lower Mississippi Alluvial Valley of the United States, channelization, the geology of the region, and past land-use practices have resulted in the formation of dozens of valley plugs in stream channels and the formation of shoals at the confluence of stream systems. Valley plugs completely block stream channels with sediment and debris and can result in greater deposition rates on floodplain surfaces. Presently, however, information is lacking on the rates and variability of overbank sedimentation associated with valley plugs and shoals. We quantified deposition rates and textures in floodplains along channelized streams that contained valley plugs and shoals, in addition to floodplains occurring along an unchannelized stream, to improve our understanding of overbank sedimentation associated with channelized streams. Feldspar clay marker horizons and marker poles were used to measure floodplain deposition from 2002 to 2005 and data were analyzed with geospatial statistics to determine the spatial dynamics of sedimentation within the floodplains. Mean sediment deposition rates ranged from 0.09 to 0.67??cm/y at unchannelized sites, 0.16 to 2.27??cm/y at shoal sites, and 3.44 to 6.20??cm/y at valley plug sites. Valley plug sites had greater rates of deposition, and the deposited sediments contained more coarse sand material than either shoal or unchannelized sites. A total of 59 of 183 valley plug study plots had mean deposition rates > 5??cm/y. The geospatial analyses showed that the spatial dynamics of sedimentation can be influenced by the formation of valley plugs and shoals on channelized streams; however

  14. Recognition and dynamics of syntectonic sediment routing systems, southern Pyrenees

    NASA Astrophysics Data System (ADS)

    Allen, P. A.; Duller, R.; Fordyce, S.; Smithells, R.; Springett, J.; Whitchurch, A.; Whittaker, A.; Carter, A.; Fedele, J.-J.

    2009-04-01

    The erosional, transportational and depositional aspects of the biogeochemical cycles involving particulate sediment and solutes are integrated in sediment routing systems. The component parts of these tectonic-geomorphic systems communicate with each other, especially in response to changes in external forcing mechanisms such as tectonic perturbations and climate change; that is, sediment routing systems are characterized by important teleconnections. We are only just beginning to understand how these teleconnections work, and what it means for the spatial and temporal scales of system behaviour. One strategy for investigating the dynamics of sediment routing systems is to link information on the denudation of upstream source regions with downstream patterns of deposition. This is most likely to be fruitful where upstream catchments are tectonically active. Sediment is released into basins whose long-term subsidence is also controlled by tectonic activity. The spatial distribution of subsidence and the magnitude of the sediment discharge from the catchment are critical factors in the dispersal of sediment of different grain size and composition away from a mountain front. We investigate the coarse clastic sediment routing systems of mid-late Eocene age (40-34 Ma) that were deposited in basins located at the boundary of the Axial Zone and the thrust belt of the South-Central Unit on the southern flank of the Pyrenees, Spain. Most of the fan deposits of interest are found in the Pobla Basin, situated north of Tremp, which benefits from outstanding exposure conditions and rigorous previous work on biostratigraphy, magnetostratigraphy and sedimentology (Mellere 1993; Beamud et al. 2003). Distinct fan depositional systems can be identified and mapped on the basis of their sediment composition, detrital thermochronology, facies and architectures, which can be related to correspondingly distinct catchment properties (size, location, exhumational history, lithologies

  15. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.

    PubMed

    Vatamanu, Jenel; Borodin, Oleg; Smith, Grant D

    2010-01-07

    The electric double layer (EDL) structure and capacitance have been studied for atomically flat and nanoporous conductive electrodes with a molten LiCl electrolyte using an electroactive interface molecular dynamics simulation methodology. For the atomically flat electrodes the electrolyte was observed to form a multilayer structure near the electrode described by exponentially decaying sinusoidal oscillations in ion and charge densities perpendicular to the electrode/electrolyte interface. The differential EDL capacitance vs. electrode potential was found to exhibit "U-shaped" behavior while the EDL capacitance exhibited complex dependence on electrode potential including regions of negative capacitance near zero electrode potential. Increased capacitance and an enhanced degree of electrode-electrolyte interface structure were observed with decreasing temperature. For nanoporous electrodes with both slit and cylindrical pore geometries, the electrolyte was observed to form highly structured alternating charged layers within the electrode nanopores. A maximum in the normalized (per unit electrode area) EDL capacitance was found for pore widths that accommodate several charged layers inside the pores. The observed dependence of capacitance on pore size appears to be a compromise between increasing structure/charge imbalance and decreasing ion density with decreasing pore width/diameter.

  16. Dynamic behaviour of coastal sedimentation in the Lions Gulf. [France

    NASA Technical Reports Server (NTRS)

    Guy, M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A number of ERTS-1 images covering this geographical zone were studied and compared with cartographic maps, air photographs, and thermal-IR images. Old and recent sediments leave traces in the landscape which are decoded by interpreting the shapes of the clear zones forming a network against the black background representing water and humid zones. Current sedimentation and its mechanism were investigated. It had been hoped that a regular sequence of images would make it possible to follow the dynamics of the Rhone and the coastal rivers in relation to meteorological conditions. In any event only a small number of images spread over a wide period of time were obtained, and a complete study was therefore impossible. However, in comparing some of the ERTS-1 images certain thermal-IR images and information on the flow of the Rhone provided some clarification of mechanisms associated with river dynamics.

  17. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2006-03-01

    Chest radiography using a dynamic flat-panel detector with a large field of view can provide sequential chest radiographs during respiration. These images provide information regarding respiratory kinetics, which is effective for diagnosis of pulmonary diseases. For valid analysis of respiratory kinetics in diagnosis of pulmonary diseases, it is crucial to determine the association between the kinetics and respiratory phase. We developed four methods to determine the respiratory phase based on image information associated with respiration and compared the results in dynamic chest radiographs of 37 subjects. Here, the properties of each method and future tasks are discussed. The method based on the change in size of the lung gave the most stable results, and that based on the change in distance from the lung apex to the diaphragm was the most promising method for determining the respiratory phase.

  18. Upper mantle anisotropy beneath Peru from SKS splitting: Constraints on flat slab dynamics and interaction with the Nazca Ridge

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando

    2015-02-01

    The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.

  19. Characterizing methane ebullition (bubbling) dynamics from aquatic sediments

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Ostrovsky, I.; McGinnis, D. F.; Eugster, W.; Maeck, A.; Lorke, A.; Wehrli, B.

    2013-05-01

    Ebullition (bubbling) is one of the most efficient, yet understudied, transport pathways of CH4 from aquatic sediments to the atmosphere. The spatiotemporal variability of ebullition has hindered gaining knowledge of the dynamics of this phenomenon as it is quite complex and difficult to measure accurately. Here we discuss the characterization of ebullition in several systems using various techniques, but focusing on the hydroacoustic evaluation of ebullition with an echosounder. The spatial variability of ebullition in a small Swiss hydropower reservoir was explored in detail and revealed that bathymetry, perhaps as a proxy for sedimentation, heavily dictates the variability. Since an echosounder can be calibrated for bubble volume, the importance of bubble size was elucidated, particularly the significance of large bubbles for gas transport. With knowledge of bubble size, atmospheric ebullition fluxes can be estimated from the hydroacoustic ebulltion fluxes near the sediment bottom combined with a discrete bubble model to estimate dissolution of rising bubbles. Explicit hotspots of ebullition emission were thus distinguished using hydroacoustic data. Results from a somewhat similar reservoir system in Germany identified increased sediment accumulation as the most probable cause for locations of ebullition hot spots. The effect river inflow and sedimentation have on ebullition has also been seen in the Rhone River delta of Lake Geneva, Switzerland, where ebullition focused on certain sedimentalogical features characterizing the complex bathymetry of the delta. We propose that areas of intense sediment accumulation are conducive to ebullition formation and release, and that this realization aids in predicting the location of ebullition hot spots. In the future, predicting hotspot locations with knowledge of typical bubble sizes and plume types found in those various environments will help in approximating the atmospheric methane emission due to ebullition within a

  20. Sediment dynamics of a sediment-starved, open-marine marsh embayment: Waccasassa Bay, Florida

    USGS Publications Warehouse

    Wood, Nathan J.; Hine, Albert C.

    2003-01-01

    Although the Big Bend region of Florida's Gulf of Mexico coast is considered sediment-starved, the open marine marshes that characterize the area are keeping pace with sea level rise. Waccasassa Bay, an embayment within this region, also contains unique subtidal mudbanks that thicken with increasing proximity to embayment head, while the remainder of the bayfloor is characterized by exposed carbonate bedrock or by a thin veneer of sediment. Hydro- dynamic data sets were collected to determine the primary sedimentary processes within Waccasassa Bay capable of creating such geomorphic features. Data suggest that the embayment is a flood-dominated system influenced primarily by semi-diurnal tides with flood-stage intensification towards the river-mouth. Subtidal mudbanks are believed to be the result of tidal time-velocity asymmetries and the convergence of sediment transport pathways. Flood dominance for potential bedload transport suggests a gradual infilling of the bay interior for the short time scale of this study. With no mechanism for seaward transport, Waccasassa Bay can be considered a sediment sink for the remainder of the Big Bend re

  1. Breathing chest radiography using a dynamic flat-panel detector combined with computer analysis.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Suzuki, Masayuki; Kobayashi, Takeshi; Matsui, Takeshi; Inoue, Hitoshi; Yoshihisa, Nakano

    2004-08-01

    Kinetic information is crucial when evaluating certain pulmonary diseases. When a dynamic flat-panel detector (FPD) can be used for a chest examination, kinetic information can be obtained simply and cost-effectively. The purpose of this study was to develop methods for analyzing respiratory kinetics, such as movement of the diaphragm and lung structures, and the respiratory changes in x-ray translucency in local lung fields. Postero-anterior dynamic chest radiographs during respiration were obtained with a modified FPD, which provided dynamic chest radiographs at a rate of 3 frames/s. Image registration for correction of physical motion was followed by measurement of the distance from the lung apex to the diaphragm. Next, we used a cross-correlation technique to measure the vectors of respiratory movement in specific lung areas. Finally, the average pixel value for a given local area was calculated by tracing the same local area in the lung field. This method of analysis was used for six healthy volunteers and one emphysema patient. The results reported here represent the initial stage in the development of a method that may constitute a new method for diagnosing certain pulmonary diseases, such as chronic obstructive pulmonary disease, fibroid lung, and pneumonia. A clinical evaluation of our method is now in progress.

  2. Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, E E

    2014-03-14

    Phase ordering over solid substrates is a ubiquitous and important soft material transformation process whose description incorporates wetting, anchoring and phase transition kinetics. In this paper the kinetics of the isotropic-to-nematic isothermal phase transition over a flat solid surface in a growing spherical drop is analyzed based on the Landau-de Gennes Q-tensor order parameter equations. The model, based on a previously derived interface force balance and a newly derived contact line force balance, is shown to be consistent with the generic model of conservative interface and contact line motions. The advancing dynamic contact angle equation is extracted from kinematic compatibility between the moving isotropic-nematic interface and contact line. A tractable surface phase transition kinetic model obtained by focusing on the dominant phase transition and wetting driving forces yields: (i) the constant advancing dynamic contact angle θ, and (ii) the contact line speed as a function of undercooling ΔT. It is shown that as undercooling increases, the surface phase transition mode approaches the bulk phase transition mode, such that θ approaches π. The elastic and wetting parameters that control the phase transformation process are identified and experiments for their determination are defined. These dynamic wetting and surface phase transition results significantly expand existing characterization methods of LC-substrate interfaces based on static phase transition droplet methods.

  3. STAND, A DYNAMIC MODEL FOR SEDIMENT TRANSPORT AND WATER QUALITY. (R825758)

    EPA Science Inventory

    We introduce a new model–STAND (Sediment-Transport-Associated Nutrient Dynamics)–for simulating stream flow, sediment transport, and the interactions of sediment with other attributes of water quality. In contrast to other models, STAND employs a fully dynamic ba...

  4. Dynamics of the Methanogenic Archaea in Tropical Estuarine Sediments

    PubMed Central

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (106–107 cells/g) compared with the dry season (104–106 cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA. PMID:23401664

  5. Dynamics of the methanogenic archaea in tropical estuarine sediments.

    PubMed

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (10(6)-10(7) cells/g) compared with the dry season (10(4)-10(6) cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA.

  6. Earth surface dynamics - dispatches from the flats (Ralph Alger Bagnold Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Hovius, Niels

    2016-04-01

    Earth's surface is shaped by the physical, chemical and biological processes operating on it and the interactions amongst them. No single discipline can lay claim to this surface, nor offer a full explanation of its dynamics. Only interdisciplinary approaches can unlock answers to key questions such as how do erosion and tectonics interact to build mountains, how do landscapes respond to climate change, how can we read processes from the sedimentary record, what is the role of erosion in Earth's carbon cycle, and how can we give reliable early warning of damaging earth surface process events? The wastelands between established academic fields are rich and bountiful and replete with steep learning curves and pitfalls for the naïve. In this lecture, I shall scour the interfaces of geophysics, geochemistry and geomorphology for understanding of the mechanisms, controls and impacts of mass wasting in steep mountain settings, ending up in remarkably flat places to find new insight into the dynamics of Earth's surface.

  7. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  8. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  9. Temporal-spatial characteristic evaluation in a dynamic flat-panel detector system

    NASA Astrophysics Data System (ADS)

    Kawashima, H.; Tanaka, R.; Matsubara, K.; Ichikawa, K.; Sakuta, K.; Minami, S.; Hayashi, N.; Sanada, S.; Kawamura, M.; Yamamoto, T.

    2010-04-01

    This report presents the fundamental temporospatial characteristics of a dynamic flat-panel detector (FPD) system. We investigated the relationship between pixel value and X-ray pulse output, and examined reproducibility, dependence on pulse width, tube voltage, and pulse rate. Sequential images were obtained using a direct conversion-type dynamic FPD. The exposure conditions were: 110 kV, 80 mA, 6.3 ms, 7.5 fps, source-to-image distance (SID) 1.5 m. X-ray pulse output was measured using a dosimetry system with a sampling interval of 70 μs, to determine temporal changes in each X-ray pulse output. Temporal changes in pixel value were measured in the obtained images, and the relationship between pixel value and X-ray pulse output was examined. Reproducibility was assessed by comparing the results in two sequential images obtained under the same exposure conditions. Moreover, the relationships and properties were evaluated by changing the pulse width (12 ms and 25 ms), tube voltage (80 kV, 90 kV, and 100 kV), and pulse rate (3.75 fps and 15 fps). The results showed a good correlation between the X-ray pulse output and pixel values. Fluctuation of the pixel value measured in sequential images is thought to be mainly due to changes in X-ray pulse output, and is not caused by FPD.

  10. Flat panel detector-based cone beam CT for dynamic imaging: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Yu, Yong; Zhang, Yan; Cai, Weixing; Yang, Dong; Lu, Xianghua

    2006-03-01

    The purpose of this study is to characterize a newly built flat panel detector (FPD)-based cone beam CT (CBCT) prototype for dynamic imaging. A CBCT prototype has been designed and constructed by completely modifying a GE HiSpeed Advantage (HSA) CT gantry, incorporating a newly acquired large size real-time FPD (Varian PaxScan 4030CB), a new x-ray generator and a dual focal spot angiography x-ray tube that allows the full coverage of the detector. During data acquisition, the x-ray tube and the FPD can be rotated on the gantry over Nx360 degrees due to integrated slip ring technology with the rotation speed of one second/revolution. With a single scan time of up to 40 seconds , multiple sets of reconstructions can be performed for dynamic studies. The upgrade of this system has been completed. The prototype was used for a series of preliminary phantom studies: different sizes of breast phantoms, a Humanoid chest phantom and scatter correction studies. The results of the phantom studies demonstrate that good image quality can be achieved with this newly built prototype.

  11. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.

  12. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier.

    PubMed

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-07

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.

  13. [Reproducibility of dynamic chest radiography with a flat-panel detector - respiratory changes in pixel value].

    PubMed

    Kawashima, Hiroki; Tanaka, Rie; Sanada, Shigeru

    2009-06-20

    Dynamic chest radiography using a flat panel detector (FPD) with a large field of view is expected to be a useful pulmonary functional evaluation method based on the respiratory changes in pixel value. For clinical use as a follow-up and therapeutic evaluation tool, the system must have a high degree of reproducibility in measurements of pixel values. The present study was performed to investigate the reproducibility of respiratory changes in pixel values. Dynamic chest radiographs of five normal subjects and one patient were obtained. Imaging was performed twice in each subject. The slope (X-ray translucency variation) was then calculated from the changes in pixel value from distance lung apex-diaphragm, and the slopes of two sequences were compared. The results showed there were no significant differences in changes in pixel value between the two sequences in all normal subject (5 males, p>0.05). The results indicated that the present method has reproducibility for measuring pulmonary function and also has potential as a tool for follow-up and therapeutic evaluation.

  14. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.

    PubMed

    Delele, M A; Nuyttens, D; Duga, A T; Ambaw, A; Lebeau, F; Nicolai, B M; Verboven, P

    2016-09-14

    The dynamic impact behaviour of water droplets on plant surfaces was investigated based on a multiphase computational fluid dynamics (CFD) model. The study was conducted using the Volume Of Fluid (VOF) approach. The static contact angle of water droplets on leaf surfaces of different plants (apple, pear, leek and cabbage) was measured and found to vary between 54.9 and 138.2°. Impact experiments were conducted by monitoring the flow and impact characteristics of water droplets on leaves in still air with a high speed camera. Droplets were generated by an agricultural flat fan spray nozzle moving across the leaf at constant speed. The nozzle produced droplets with diameters ranging from 20.6 up to 550.8 μm, and droplet velocity values near the impact between 0.03 and 13.2 m s(-1). The CFD model was capable of predicting the observed dynamic impact behaviour of droplets on the plant surfaces. The fate of the droplets after the impact process for adhesion, bouncing or splashing was accurately predicted for Weber numbers (We) in the range of 0.007 to 1096 and droplet Reynolds numbers (Re) between 5 to 8000. The process was highly dependent on the surface and droplet flow characteristics during the impact. Combinations of We, Re and Ohnesorge (Oh) numbers defined the droplet maximum spread factor, the number of secondary droplets generated as a result of the splashing process and the transition between the different impact outcomes. These criteria can then be used in field scale spray deposition and drift models to better understand agricultural spray operations.

  15. Functional shoulder radiography with use of a dynamic flat panel detector.

    PubMed

    Sakuda, Keita; Sanada, Shigeru; Tanaka, Rie; Kitaoka, Katsuhiko; Hayashi, Norio; Matsuura, Yukihiro

    2014-07-01

    Our purpose in this study was to develop a functional form of radiography and to perform a quantitative analysis for the shoulder joint using a dynamic flat panel detector (FPD) system. We obtained dynamic images at a rate of 3.75 frames per second (fps) using an FPD system. Three patients and 5 healthy controls were studied with a clinically established frontal projection, with abduction of the arms. The arm angle, glenohumeral angle (G-angle), and scapulothoracic angle (S-angle) were measured on dynamic images. The ratio of the G-angle to the S-angle (GSR) was also evaluated quantitatively. In normal subjects, the G-angle and S-angle changed gradually along with the arm angle. The G-angle was approximately twice as large as the S-angle, resulting in a GSR of 2 throughout the abduction of the shoulder. Changes in G-angle and S-angle tended to be irregular in patients with shoulder disorders. The GSR of the thoracic outlet syndrome, recurrent dislocation of the shoulder joint, and anterior serratus muscle paralysis were 3-7.5, 4-9.5, and 3.5-7.5, respectively. The GSR of the anterior serratus muscle paralysis improved to approximately 2 after orthopedic treatment. Our preliminary results indicated that functional radiography by FPD and computer-aided quantitative analysis is useful for diagnosis of some shoulder disorders, such as the thoracic outlet syndrome, recurrent dislocation of the shoulder joint, and anterior serratus muscle paralysis. The technique and procedures described comprise a simple, functional shoulder radiographic method for evaluation of the therapeutic effects of surgery and/or rehabilitation.

  16. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment

    PubMed Central

    Jin, Hyun Mi; Jeong, Hye Im; Kim, Kyung Hyun; Hahn, Yoonsoo; Madsen, Eugene L.; Jeon, Che Ok

    2016-01-01

    A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits –– its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species. PMID:26887987

  17. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    NASA Astrophysics Data System (ADS)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    Multibeam mapping has become a common method for mapping the seafloor in shallow and great water depths with different spatial resolutions depending on the system platform (ship-based, AUV- or ROV-based), the beam angle of the system itself, the survey speed, and the distance to the seafloor. Significant advances in system accuracy, processing power and new software make multibeam mapping a powerful tool for studying sediment dynamics in 4D through repeated surveys that are ideally linked to additional studies on currents and sediment load in the water column. The Texelstroom channel, which is part of the Marsdiep between the city of Den Helder and the island of Texel (North Holland, the Netherlands), has been investigated in such a way for many years using water depth estimates from an ADCP installed on a ferry shuttling 24 times a day between the mainland and the island. Since 2009, repeated multibeam surveys have been undertaken up to three times per year as part of a student course, revealing sediment dynamics in much more detail than could be previously seen with the water depth estimates from the ferry-based ADCP. In the Texelstroom channel, the water depth ranges from a few meters to 45 meters. In the highly variable bathymetry, a series of large, bended sand waves exist mainly perpendicular to the direction of the main current. The shape of the sand waves changes from asymmetrical to symmetrical depending on the time of year, with more symmetrical shapes in spring and summer. Perpendicular to the large sand waves, smaller ripples develop during autumn. In addition to these changes in sand wave characteristics, sand wave crests sometimes migrate more than 30m in two months with an average movement of half a meter per day. The migration direction changes during the year resulting in a non-constant back-and-forth movement of the large sand waves. These intra-annual variations are characterized by changes in the slope of the sand waves, variations in the

  18. Coastal sediment dynamics: Introduction to the thematic issue

    NASA Astrophysics Data System (ADS)

    Weill, Pierre; Tessier, Bernadette

    2016-07-01

    This thematic issue of Comptes rendus Geoscience gives an overview of the works presented in the frame of a session dedicated to "Coastal sediment dynamics" at the 14th Congress of the French Association of Sedimentologists, held in Paris, France, from 5 to 7 November 2013. In total, 23 papers were presented in this session, both in the form of oral communications and posters. This national conference is traditionally a gateway for PhD and Master students to share their first results and sharpen their oral skills in front of an audience of specialists.

  19. Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation.

    PubMed

    Hashmi, Sara M; Firoozabadi, Abbas

    2010-12-09

    When oil is mixed with light alkanes, asphaltenes can precipitate out of oil solutions in a multistep process that involves the formation of nano and colloidal scale particles, the aggregation of asphaltene colloids, and their eventual sedimentation. Amphiphilic dispersants can greatly affect this process. The mechanism of the dispersant action in colloidal asphaltene suspensions in heptane has been shown through previous work to be due in part to a reduction in the size of the colloidal asphaltene particles with the addition of dispersant. However, previous studies of the sedimentation behavior revealed evidence of aggregation processes in the colloidal asphaltenes in heptane that has yet to be investigated fully. We investigate the effect of dispersants on this aggregation behavior through the use of dynamic light scattering, showing that both the amount of dispersant and the amount of heptane dilution can slow the onset of aggregation in colloidal asphaltene suspensions. An effective dispersant acts by suppressing colloidal aggregation in asphaltene suspensions, as shown by light scattering, and therefore also slows separation from the bulk, as revealed through macroscopic sedimentation experiments.

  20. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi

    PubMed Central

    Jokiel, Paul L.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1 (offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance. PMID:25653896

  1. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka'i, Hawai'i.

    PubMed

    Jokiel, Paul L; Rodgers, Kuʻulei S; Storlazzi, Curt D; Field, Michael E; Lager, Claire V; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Moloka'i, Hawai'i. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l(-1) (inshore) to 3 mg l(-1) (offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l(-1) as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawai'i. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  2. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    USGS Publications Warehouse

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  3. Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada.

    PubMed

    Yin, Kedong; Zetsche, Eva-Maria; Harrison, Paul J

    2016-07-01

    Benthic algae or microphytobenthos (MPB) in intertidal flats play an important role in the sediment and overlying water ecosystems. We hypothesize that there are effects of sediment texture on the vertical distribution of MPB using chlorophyll a (chl a) as a proxy for MPB biomass and present results over a 2.5-year period. Four sites were sampled monthly: two sandy sites (A10 and A12) and two muddy sites (A0 and A14) on the intertidal flats of the Fraser River Estuary. At the two sandy sites, pigments were distributed down to 10 cm. High ratios of depth-integrated chl a to phaeopigments suggest that the chl a had been recently buried. In contrast, at the muddy sites, pigments were limited to the top 4 cm, with MBP in the top 1 cm contributing up to 60 % of the whole sediment core pigments. As a result, the depth-integrated chl a values were on average 2,044 mg m(-2) (160-4,200) at A10 and 882 mg m(-2) (183-2,569) at A12, the two sandy sites, and much higher than at the two muddy sites where averages of 84 mg m(-2) (41-174) and 235 mg m(-2) (77-854) were measured at A0 and A14, respectively. Despite these lower concentrations at the muddy sites than at the sandy sites, particulate organic carbon (POC) and nitrogen (PON) concentrations showed a homogenous vertical distribution at the two sandy sites. Such a homogeneous vertical distribution of chl a, POC, and PON suggests that vertical transport mechanisms were actively transporting organic material into and out of the sediment. These results suggest that MBP on sandy sediments play a very active role in providing food for herbivores and are interacting with the overlying water column in the sediment-water exchange processes during tidal cycles.

  4. [Distribution patterns of heavy metals in surficial sediment and their influence on the environment quality of the intertidal flat of Luoyuan Bay, Fujian coast].

    PubMed

    Gao, Wen-Hua; Du, Yong-Fen; Wang, Dan-Dan; Gao, Shu

    2012-09-01

    Intertidal flats represent a typical environmentally fragile and sensitive zone. In order to investigate the environmental quality of the intertidal zone in Luoyuan Bay, field survey was carried out in 2009. Contents of heavy metals (Co, Cr, Cu, Ni, Pb, V and Zn) in the surficial sediment were measured using an inductively coupled plasma optical emission spectrometer (ICP-OES). Moreover, the impact on the environment quality was evaluated with the potential ecological risk method. The average contents of the heavy metals Co, Cr, Cu, Ni, Pb, V and Zn in the surficial sediment were 20.48, 77.82, 23.24, 40.67, 36.25, 134.75 and 111.21 mg x kg(-1), respectively. The heavy metal contents in the Spartina alterniflora salt-marsh were apparently higher than those in the bare flat. Further, the heavy metal concentrations found in the present study were generally higher than the background values of the coastal regions of Fujian Province, but lower than those associated with the Pearl River estuary. According to principal component and correlation analyses, industrial wastewater, mineral exploration and degradation of organic matter were the main sources of heavy metals in the area investigated. The results of potential ecological risk evaluation indicated that the intertidal zone as a whole can be ranked as "moderate potential ecological risk". Ni and Co were the major pollutants among the metals in consideration; the pollution related to Pb was less significant. The level of potential ecological risk of the Spartina alterniflora slat-marsh was higher than that of the bare flat. The sequence of potential ecological risk for the heavy metals was Ni > Co > Cu > Pb > Cr > V > Zn.

  5. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: Vacuum case

    NASA Astrophysics Data System (ADS)

    Pavluchenko, Sergey A.

    2016-07-01

    In this paper we perform a systematic study of vacuum spatially flat anisotropic [(3 +D )+1 ]-dimensional Einstein-Gauss-Bonnet cosmological models. We consider models that topologically are the product of two flat isotropic submanifolds with different scale factors. One of these submanifolds is three dimensional and represents our 3D space and the other is D dimensional and represents extra dimensions. We consider no Ansatz on the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play and with the symmetry involved, the cases with D =1 , D =2 , D =3 , and D ≥4 have different dynamics due to the different structures of the equations of motion. We analytically analyze equations of motion in all cases and describe all possible regimes. It appears that the only regimes with nonsingular future asymptotes are the Kasner regime in general relativity and exponential regimes. As of the past asymptotes, for a smooth transition only the Kasner regime in Gauss-Bonnet is an option. With this at hand, we are down to only two viable regimes: the "pure" Kasner regime [transition from a high-energy (Gauss-Bonnet) to a low-energy (general relativity) Kasner regime] and a transition from a high-energy Kasner regime to an anisotropic exponential solution. It appears that these regimes take place for different signs of the Gauss-Bonnet coupling α : the "pure" Kasner regime occurs for α >0 at low D and α <0 for high D ; the anisotropic exponential regime is reached only for α >0 . So if we restrain ourselves with α >0 solutions (which would be the case, say, if we identify α with inverse string tension in heterotic string theory), the only late-time regimes are Kasner for D =1 , 2 and anisotropic exponential for D ≥2 . Also, low-energy Kasner regimes [a (t )∝tp] have expansion rates for (3 +1 )-dimensional subspace ("our Universe") ranging from p =0.5 (D =1 ) to p =1 /√{3 }≈0.577 (D →∞ ), which

  6. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats are inundated, wind and wave action may resuspend bottom sediments. Coastal mud flats are exposed...

  7. Quantifying the eroded volume of mercury-contaminated sediment using terrestrial laser scanning at Stocking Flat, Deer Creek, Nevada County, California, 2010–13

    USGS Publications Warehouse

    Howle, James F.; Alpers, Charles N.; Bawden, Gerald W.; Bond, Sandra

    2016-07-28

    High-resolution ground-based light detection and ranging (lidar), also known as terrestrial laser scanning, was used to quantify the volume of mercury-contaminated sediment eroded from a stream cutbank at Stocking Flat along Deer Creek in the Sierra Nevada foothills, about 3 kilometers west of Nevada City, California. Terrestrial laser scanning was used to collect sub-centimeter, three-dimensional images of the complex cutbank surface, which could not be mapped non-destructively or in sufficient detail with traditional surveying techniques.The stream cutbank, which is approximately 50 meters long and 8 meters high, was surveyed on four occasions: December 1, 2010; January 20, 2011; May 12, 2011; and February 4, 2013. Volumetric changes were determined between the sequential, three-dimensional lidar surveys. Volume was calculated by two methods, and the average value is reported. Between the first and second surveys (December 1, 2010, to January 20, 2011), a volume of 143 plus or minus 15 cubic meters of sediment was eroded from the cutbank and mobilized by Deer Creek. Between the second and third surveys (January 20, 2011, to May 12, 2011), a volume of 207 plus or minus 24 cubic meters of sediment was eroded from the cutbank and mobilized by the stream. Total volumetric change during the winter and spring of 2010–11 was 350 plus or minus 28 cubic meters. Between the third and fourth surveys (May 12, 2011, to February 4, 2013), the differencing of the three-dimensional lidar data indicated that a volume of 18 plus or minus 10 cubic meters of sediment was eroded from the cutbank. The total volume of sediment eroded from the cutbank between the first and fourth surveys was 368 plus or minus 30 cubic meters.

  8. Infection dynamics of Marteilia refringens in flat oyster Ostrea edulis and copepod Paracartia grani in a claire pond of Marennes-Oléron Bay.

    PubMed

    Audemard, Corinne; Sajus, Marie-Céline; Barnaud, Antoine; Sautour, Benoit; Sauriau, Pierre-Guy; Berthe, Frank J C

    2004-10-21

    The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M. refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M. refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M. refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M. refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M. refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M. refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.

  9. Dynamics and constraints of the massive graviton dark matter flat cosmologies

    SciTech Connect

    Basilakos, S.; Plionis, M.; Alves, M. E. S.; Lima, J. A. S.

    2011-05-15

    We discuss the dynamics of the Universe within the framework of the massive graviton cold dark matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the cosmic microwave background shift parameter, and the baryonic acoustic oscillations as traced by the Sloan Digital Sky Survey red luminous galaxies. The linear evolution of small density fluctuations is also analyzed in detail. It is found that the growth factor of the MGCDM model is slightly different ({approx}1-4%) from the one provided by the conventional flat {Lambda}CDM cosmology. The growth rate of clustering predicted by MGCDM and {Lambda}CDM models are confronted to the observations and the corresponding best fit values of the growth index ({gamma}) are also determined. By using the expectations of realistic future x-ray and Sunyaev-Zeldovich cluster surveys we derive the dark matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the {Lambda}CDM models provide a halo redshift distribution departing significantly from the those predicted by other dark energy models. These results suggest that the MGCDM model can observationally be distinguished from {Lambda}CDM and also from a large number of dark energy models recently proposed in the literature.

  10. Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Okazaki, Nobuo; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2008-03-01

    This study was performed to investigate the ability of breathing chest radiography using flat-panel detector (FPD) to quantify relative local ventilation. Dynamic chest radiographs during respiration were obtained using a modified FPD system. Imaging was performed in three different positions, ie, standing and right and left decubitus positions, to change the distribution of local ventilation. We measured the average pixel value in the local lung area. Subsequently, the interframe differences, as well as difference values between maximum inspiratory and expiratory phases, were calculated. The results were visualized as images in the form of a color display to show more or less x-ray translucency. Temporal changes and spatial distribution of the results were then compared to lung physiology. In the results, the average pixel value in each lung was associated with respiratory phase. In all positions, respiratory changes of pixel value in the lower area were greater than those in the upper area (P < 0.01), which was the same tendency as the regional differences in ventilation determined by respiratory physiology. In addition, in the decubitus position, it was observed that areas with large respiratory changes in pixel value moved up in the vertical direction during expiration, which was considered to be airway closure. In conclusion, breathing chest radiography using FPD was shown to be capable of quantifying relative ventilation in local lung area and detecting regional differences in ventilation and timing of airway closure. This method is expected to be useful as a new diagnostic imaging modality for evaluating relative local ventilation.

  11. Dynamic Hydraulic Conductivity, Streambed Sediment, and Biogeochemistry Following Stream Restoration

    NASA Astrophysics Data System (ADS)

    Baker, S.; Jefferson, A.; Kinsman-Costello, L. E.

    2015-12-01

    Stream restoration projects strive to improve water quality and degraded habitat, yet restoration projects often fall short of achieving their goals. Hyporheic exchange facilitates biogeochemical interaction which can contribute to positive water quality and habitat, but there are limited data on how restoration affects hyporheic processes. Hyporheic flowpaths can be altered by the processes and products of stream restoration, as well as the transport of fine sediment through the stream bed post-restoration. In two northeastern Ohio headwater streams, variations in hydraulic conductivity and pore water chemistry were monitored following restoration, as measures of hyporheic functioning. A second-order stream restored in August 2013, had a slight decrease in average hydraulic conductivity but an increase in heterogeneity from pre-restoration to four months post-restoration. Data collected 10 and 15 months post-restoration show continued declines in hydraulic conductivity throughout large constructed riffles. These piezometers also indicate dominance of downwelling throughout the riffles with only isolated upwelling locations. Grain size analysis of freeze cores collected in streambed sediments show differences suggesting fluvial transport and sorting have occurred since construction was completed. Pore water sampled from piezometers within the riffles had Mn2+ concentrations ten times higher than surface water, suggesting redox transformations are occurring along hyporheic flowpaths. A first-order stream reach, immediately downstream of a dam, restored in April 2014 had no significant change in average hydraulic conductivity between 1 and 2 months post-restoration, but many individual piezometers had increases of over 100% in high gradient positions or decreases of over 50% in low gradient positions. Changes in hydraulic conductivities in both restored streams are thought to be an adjustments from disturbance to a new dynamic equilibrium influenced by the morphology

  12. Dynamics of peat accumulation and marl flat formation in a calcareous fen, midwestern United States

    USGS Publications Warehouse

    Miner, J.J.; Ketterling, D.B.

    2003-01-01

    The age and sequence of peat accumulation were investigated at a calcareous fen in northeastern Illinois, USA. The purpose of this study was to identify the processes that form and sustain marl flats, which are areas of marl or tufa substrate within the fen that contain numerous rare plant species. Geomorphic, stratigraphic, and radiocarbon evidence was used to establish the processes and chronology of peat accumulation and erosion adjacent to each marl flat. The age of the base of the peat deposit varies greatly throughout the fen, ranging from 14,679 calibrated years before present (cal. years BP) to nearly modern, indicating that colonization of the sand and gravel substrate by peat occurred throughout the period from the Late Pleistocene to present. Adjacent to one marl flat, trends in basal peat age and thickness show that peat accumulation has progressed laterally inward from both sides, suggesting that the marl flat has been infilling with peat progressively by accumulation at the margins since at least 5,370 cal. years BP or longer. A second marl flat in the fen is surrounded by older, thick peat of differing ages on either edge and is bounded by fresh scarps, indicating that the marl flat currently is expanding laterally by erosion into the preexisting peat blanket. These two examples suggest a continuously repeating process, where erosion of the accumulated peat blanket forms a marl flat, which is later covered by peat accumulation. Trends in basal peat age elsewhere in the fen suggest that other marl flats may have existed in the past that have been completely infilled with peat. This study suggests that marl flat formation is a natural process that has been occurring for millennia, continuously creating habitat for the rare plant species that occupy marl flats. There is no evidence that the marl flats at this site are indicative of anthropogenic disturbance, so that management options for these areas are limited to maintaining the quality and quantity

  13. Continental-Margin Processes Recorded in Shelf and Canyon Sediments. Sediment Deposition, Erosion and Accumulation on a Tidal Flat Adjacent to a River Mouth

    DTIC Science & Technology

    2007-01-01

    Sequence Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 549 pp. (2007). C.A. Nittrouer, J.A. Austin, M.E. Field, J.H. Kravitz, J.P.M...Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 1-48 (2007... Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 157-212 (2007). L.F. Pratson, C.A. Nittrouer, P.L.Wiberg, M.S. Steckler, J.B. Swenson

  14. A novel tracer technique for the assessment of fine sediment dynamics in urban water management systems.

    PubMed

    Spencer, K L; Droppo, I G; He, C; Grapentine, L; Exall, K

    2011-04-01

    Urban storm water run off can reduce the quality of receiving waters due to high sediment load and associated sediment-bound contaminants. Consequently, urban water management systems, such as detention ponds, that both modify water quantity through storage and improve water quality through sediment retention are frequently-used best management practices. To manage such systems effectively and to improve their efficiency, there is a need to understand the dynamics (transport and settling) of sediment, and in particular the fine sediment fraction (<63 μm) and its associated contaminants within urban storm water management systems. This can be difficult to achieve, as modelling the transport behaviour of fine-grained and cohesive sediment is problematic and field-based measurements can be costly, time-consuming and unrepresentative. The aim of this study was to test the application of a novel cohesive sediment tracer and to determine fine sediment transport dynamics within a storm water detention pond. The cohesive sediment tracer used was a holmium labelled montmorillonite clay which flocculated and had similar size and settling velocity to the natural pond sediment it was intended to mimic. The tracer demonstrated that fine sediment was deposited across the entire pond, with the presence of reed beds and water depth being important factors for maximising sediment retention. The results of the sediment tracer experiment were in good agreement with those of a mathematical sediment transport model. Here, the deposited sediment tracer was sampled by collecting and analysing surface pond sediments for holmium. However, analysis and sampling of the three dimensional suspended tracer 'cloud' may provide more accurate information regarding internal pond sediment dynamics.

  15. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    NASA Astrophysics Data System (ADS)

    Kabir, M. A.; Dutta, D.; Hironaka, S.

    2011-04-01

    Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition) with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM), land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS)" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value) indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions

  16. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    NASA Astrophysics Data System (ADS)

    Kabir, M. A.; Dutta, D.; Hironaka, S.

    2010-08-01

    Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition) with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM), land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS)" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value) indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including

  17. Continental-Margin Processes Recorded in Shelf and Canyon Sediments Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats

    DTIC Science & Technology

    2008-01-01

    are the foundation for understanding and interpreting sedimentary processes and seabed stratigraphy . To investigate the relationship between... Sedimentological Congress, Fukuoka (2006). T.M. Drexler, C.A. Nittrouer, A.S. Ogston, P. Puig, Sediment record on the Rhone prodelta and processes controlling

  18. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction

    NASA Astrophysics Data System (ADS)

    Liu, Sibiao; Currie, Claire A.

    2016-01-01

    The Laramide orogeny (~ 80-50 Ma) was an anomalous period of mountain-building in the western United States that occurred more than 1000 km inboard of the Farallon Plate subduction margin. It is widely believed that this orogeny is coincident with a period of flat (subhorizontal) subduction. However, the factors that caused the Farallon Plate to evolve from a normal (steep) geometry to flat subduction are not well understood. Three proposed factors are: (1) a westward (trenchward) increase in North America motion, (2) an increased slab suction force owing to the presence of thick Colorado Plateau lithosphere, and (3) subduction of a low-density oceanic plateau. This study uses 2D upper mantle scale numerical models to investigate these factors. The models show that trenchward continental motion is the primary control on subduction geometry, with decreasing slab dip as velocity increases. However, this can only create low-angle subduction, as the Farallon Plate was old (> 100 Myr) and denser than the mantle. A transition to flat subduction requires: (1) subduction of a buoyant oceanic plateau that includes an 18-km-thick crust that does not undergo metamorphic densification and an underlying depleted harzburgite layer, and (2) a slab break-off at the landward side of the plateau. The break-off removes the dense frontal slab, and flat subduction develops as the buoyant plateau deflects the slab upward. The slab suction force has only a minor effect on slab flattening, but the thickness of the Colorado Plateau lithosphere controls the depth of the flat slab. With a continental velocity of 4 cm/yr and a 400-km-wide oceanic plateau, flat subduction develops within 15 Ma after plateau subduction. The flat slab underthrusts the continent at ~ 200 km depth, eventually extending > 1500 km inboard of the trench.

  19. A network model for simulating sediment dynamics within a small watershed (Invited)

    NASA Astrophysics Data System (ADS)

    Patil, S.; Ye, S.; Xu, X.; Harman, C. J.; Sivapalan, M.; Hassan, M. A.

    2010-12-01

    Although sediment transport is extensively studied at the scale of a river reach, sediment dynamics at the watershed scale are still poorly understood. Sediment dynamics at this scale are largely determined by the propagation of sediment pulses through the river network which are driven mostly by the variability in flow conditions. Here, we develop a model which simulates sediment export from small to medium size basins in two stages: (1) delivery of sediments from hillslope and bank erosion into the river channel, and (2) propagation of the sediments in the channel through the river network towards watershed outlet. The model conceptualizes a watershed as a collection of reaches or representative elementary watersheds (REW) that are connected to each other through the river network structure, and each REW comprises a lumped representation of a hillslope and channel component. The flow of water along the stream network is modeled through mass and momentum balance equations applied in all the REWs and sediment transport within each REW is simulated through sediment balance equations. Every reach receives inputs of sediments from upstream REWs and also from the erosion of adjacent hillslopes, banks and the channel bed. We tested the model using data from Goodwin Creek, a small (21.3 sq. km) watershed in Mississippi, USA. The model yields good estimates of the timing and magnitude of sediment events as well as event-scale hysteresis in the sediment concentration-discharge relationship. The model also captures reach scale degradation/aggradation dynamics at different locations within the watershed, which are useful in identifying primary erosion/deposition zones and the spatio-temporal patterns of sediment supply and depletion. As a next step, we will use this model to assess the impacts of changing land-use/climate scenarios on sediment dynamics, and also facilitate in modeling the transport of nutrients (e.g., Phosphorus) that propagate along the river system through

  20. Two-dimensional generalization of Gaussian rings and dynamics of the central regions of flat galaxies

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2014-08-01

    In this paper, the idea of a single Gaussian elliptical ring on a circular two-dimensional ring or, in the limit, a continuous disc is generalized. Such a ring (hereafter, the R-ring) can consist of identical Keplerian elliptic orbits, of fixed a and e, uniformly portioned on the azimuth angle, or/and filled with orbits that precess around a central star or black hole. The special method of radially averaging the mass of moving bodies is developed. For this wide annulus, we compute the surface density, the two-dimensional and three-dimensional potentials, the mutual gravitational energy and the rotational energy. The surface density has two sharp peaks at the edges of the R-ring and a deep internal minimum. The Newtonian potential of the R-ring is carefully studied and the spatial equipotential surfaces are calculated. The force of attraction at the edges of the R-ring strives for infinity, and in cavity the circular orbits do not exist. The R-rings can be formed naturally in systems of bodies with a large central mass and play a dynamical role. The model is applied to the assessment of some properties of the clockwise disc in the centre of the Galaxy. For the relation of the rotational energy to the module of mutual gravitational energy, we found τ ≈ 0.29. The R-ring model offers an explanation for the existence of sharp local minima on rotation curves, which are observed in many flat galaxies. We discuss the physical sources of apsidal precession, and of the associated time-scales. We have found the relations of time-scales of apsidal precession from the supermassive black hole and the nuclear star cluster for orbits inside and outside the cluster. The apsidal precession rate of stars can largely be determined not to be a relativistic effect from the black hole and the Newtonian gravitational influence of the densest stellar cluster around the supermassive black hole.

  1. Influence of sediment cohesion on deltaic shoreline dynamics and bulk sediment retention: A laboratory study

    NASA Astrophysics Data System (ADS)

    Straub, Kyle M.; Li, Qi; Benson, W. Matthew

    2015-11-01

    While boundary and forcing conditions influence the average location of a shoreline in deltaic systems, internal morphodynamics can drive high-magnitude deviations from the long-term trend. Here we explore the role of sediment cohesion on these morphodynamics using physical experiments. Specifically, we explore the role of sediment cohesion on the scales of autogenic shoreline transgressions and regressions. Results indicate that sediment cohesion enhances the time and space scales associated with autogenic cycles of channel formation, elongation, and abandonment. In systems with high sediment cohesion, this cycle can drive shoreline transgressions that produce flooding surfaces in the resulting stratigraphy which could be confused with surfaces produced by increases in sea level rise or subsidence rates. Enhanced channelization resulting from sediment cohesion also increases the pumping of fine-grained sediment into the marine realm, where it can bypass the delta foreset, thus decreasing total delta sediment retention rate.

  2. The influence of sea-level rise on fringing reef sediment dynamics: field observations and numerical modeling

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine

    2011-01-01

    While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.

  3. Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems

    NASA Astrophysics Data System (ADS)

    Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.

    2016-10-01

    Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.

  4. Carbonate sediment dynamics and compartmentalisation of a highly modified coast: Geraldton, Western Australia

    NASA Astrophysics Data System (ADS)

    Tecchiato, Sira; Collins, Lindsay; Stevens, Alexandra; Soldati, Michela; Pevzner, Roman

    2016-02-01

    The coastal zone off Geraldton in temperate Midwestern Australia was investigated to identify sediment dynamics and sediment budget components of two main embayments. An integrated analysis of hydrodynamics, geomorphology, sediments and habitat data was required to overcome a lack of previous examinations of sediment dynamics in the region. The seaward extent of the nearshore transport system was assessed. An improved understanding of coastal sediment dynamics and its relationship to coastal stability and assets was also achieved. The system is complex, with biogenic sediment input, as well as carbonate dune and river-derived sediments. Coastal erosion at Geraldton is mitigated by nourishment activities which require sand bypassing. Natural and artificial sediment sinks were identified, and are mainly located in the northern embayment where beach erosion is more significant. A dredged shipping channel needed to provide access to port facilities modifies the local sediment dynamics. This study provides new information for managing the Geraldton coast, which may be applicable to similar regions of Western Australia and carbonate coasts elsewhere.

  5. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons.

    PubMed

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and

  6. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons

    PubMed Central

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and

  7. Dynamic stiffness of the contact between a carbon nanotube and a flat substrate in a peeling geometry

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Champougny, Lorène; Bellon, Ludovic

    2017-03-01

    We study the physics of adhesion and the contact mechanics at the nanoscale with a peeling experiment of a carbon nanotube on a flat substrate. Using an interferometric atomic force microscope and an extended force modulation protocol, we investigate the frequency response of the stiffness of the nano-contact from DC to 20 kHz. We show that this dynamic stiffness is only weakly frequency dependent, increasing by a factor 2 when the frequency grows by 3 orders of magnitude. Such behavior may be the signature of amorphous relaxations during the mechanical solicitation at the nano-scale.

  8. Dynamic sediment trapping and episodic sediment accretion in fluviodeltaic environments: Implications for coastal restoration

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Tornqvist, T. E.; Chamberlain, E. L.; Esposito, C. R.; Marshak, J.; Nijhuis, A.; Sandoval, L.; Mauz, B.

    2013-12-01

    Many large river deltas are experiencing severe land loss because of various natural and anthropogenic causes. This is truly the case for the Mississippi Delta where ~40 km2/yr land loess have been documented for the last 25 years. A solid understanding about fluviodeltaic sediment dispersion and accretion is essential to improve management of fluviodeltaic landscapes. Here we present field data collected from the Bayou Lafourche subdelta in the Mississippi Delta to investigate the sedimentary and chronologic development of the Bayou Lafourche floodplain. The textural composition of the floodplain deposits shows dramatic changes along Bayou Lafourche. In the upstream portion where Bayou Lafourche cut through swamp environments, the floodplain deposits are dominantly mud, similar in composition to sediment load of the Lower Mississippi River. This suggests that the floodplain in this reach has a relatively high sediment trapping efficiency, which is confirmed by a >50% sediment trapping efficiency estimated for a crevasse splay there. In contrast, Bayou Lafourche floodplain deposits are sand dominant in the downstream portion where the subdelta extended into an open water environment, which suggests a relatively low sediment trapping efficiency in open water environments, similar to the Wax Lake Delta in the Mississippi Delta. Optical chronology for the Bayou Lafourche floodplain deposits demonstrates that fluviodeltaic sedimentation is episodic at a centennial time scale. As a consequence of relatively high sediment trapping efficiency and the episodic pattern of fluviodeltaic deposition, sediment accretion rates on the upstream portion of Bayou Lafourche are on the order of cm/yr at a centennial time scale. Our data suggest that mud, which constitutes ~80% of the Lower Mississippi River sediment load, can be used efficiently for wetland creation if being diverted to locations favor a high trapping efficiency, such as inland vegetated swamps. The sediment accretion

  9. Seagrass dynamics in shallow coastal lagoons: Interactions with fluid dynamics, sediment resuspension and light conditions

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; D'Odorico, P.; McGlathery, K.; Wiberg, P. L.

    2010-12-01

    Sea grasses have been recognized for their ability to stabilize the benthic sediments of shallow coastal lagoons, thereby reducing the turbidity of the water column and providing a light environment that is more favorable for sea grass establishment and growth. Sea grasses are complex, in that they involve different strategies of carbon allocation between below and above ground biomass, and the partitioning of the overall biomass into a discrete number of stems and leaves. Stem density and canopy height, in turn, modify the flow field, sediment resuspension, and the light environment. It is still unclear how these seasonal and interannual dynamics of seagrass vegetation may be affected by and interact with the process of sediment resuspension under fluctuating climatic and hydrologic conditions. To this end, a coupled model hydrodynamic model of vegetation-sediment-water flow interactions and vegetation growth is developed and used to examine the feedback between seagrass vegetation density and sediment resuspension and water column turbidity. The daily growth model is designed to capture underground biomass and the growth and senescence of above ground biomass structural components (e.g., leaves and stems). This allows for investigating how the interseasonal and seasonal variability in shoot and leaf density within a meadow affects the strength of positive feedback between seagrass and their light environment. Eight years of hourly wind, light, tides and water temperature are used to drive the coupled model from an initial mature meadow state as well as a seedling state. The model demonstrates both the emergence of bistable behavior as well as the limited resilience of seagrass meadows due to the strength of the positive feedback. The effects of increased water depths and water temperatures on the health and resilience of a seagrass meadow were also investigated. As both water depth and water temperatures increase, the system only exhibits bistable behavior with

  10. Multiple-method approaches for quantifying fine sediment dynamics in river catchments over contemporary timescales

    NASA Astrophysics Data System (ADS)

    Smith, Hugh

    2015-04-01

    Understanding the patterns and processes of contemporary fine sediment dynamics in river catchments constitutes a key research challenge for catchment scientists. Such knowledge has considerable value for the targeting of management resources to reduce excess fine sediment supply and its impacts on water resources and aquatic ecosystems. Many past studies tended to focus on a single compartment of the fine sediment cascade and utilised a limited range of research methods. For more holistic understanding, the use of multiple-method approaches is required to provide data on the sources, transfer, storage, and transit times of fine sediment in river catchments. Such approaches would allow scientists to better conceptualise catchment processes controlling the movement of fine sediment across a range of spatial scales. It may also enhance the scientific quality of catchment-scale studies through the acquisition of multiple lines of evidence concerning a particular research problem. The specific combination of fine sediment tracing and fingerprinting procedures with catchment sediment flux measurements and sediment budget modelling has considerable potential to enhance our knowledge of contemporary sediment dynamics. This combination of techniques offers complementary information and the opportunity to compare datasets, such as estimates of catchment sediment source contributions obtained using sediment tracers with direct measurements of sediment fluxes or catchment model outputs. This contribution explores the potential for such combinations of methods to yield distinctive insights not otherwise available from the use of only one of these techniques. It draws on published examples of multiple-method studies by the author from small agricultural and wildfire-affected forest catchments (1-2 km2) in south-east Australia and from larger agricultural river catchments (38-920 km2) in south-west England. It will also identify possible directions for catchment research based

  11. Elephant trail runoff and sediment dynamics in northern Thailand.

    PubMed

    Sidle, Roy C; Ziegler, Alan D

    2010-01-01

    Although elephants may exert various impacts on the environment, no data are available on the effects of elephant trails on runoff, soil erosion, and sediment transport to streams during storms. We monitored water and sediment fluxes from an elephant trail in northern Thailand during seven monsoon storms representing a wide range of rainfall energies. Runoff varied from trivial amounts to 353 mm and increased rapidly in tandem with expanding contributing areas once a threshold of wetting occurred. Runoff coefficients during the two largest storms were much higher than could be generated from the trail itself, implying a 4.5- to 7.9-fold increase in the drainage areas contributing to storm runoff. Clockwise hysteresis patterns of suspended sediment observed during most storms was amplified by a "first flush" of sediment early on the hydrograph in which easily entrained sediment was transported. As runoff areas expanded during the latter part of large storms, discharge increased but sediment concentrations declined. Thus, sediment flux was better correlated to kinetic energy of rainfall on the falling limbs of most storm hydrographs compared to rising limbs. Based on a power function relationship between sediment flux and storm kinetic energy, the estimated annual sediment yield from the trail for 135 storms in 2005 was 308 to 375 Mg ha(-1) yr(-1), higher than from most disturbed land surfaces in the tropics. The eight largest storms (30% of total storm energy) in 2005 transported half of the total annual sediment. These measurements together with site investigations reveal that highly interconnected elephant trails, together with other source areas, directly link runoff and sediment to streams.

  12. Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment.

    PubMed

    Choi, Dong H; Cho, Byung C

    2006-04-01

    A rod-shaped marine bacterium, designated strain CL-TF09T, isolated from a tidal flat in Ganghwa, Korea, was characterized based on its physiological and biochemical features, fatty acid profile and phylogenetic position. 16S rRNA gene sequence analysis revealed a clear affiliation with the family Flavobacteriaceae. Strain CL-TF09T showed the closest phylogenetic relationship with the genera Tenacibaculum and Polaribacter; sequence similarities between CL-TF09T and the type strains of Tenacibaculum and Polaribacter species ranged from 90.7 to 91.8 %. Cells of strain CL-TF09T were non-motile and grew on solid media as yellow colonies. The strain grew in the presence of 1-5 % sea salts, within a temperature range of 5-30 degrees C and at pH 7-8. The strain had iso-C(15 : 0) 3-OH (17.4 %), iso-C(15 : 0) (16.7 %), anteiso-C(15 : 0) (15.1 %) and iso-C(16 : 0) 3-OH (13.4 %) as predominant fatty acids. The DNA G+C content was 33.9 mol%. Based on the physiological, fatty acid composition and phylogenetic data presented, strain CL-TF09T is considered to represent a novel genus and species of the family Flavobacteriaceae, for which the name Lutibacter litoralis gen. nov., sp. nov. is proposed. The type strain is CL-TF09T (=KCCM 42118T = JCM 13034T).

  13. Modelling of cohesive sediment dynamics in tidal estuarine systems: Case study of Tagus estuary, Portugal

    NASA Astrophysics Data System (ADS)

    Franz, G.; Pinto, L.; Ascione, I.; Mateus, M.; Fernandes, R.; Leitão, P.; Neves, R.

    2014-12-01

    Cohesive sediment dynamics in estuarine systems is a major issue in water quality and engineering problems. Numerical models can help to assess the complex dynamics of cohesive sediments, integrating the information collected in monitoring studies. Following a numerical approach we investigated the main factors that influence the cohesive sediment dynamics in an estuarine system composed of large mudflats (Tagus estuary, Portugal). After a spin up period of the bottom layer and considering the combined effect of waves and currents on the bottom shear stress, the dynamics of cohesive sediment during the fortnightly and daily erosion-sedimentation cycle was properly reproduced by the model. The results of cohesive suspended sediments were validated with data from sixteen monitoring stations located along the estuary and turbidity data measured by two multiparametric probes. The hydrodynamics were previously validated by harmonic analysis and with ADCP data. Although tidal currents are the major cause of cohesive sediment erosion, the results suggest that wind waves also play an important role. The simulated sediment mass involved in the fortnightly tidal cycle was in the same order of magnitude of the annual load from the rivers, as observed in previous studies based on field data.

  14. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats are inundated, wind and wave action may resuspend bottom sediments. Coastal mud flats are exposed...

  15. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France

    NASA Astrophysics Data System (ADS)

    Meziane, Tarik; Bodineau, Laurent; Retiere, Christian; Thoumelin, Guy

    1997-12-01

    Salt marsh plants and seven surface sediment samples along a transect in the intertidal flat area of Mont-Saint-Michel Bay were analysed for fatty acids and sterols. The presence of lipid markers of halophytes (long-chain fatty acids, 18:3ω3, and phytosterols) in the surface layers of the sediment confirms the export of organic matter from the salt marsh to the intertidal flat. The spatial distribution of this organic matter over the tidal-flat area was controlled by the tidal currents and the presence of mussel beds. Lipid markers of diatoms (20:5ω3 and brassicasterol) and bacteria (18:1ω7 and odd, linear and branched, fatty acids) were also found in the surface sediments. Diatoms and benthic bacteria as well as organic matter from the salt marsh were the significant food sources available to the macrozoobenthos on the intertidal flat. The ingestion of these food types by the dominant species of the macrozoobenthos was confirmed by the presence of their respective lipid markers in the animals. The presence of these markers in animals subjected to a starvation experiment confirmed that these food types are really assimilated. The lipid composition of the starved animals indicated that the species studied were able to accumulate the fatty acid 20:5ω3 (considered to be a diatom marker), and that the annelid Nereis diversicolor supported an internal bacterial population.

  16. Examining Sediment-bound Radiocesium Dynamics in Two Fukushima Coastal Catchments with Sediment Fingerprinting Techniques

    NASA Astrophysics Data System (ADS)

    Laceby, J. P.; Lepage, H.; Bonté, P.; Joron, J. L.; Onda, Y.; Lefèvre, I.; Ayrault, S.; Evrard, O.

    2015-12-01

    The Fukushima Dai-ichi nuclear power plant accident resulted in the significant fallout of radiocesium (137Cs and 134Cs) over the Fukushima region. After deposition on the soil surface, radiocesium is primarily bound to fine soil particles. Subsequently, rainfall and snow melt run-off events result in the downstream migration of radiocesium. Understanding the spatial distribution and relative contribution of different sediment sources is therefore fundamental to the management of radiocesium migration. Sediment fingerprinting techniques were used to determine the location and relative contributions of different sediment sources in the Mano and Niida Rivers, in the Fukushima region. First, we modelled the relative contributions of radiocesium from the upstream portions of the catchment, that received greater proportions of the fallout (e.g. >20 kBq kg-1), to sediment sampled in the downstream coastal regions. Second, we examined the elemental geochemistry of the major soil types (e.g. Andosols, Cambisols, Fluvisols) within these catchments and modelled their relative contribution to sediment sampled throughout these catchments. Elemental composition was measured with neutron activation analysis, radiocesium with gamma-spectrometry and a distribution modelling approach quantified source contributions. In the Mano River ~20% of the radiocesium sampled was modelled to be derived from the upstream area compared to ~50% in the Niida River. The highest contribution of upstream radiocesium was modelled after the typhoon seasons in 2011 and 2013. Fluvisols were found to be the dominant source of sediment (76%). The dominance of Fluvisols indicates that sediments are likely derived from sources that are highly connected to the river network (e.g. rice paddy fields). Understanding the relative contributions of these different sediment sources will allow for more direct management of sediment and thus radiocesium transfers in these Fukushima coastal catchments.

  17. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina; Oguri, Kazumasa; Glud, Ronnie N.; Middelboe, Mathias; Kitazato, Hiroshi; Wenzhöfer, Frank; Ando, Kojiro; Fujio, Shinzou; Yanagimoto, Daigo

    2014-08-01

    In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from the surface ocean. It has been speculated that the shape of hadal trenches helps to ‘funnel' particulate matter into the deeper parts of the trench, leading to sediment ‘focussing' and improved benthic food supply. Here we investigate for five Northwest Pacific trenches the efficiency of sediment focussing by evaluating ratios of measured (sediment-derived) and expected (water-column-derived) sedimentary inventories of the naturally occurring and radioactive particulate-matter tracer 210Pbxs. The sites comprise a broad range of surface-ocean productivity and physical-oceanographic regimes. Across the five trench-axis settings the inventory ratio varies between 0.5 and 4.1, with four trench-axis settings having ratios>1 (sediment focussing) and one trench-axis setting a ratio<1 (sediment winnowing). Although the fluid- and sediment-dynamical forcing behind sediment focussing remains unclear, this study finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity of propagating internal tides and the extent of sediment focussing in the trench-axis. The relation can be approximated by a power function and the most intense drop in sediment focussing already occurs at moderate internal-tide intensities. This suggests that propagating internal tides may have a subtle but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of

  18. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya.

    PubMed

    Kitheka, Johnson U; Ongwenyi, George S; Mavuti, Kenneth M

    2002-12-01

    This study focuses on sediment exchange dynamics in Mwache Creek, a shallow tidal mangrove wetland in Kenya. The surface area of the creek is 17 km2 at high water spring. The creek experiences semidiurnal tides with tidal ranges of 3.2 m and 1.4 m during spring and neap tides, respectively. The creek is ebb dominant in the frontwater zone main channel and is flood dominant in the backwater zone main channel. During rainy season, the creek receives freshwater and terrigenous sediments from the seasonal Mwache River. Heavy supply of terrigenous sediments during the El Niño of 1997-1998 led to the huge deposition of sediments (10(60 tonnes) in the wetland that caused massive destruction of the mangrove forest in the upper region. In this study, sea level, tidal discharges, tidal current velocities, salinity, total suspended sediment concentrations (TSSC) and particulate organic sediment concentrations (POSC) measured in stations established within the main channel and also within the mangrove forests, were used to determine the dynamics of sediment exchange between the frontwater and backwater zones of the main channel including also the exchange with mangrove forests. The results showed that during wet seasons, the high suspended sediment concentration associated with river discharge and tidal resuspension of fine channel-bed sediment accounts for the inflow of highly turbid water into the degraded mangrove forest. Despite the degradation of the mangrove forest, sediment outflow from the mangrove forest was considerably less than the inflow. This caused a net trapping of sediment in the wetland. The net import of the sediment dominated in spring tide during both wet and dry season and during neap tide in the wet season. However, as compared to heavily vegetated mangrove wetlands, the generally degraded Mwache Creek mangrove wetland sediment trapping efficiency is low as the average is about 30% for the highly degraded backwater zone mangrove forest and 65% in the

  19. Dynamic transport of suspended sediment by solitary wave: Experimental study

    NASA Astrophysics Data System (ADS)

    cho, JaeNam; Kim, DongHyun; Hwang, KyuNam; Lee, SeungOh

    2016-04-01

    Solitary waves are able to transport a large amount of suspended sediment when approaching on the beach, which sometimes causes - serious beach erosion, especially in the east and south coastal lines in Korea. But it has rarely been known about the method how to evaluate or estimate the amount of beach erosion caused by solitary waves. Experimental assessment is necessary to comprehend the process of sediment transport on a slope. The prismatic rectangular channel is 12 m long, 0.8 m wide, and 0.75 m high. A sluice gate is applied at prismatic channel in order to produce the solitary waves. Upstream water depth is more than channel water depth and the sluice gate is suddenly opened to simulate conditions of solitary waves. A sand slope with a 1/6 and a sediment thickness is 0.03 m. The experimental sediments are used anthracite (d_50=1.547 mm ,C_u=1.38) and Jumoonjin sand (d_50=0.627 mm ,C_u=1.68). Specific laboratory equipment are designed to collect suspended sediment samples at the same time along the wave propagation at 5 points with evenly space. Each amount of sampling is approximately 25 ml and they are completely dried in oven over 24 hours according to the USGS (Guideline and standard techniques and method 3-C4). Two video cameras (Model No. : Sony, HDR-XR550) are mounted for capturing images at top and side-view when the processes of solitary wave and run up/down on slope. Also, this study are analyzed the correlation between Suspended sediment concentration and turbidity. Also, this study are analyzed the correlation between suspended sediment concentration and turbidity. Turbidity is used to verify suspended sediment concentration. Dimensionless analyses of experimental results carried out in this study. One dimensionless parameter is expressed with pressure of solitary wave on a slope to suspended sediment concentration, which is concerned about lifting force. The other is relate to drag force presenting with run up/down velocity on a slope and

  20. A network model for prediction and diagnosis of sediment dynamics at the watershed scale

    NASA Astrophysics Data System (ADS)

    Patil, Sopan; Sivapalan, Murugesu; Hassan, Marwan A.; Ye, Sheng; Harman, Ciaran J.; Xu, Xiangyu

    2012-12-01

    We present a semi-distributed model that simulates suspended sediment export from a watershed in two stages: (1) delivery of sediments from hillslope and bank erosion into the river channel, and (2) propagation of the channel sediments through the river network toward the watershed outlet. The model conceptualizes a watershed as the collection of reaches, or representative elementary watersheds (REW), that are connected to each other through the river network, and each REW comprises a lumped representation of a hillslope and channel component. The flow of water along the stream network is modeled through coupled mass and momentum balance equations applied in all REWs and sediment transport within each REW is simulated through the sediment balance equations. Every reach receives sediment inputs from upstream REWs (if present) and from the erosion of adjacent hillslopes, banks and channel bed. We tested this model using 12 years (1982-1993) of high temporal resolution data from Goodwin Creek, a 21.3 km2 watershed in Mississippi, USA. The model yields good estimates of sediment export patterns at the watershed outlet, with Pearson correlation coefficient (R value) of 0.85, 0.87, and 0.95 at daily, monthly, and annual resolution, respectively. Furthermore, the model shows that the dynamics of sediment transport are controlled to a large extent by the differences in the behavior of coarse and fine sediment particles, temporary channel storage, and the spatial variability in climatic forcing. These processes have a bearing on the patterns of sediment delivery with increasing scale.

  1. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Crim, Jackie F.; Williard, Karl W. J.; Groninger, John W.; Zaczek, James J.; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees ( Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year-1 translating to a sediment loss rate of 46.1 metric ton year-1 from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year-1) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  2. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    USGS Publications Warehouse

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  3. Molecular Approaches to Understanding C & N Dynamics in MArine Sediments

    SciTech Connect

    Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol

    2007-05-16

    Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non

  4. Dynamics of a Flat Multidimensional Anisotropic Universe in the Gauss-Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Toporensky, Alexey; Kirnos, Ilya; Pavluchenko, Sergyey

    We consider a flat anisotropic metric in (4+1)- and (5+1)-dimensional space-time in Gauss-Bonnet gravity. In the present presentation we are interesting in the behavior mostly in the vicinity of the cosmological singularity, which allows us to take into account only corrections of the highest possible order. In our case it is the Gauss-Bonnet contribution, so we neglect Einstein terms. In the absence of matter sources this problem have been studied in Ref. 1,2, in the present presentation we take matter into account. The full Einstein - Gauss-Bonnet system shows a complicated behavior even in the vacuum case3,4 and we leave investigation of such system with matter for a future work.

  5. Coral reef metabolism and carbon chemistry dynamics of a coral reef flat

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Benthuysen, Jessica; Cantin, Neal; Caldeira, Ken; Anthony, Ken

    2015-05-01

    Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state (Ωarag) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on Ωarag seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing Ωarag does not add substantial explanatory value. This suggests that, over short time scales, the control of Ωarag on net calcification is weak relative to factors governing net photosynthesis.

  6. Application of Sediment Trend Analysis in the Examination of Sediment Transport Dynamics of Missisquoi Bay

    NASA Astrophysics Data System (ADS)

    Kraft, M. P.; Manley, P.; Singer, J.; Manley, T.; McLaren, P.

    2013-12-01

    Missisquoi Bay is located between Vermont and Quebec in the northeast sector of the Restricted Arm of Lake Champlain. The average depth of the Bay is slightly less than 3 meters with a surface area covering 77.5 km2. The Bay receives water from eastern and western catchment basins, most notably via the Missisquoi, Rock, and Pike Rivers. Circulation within Missisquoi Bay has been altered by the construction of railroad causeways in the late 19th century and highway construction in the early 20th century. Over the past several decades there have also been changes in land-use practices, including the intensification of agriculture, increased animal husbandry, and urbanization. As a consequence of construction and changing land use, loadings of nitrogen and phosphorus to the Bay have increased seasonal oxygen depletion causing eutrophication. Since monitoring began in 1992, Missisquoi Bay has displayed the highest mean total phosphorus concentrations and chlorophyll a concentrations in Lake Champlain. Various efforts have taken place to reduce nutrient loading to Missisquoi Bay, but persistent release of phosphorus from bottom sediments will continue to delay for decades the recovery from nutrient diversion. To better understand the causes and timing of eutrophication in Missisquoi Bay, one component of a 5-year integrated VT EPSCoR - RACC program included an examination of N and P loadings and their distribution throughout the Bay. Internal circulation patterns are also being studied. To determine the pattern of net sediment transport and determine sediment behavior (erosion and accretion), a Sediment Trend Analysis (STA) was performed using 369 grab samples collected in the Bay. Grain size distributions for the surface sediment samples were determined using a Malvern Mastersizer 2000 particle size analyzer. Sediment maps showing the proportion of gravel, sand, and mud show that near major river distributaries sand-sized sediment was dominant with muds becoming more

  7. The carbon cycle and biogeochemical dynamics in lake sediments

    USGS Publications Warehouse

    Dean, W.E.

    1999-01-01

    The concentrations of organic carbon (OC) and CaCO3 in lake sediments are often inversely related. This relation occurs in surface sediments from different locations in the same lake, surface sediments from different lakes, and with depth in Holocene sediments. Where data on accumulation rates are available, the relation holds for organic carbon and CaCO3 accumulation rates as well. An increase of several percent OC is accompanied by a decrease of several tens of percent CaCO3 indicating that the inverse relation is not due to simple dilution of one component by another. It appears from core data that once the OC concentration in the sediments becomes greater than about 12%, the CO2 produced by decomposition of that OC and production of organic acids lowers the pH of anoxic pore waters enough to dissolve any CaCO3 that reaches the sediment-water interface. In a lake with a seasonally anoxic hypolimnion, processes in the water column also can produce an inverse relation between OC and CaCO3 over time. If productivity of the lake increases, the rain rate of OC from the epilimnion increases. Biogenic removal of CO2 and accompanying increase in pH also may increase the production of CaCO3. However, the decomposition of organic matter in the hypolimnion will decrease the pH of the hypolimnion causing greater dissolution of CaCO3 and therefore a decrease in the rain rate of CaCO3 to the sediment-water interface.

  8. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  9. Modelling-based assessment of suspended sediment dynamics in a hypertidal estuarine channel

    NASA Astrophysics Data System (ADS)

    Amoudry, Laurent O.; Ramirez-Mendoza, Rafael; Souza, Alejandro J.; Brown, Jennifer M.

    2014-05-01

    We investigate the dynamics of suspended sediment transport in a hypertidal estuarine channel which displays a vertically sheared exchange flow. We apply a three-dimensional process-based model coupling hydrodynamics, turbulence and sediment transport to the Dee Estuary, in the north-west region of the UK. The numerical model is used to reproduce observations of suspended sediment and to assess physical processes responsible for the observed suspended sediment concentration patterns. The study period focuses on a calm period during which wave-current interactions can reasonably be neglected. Good agreement between model and observations has been obtained. A series of numerical experiments aim to isolate specific processes and confirm that the suspended sediment dynamics result primarily from advection of a longitudinal gradient in concentration during our study period, combined with resuspension and vertical exchange processes. Horizontal advection of sediment presents a strong semi-diurnal variability, while vertical exchange processes (including time-varying settling as a proxy for flocculation) exhibit a quarter-diurnal variability. Sediment input from the river is found to have very little importance, and spatial gradients in suspended concentration are generated by spatial heterogeneity in bed sediment characteristics and spatial variations in turbulence and bed shear stress.

  10. Sediment dynamics within the intertidal floodplain of the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Fricke, A. T.; Nittrouer, C. A.; Ogston, A. S.; Nowacki, D. J.; Asp, N. E.; Souza Filho, P. W.

    2014-12-01

    Tidal influence extends ~800 kilometers upstream of the Amazon River mouth, producing semidiurnal oscillations in water elevation and slowing or reversing the flow of the world's largest river. This tidally influenced reach, known as the tidal river, is flanked by an expansive intertidal floodplain, and includes confluences with two large tributaries, the Xingu and Tapajós. The relative magnitude of the seasonal and tidal signals changes along the length of the tidal river, yielding diverse floodplain environments that span a range of seasonal and tidal influence. Near the upstream limit of tides, natural levees isolate the river from the floodplain during low to moderate flows, while in the lower tidal river, natural levees are absent and river-floodplain exchange is dominated by the tides rather than seasonal variation in river stage. This difference between fluvial and tidal systems strongly affects the nature of sediment exchange between the channel and floodplain, including frequency, duration, and depth of inundation. Here we present data on the impact of this fluvial-tidal continuum on sedimentary processes in the floodplain and resultant depositional signatures. Changes in levee prominence, grain size, and sediment accumulation combine to produce the distinct morphologies of floodplain lakes, intertidal backswamps, and intertidal flats. In addition to sediment accumulation on the periodically exposed floodplain, Amazon River sediment accumulates within the drowned tributary confluences of the Xingu and Tapajós Rivers. Here seasonal and tidal changes in water temperature, discharge, and suspended-sediment concentration drive barotropic and baroclinic flows that transport Amazon River sediment into tributary basins. These findings help to constrain the fate of sediment within the ungauged Amazon tidal river, and will help in understanding the response of the lower Amazon River to changes in accommodation space associated with rising sea level, and changes

  11. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  12. Sediment transport dynamics in the swash zone under large-scale laboratory conditions

    NASA Astrophysics Data System (ADS)

    Ruju, Andrea; Conley, Daniel; Masselink, Gerd; Puleo, Jack

    2016-06-01

    A laboratory experiment was carried out to study sediment transport dynamics occurring in the swash zone of a coarse-sandy beach built in a large-scale wave flume. Hydro- and morpho-dynamic as well as sediment transport data were collected using sensors mounted on a scaffold rig deployed in the lower swash zone close to the moving bed. The high resolution of near-bed data permitted quantitative evaluation of suspended and sheet flow contributions to the total sediment transport. Although sheet flow sediment fluxes were higher than suspended fluxes, the vertically integrated suspended sediment load overcame the sheet flow load during uprush and it was on the same order of magnitude during backwash. The observed cumulative sediment transport was generally larger than the morphological changes occurring shoreward of the rig location implying either an underestimation of the offshore sediment transport or an overestimation of the onshore fluxes obtained from concentration and velocity profile data. Low correlations were found between net swash profile changes and runup parameters suggesting that local hydrodynamic parameters provide little or no predictability of accretion and erosion of an upper beach which is near equilibrium. The balance between erosion and deposition induced by individual swash events brought a dynamic equilibrium with small differences between the profiles measured at the start and at the end of the run.

  13. Methane Dynamics in Sediments from Mangrove-dominated Costal Lagoons

    NASA Astrophysics Data System (ADS)

    Chuang, P. C.; Paytan, A.; Young, M. B.

    2014-12-01

    Porewater methane and sulfate concentrations from cored sediments have been measured in two coastal mangrove ecosystems (Celestún and Chelem Lagoons) on the Yucatán Peninsula, Mexico. Methane exists in shallow sediments while sulfate is not depleted and stable carbon isotopes of methane (-87.27‰ ~ -62.08‰) imply high methane fluxes/production rates below and within the cored sediment depths. The preliminary results from a transport-reaction model show that methane emitted to the water column from these sediments could be 17.8 mg m-2 d-1 in Celestún Lagoon and much higher (565 mg m-2 d-1) in Chelem Lagoon. Since the water depths are shallow (mostly less than 100 cm), the high fluxes of methane could contribute to the atmosphere. The objectives of this study will aim to understand the biogeochemical cycles for methane and sulfate in sediments. A numerical transport-reaction model will be applied to the sedimentary geochemical data (methane, sulfate, chloride, particulate organic carbon (POC) and stable carbon isotopes of headspace methane) from the two lagoons to estimate sulfate reduction, methane oxidation and production rates and advective methane fluxes. The modeled results will be used to discuss the role of methane from mangrove areas and their potential contribution to the global methane cycle.

  14. Sedimentary Processes on Tidal Flats: Recent Studies of Mesotidal Settings in the US Pacific Northwest (Invited)

    NASA Astrophysics Data System (ADS)

    Nittrouer, C.; Ogston, A. S.; Lee, K. M.; Boldt, K. V.; Research Team

    2010-12-01

    Tidal flats are coastal environments that are very sensitive to environmental change, especially sea level. The sedimentary processes operating on flats control the deposits that accumulate there, and preserve a high-resolution record of coastal history - with impacts from both land and ocean. Over the past century, many studies have examined tidal flats around the world. Recent investigations of mesotidal flats in Washington state have provided much new insight to the hydrodynamics of water and sediment transport, biological influences on sediment entrapment, resulting morphology of tidal-flat and channel surfaces, and the dynamics of sediment accumulation. This research has been done in northern Puget Sound near the mouth of the Skagit River, and at the south end of Willapa Bay removed from significant fluvial discharge. The physical processes (winds, waves, tides, river discharge) operating on the Skagit tidal flat are sufficient to rework the flat on most tidal cycles, and cause regular resuspension of the upper 1-3 cm of sediment. This causes effective removal of fine sediment discharged by the river, and tidal currents transport this material to distant subtidal areas for accumulation. The resulting sand flat is non-cohesive, and tidal channels are able to migrate easily. During periods of significant sediment discharge (winter floods, summer snowmelt) some fine-grained material (mud) can be buried on the flanks of the migrating channels. These processes are distinctly different than in southern Willapa Bay, where fine-grained sediment (mud) dominates accumulation and is supplied from distant river sources during winter floods. The mud moves between tidal flats and channels, but primarily resides in tidal channels during winter. Sea grasses and benthic algae become more prevalent during summer, and the mud is trapped on the flats as these biological components cause shear stresses to decrease and shear strengths to increase. The net result is a mudflat

  15. Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics.

    PubMed

    Huang, Jianke; Feng, Fei; Wan, Minxi; Ying, Jiangguo; Li, Yuanguang; Qu, Xiaoxing; Pan, Ronghua; Shen, Guomin; Li, Wei

    2015-04-01

    A novel mixer was developed to improve the performance of flat-plate photobioreactors (PBRs). The effects of mixer were theoretically evaluated using computational fluid dynamics (CFD) according to radial velocity of fluid and light/dark cycles within reactors. The structure parameters, including the riser width, top clearance, clearance between the baffles and walls, and number of the chambers were further optimized. The microalgae culture test aiming at validating the simulated results was conducted indoor. The results showed the maximum biomass concentrations in the optimized and archetype reactors were 32.8% (0.89 g L(-1)) and 19.4% (0.80 g L(-1)) higher than that in the control reactor (0.67 g L(-1)). Therefore, the novel mixer can significantly increase the fluid velocity along the light attenuation and light/dark cycles, thus further increased the maximum biomass concentration. The PBRs with novel mixers are greatly applicable for high-efficiency cultivation of microalgae.

  16. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    NASA Astrophysics Data System (ADS)

    Vavrik, D.; Fauler, A.; Fiederle, M.; Jandejsek, I.; Jakubek, M.; Turecek, D.; Zwerger, A.

    2013-04-01

    Damage of gradually loaded ductile materials involves a number of physical processes which are highly nonlinear and have different intensity and extent. Dynamic defectoscopy (i.e. defectoscopy of time changing damage processes) combining an X-ray/optical imaging system is proposed for online visualization and analysis of the complex behaviour of such materials. A large area flat panel detector with rather long read out time is used for overall observation of slow damage processes. On the other hand, a semiconductor CdTe Timepix detector with small active area allows following the rapid damage processes occurring in the final phase of specimen failure. Optical imaging of the specimen surface was utilized for analysing the specimen deformations.

  17. New chronology for the southern Kalahari Group sediments - implications for sediment-cycle dynamics and basin development

    NASA Astrophysics Data System (ADS)

    Matmon, Ari; Hidy, Alan; Vainer, Shlomy; Crouvi, Onn; Fink, David; Erel, Yigal; Aster Team; Horwitz, Liora; Chazan, Michael

    2016-04-01

    Kalahari Group sediments accumulated in the Kalahari basin, which started forming during the breakup of Gondwana in the early Cretaceous. These sediments cover an extensive part of southern Africa and form a low-relief landscape. Current models assume that the Kalahari Group accumulated throughout the entire Cenozoic. However, chronology has been restricted to early-middle Cenozoic biostratigraphic correlations and to OSL dating of only the past ~300 ka. We present a new chronological framework that reveals a dynamic nature of sedimentation in the southern Kalahari. Cosmogenic burial ages obtained from a 55 m section of Kalahari Group sediments from the Mamatwan Mine, southern Kalahari, indicate that the majority of deposition at this location occurred rapidly at 1-1.2 Ma. This Pleistocene sequence overlies the Archaean basement, forming a significant hiatus that permits the possibility of many Phanerozoic cycles of deposition and erosion no longer preserved in the sedimentary record. Our data also establish the existence of a shallow early-middle Pleistocene water body that persisted for >450 ka prior to this rapid period of deposition and suggesting an Okavango-like environment. Evidence from neighboring archaeological excavations in southern Africa suggests an association of high-density hominin occupation with this water body.

  18. Hydrologic characteristics and suspended sediment dynamics in the Gradašica river basin

    NASA Astrophysics Data System (ADS)

    Kogoj, Mojca; Rusjan, Simon; Vidmar, Andrej; Mikoš, Matjaž

    2013-04-01

    Sediment transport in catchments is an important aspect of environmental research because of its role in the transport of sediment-associated nutrients, pesticides and other contaminants. High turbidity levels in water bodies affect stream morphology, aquatic organisms and their habitats, cause siltation of water reservoirs and have other side effects. For maintaining adequate water quality, reducing excessive soil erosion and proper estimation of the amount of transported material it is necessary to define and understand main factors that control sediment production and transport in rivers. Understanding the hydrological response of catchments on hydrometeorological phenomena and their influences on changes in suspended sediment concentrations require measurements of the processes at time scales that correspond to hydrological dynamics of a catchment. Our research aims to investigate hydrological and seasonal controls over suspended sediment production and obtain an insight into a suspended sediment concentration dynamics and total loads in a forested catchment. For this purpose, we study several factors actively controlling suspended sediment mobilization and transport in a small experimental catchment in Polhov Gradec mountainous area in the central part of Slovenia, drained by the Gradaščica river. Steep slopes, relatively high altitudes and abundance of precipitation (average yearly sums between 1600 to 1700 mm) result in a quick rise in the water level and consequently, in torrential response of the Gradaščica river. The studied headwaters lay on dolomite and limestone with a mainly natural land cover. The area is a subject to erosion with debris sources in the dolomite and additional catchment characteristics that contribute to high sediment transport rates. The main categories of factors that actively control sediment mobilization and transport from catchments, studied in our research, are hydrological and meteorological controls, physiographic factors

  19. Vortex dynamics and surface pressure fluctuations on a normal flat plate

    NASA Astrophysics Data System (ADS)

    Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.; Ferrari, Simon W.; Hu, Yaoping

    2016-11-01

    The effect of vortex formation and interactions on surface pressure fluctuations is examined in the wake of a normal flat plate by analyzing Direct Numerical Simulations at Re =1200. A novel local maximum score-based 3D method is used to track vortex development in the region close to the plate where the major contributions to the surface pressure are generated. Three distinct vortex shedding regimes are identified by changes in the lift and drag fluctuations. The instances of maximum drag coincide with impingement of newly formed vortices on the plate. This results in large and concentrated areas of rotational and strain contributions to generation of pressure fluctuations. Streamwise vortex straining and chordwise stretching are correlated with the large ratios of streamwise to chordwise normal stresses and regions of significant rotational contribution to the pressure. In contrast at the minimum drag, the vorticity field close to the plate is disorganized, and vortex roll-up occurs farther downstream. This leads to a uniform distribution of pressure. This study was supported by Alberta Innovates Technology Futures (AITF) and Natural Sciences and Engineering Research Council of Canada (NSERC).

  20. Flow Dynamics and Sediment Entrainment in Natural Turbidity Currents Inferred from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Traer, M. M.; Hilley, G. E.; Fildani, A.

    2009-12-01

    Submarine turbidity currents derive their momentum from gravity acting upon the density contrast between sediment-laden and clear water, and so unlike fluvial systems, the dynamics of such flows are inextricably linked to the rates at which they deposit and entrain sediment. We have analyzed the sensitivity of the growth and maintenance of turbidity currents to sediment entrainment and deposition using the layer-averaged equations of conservation of fluid and sediment mass, and conservation of momentum and turbulent kinetic energy. Our model results show that the dynamics of turbidity currents are extremely sensitive to the functional form and empirical constants of the relationship between sediment entrainment and friction velocity. Data on the relationship between sediment entrainment and friction velocity for submarine density flows are few and as a result, entrainment formulations are populated with data from sub-aerial flows not driven by the density contrast between clear and turbid water. If we entertain the possibility that sediment entrainment in sub-aerial rivers is different than in dense underflows, flow parameters such as velocity, height, and concentration were found nearly impossible to predict beyond a few hundred meters based on the limited laboratory data available that constrain the sediment entrainment process in turbidity currents. The sensitivity of flow dynamics to the functional relationship between friction velocity and sediment entrainment indicates that independent calibration of a sediment entrainment law in the submarine environment is necessary to realistically predict the dynamics of these flows and the resulting patterns of erosion and deposition. To calibrate such a relationship, we have developed an inverse methodology that utilizes existing submarine channel morphology as a means of constraining the sediment entrainment function parameters. We use a Bayesian Metropolis-Hastings sampler to determine the sediment entrainment

  1. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    SciTech Connect

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by using time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.

  2. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    NASA Astrophysics Data System (ADS)

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-01

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by using time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.

  3. [Pulmonary functional diagnostic imaging using a dynamic flat-panel detector: comparison with findings in pulmonary scintigraphy].

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Fujimura, Masaki; Yasui, Masahide; Tsuji, Shiro; Hayashi, Norio; Nanbu, Yuko; Matsui, Osamu

    2009-06-20

    Pulmonary ventilation and circulation dynamics are reflected on dynamic chest radiographs as changes in X-ray translucency,i.e., pixel values. The present study was performed to develop a pulmonary functional evaluation method based on the changes in pixel value, and to investigate the clinical usefulness of our method. Sequential chest radiographs of 20 subjects (abnormal,n=12; normal,n=8) during respiration were obtained with a dynamic flat-panel detector (FPD) system. The average pixel value in each local area was measured tracking the same area. To facilitate visual evaluation, the results were mapped on the original image using a grayscale in which small changes were shown in black and large changes were shown in white. In our clinical evaluation in comparison with a pulmonary scintigraphy, pulmonary ventilation disorder was indicated as a reduction of changes in pixel values. In many patients, there was a correlation between our result and a pulmonary scintigraphy (0.7

  4. Grazing Land Management Strongly Controls Water Quality, Sediment and Channel Dynamics in Tallgrass Prairie Headwater Networks

    NASA Astrophysics Data System (ADS)

    Grudzinski, B. G.; Daniels, M. D.

    2013-12-01

    In the prairie remnants of North America, watershed sediment regimes are heavily influenced by livestock grazing practices. Despite dramatic declines in stream water quality and ecosystem function concomitant with increasing gazing pressures, there have been no studies to quantitatively assess the relationship between various grazing treatments and sediment production in natural grassland ecosystems. In this study, we evaluate suspended sediment transport and channel morphology in the Flint Hills physiographic province using a paired whole-watershed approach, including 2 replicates of high density cattle grazing, 2 replicates of low density cattle grazing, 3 replicates of bison grazing and 3 replicates of no grazing. As expected, results demonstrate that cattle grazing operations increase e-coli, sediment concentrations and increase channel width. However, no significant differences in e-coli, suspended sediment dynamics or channel geomorphology were found between bison grazed and ungrazed watersheds.

  5. Sandia National Laboratories environmental fluid dynamics code : sediment transport user manual.

    SciTech Connect

    Grace, Matthew D.; Thanh, Phi Hung X.; James, Scott Carlton

    2008-09-01

    This document describes the sediment transport subroutines and input files for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC). Detailed descriptions of the input files containing data from Sediment Erosion at Depth flume (SEDflume) measurements are provided along with the description of the source code implementing sediment transport. Both the theoretical description of sediment transport employed in SNL-EFDC and the source code are described. This user manual is meant to be used in conjunction with the EFDC manual (Hamrick 1996) because there will be no reference to the hydrodynamics in EFDC. Through this document, the authors aim to provide the necessary information for new users who wish to implement sediment transport in EFDC and obtain a clear understanding of the source code.

  6. Escape paths for biogenic methane gas in lake sediments: morphology and dynamics

    NASA Astrophysics Data System (ADS)

    Scandella, B. P.; Hemond, H.; Ruppel, C. D.; Juanes, R.

    2011-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles grow in saturated pore water and escape more readily as the absolute pressure (due to changes in water level or atmospheric pressure) falls, but neither the morphology of gas flow paths nor the dynamics controlling them have been well-constrained. We present laboratory experiments in which methanogens are incubated in lacustrine sediments and the subsequent gas release is triggered by hydrostatic unloading. Image analysis shows the morphology and persistence of the network of gas release paths, and records of the pressures and stresses help to identify the dynamics that control ebullition from gassy sediments. This work is fundamental to constraining the parameterization of large-scale models of methane venting from submerged, organic-rich sediments.

  7. Analog Modeling of the Juan Fernández Ridge, Central Chile, and Implications for Flat-Slab Subduction Dynamics

    NASA Astrophysics Data System (ADS)

    Woodell, D.; Anderson, M. L.

    2009-12-01

    This study compares the strain experienced by the subducting lithosphere in analog models to the strain recorded by earthquakes in the subduction zone that includes the Juan Fernández Ridge (JFR), near 33 S, 73 W, off the coast of central Chile. The JFR is an aseismic hot spot ridge that has a thickened oceanic crust. The overthickened crust reduces the total density of the slab when compared to the surrounding slab areas, and thus increases the buoyancy of the subducting Nazca plate at this particular location. It is hypothesized that the Nazca plate experiences “flat-slab” subduction at the JFR subduction zone due to this buoyancy. Brudzinski and Chen (2005) argue that, due to the poorly aligned direction of maximum extension (T axes) for earthquakes in the subducting slab in flat-slab subduction zones, the theory of “slab pull” may not be valid for flat-slab subduction zones, and there must be other forces at work. However, Anderson et al. (2007) develop new, more precise slab contours from newly determined earthquake locations and use these contours to qualitatively compare the earthquake data to slab dip directions and thus expected slab-pull directions. They conclude that T axes are parallel to slab dip, and thus slab pull is the only force necessary for explaining the T axis direction. In this study, we quantitatively compare extension produced in analog "flat-slab" models in the laboratory to T axes from the Anderson et al. (2007) study, extending and further testing their idea. Several materials comprise the analog models. Light corn syrup represents the asthenosphere, while silicon putty represents the lithosphere. Recreating the dynamics of the buoyant JFR necessitates two different densities of silly putty: a denser one for the bulk of the slab, and a less dense one for the buoyant ridge. Shallow circular indentations (strain ellipses) on the slab facilitate recording of the strain in the subducting slab. Video and still pictures record each

  8. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary

    NASA Astrophysics Data System (ADS)

    Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri

    2015-09-01

    A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.

  9. Assessing sediment connectivity to understand dynamics of contaminated sediment within coastal catchments of Fukushima Prefecture (Japan)

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Ottlé, Catherine; Brossoni, Camille; Lefèvre, Irène; Lepage, Hugo; Bonté, Philippe; Patin, Jeremy; Ayrault, Sophie

    2013-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accident has led to the release of large radionuclide quantities (e.g., about 20 PBq of Cs-137 and 200 PBq of I-131) into the atmosphere. About 80% of the release was blown out and over the Pacific Ocean. The remaining 20% of emissions were deposited as wet and dry deposits on soils of Fukushima Prefecture, mainly between 15-16 March. As most radionuclides are strongly sorbed by fine particles, they are likely to be redistributed within the landscape in association with soil and sediment particles transported by runoff and erosion processes. A spatial analysis of Ag-110m:Cs-137 ratio in soils and river sediments provided a way to trace those transfers. This fingerprinting study showed that particles eroded from inland mountain ranges exposed to the highest initial radionuclide fallout were already dispersed along coastal rivers, most likely during summer typhoons and spring snowmelt. Those results suggest that hillslopes and rivers have become a perennial source of radioactive contaminants to the Pacific Ocean off Fukushima Prefecture. This study aims to specify the location and nature of the preferential sources supplying contaminated material to the main rivers draining the Fukushima contamination plume. To this end, important parameters controlling soil erosion and sediment transfers within catchments, i.e. landscape morphology and land use characteristics, were preliminary derived from DEM data and satellite images for the River Mano, Nitta and Ota catchments (ca. 525 km²) draining the most radioactive part of the contamination plume that formed across Fukushima Prefecture. Then, those data were used to compute indices assessing the potential sediment connectivity (i) between hillslopes and rivers and (ii) between hillslopes and catchment outlets. Finally, spatially-distributed values of connectivity indices were confronted to gamma-emitting radionuclide activities (Cs-134, Cs-137 and Ag-110m) measured in riverbed

  10. Development of functional chest imaging with a dynamic flat-panel detector (FPD).

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Fujimura, Masaki; Yasui, Masahide; Nakayama, Kazuya; Matsui, Takeshi; Hayashi, Norio; Matsui, Osamu

    2008-07-01

    Dynamic FPD permits the acquisition of distortion-free radiographs with a large field of view and high image quality. In the present study, we investigated the feasibility of functional imaging for evaluating the pulmonary sequential blood distribution with an FPD, based on changes in pixel values during cardiac pumping. Dynamic chest radiographs of seven normal subjects were obtained in the expiratory phase by use of an FPD system. We measured the average pixel value in each region of interest that was located manually in the heart and lung areas. Subsequently, inter-frame differences and differences from a minimum-intensity projection image, which was created from one cardiac cycle, were calculated. These difference values were then superimposed on dynamic chest radiographs in the form of a color display, and sequential blood distribution images and a blood distribution map were created. The results were compared to typical data on normal cardiac physiology. The clinical effectiveness of our method was evaluated in a patient who had abnormal pulmonary blood flow. In normal cases, there was a strong correlation between the cardiac cycle and changes in pixel value. Sequential blood distribution images showed a normal pattern at determined by the physiology of pulmonary blood flow, with a symmetric distribution and no blood flow defects throughout the entire lung region. These findings indicated that pulmonary blood flow was reflected on dynamic chest radiographs. In an abnormal case, a defect in blood flow was shown as defective in color in a blood distribution map. The present method has the potential for evaluation of local blood flow as an optional application in general chest radiography.

  11. Approaching a flat boundary with a block copolymer coated emulsion drop: late stage drainage dynamics

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.

  12. Development of a national, dynamic reservoir-sedimentation database

    USGS Publications Warehouse

    Gray, J.R.; Bernard, J.M.; Stewart, D.W.; McFaul, E.J.; Laurent, K.W.; Schwarz, G.E.; Stinson, J.T.; Jonas, M.M.; Randle, T.J.; Webb, J.W.

    2010-01-01

    The importance of dependable, long-term water supplies, coupled with the need to quantify rates of capacity loss of the Nation’s re servoirs due to sediment deposition, were the most compelling reasons for developing the REServoir- SEDimentation survey information (RESSED) database and website. Created under the auspices of the Advisory Committee on Water Information’s Subcommittee on Sedimenta ion by the U.S. Geological Survey and the Natural Resources Conservation Service, the RESSED database is the most comprehensive compilation of data from reservoir bathymetric and dry-basin surveys in the United States. As of March 2010, the database, which contains data compiled on the 1950s vintage Soil Conservation Service’s Form SCS-34 data sheets, contained results from 6,616 surveys on 1,823 reservoirs in the United States and two surveys on one reservoir in Puerto Rico. The data span the period 1755–1997, with 95 percent of the surveys performed from 1930–1990. The reservoir surface areas range from sub-hectare-scale farm ponds to 658 km2 Lake Powell. The data in the RESSED database can be useful for a number of purposes, including calculating changes in reservoir-storage characteristics, quantifying sediment budgets, and estimating erosion rates in a reservoir’s watershed. The March 2010 version of the RESSED database has a number of deficiencies, including a cryptic and out-of-date database architecture; some geospatial inaccuracies (although most have been corrected); other data errors; an inability to store all data in a readily retrievable manner; and an inability to store all data types that currently exist. Perhaps most importantly, the March 2010 version of RESSED database provides no publically available means to submit new data and corrections to existing data. To address these and other deficiencies, the Subcommittee on Sedimentation, through the U.S. Geological Survey and the U.S. Army Corps of Engineers, began a collaborative project in

  13. Suspended sediment dynamics in a tidal channel network under peak river flow

    NASA Astrophysics Data System (ADS)

    Achete, Fernanda Minikowski; van der Wegen, Mick; Roelvink, Dano; Jaffe, Bruce

    2016-05-01

    Peak river flows transport fine sediment, nutrients, and contaminants that may deposit in the estuary. This study explores the importance of peak river flows on sediment dynamics with special emphasis on channel network configurations. The Sacramento-San Joaquin Delta, which is connected to San Francisco Bay (California, USA), motivates this study and is used as a validation case. Besides data analysis of observations, we applied a calibrated process-based model (D-Flow FM) to explore and analyze high-resolution (˜100 m, ˜1 h) dynamics. Peak river flows supply the vast majority of sediment into the system. Data analysis of six peak flows (between 2012 and 2014) shows that on average, 40 % of the input sediment in the system is trapped and that trapping efficiency depends on timing and magnitude of river flows. The model has 90 % accuracy reproducing these trapping efficiencies. Modeled deposition patterns develop as the result of peak river flows after which, during low river flow conditions, tidal currents are not able to significantly redistribute deposited sediment. Deposition is quite local and mainly takes place at a deep junction. Tidal movement is important for sediment resuspension, but river induced, tide residual currents are responsible for redistributing the sediment towards the river banks and to the bay. We applied the same forcing for four different channel configurations ranging from a full delta network to a schematization of the main river. A higher degree of network schematization leads to higher peak-sediment export downstream to the bay. However, the area of sedimentation is similar for all the configurations because it is mostly driven by geometry and bathymetry.

  14. Holocene sediment dynamics on a cool-water carbonate shelf: Otway, southeastern Australia

    SciTech Connect

    Boreen, T.D.; James, N.P. )

    1993-07-01

    The Otway Shelf is covered by cool waters and veneered by bryozoan-dominated carbonate sediments. Radiocarbon dating and stratigraphy of shelf vibracores and slope gravity cores document late Pleistocene/Holocene deposition. Shelf sediments of the late Pleistocene high-stand are rare, either never having been deposited or having been removed during the following sea-level fall. During the subsequent lowstand the shelf was exposed, facies shifted basinward, and beach/dune complexes were constructed near the shelf edge. The deep shelf was characterized by nondeposition and hardground formation, and the shelf margin became locally erosional. Upper-slope bryozoan/sponge assemblages continued to grow actively, and lower-slope foraminifera and nannofossil ooze was increasingly enriched in hemipelagic terrigenous mud swept off the wide shelf. Coarse shelf debris and lowstand dune sands were erosively reworked and transported onto the upper slope and redistributed to deep-slope aprons during early transgression. The late Quaternary shelf record resembles that of flat-topped, warm-water platforms with Holocene sediment overlying Pleistocene/Tertiary limestone, but for different reasons. The slow growth potential, uniform profile of sediment production and distribution, and inability of constituent organisms to construct rigid frameworks favor maintenance of a shallow ramp profile and makes the cool-water carbonate system an excellent modern analog for interpretation of many ancient ramp successions.

  15. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    SciTech Connect

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  16. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    DOE PAGES

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  17. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  18. Deltas as Ecomorphodynamic Systems: Effects of Vegetation Gradients on Sediment Trapping and Channel Dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Goggin, H.

    2014-12-01

    Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important

  19. Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River

    USGS Publications Warehouse

    Cavanaugh, Jennifer C.; Richardson, William B.; Strauss, Eric A.; Bartsch, Lynn

    2006-01-01

    Nitrogen (N) has been linked to increasing eutrophication in the Gulf of Mexico and as a result there is increased interest in managing and improving water quality in the Mississippi River system. Water level reductions, or 'drawdowns', are being used more frequently in large river impoundments to improve vegetation growth and sediment compaction. We selected two areas of the Upper Mississippi River system (Navigation Pool 8 and Swan Lake) to examine the effects of water level drawdown on N dynamics. Navigation Pool 8 experienced summer drawdowns in 2001 and 2002. Certain areas of Swan Lake have been drawn down annually since the early 1970s where as other areas have remained inundated. In the 2002 Pool 8 study we determined the effects of sediment drying and rewetting resulting from water level drawdown on (1) patterns of sediment nitrification and denitrification and (2) concentrations of sediment and surface water total N (TN), nitrate, and ammonium (NH4+). In 2001, we only examined sediment NH4+ and TN. In the Swan Lake study, we determined the long-term effects of water level drawdowns on concentrations of sediment NH4+ and TN in sediments that dried annually and those that remained inundated. Sediment NH4+ decreased significantly in the Pool 8 studies during periods of desiccation, although there were no consistent trends in nitrification and denitrification or a reduction in total sediment N. Ammonium in sediments that have dried annually in Swan Lake appeared lower but was not significantly different from sediments that remain wet. The reduction in sediment NH4+ in parts of Pool 8 was likely a result of increased plant growth and N assimilation, which is then redeposited back to the sediment surface upon plant senescence. Similarly, the Swan Lake study suggested that drawdowns do not result in long term reduction in sediment N. Water level drawdowns may actually reduce water retention time and river-floodplain connectivity, while promoting significant

  20. Assessing surface sediment dynamics along the north-west coast of Marsa Dhouiba (Tunisia, southern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Khiari, Nouha; Atoui, Abdelfattah; Brahim, Mouldi; Sammari, Chérif; Charef, Abdelkrim; Aleya, Lotfi

    2016-04-01

    An investigation was conducted from summer 2012 to winter 2013 at 25 stations along the Tunisian coast near Kef Abbed at Marsa Dhouiba (north-east Mediterranean Sea) to analyse grain size, sediment mineralogy and currents. Particle-size analysis shows that sand deposits at shallow depths are characterised by S-shaped curves, indicating a degree of agitation and possible transport by rip currents near the bottom. At greater depths (between 10 and 30 m), the bottom is covered by coarse sand and gravel. A current was observed transporting sediment eastward along the coast; another seaward current was also noted. Generated by wind, swell and especially waves from west to north-west, the two currents transport clay and silt-sized sediment seaward. An Acoustic Doppler Current Profiler showed Marsa Dhouiba's coastal current to follow a direction 175° East, with its main axis running north/north-west parallel to the coast and its minor axis also running north/north-west. Analysis of current components indicates that the velocities u and v are oriented north to south. Sediment evolution in shallow waters is dependent on detrital inputs from streams and winds. The coarse fraction of surface sediments in Marsa Dhouiba presents 87% of total sediments and is located at depths of 10-30 m. Sediment dynamics in the Marsa Dhouiba region are closely related to the west/north-west swell.

  1. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.

  2. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  3. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    SciTech Connect

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.; Resch, Charles T.; Arntzen, Evan V.; Smithgall, A. N.; Pfiffner, S.; Freifeld, Barry M.; White, D. C.; Long, Philip E.

    2009-09-23

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.

  4. Dynamics and recovery of a sediment-exposed Chironomus riparius population: A modelling approach.

    PubMed

    Diepens, Noël J; Beltman, Wim H J; Koelmans, Albert A; Van den Brink, Paul J; Baveco, Johannes M

    2016-06-01

    Models can be used to assess long-term risks of sediment-bound contaminants at the population level. However, these models usually lack the coupling between chemical fate in the sediment, toxicokinetic-toxicodynamic processes in individuals and propagation of individual-level effects to the population. We developed a population model that includes all these processes, and used it to assess the importance of chemical uptake routes on a Chironomus riparius population after pulsed exposure to the pesticide chlorpyrifos. We show that particle ingestion is an important additional exposure pathway affecting C. riparius population dynamics and recovery. Models ignoring particle ingestion underestimate the impact and the required recovery times, which implies that they underestimate risks of sediment-bound chemicals. Additional scenario studies showed the importance of selecting the biologically relevant sediment layer and showed population effects in the long term.

  5. Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea.

    PubMed

    Jung, Yong-Taek; Lee, Jung-Sook; Yoon, Jung-Hoon

    2015-10-01

    A Gram-strain-negative, coccoid or oval-shaped, non-motile bacterial strain, designated MDM-1T, was isolated from a tidal-flat sediment on the Korean peninsula. Strain MDM-1T was found to grow optimally at pH 7.0-8.0, at 30 °C and in the presence of 2-3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain MDM-1T falls within the clade comprising species of the genus Algoriphagus, clustering with the type strains of Algoriphagus halophilus, A. lutimaris, A. chungangensis and A. machipongonensis, with which it exhibited 97.2-98.5 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Algoriphagus were 92.8-97.6 %. Strain MDM-1T was found to contain MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids. The major polar lipids were identified as phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain MDM-1T was determined to be 42.7 mol% and the mean DNA-DNA relatedness with A. halophilus KCTC 12051T, A. lutimaris S1-3T, A. chungangensis KCTC 23759T, A. machipongonensis DSM 24695T and A. ratkowskyi CIP 107452T was 19.7-5.2 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MDM-1T is distinguishable from recognized species of the genus Algoriphagus. On the basis of the data presented, strain MDM-1T is proposed to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus aestuarii sp. nov. is proposed. The type strain is MDM-1T ( = KCTC 42199T = NBRC 110552T).

  6. Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments

    NASA Astrophysics Data System (ADS)

    Nowaczyk, N. R.; Arz, H. W.; Frank, U.; Kind, J.; Plessen, B.

    2012-10-01

    Investigated sediment cores from the southeastern Black Sea provide a high-resolution record from mid latitudes of the Laschamp geomagnetic polarity excursion. Age constraints are provided by 16 AMS 14C ages, identification of the Campanian Ignimbrite tephra (39.28±0.11 ka), and by detailed tuning of sedimentologic parameters of the Black Sea sediments to the oxygen isotope record from the Greenland NGRIP ice core. According to the derived age model, virtual geomagnetic pole (VGP) positions during the Laschamp excursion persisted in Antarctica for an estimated 440 yr, making the Laschamp excursion a short-lived event with fully reversed polarity directions. The reversed phase, centred at 41.0 ka, is associated with a significant field intensity recovery to 20% of the preceding strong field maximum at ˜50 ka. Recorded field reversals of the Laschamp excursion, lasting only an estimated ˜250 yr, are characterized by low relative paleointensities (5% relative to 50 ka). The central, fully reversed phase of the Laschamp excursion is bracketed by VGP excursions to the Sargasso Sea (˜41.9 ka) and to the Labrador Sea (˜39.6 ka). Paleomagnetic results from the Black Sea are in excellent agreement with VGP data from the French type locality which facilitates the chronological ordering of the non-superposed lavas that crop out at Laschamp-Olby. In addition, VGPs between 34 and 35 ka reach low northerly to equatorial latitudes during a clockwise loop, inferred to be the Mono lake excursion.

  7. Spatial patterns of sediment dynamics within a medium-sized watershed over an extreme storm event

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhang, Zhirou

    2016-08-01

    In this study, we quantified spatial patterns of sediment dynamics in a watershed of 311 km2 over an extreme storm event using watershed modeling and statistical analyses. First, we calibrated a watershed model, Dynamic Watershed Simulation Model (DWSM) by comparing the predicted with calculated hydrograph and sedigraph at the outlet for this event. Then we predicted values of event runoff volume (V), peak flow (Qpeak), and two types of event sediment yields for lumped morphological units that contain 42 overland elements and 21 channel segments within the study watershed. Two overland elements and the connected channel segment form a first-order subwatershed, several of which constitute a larger nested subwatershed. Next we examined (i) the relationships between these variables and area (A), precipitation (P), mean slope (S), soil erodibility factor, and percent of crop and pasture lands for all overland elements (i.e., the small spatial scale, SSS), and (ii) those between sediment yield, Qpeak, A, P, and event runoff depth (h) for the first-order and nested subwatersheds along two main creeks of the study watershed (i.e., the larger spatial scales, LSS). We found that at the SSS, sediment yield was nonlinearly well related to A and P, but not Qpeak and h; whereas at the LSS, linear relationships between sediment yield and Qpeak existed, so did the Qpeak-A, and Qpeak-P relationships. This linearity suggests the increased connectivity from the SSS to LSS, which was caused by ignorance of channel processes within overland elements. It also implies that sediment was transported at capacity during the extreme event. So controlling sediment supply from the most erodible overland elements may not efficiently reduce the downstream sediment load.

  8. Quantifying and Modelling Long Term Sediment Dynamics in Catchments in Western Europe

    NASA Astrophysics Data System (ADS)

    Notebaert, B.; De Brue, H.; Verstraeten, G.; Broothaerts, N.

    2015-12-01

    Quantification of sediment dynamics allows to get insight in driving forces and internal dynamics of the sediment cascade system. A useful tool to achieve this is the sediment budget approach, which encompasses the quantification of different sinks and sources. A Holocene time-differentiated sediment budget has been constructed for the Belgian Dijle River catchment (720 km²), based on a large set of field data. The results show how soil erosion is driven by land use changes over longer timescales. Sediment redistribution and the relative importance of the different sinks also vary over time, mainly as a result of changing land use and related landscape connectivity. However, the coarse temporal resolution typically associated with Holocene studies complicates the understanding of sub-millennial scale processes. In a second step, the field-based sediment budget was combined with a modeling approach using Watem/Sedem, a spatially distributed model that simulates soil erosion and colluvial deposition. After validation of the model calibration against the sediment budget, the model was used in a sensitivity analysis. Results confirm the overwhelming influence of human land use on both soil erosion and landscape connectivity, whereas the climatic impact is comparatively small. In addition to catchment-wide simulations, the model also served to test the relative importance of lynchets and dry valleys in different environments. Finally, the geomorphic model was used to simulate past land use, taking into account equifinality. For this purpose, a large series of hypothetical time-independent land use maps of the Dijle catchment were modeled based on a multi-objective allocation algorithm, and applied in Watem/Sedem. Modeled soil erosion and sediment deposition outcomes for each scenario were subsequently compared with the field-based record, taking into account uncertainties. As such, the model allows to evaluate and select realistic land use scenarios for the Holocene.

  9. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  10. Phosphorus dynamics in lake sediments: Insights from field study and reactive-transport modeling

    NASA Astrophysics Data System (ADS)

    Dittrich, Maria; Markovic, Stefan; Cadena, Sandra; Doan, Phuong T. K.; Watson, Sue; Mugalingam, Shan

    2016-04-01

    Phosphorus is an indispensable nutrient for organisms in aquatic systems and its availability often controls primary productivity. At the sediment-water interface, intensive microbiological, geochemical and physical processes determine the fraction of organic matter, nutrients and pollutants released into the overlying water. Therefore, detailed understanding of the processes occurring in the top centimeters of the sediment is essential for the assessment of water quality and the management of surface waters. In cases where measurements are impossible or expensive, diagenetic modelling is required to investigate the interplay among the processes, verify concepts and predict potential system behavior. The main aims of this study are to identify and predict the dynamics of phosphorus (P) in sediments and gain insight into the mechanism of P release from sediments under varying environmental conditions. We measured redox, O2 and pH profiles with micro-sensors at the sediment-water interface; analyzed phosphate and metals (Fe, Mn, Al, Ca) content in pore waters collected using in situ samplers, so called "peepers"; determined P binding forms using sequential extraction and analyzed metals associated with each fraction. Following the sediment analysis, P binding forms were divided in five groups: inert, carbonate-bound, organic, redox-sensitive, and labile P. Using the flux of organic and inorganic matter as dynamic boundary conditions, the diagenetic model simulates P internal loading and predicts P retention. This presentation will discuss the results of two years studies on P dynamics at the sediment-water interface in three different lakes ranging from heavy-polluted Hamilton Harbor and Bay of Quinte to pristine Georgian Bay in Ontario, Canada.

  11. Dynamics of suspended sediment plumes in Lake Ontario

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Enhancement of ERTS-1 imagery yielded excellent quality 35-mm color slides and prints of several prominent turbidity plumes in Lake Ontario. Selected ERTS-1 frames of the Welland Canal and Genesee River plumes will be used to develop time-lapse sequences showing the impact of wind stress on each plume. Unusually high lake levels during the spring resulted in extensive beach erosion along the entire Lake Ontario shoreline. The resulting high concentrations of suspended matter generated highly turbid (up to 420 JTU) nearshore conditions that appeared milky white in the imagery obtained April 12 and 29th, 1973. During the shipping season, both the Welland Canal and a diversion channel at Port Dalhousie, Ontario, produced readily identifiable turbidity plumes in Lake Ontario. However, in the winter neither plume was visible in the ERTS-1 imagery suggesting sharply lower sediment discharge into Lake Ontario from these sources.

  12. Denoising and artefact reduction in dynamic flat detector CT perfusion imaging using high speed acquisition: first experimental and clinical results

    NASA Astrophysics Data System (ADS)

    Manhart, Michael T.; Aichert, André; Struffert, Tobias; Deuerling-Zheng, Yu; Kowarschik, Markus; Maier, Andreas K.; Hornegger, Joachim; Doerfler, Arnd

    2014-08-01

    Flat detector CT perfusion (FD-CTP) is a novel technique using C-arm angiography systems for interventional dynamic tissue perfusion measurement with high potential benefits for catheter-guided treatment of stroke. However, FD-CTP is challenging since C-arms rotate slower than conventional CT systems. Furthermore, noise and artefacts affect the measurement of contrast agent flow in tissue. Recent robotic C-arms are able to use high speed protocols (HSP), which allow sampling of the contrast agent flow with improved temporal resolution. However, low angular sampling of projection images leads to streak artefacts, which are translated to the perfusion maps. We recently introduced the FDK-JBF denoising technique based on Feldkamp (FDK) reconstruction followed by joint bilateral filtering (JBF). As this edge-preserving noise reduction preserves streak artefacts, an empirical streak reduction (SR) technique is presented in this work. The SR method exploits spatial and temporal information in the form of total variation and time-curve analysis to detect and remove streaks. The novel approach is evaluated in a numerical brain phantom and a patient study. An improved noise and artefact reduction compared to existing post-processing methods and faster computation speed compared to an algebraic reconstruction method are achieved.

  13. REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES

    EPA Science Inventory

    This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...

  14. Phosphorus Dynamics in Soil, Runoff, and Sediment from Three Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of poultry litter can lead to increased phosphorus (P) level in surface runoff and sediment, which in turn, potentially accelerates the eutrophication in the water bodies. The objective of this research was to study the P dynamics in two poultry litter amended soils using three mana...

  15. Nonlinear Dynamics of Biofilm Growth on Sediment Surfaces

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Murdoch, L. C.; Faybishenko, B.

    2013-12-01

    Bioclogging often begins with the establishment of small colonies (microcolonies), which then form biofilms on the surfaces of a porous medium. These biofilm-porous media surfaces are not simple coatings of single microbes, but complex assemblages of cooperative and competing microbes, interacting with their chemical environment. This leads one to ask: what are the underlying dynamics involved with biofilm growth? To begin answering this question, we have extended the work of Kot et al. (1992, Bull. Mathematical Bio.) from a fully mixed chemostat to an idealized, one-dimensional, biofilm environment, taking into account a simple predator-prey microbial competition, with the prey feeding on a specified food source. With a variable (periodic) food source, Kot et al. (1992) were able to demonstrate chaotic dynamics in the coupled substrate-prey-predator system. Initially, deterministic chaos was thought by many to be mainly a mathematical phenomenon. However, several recent publications (e.g., Becks et al, 2005, Nature Letters; Graham et al. 2007, Int. Soc Microb. Eco. J.; Beninca et al., 2008, Nature Letters; Saleh, 2011, IJBAS) have brought together, using experimental studies and relevant mathematics, a breakthrough discovery that deterministic chaos is present in relatively simple biochemical systems. Two of us (Faybishenko and Molz, 2013, Procedia Environ. Sci)) have numerically analyzed a mathematical model of rhizosphere dynamics (Kravchenko et al., 2004, Microbiology) and detected patterns of nonlinear dynamical interactions supporting evidence of synchronized synergetic oscillations of microbial populations, carbon and oxygen concentrations driven by root exudation into a fully mixed system. In this study, we have extended the application of the Kot et al. model to investigate a spatially-dependent biofilm system. We will present the results of numerical simulations obtained using COMSOL Multi-Physics software, which we used to determine the nature of the

  16. Sediment dynamics in restored riparian forest with different widths and agricultural surroundings

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel

    2016-04-01

    The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an

  17. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.

    PubMed

    Spruijt, E; Biesheuvel, P M

    2014-02-19

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of

  18. Towards a Holistic Model for Simulating Sediment Dynamics at Watershed Scales: Partitioning of Sediment Sources and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Abban, Benjamin; Papanicolaou, Thanos; Cowles, Kate; Wilson, Christopher; Abaci, Ozan; Wacha, Kenneth

    2016-04-01

    The challenge remains to understand watershed sediment source dynamics for planning and evaluating mitigation measures on anthropogenic activities such as intensive agriculture, which exacerbates soil erosion from the landscape. To this end, our research aims to develop a cross-scale model, capable of simulating sediment transport from the plot scale to the watershed scale while effectively capturing the important feedback effects across the scales. Our approach combines numerical modeling with physical observations and measurements to not only provide a tool capable of mimicking cause and effect relationships, but also capable of quantifying uncertainty related to source dynamics predictions. We present herein a key component of the cross-scale model that quantifies source partitioning and the associated uncertainty. This component is based on a Bayesian un-mixing framework and is particularly useful for watersheds characterized by considerable spatiotemporal heterogeneity. The Bayesian un-mixing framework utilizes two key parameters, namely α and β, that explicitly accounts for spatial origin attributes and the time history of sediments delivered to the watershed outlet, respectively. These parameters are treated probabilistically so as to account for variability in source erosion processes, as well as the delivery times and storage of eroded material within the watershed. The use of Markov Chain Monte Carlo simulations for determining posterior probability density functions in the framework allows uncertainty in source contribution estimates to be quantified naturally as part of the solution process. We demonstrate the utility of the Bayesian un-mixing framework in a predominantly agricultural watershed in the US Midwest known as the Clear Creek Watershed, IA, which is part of the Critical Zone Observatory for Intensively Managed Landscapes (IML-CZO). Stable isotopes of Carbon and Nitrogen are used as tracers since they have been found to be appropriate for

  19. Assessing sediment dynamics of the Middle St. Johns River Basin, Lake Jesup, Florida, USA

    NASA Astrophysics Data System (ADS)

    Anderson, W. T.; Nielsen, S. M.; Scinto, L. J.; Thomas, S.; Fugate, D. C.; Corbett, D. R.; Brandt-Williams, S.

    2010-12-01

    Lake Jesup is a shallow, hypereutrophic lake located in the middle St. Johns River basin that received large loads of secondary effluent prior to 1985 and experiences tidal, tributary and wind influenced flow. To date we have assessed the use of several different types of sediment traps at different water depths within this shallow basin (typically less than 2.5 m). Each system deployed has its advantages, but deployments in shallow systems present unique challenges. We have augmented our sediment traps with additional observation and data collection systems to evaluate our approach for studying sedimentation rates in the basin. These systems include a floating barge platform to collect daily water samples for suspended particles, weather stations for wind direction and velocity current (flow) meter and acoustic Doppler water velocity systems (ADVs). Results from 2009 to 2010 show mass accumulation rates ranging between 200 g dw m-2 d-1 to 1200 g dw m-2 d-1. Trap material was analyzed for nutrients to better understand fluxes of carbon, nitrogen, and phosphorus. Sediment oxygen demand was measured during incubation experiments to determine potential effects on water column oxygen concentrations during resuspension events. In the second phase of this project (2010 to 2011) we will measure radioisotopes to better estimate the source of resuspended particles. Our goal is to use the deployed instrumentation to show how hydrodynamics affect sediment transport in this basin. Studying the sediment dynamics of highly productive fresh water end members of estuary systems is critical to better quantify biogeochemical fluxes necessary for effective restoration management. This paper will present a model of nutrient flux and accumulation rates, sediment oxygen demand, correlations between sediment flux and potential driving forces, and initial results from radioisotope sourcing.

  20. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    NASA Astrophysics Data System (ADS)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  1. Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents

    NASA Astrophysics Data System (ADS)

    Carniello, L.; D'Alpaos, A.

    2014-12-01

    A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically

  2. The distribution dynamics and desorption behaviour of mobile pharmaceuticals and caffeine to combined sewer sediments.

    PubMed

    Hajj-Mohamad, M; Darwano, H; Duy, S Vo; Sauvé, S; Prévost, M; Arp, H P H; Dorner, S

    2017-01-01

    Pharmaceuticals are discharged to the environment from wastewater resource recovery facilities, sewer overflows, and illicit sewer connections. To understand the fate of pharmaceuticals, there is a need to better understand their sorption dynamics to suspended sediments (SS) and settled sediments (StS) in sewer systems. In this study, such sorption dynamics to both SS and StS were assessed using a batch equilibrium method under both static and dynamic conditions. Experiments were performed with natively occurring and artificially modified concentrations of sewer pharmaceuticals (acetaminophen, theophylline, carbamazepine, and a metabolite of carbamazepine) and caffeine. Differences in apparent distribution coefficients, Kd,app, between SS and StS were related to differences in their organic carbon (OC) content, and the practice of artificially modifying the concentration. Kd,app values of modified contaminant concentrations and high OC sediments were substantially higher. Pseudo-second order desorption rates for these mobile compounds were also quantified. Successive flushing events to simulate the addition of stormwater to sewer networks revealed that aqueous concentrations would not necessarily decrease, because the added water will rapidly return to equilibrium concentrations with the sediments. Sorption and desorption kinetics must be considered in addition to dilution, to avoid underestimating the influence of dilution on concentrations of pharmaceuticals discharged to the environment.

  3. Variability of in situ sediment strength and pore pressure behavior of tidal estuary surface sediments

    NASA Astrophysics Data System (ADS)

    Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen

    2017-01-01

    Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.

  4. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    NASA Astrophysics Data System (ADS)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; hUallachain, D. O.

    2015-08-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well

  5. Sediment Dynamics in the Upper McKenzie River Basin, Central Oregon Cascade Range

    NASA Astrophysics Data System (ADS)

    Stallman, J. D.; Bowers, R. J.; Cabrera, N. C.; Real de Asua, R.; Wooster, J. K.

    2005-12-01

    Reference and current sediment budgets were developed to evaluate the extent to which hydroelectric dams alter sediment dynamics in the upper McKenzie River basin of central Oregon. The 647 km2 study area straddles the western boundary of the High Cascades graben separating the High Cascades and Western Cascades geologic terrains. Permeable Quaternary volcanics forming the low-gradient High Cascades plateau promote surface hydrologic disconnection, nearly constant discharge controlled by groundwater emergence, and low sediment yield. In contrast, deeply weathered Tertiary volcanics, rugged topography, and a dense network of steep channels in the Western Cascades terrain promote peaked storm responses and high sediment yield by deep-seated mass movement, debris slides, and debris flows. Three independent estimates of sediment yield (application of published surface process rates, extrapolation of regional suspended load and bedload flux rates, and extrapolation of reservoir sedimentation rates) illustrate the dominant role of geologic terrains in determining the longitudinal pattern of sediment supply to the McKenzie River. Average reference yields from High Cascades and Western Cascades sources were 9 t km-2y-1 and 200 t km-2y-1, respectively. Downstream of Trail Bridge Dam, High Cascades sources (241 km2) account for 12% of the total reference yield, while Western Cascades sources (67 km2) account for 62%. Estimates of current sediment yield illustrate the offsetting effects of reservoir sediment trapping and accelerated yield related to forest management. Average current yields from High Cascades and Western Cascades sources were 17 t km-2y-1 and 300 t km-2y-1, respectively. Current yield to the McKenzie River arm of Trail Bridge Reservoir (42 km2 sourced in High Cascades terrain) was 17 t km-2y-1, while current yield to Smith Reservoir (48 km2 sourced in Western Cascades terrain) was 251 t km-2y-1. The relation between hydroelectric project effects and forest

  6. Modelling the effects of Zostera noltei meadows on sediment dynamics: application to the Arcachon lagoon

    NASA Astrophysics Data System (ADS)

    Kombiadou, Katerina; Ganthy, Florian; Verney, Romaric; Plus, Martin; Sottolichio, Aldo

    2014-10-01

    A three-dimensional model has been modified to describe the complex interactions between hydrodynamics, sediment dynamics and biological parameters in the presence of Zostera noltei. The model treats seagrass leafs as flexible blades that bend under hydrodynamic forcing and alter the local momentum and turbulence fluxes and, therefore, the benthic shear conditions; these changes cause related changes to the mass balance at the boundary of the bed, in turn affecting the suspended matter in the column and ultimately primary productivity and the growth of the dwarf-grass. Modelling parameters related to the impact of Z. noltei to the local flow and to erosion and deposition rates were calibrated using flume experimental measurements; results from the calibration of the model are presented and discussed. The coupled model is applied in the Arcachon Bay, an area with high environmental significance and large abundance of dwarf-grass meadows. In the present paper, results from preliminary applications of the model are presented and discussed; the effectiveness of the coupled model is assessed comparing modelling results with available field measurements of suspended sediment concentrations and seagrass growth parameters. The model generally reproduces sediment dynamics and dwarf-grass seasonal growth in the domain efficiently. Investigations regarding the effects of the vegetation to the near-bed hydrodynamics and to the sediment suspension in the domain show that dwarf-grass meadows play an important part to velocity attenuation and to sediment stabilisation, with flow and suspended sediment concentrations damping, compared to an unvegetated state, to reach 35-50 and 65 %, respectively, at peak seagrass growth.

  7. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination

    PubMed Central

    Matturro, Bruna; Ubaldi, Carla; Rossetti, Simona

    2016-01-01

    The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site. PMID:27708637

  8. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  9. Terrestrial slopes in northern high latitudes: A paradigm shift regarding sediment origin, composition, and dynamic evolution

    NASA Astrophysics Data System (ADS)

    Lønne, Ida

    2017-01-01

    High-Arctic terrestrial slopes have received limited systematic research interest, but increased vulnerability related to regional warming has driven the call for better knowledge of the dynamics of these systems. Studies of sediment transport from a plateau area in Adventdalen, Svalbard, and associated slopes extending to sea level demonstrate that glacial processes play a more prominent role than earlier anticipated, - especially the impact of glacial meltwater. Traces of drainage at the plateau and the dissection of the plateau edge and upper slope were clearly initiated during various stages of Late Glacial runoff. Further, there is a close association between the sediment distribution and composition at the plateau and the evolution of various types of slopes. The reconstructed sedimentation history shows that the landscape will undergo four stages with contrasting modes of sediment transport: 1) subglacial processes related to active ice, 2) processes related to the margin of active ice, 3) processes related to the melting of inactive ice, and 4) nonglacial processes. These stages form four successions, referred to as supply regimes A-D, which control the supply of water and sediments to a given slope segment. In this landscape, traces of glacial meltwater occur at most altitudes, in "odd" positions and in slope segments "without" catchments. The associated depocenters (isolated, composite or coalescing into aprons), are often outsized compared to the apparent slope catchment. Reworked glacial sediments form a significant part of the slope-debris but are covered partly or entirely by products of physical weathering. Colluvium, senso stricto, thus masks a distinct system shift related to the local termination of glacial meltwater. Consequently, the weathering part of the slope sediment budget in this region is considerably overestimated.

  10. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins.

  11. Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring

    NASA Astrophysics Data System (ADS)

    Sanford, Lawrence P.

    2008-10-01

    Erosion and deposition of bottom sediments reflect a continual, dynamic adjustment between the fluid forces applied to a sediment bed and the condition of the bed itself. Erosion of fine and mixed sediment beds depends on their composition, their vertical structure, their disturbance/recovery history, and the biota that inhabit them. This paper presents a new one-dimensional (1D), multi-layer sediment bed model for simulating erosion and deposition of fine and mixed sediments subject to consolidation, armoring, and bioturbation. The distinguishing characteristics of this model are a greatly simplified first-order relaxation treatment for consolidation, a mud erosion formulation that adapts to both Type I and II erosion behavior and is based directly on observations, a continuous deposition formulation for mud that can mimic exclusive erosion and deposition behavior, and straightforward inclusion of bioturbation effects. Very good agreement with two laboratory data sets on consolidation effects is achieved by adjusting only the first-order consolidation rate r c. Full model simulations of three idealized cases based on upper Chesapeake Bay, USA observations are presented. In the mud only case, fluid stresses match mud critical stresses at maximum erosion. A consolidation lag results in higher suspended sediment concentrations after erosional events. Erosion occurs only during accelerating currents and deposition does not occur until just before slack water. In the mixed mud and sand case without bioturbation, distinct layers of high and low sand content form and mud suspension is strongly limited by sand armoring. In the mixed mud and sand case with bioturbation, suspended mud concentrations are greater than or equal to either of the other cases. Low surface critical stresses are mixed down into the bed, constrained by the tendency to return towards equilibrium. Sand layers and the potential for armoring of the bed develop briefly, but mix rapidly. This model offers

  12. Sediment dynamics and heavy metal pollution history of the Cruhlig Lake (Danube Delta, Romania).

    PubMed

    Begy, Róbert-Csaba; Preoteasa, Luminita; Timar-Gabor, Alida; Mihăiescu, Radu; Tănăselia, Claudiu; Kelemen, Szabolcs; Simon, Hedvig

    2016-03-01

    This is the first study reporting recent sedimentation rates data (e.g. the past 120-150 years) for the Cruhlig Lake situated in the Danube Delta. The aim of this study is to analyse the recent sedimentation rates using the (210)Pb dating method and identifying the heavy metal pollutants and their variability in time. Five sediment cores were taken with a gravity corer and - after drying the sliced samples-physical parameters, organic material and inorganic carbon content were determined. The total (210)Pb content was measured via (210)Po by alpha spectrometry, while supported (210)Pb was measured by (226)Ra (trough short life (222)Rn daughters) with HPGe detectors. Heavy metals were determined by ICP-MS; from the 64 measured elements, only exceeding values of Al, As, Cd, Co, Cs, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Ni, Pb and Zn are discussed. After applying the CRS model, ages and sedimentation rates were calculated. The average sedimentation rate of the Cruhlig Lake is 0.21 ± 0.02 g/cm(2)y, Minimum values (0.05 ± 0.003 g/cm(2)y) are registered along the eastern shoreline of the lake before 1913, while maximum values are recorded due to the flooding in 2006 in the western side (1.34 ± 0.12 g/cm(2)y). Recent sedimentation rates divide the lake into three areas: the secluded eastern near shore part (0.63 ± 0.07 g/cm(2)y), the centre of the lake (0.92 ± 0.05 g/cm(2)y) and the dynamic western area, where most sediment transport takes place (1.13 ± 0.01 g/cm(2)y). The sedimentation pattern proves this lake to be very sensitive to fluvial discharge fluctuations. The building of the Iron Gate dams (1972 and 1985) had a negative impact on the sedimentation decreasing it with 58.74%, while after 1989 these values grew 2.25 times. The lake received a quantity of sediment rich in heavy metals in 1992 ± 3 y, which settled mostly on the eastern part. Values for Cd, Co, Cr, Hg, Pb and Zn are up to five times higher in 1980 ± 5 y in the eastern part of the lake, while Cd, Co

  13. DENITRIFICATION AND NITROGEN DYNAMICS IN SEDIMENTS OF A MID-ATLANTIC INCISED STREAM DEPOSITED WITH DEEP LEGACY SEDIMENTS.

    EPA Science Inventory

    Excess legacy sediments deposited in former impounded streams frequently bury Holocene pre-settlement wetlands, decrease in-situ nitrogen removal, and increase nitrogen transport downstream, particularly where deep incised channels limit sediment-water interactions. This has prom...

  14. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise

    NASA Astrophysics Data System (ADS)

    Manh, Nguyen Van; Dung, Nguyen Viet; Hung, Nguyen Nghia; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2015-04-01

    The Mekong Delta is under threat due to human activities that are endangering livelihood of millions of people. Hydropower development, climate change and the combined effects of sea level rise and deltaic subsidence are the main drivers impacting future flow regimes and sedimentation patterns in the Mekong Delta. We develop a sensitivity-based approach to assess the response of the floodplain hydrology and sediment dynamics in the delta to these drivers. A quasi-2D hydrodynamic model of suspended sediment dynamics is used to simulate the sediment transport and sediment deposition in the delta, including Tonle Sap Lake, for a baseline (2000-2010) and a future (2050-2060) period. For each driver we derive a plausible range of future states and discretize it into different levels, resulting in 216 combinations. Our results thus cover all plausible future pathways of sediment dynamics in the delta based on current knowledge. Our results indicate that hydropower development dominates the changes in floodplain sediment dynamics of the Mekong Delta, while sea level rise has the smallest effect. The floodplains of the Vietnamese Mekong Delta are much more sensitive to the changes compared to the other subsystems of the delta. The median changes of the three drivers combined indicate that the inundation extent would increase slightly, but the overall floodplain sedimentation would decrease by approximately 40%, and the sediment load to the South China Sea would diminish to half of the current rates. The maximum changes in all drivers would mean a nearly 90% reduction of delta sedimentation and a 95% reduction of the sediment reaching the sea. Our findings provide new and valuable information on the possible future development of floodplain hydraulics and sedimentation in the Mekong Delta and identify the areas that are most vulnerable to these changes.

  15. Is flat fair?

    SciTech Connect

    Bunzl, Martin

    2010-07-15

    Dynamic pricing holds out the promise of shifting peak demand as well as reducing overall demand. But it also raises thorny issues of fairness. All practical pricing systems involve tradeoffs between equity and efficiency. I examine the circumstances under which equity ought to be allowed to trump efficiency and whether or not this constitutes a defense of flat pricing. (author)

  16. Oxygen dynamics in periphyton communities and associated effects on phosphorus release from lake sediments

    SciTech Connect

    Carlton, R.G.

    1986-01-01

    Periphyton is typically a heterogeneous assemblage of filamentous and single celled photoautotrophic and heterotrophic micoorganisms suspended in a mucopolysaccharide matrix which they produce. By definition, the assemblage is attached to a substratum such as rock, sediment, or plant in an aquatic environment. Microtechniques with high spatial and temporal resolution are required to define metabolic interactions among the heterotrophic and autotrophic constituents, and between periphyton and its environment. This study used oxygen sensitive microelectrodes with tip diameters of < 30 m to investigate the effects of photosynthesis and respiration on the oxygen dynamics of several diverse periphyton communities both in situ and in laboratory microcosms. A novel flow-through system that utilized TSP radiotracer and that permitted manipulation of the velocity, flushing rate, and oxygen concentration of overlying water was developed to investigate the role of photosynthetic oxygen production on the phosphorus dynamics in lake sediments colonized by epipelic periphyton. 89 refs., 20 figs.

  17. Long-term agricultural non-point source pollution loading dynamics and correlation with outlet sediment geochemistry

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Jiao, Wei; Li, Xiaoming; Giubilato, Elisa; Critto, Andrea

    2016-09-01

    Some agricultural non-point source (NPS) pollutants accumulate in sediments in the outlet sections of watersheds. It is crucial to evaluate the historical interactions between sediment properties and watershed NPS loading. Therefore, a sediment core from the outlet of an agricultural watershed was collected. The core age was dated using the 210Pb method, and sedimentation rates were determined using the constant rate of supply (CRS) model. The total nitrogen (TN), total phosphorus (TP), Cd, Pb, Cu, Ni and Cr accumulations in the sediment generally showed fluctuating increases, with the highest sedimentation fluxes all occurring in approximately 1998. The measurement of specific mass sedimentation rates reflected a record of watershed soil erosion dynamics. Using SWAT (Soil and Water Assessment Tool) to simulate long-term watershed agricultural NPS pollution loadings, the historical interactions between sediment properties and NPS loadings were further evaluated. The N leaching process weakened these interactions, but the historical accumulations of TP and heavy metals in sediments generally correlated well with watershed NPS TP loading. The regression analysis suggested that Pb and Cr were the most suitable indexes for assessing long-term NPS TN and TP pollution, respectively. Assessing the NPS loading dynamics using the vertical characteristics of sediment geochemistry is a new method.

  18. Sediment yield dynamics during the 1950s multi-year droughts from two ungauged basins in the Edwards Plateau, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment yield dynamics on the Edwards Plateau region of Texas was dramatically influenced by a multi-year drought that occurred there during the 1950s. To assess the effect of this drought on sediment yield, we used the Soil and Water Assessment Tool (SWAT) to identify the factors that contributed...

  19. Fortnightly tidal asymmetry inversions and perspectives on sediment dynamics in a macrotidal estuary (Charente, France)

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Brenon, I.; Coulombier, T.; Le Moine, O.

    2015-02-01

    Tidal asymmetry is a phenomenon that characterises estuarine hydrodynamics and has a strong impact on sediment dynamics. Extensive research has been dedicated to studying tidal dynamics in semidiurnal macrotidal estuaries, highlighting several general principles. The ratio of flood to ebb peak velocities and differences in ebb and flood durations are often used to characterise the asymmetry encountered in estuaries. In the Charente estuary (French Atlantic coast), water surface elevation data obtained using an ADCP (Acoustic Doppler Current Profiler) and a tide gauge show that the duration asymmetry undergoes inversions during the spring-neap tidal cycle. A two-dimensional hydrodynamics model is used to investigate the connection between spring-neap inversions of the tidal asymmetry and the harmonic composition of the tide. Different constituents (M2, S2, M4 and MS4) are considered at the open boundary. The results show that M4 and MS4 play a key role in the occurrence of these inversions. The influence of the morphology is also discussed and modifications of the bathymetry are performed to evaluate its impact. In the Charente estuary, the existence of both externally and internally generated overtides thus results in a spatially and fortnightly variable tidal asymmetry. The modelled barotropic tidal currents are used to estimate the possible impact on sediment dynamics. The results suggest that asymmetry inversions tend to create sediment accumulation in an intermediate zone between the river mouth and Rochefort, located approximately 20 km upstream.

  20. Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats

    NASA Astrophysics Data System (ADS)

    Escapa, Mauricio; Perillo, Gerardo M. E.; Iribarne, Oscar

    2008-11-01

    Biogenic bottom features, animal burrows and biological activities interact with the hydrodynamics of the sediment-water interface to produce altered patterns of sediment erosion, transport and deposition which have consequences for large-scale geomorphologic features. It has been suggested that depending on the hydrodynamic status of the habitat, the biological activity on the bottom may have a variety of effects. In some cases, different bioturbation activities by the same organism can result in different consequences. The burrowing crab Neohelice granulata is the most important bioturbator at SW Atlantic saltmarshes and tidal plains. Because of the great variety of habitats that this species may inhabit, it is possible to compare its bioturbation effects between zones dominated by different hydrodynamic conditions. Internal marsh microhabitats, tidal creeks bottoms and basins, and open mudflats were selected as contrasting zones for the comparison on a large saltmarsh at Bahía Blanca Estuary (Argentina). Crab burrows act as passive traps of sediment in all zones, because their entrances remain open during inundation periods at high tide. Mounds are generated when crabs remove sediments from the burrows to the surface and become distinctive features in all the zones. Two different mechanisms of sediment transport utilizing mounds as sediment sources were registered. In the first one, parts of fresh mound sediments were transported when exposed to water flow during flooding and ebbing tide, with higher mound erosion where currents were higher as compared to internal marsh habitats and open mudflats. In the second mechanism, mounds exposed to atmospheric influence during low tide became desiccated and cracked forming ellipsoidal blocks, which were then transported by currents in zones of intense water flow in the saltmarsh edge. Sedimentary dynamics varied between zones; crabs were promoting trapping of sediments in the internal saltmarsh (380 g m -2 day -1) and

  1. Spatial and temporal variability of CO2 fluxes at the sediment-air interface in a tidal flat of a temperate lagoon (Arcachon Bay, France)

    NASA Astrophysics Data System (ADS)

    Migné, Aline; Davoult, Dominique; Spilmont, Nicolas; Ouisse, Vincent; Boucher, Guy

    2016-03-01

    This study aimed to explore the spatial and temporal variability of benthic metabolism in a temperate mesotidal lagoon. This was achieved by measuring fluxes of CO2 in static chambers during emersion, both under light and dark conditions. Three sample sites were selected according to their tidal level (upper or mid), their sediment type (sand or mud) and the presence/absence of the seagrass Zostera noltei. The three sites were investigated at three seasons (end of winter, spring and beginning of autumn). At each site and each season, three benthic chambers were used simultaneously in successive incubations over the emersion period. The sediment chlorophyll-a content varied seasonally in the upper sands (reaching 283 mg.m- 2 in spring) but not in the mid muds (averaging 142 mg m- 2 in bare muds and 186 mg m- 2 in muds covered by seagrass). The maximum sediment CO2-uptake under light was 9.89 mmol m- 2 h- 1 in the mid-bare muds, in early autumn. The maximum sediment CO2-release under darkness was 6.97 mmol m- 2 h- 1 in the mid muds covered by seagrass, in spring. Both CO2-fluxes measured in the light and in the dark increased over periods of emersion. This increase, not related to light nor temperature variations, could be explained by changes in the amount and chemistry of pore water during the air exposure of sediments. The benthic trophic state index, based on the maximum light CO2-flux versus maximum dark CO2-flux ratio, assigned to each site at each season indicated that the sediments were net autotrophic in spring in upper sands and in mid muds covered by seagrass and highly autotrophic in other cases. The most autotrophic sediments were the mid-level bare muds whatever the season. The relevance of this index is discussed compared to carbon annual budget.

  2. Sediment transport dynamics and its relation to primary production in mountain headwater streams

    NASA Astrophysics Data System (ADS)

    Katz, S.; Segura, C.; Warren, D.

    2015-12-01

    This study explores how the spatial and temporal variability of stream flow and sediment transport influence the growth and recovery rate of benthic primary producers in a rainfall dominated mountain stream over different seasons. Primary producers sustain higher trophic levels and thus understanding how sediment transport impacts their growth is important for efficient river management. The control of sediment transport processes on suitable habitat for these organisms depends on the frequency of high flows capable of mobilizing material and the spatial distribution of forces throughout the stream. However there other factors such as light, nutrient availability, and temperature that are also important. We hypothesize that the control physical processes exert on the growth dynamics of these organisms varies both according to the amount of localized bed disturbance caused by sediment transport and the flow field and seasonal variations in additional growth factors. This hypothesis is tested in a 160m reach of Oak Creek, OR draining 7 km2. Habitat disturbance maps were developed based on the spatial and temporal variability of velocity and shear stress and estimated sediment transport rates. These maps are used to select habitat patches with contrasting disturbance levels for benthic chlorophyll a monitoring. Velocity and shear stress were modeled using the two dimensional hydraulic model FaSTMECH, developed by the USGS. Sediment transport rates were estimated using spatially variable magnitudes of shear stress and grain size distributions and validated using both field measurements and historical data. Preliminary results during the spring indicate an inverse correlation between disturbance and algal growth, however there were no flow events above the critical threshold for motion during this time. It is likely that increased nutrient fluxes in areas of higher velocity resulted in increased algal growth rates during these period.

  3. The Temporal and Spatial Quantification of Holocene Sediment Dynamics in a meso-scale catchment in northern Bavaria/Germany

    NASA Astrophysics Data System (ADS)

    Fuchs, Markus; Will, Mathias; Kreutzer, Sebastian

    2013-04-01

    The Aufsess River catchment (97 km2) in northern Bavaria, Germany, is studied to establish a Holocene sediment budget and to investigate the sediment dynamics since the early times of farming in the 3rd millennium BCE. The temporal characterization of the sediment dynamics is based on an intensive dating program with 73 OSL and 14 14C ages. To estimate soil erosion and deposition, colluvial and alluvial archives are investigated in the field by piling and trenching, supported by laboratory analyses. The sediment budget shows that 58% of these sediments are stored as colluvium in on- and foot-slope positions, 9% are stored as alluvium in the floodplains and 33% are exported from the Aufsess River catchment. Colluviation starts in the End-Neolithic (ca. 3100 BCE), while first indicators of soil erosion derived alluviation is recorded ca. 2-3 ka later. The pattern of sedimentation rates also displays differences between the colluvial and alluvial system, with a distinct increase in the Middle Ages (ca. 1000 CE) for the alluvial system, while the colluvial system records low sedimentation rates for this period. A contrast is also observed since Modern Times (ca. 1500 CE), with increasing sedimentation rates for the colluvial system, whereas the alluvial system records decreasing rates. The different behavior of the colluvial and alluvial system clearly shows the non-linear behavior of the catchment's fluvial system. The results further suggest that human impact is most probably the dominant factor influencing the sediment dynamics of the catchment since the introduction of farming. Fuchs, M., Will, M., Kunert, E., Kreutzer, S., Fischer, M. & Reverman, R. 2011. The temporal and spatial quantification of Holocene sediment dynamics in a meso-scale catchment in northern Bavaria / Germany. The Holocene 21, 1093-1104. Fuchs, M., Fischer, M. & Reverman, R. 2010. Colluvial and alluvial sediment archives temporally resolved by OSL dating: Implications for reconstructing soil

  4. Land claim and loss of tidal flats in the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  5. Land claim and loss of tidal flats in the Yangtze Estuary

    PubMed Central

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-01-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525

  6. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    NASA Astrophysics Data System (ADS)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by

  7. Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components.

    PubMed

    Zhang, Ruiming; Yan, Wei; Jing, Chuanyong

    2015-03-01

    Soil and sediment play a crucial role in the fate and transport of perfluorooctane sulfonate (PFOS) in the environment. However, the molecular mechanisms of major soil/sediment components on PFOS adsorption remain unclear. This study experimentally isolated three major components in soil/sediment: humin/kerogen, humic/fulvic acid (HA/FA), and inorganic component after removing organics, and explored their contributions to PFOS adsorption using batch adsorption experiments and molecular dynamic simulations. The results suggest that the humin/kerogen component dominated the PFOS adsorption due to its aliphatic features where hydrophobic effect and phase transfer are the primary adsorption mechanism. Compared with the humin/kerogen, the HA/FA component contributed less to the PFOS adsorption because of its hydrophilic and polar characteristics. The electrostatic repulsion between the polar groups of HA/FA and PFOS anions was attributable to the reduced PFOS adsorption. When the soil organic matter was extracted, the inorganic component also plays a non-negligible role because PFOS molecules might form surface complexes on SiO2 surface. The findings obtained in this study illustrate the contribution of organic matters in soils and sediments to PFOS adsorption and provided new perspective to understanding the adsorption process of PFOS on micro-interface in the environment.

  8. A new instrument system to investigate sediment dynamics on continental shelves

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.

    1979-01-01

    A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development. Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 - October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves. ?? 1979.

  9. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems.

    PubMed

    Nogaro, Geraldine; Mermillod-Blondin, Florian

    2009-05-15

    Stormwater sediments that accumulate at the surface of infiltration basins reduce infiltration efficiencies by physical clogging and produce anoxification in the subsurface. The present study aimed to quantify the influence of stormwater sediment origin (urban vs industrial catchments) and the occurrence of bioturbators (tubificid worms) on the hydraulic functioning, aerobic/anaerobic processes, and pollutant dynamics in stormwater infiltration systems. In laboratory sediment columns, effects of stormwater sediments and tubificids were examined on hydraulic conductivity, microbial processes, and pollutant releases. Significant differences in physical (particle size distribution) and chemical characteristics betoveen the two stormwater sediments led to distinct effects of these sediments on hydraulic and biogeochemical processes. Bioturbation by tubificid worms could increase the hydraulic conductivity in stormwater infiltration columns, but this effect depended on the characteristics of the stormwater sediments. Bioturbation-driven increases in hydraulic conductivity stimulated aerobic microbial processes and enhanced vertical fluxes of pollutants in the sediment layer. Our results showed that control of hydraulic functioning by stormwater sediment characteristics and/ or biological activities (such as bioturbation) determined the dynamics of organic matter and pollutants in stormwater infiltration devices.

  10. Spacial and temporal dynamic of fine sediment input in a small Swiss River in the foothills of the Alps

    NASA Astrophysics Data System (ADS)

    Schindler, Yael; Michel, Christian; Alewell, Christine

    2010-05-01

    Fine sediments are an often overlooked threat to our rivers and can determine stream quality to a large extent. Sediments in rivers cause increases in turbidity and sedimentation and can ultimately lead to clogging of the river bed. In general fine sediment loads in rivers are increasing throughout the world in catchments that are impacted both directly and indirectly by human activities. For European and alpine countries increased erosion has been reported over the last decades. Potential causes of increased erosion and sediment loads to rivers include global climate change with increased temperatures, altered precipitation patterns, changes in snow cover, seasonal snow melting and consequently discharge regimes. These may have led to increased river runoff, especially in winter and in spring, and altered seasonal and regional patterns of sediment input and clogging of river beds. A further cause of increased erosion and sediment loads in rivers are changes in land use and management, for example, changes in pasture management in uplands and changes in agricultural practices in lowlands. Several methods have been developed to determine the amount of fine sediments in rivers: Turbidity measurements, suspended sediment sampler, bedload sampler and several types of sediment baskets to measure the deposition of fine sediment. But never have they been compared to each other. We adopted multiple established methods to a smaller scale to measure the sediment input in a small, typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. These methods were used to study the temporal and spatial dynamics of fine sediments in three locations representing a high, medium and low fine-sediment load. Turbidity was measured continuously at all sites with optical backscatter sensor as well as 18 suspended sediment samplers, which were emptied weekly. The bedload was investigated with 18 bedload samplers and the fine sediment deposition was determined

  11. Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) improves our understanding of sediment source dynamics in tropical rivers

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Laceby, J. P.; Huon, S.; Lefèvre, I.; Sengtaheuanghoung, O.; Ribolzi, O.

    2015-12-01

    Soil erosion has accelerated as a result of land use change, increasing the sediment supply to rivers worldwide. A thorough knowledge of sediment dynamics is required to design efficient management measures to control erosion and reduce sediment delivery from catchments. Fallout radionuclides are often used separately to provide spatial (137Cs) or temporal (7Be, 210Pbxs) information on sediment sources. In this study, we examine their combined application to simultaneously model spatial and temporal sediment source dynamics. To this end, potential sediment sources (n=84) and suspended sediment (n=16) were collected at two stations in a 12 km² catchment in Northern Laos during the first flood of the 2014 wet season. Part of the source material was directly sampled in ephemeral flow occurring on hillslopes to avoid the grain size selectivity problems that may occur during erosion and river transport processes. A distribution modelling approach quantified the relative contributions of recently eroded surface (labelled with both 7Be and 137Cs), recently eroded subsurface (depleted in both 7Be and 137Cs), re-suspended surface (depleted in 7Be and labelled with 137Cs) and re-suspended subsurface sources (enriched in 7Be and depleted in 137Cs). At an upstream sampling location, surface sources contributed the majority of sediment (55%) whereas subsurface sources dominated the supply of sediment downstream (74%). Importantly, re-suspended subsurface sources, labelled with 7Be, were a significant sediment source at the catchment outlet (60%). This approach demonstrates the utility of combining multiple radionuclides when investigating spatial and temporal sediment source dynamics in tropical catchments. In the future, sampling of source material in ephemeral flows occurring on hillslopes should be encouraged. Furthermore, the proposed approach should be tested in larger catchments to guide the implementation of efficient erosion control measures.

  12. Proglacial hydrochemistry and sediment characteristics observed across a spectrum of glacier dynamic regimes

    NASA Astrophysics Data System (ADS)

    Crompton, J. W.; Flowers, G. E.

    2015-12-01

    The broad influence of bedrock geology on glacier dynamics has received comparatively little attention in the alpine glacier literature. Geological influences vary widely from subglacial hydrochemistry to deformable till rheology, which may be governed by the mineralogy and grain size distribution within the till. In an investigation of borehole and proglacial water at an unnamed glacier in the Donjek Range of the St. Elias Mountains, Yukon, Canada, we find that subglacial mineral precipitation exerts a significant control on the proglacial hydrochemistry and suspended sediment flux. To understand if this process is common to glaciers across the range, we collected proglacial water samples from 20 glaciers in and around the Donjek Range. From each sample, we analyzed the hydrochemistry, measured the grain size distribution (GSD) using a Mastersizer laser diffraction particle size analyzer, and analyzed the mineralogy of the suspended sediments using X-ray diffraction. We also analyzed thin sections from bedrock samples collected at the glacier margins to constrain the mineralogical input to the system. This suite of measurements permits us to investigate the discrepancies between the secondary minerals predicted by the proglacial hydrochemistry and the observed mineralogy. Given that glaciers in the sample set exhibit a range of dynamic behaviour (including surging), we investigate how the mineralogy, GSDs, and hydrochemistry vary as a function of glacier dynamics. Where we have identified correlations between surging glaciers and proglacial GSDs, we investigate the possible controls of hydrochemistry and/or mineralogy on the GSDs and thus on subglacial dynamics.

  13. Observations of coastal sediment dynamics of the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project, Imperial Beach, California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi

    2012-01-01

    Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.

  14. Charlie Flats

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Opportunity's panoramic camera shows a region of the rock outcrop at Meridiani Planum, Mars, dubbed 'Charlie Flats.' This region is a rich science target for Opportunity because it contains a diverse assortment of small grains, pebbles and spherules, as well as both dark and light soil deposits. The area seen here measures approximately 0.6 meters (2 feet) across. The smallest grains visible in this image are only a few millimeters in size. The approximate true color image was acquired on Sol 20 of Opportunity's mission with panoramic camera filters red, green and blue. [figure removed for brevity, see original site] Click on image for larger view Charlie Flats Spectra The chart above shows examples of spectra, or light wave patterns, extracted from the region of the Meridiani Planum rock outcrop dubbed 'Charlie Flats,' a rich science target for the Mars Exploration Rover Opportunity. The spectra were extracted from the similarly colored regions in the image on the left, taken by the rover's panoramic camera. The green circle identifies a bright, dust-like soil deposit. The red circle identifies a dark soil region. The yellow identifies a small, angular rock chip with a strong near-infrared band. The pink identifies a sphere-shaped pebble with a different strong near-infrared band. The cyan circle shows a dark, grayish pebble.

  15. High dynamic range optical scanning of sediments and rock samples: More than colour?

    NASA Astrophysics Data System (ADS)

    Klug, Martin; Fabian, Karl; Knies, Jochen

    2015-04-01

    An automated high dynamic range (HDR) scanning procedure for cores and single sediment samples has been developed based on the GeoTek core scanner equipped with a 3* 2048 pixel CCD array GeoScan colour line-scan camera and a Sigma AF 105mm F2.8 EX DG MACRO lens. Repeated colour line scans of the same core sequence using different illumination and exposure time settings, but equal aperture, can be combined into single HDR images. This yields improved colour definition especially if layers of highly variable brightness occur in the same sequence. Colour calibration is performed automatically during image processing based on synchronization of colour charts. Polarized light is used to minimize gloss on wet surfaces. Beyond improved colour detection, high resolution scans with pixel size down to 25 µm provide the possibility of quantifying fabric, texture, and colour contrast between mottle and matrix. We present examples from marine sediments, lake sediments, hard rock cores, and individual soil samples. Due to the high resolution in sediment sequences, the improved images provide important background information to interpret synchronous measurements of density, magnetic susceptibility, or X-ray fluorescence with respect to their respective measurement footprint. If for example an XRF measurement indicates a 2% increase in Fe at a location of a thin black layer of 1/10 of the XRF measurement footprint, within an otherwise homogenous sequence, it can be inferred that the real Fe abundance within the layer is probably 20% higher than in the surrounding sediment. HDR scanning can therefore help to provide high resolution informed interpolation and deconvolution of measurements with larger sensor footprints.

  16. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  17. Sediment dynamics through space and time in the lower Rio Puerco arroyo, New Mexico

    NASA Astrophysics Data System (ADS)

    Griffin, E. R.; Friedman, J. M.; Vincent, K. R.

    2014-12-01

    The dynamics of riverine erosion and sediment transport can be episodic, spatially and temporally non-uniform, and strongly scale dependent. Identifying the events and processes that control these sediment dynamics requires precise measurements, but overcoming spatial and temporal variability requires observations over large distances and long times. Addressing this challenge, therefore, requires integration of data collection efforts at point, cross-section, reach, and whole-river scales. From the mid-1800s to about the 1930s, extreme high flows caused incision along the Rio Puerco, an ephemeral tributary of the Rio Grande located in semi-arid north-central New Mexico. The incision created an arroyo within the 1 to 2 km wide alluvial valley that by 1927 was an average of 118 m wide and 8.5 m deep. In the early 1900s, sediment transported from the Rio Puerco into the Rio Grande contributed to widespread flooding along the Rio Grande and concerns about filling of Elephant Butte Reservoir, located 100 km downstream. We reconstructed the history of arroyo evolution in a 55 km long segment of the lower Rio Puerco by combining data from 3 trenches excavated across the arroyo bottom with arroyo-scale information from aerial imagery, aerial light detection and ranging (LiDAR) data, longitudinal profiles, and repeat surveys of cross sections. We then examined changes through time since 1927 in arroyo width, depth, volume, morphology, and vegetation. A transition to filling after the 1930s involved vegetation development, channel narrowing, increased sinuosity, and finally vertical aggradation. This strongly depositional sediment transport regime interacted with floodplain shrubs to produce a characteristic narrow, trapezoidal channel. Our study reach demonstrated upstream progression of arroyo widening and filling, but not of arroyo incision, channel narrowing, or floodplain vegetation development. Since the 1970s, arroyo wall retreat has been mostly limited to locations

  18. Sedimentation and particle dynamics in the seasonal ice zone of the Barents Sea

    NASA Astrophysics Data System (ADS)

    Maiti, Kanchan; Carroll, JoLynn; Benitez-Nelson, Claudia R.

    2010-01-01

    The Barents Sea seasonal ice zone (SIZ) is one of the most dynamic areas in the world ocean. This biologically productive area undergoes extreme intra- and inter-annual variabilities in sea ice and water mass transport properties. Here, we investigate seafloor burial processes in three regions of the SIZ with different ice-cover frequencies: predominantly open water (POW), marginally ice-covered (MIC), and predominantly ice-covered (PIC) with approximately 0, 10 and 50% sea ice cover, respectively, in 2002-2003. Down-core sediment profiles of the radionuclides 234Th, 210Pb, and 137Cs, along with sediment carbon, nitrogen and phosphorus concentrations are examined in two to three cores from each region. Sedimentation rates and velocities using 210Pb ex (excess 210Pb) profiles and assuming negligible mixing below a surface mixed layer are relatively uniform throughout the study area, averaging 558 ± 154 g m - 2 y - 1 and 1.1 ± 0.4 mm y - 1 ( n = 7). These sedimentation velocities are confirmed using 137Cs (1.0 ± 0.4 mm y - 1 , n = 7). 234Th ex (excess 234Th) derived bioturbation rates are positively correlated with number of benthic individuals per 0.5 m 2 ( R2 = 0.83) and exhibit a pattern of higher rates in the MIC (14.5 ± 2.1 cm - 2 y - 1) relative to both the POW (6.3 ± 2.2 cm - 2 y - 1) and PIC (5.3 ± 1.2 cm - 2 y - 1) ( p < 0.01). 234Th ex inventories are also significantly higher ( p = 0.026) within the MIC, while both 210Pb ex and 137Cs sediment inventories are more regionally uniform. Furthermore, organic carbon (C org) and total nitrogen (N tot) concentrations are relatively high in both the MIC and PIC compared to POW. For this limited data set, higher bioturbation rate coefficients and higher 234Th ex sediment inventories in the MIC relative to the other sampled regions, suggest that the MIC exhibits a greater predominance of marine versus terrestrial sediment sources that support enhanced scavenging and benthic biological activity. These results

  19. Dynamics of daily fluctuations of suspended sediment discharge in a glacierized Andean basin

    NASA Astrophysics Data System (ADS)

    Carillo, Ricardo; Mao, Luca; Morche, David

    2015-04-01

    Sediment transport during flood events often reveals hysteretic patterns. Hysteresis can be clockwise (when flow discharge peaks after the peak of bedload) or counterclockwise (when flow discharge peaks before the peak of bedload), and recent indexes have been developed in order to quantify the degree of hysteretic patterns. Hysteresis patterns and degree can be used to infer the dynamics of sediment availability, as counterclockwise and clockwise hysteresis have been interpreted as representative of limited and unlimited sediment supply conditions, respectively. This work focuses on the temporal variability of suspended sediment transport measured in the Estero Morales, a 27 km² Andean catchment located in central Chile. The elevations range from 1850 m a.s.l to 3815 m a.s.l., and the basin host glaciers with a current extent of 1.8 km². Runoff is dominated by snowmelt in late spring, and glacier melt from December to March. Liquid discharge and turbidity have been measured continuously from October 2013 to March 2014 and recently from October 2014 on. The analysis of the regressions between liquid discharge and turbidity reveals that a higher discharge is progressively needed to transport the same concentration of suspended sediments as the glacier melting season progresses. In fact, the coefficient a of the regressions (NTU=a*Qb) reduces, whereas the exponent b of the regressions increases overtime. The analysis of hysteretic loops of daily discharge fluctuations of spring and summer using three indexes are quite consistent in showing that patterns are mostly clockwise during snowmelt and early glacier melt period, and counterclockwise during late glacier melting. This tendency suggests a progressive reduction of sediment supply conditions overtime. Alternatively, this tendency could be interpreted as a proxy for the type and location of the main sediment source, that is likely to be the main channel and tributaries draining snowmelt in spring, and then only

  20. Sediment transport dynamics linked to morphological evolution of the Selenga River delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.

    2014-12-01

    The Selenga River delta, Lake Baikal, Russia, is approximately 700 km2 in size and contains three active lobes that receive varying amounts of water and sediment discharge. This delta represents a unique end-member in so far that the system is positioned along the deep-water (~1500 m) margin of Lake Baikal and therefore exists as a shelf-edge delta. In order to evaluate the morphological dynamics of the Selenga delta, field expeditions were undertaken during July 2013 and 2014, to investigate the morphologic, sedimentologic, and hydraulic nature of this delta system. Single-beam bathymetry data, sidescan sonar data, sediment samples, and aerial survey data were collected and analyzed to constrain: 1) channel geometries within the delta, 2) bedform sizes and spatial distributions, 3) grain size composition of channel bed sediment as well as bank sediment, collected from both major and minor distributary channels, and 4) elevation range of the subaerial portion of the delta. Our data indicate that the delta possesses downstream sediment fining, ranging from predominantly gravel and sand near the delta apex to silt and sand at the delta-lake interface. Field surveys also indicate that the Selenga delta has both eroding and aggrading banks, and that the delta is actively incising into some banks that consist of terraces, which are defined as regions that are not inundated by typical 2- to 4-year flood discharge events. Therefore the terraces are distinct from the actively accreting regions of the delta that receive sedimentation via water inundation during regular river floods. We spatially constrain the regions of the Selenga delta that are inundated during floods versus terraced using a 1-D water-surface hydrodynamic model that produces estimates of stage for flood water discharges, whereby local water surface elevations produced with the model are compared to the measured terrestrial elevations. Our analyses show that terrace elevations steadily decrease downstream

  1. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis.

    PubMed

    Kim, So-Jeong; Park, Soo-Je; Cha, In-Tae; Min, Deullae; Kim, Jin-Seog; Chung, Won-Hyung; Chae, Jong-Chan; Jeon, Che Ok; Rhee, Sung-Keun

    2014-01-01

    DNA stable isotope probing and metagenomic sequencing were used to assess the metabolic potential of iron-reducing bacteria involved in anaerobic aromatic hydrocarbon degradation in oil spill-affected tidal flats. In a microcosm experiment, (13) C-toluene was degraded with the simultaneous reduction of Fe(III)-NTA, which was also verified by quasi-stoichiometric (13) C-CO2 release. The metabolic potential of the dominant member affiliated with the genus Desulfuromonas in the heavy DNA fraction was inferred using assembled scaffolds (designated TF genome, 4.40 Mbp with 58.8 GC mol%), which were obtained by Illumina sequencing. The gene clusters with peripheral pathways for toluene and benzoate conversion possessed the features of strict and facultative anaerobes. In addition to the class II-type benzoyl-CoA reductase (Bam) of strict anaerobes, the class I-type (Bcr) of facultative anaerobes was encoded. Genes related to the utilization of various anaerobic electron acceptors, including iron, nitrate (to ammonia), sulfur and fumarate, were identified. Furthermore, genes encoding terminal oxidases (caa3 , cbb3 and bd) and a diverse array of genes for oxidative stress responses were detected in the TF genome. This metabolic versatility may be an adaptation to the fluctuating availability of electron acceptors and donors in tidal flats.

  2. The dynamics of an experimental gravel bed meander with constant discharge and sediment supply

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.; Dietrich, W.; Sklar, L. S.

    2012-12-01

    As rivers meander, channel migration and cutoffs introduce continuous and episodic changes, respectively, in local boundary shear stress and bedload flux. These changes must affect the local and reach scale channel dynamics, but assessing their influence is limited by complications associated with varying discharge as well as challenging spatial and time scales. Here we explore the dynamics of a scaled-down gravel bed meandering river with constant discharge and sediment supply in a 6.1 m by 17 m long experimental flume at UC Berkeley's Richmond Field Station. The experiments are similar to Braudrick et al. (2009), but with constant rather than varying sediment supply. The flume was filled with a sorted sand with D50 of 0.85 mm, and had an initial 40 cm wide channel with a sinuosity of 1.1. Alfalfa sprouts provided bank and floodplain strength. The alfalfa was seeded by hand throughout the floodplain while a low flow provided irrigation during the 7-day alfalfa growth period. Sand (model gravel) and a lightweight plastic sediment (model sand) were fed independently from the upstream end of the flume at constant rates of 1.8 and 5 kg/hr, respectively. Despite the steady input conditions the experimental channel was quite dynamic as channel migration and bend morphology varied spatially and temporally. The sinuosity in the downstream 10 m of the flume (away from the inlet condition) increased from 1.1 to about 1.6 over the first 75 hours of the experiment, when 3 cutoffs in 29 hours decreased the sinuosity back to just over the initial value. Bank erosion was fastest when curvature was low at the beginning of the experiment and following cutoffs, and slowed once sinuosity increased. Once curvature increased the bends became asymmetric as bank erosion occurred almost exclusively at the bend apex. As the channel migrated, the local sinuosity increased, which decreasing the water surface slope and hence shear stress. The lower shear stress caused subsequent channel

  3. Evaporation dynamics and sedimentation pattern of a sessile particle laden water droplet

    NASA Astrophysics Data System (ADS)

    Corkidi, G.; Montoya, F.; Hernández-Cruz, G.; Vargas, M.; Luviano-Ortíz, J. L.; Ramos, E.

    2016-06-01

    The dynamics of the flow inside an evaporating sessile droplet of water with polystyrene micro-spheres of 1.0 μm in diameter in suspension is described. The initial volume of the droplets is in the range from 0.6 to 1.0 μl, and observations were made in the last stages before total evaporation. The flow was recorded in a sequence of images that were analyzed with a micro-PIV system to extract quantitative information. Also, using image analysis techniques we determined the dynamics of the retreating liquid film once unpinned from the original contact line. Additionally, we have explored its correlation to the formation of the sediment pattern which is organized in elongated mounds roughly deposited in azimuthal and radial orientations. It is found that the aggregation dynamics of micro-spheres in the segments of the two orientations is different. This might have a substantial influence on the final arrangement of micro-spheres in the sediments.

  4. Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat

    NASA Astrophysics Data System (ADS)

    Koo, Bon Joo; Kwon, Kae Kyoung; Hyun, Jung-Ho

    2007-11-01

    We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.

  5. Morphology and Sediment Transport Dynamics of the Selenga River Delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Il'icheva, L.; Nittrouer, J. A.; Pavolv, M.

    2013-12-01

    The Selenga River fan delta is a lacustrine system located in southeastern Siberia, Russia, where Selenga River flows into Lake Baikal. The Selenga River is the largest source of sediment and water entering Lake Baikal. Covering ~550 km2, the Selenga delta is one of the largest freshwater deltas in the world. Evaluating the Selenga delta and its morphology is very important for local residents who rely upon the delta for both ecological and agricultural welfare. However, a sediment budget remains poorly constrained, as do estimates for the partitioning of water and sediment amongst the numerous bifurcating delta channels. This information is critical for addressing how the delta morphology evolves and influences the stratigraphic composition of the delta. To investigate the morphological characteristics of the delta, a field expedition was undertaken during July 2013 in collaboration with Russian scientists. The overall goal of the field work was to constrain delta dynamics through data collection. Field measurements included single-beam bathymetry data and sidescan sonar data to characterize: 1) channel geometries of the delta; 2) bedform sizes and distribution; and 3) grain-size composition of the channel bed. Flow velocity measurements were collected within the bifurcating channels to measure water discharge. Bedload samples were obtained within the active distributary channels to measure downstream sediment fining. Additionally, channel island cores were collected in order to analyze the internal architecture of the delta. The data reveal a systematic downstream sediment fining, from a predominantly gravel bed near the delta apex, to a fine-sand bed at the delta-lake interface (~40 km total distance). Bathymetry data document how width-to-depth ratios systematically decrease downstream in association with increasing channel bifurcations and decreasing channel-bed grain size. Furthermore, the investigations reveal that the delta is actively terraced, with the

  6. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise.

    PubMed

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-04-02

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming.

  7. Fluid dynamics, sediment transport and turbulent mixing at large confluences of the Amazon River

    NASA Astrophysics Data System (ADS)

    Trevethan, Mark; Gualtieri, Carlo; Filizola, Naziano; Ianniruberto, Marco

    2014-05-01

    The Clim-Amazon Project aims to study temporal sedimentary records to understand the mechanisms involved in climate and geodynamic changes and the processes involved in dissolved and suspended load evolution of the Amazon River basin from the Miocene to present. The knowledge of the present Amazon River sediment discharge and of its variability is fundamental since it can be linked to the on-going climatic and erosion processes at the regional scale. Understanding the relationships between these processes will be helpful to better interpret the observations of the past sedimentation rates. Within this general objective the aim of this study is to investigate the complex fluid dynamics, sediment transport and water quality processes occurring at the large confluences in the Amazon River, through a combination of theoretical, experimental (field) and numerical research. In the last decades a wide body of theoretical, experimental, and field research has emerged on the fluvial dynamics of river confluences, which are integral and ubiquitous features of river networks. Through this research substantial advances have been made into understanding the hydrodynamics and morphodynamics of river confluences which will be outlined here. However, to date most experimental studies have focused either on laboratory confluences or on small to medium sized natural confluences, whereas an extremely limited number of investigations about the confluences on large rivers. Presently little is understood about how river confluence hydrodynamics may vary with the size of the river, especially in the largest rivers. The Amazon River is the largest river in the World, with approximately 15,000 sub-branches joining the Amazon River within the Amazon Basin including some of the largest confluences on Earth. A study region containing three of the larger confluences between Manacapuru and Itacoatiara will be used as part of this study, with the primary focus being the confluence of the Rio

  8. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    PubMed

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  9. Surface-sediment dynamics in a dust source from thermal infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Katra, I.; Lancaster, N.

    2007-12-01

    Characteristics of surface sediments are significant factors in modeling dust entrainment and wind erosion, and it is of interest to monitor them using remote sensing in source areas at high spatial and temporal resolution. A time-series of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were acquired for Soda Playa (CA), a modern depositional environment associated with dust emission. Analysis of the multispectral thermal infrared (TIR) images indicates that the type and distribution of the surface sediments can be mapped by linear spectral unmixing techniques. Image-based spectral endmembers extracted from the ASTER five-band surface emissivity data were used to drive fraction images. The spectral-mixture analysis reveals that the mosaic-like pattern of the main sediment types - silica-rich, clay-rich, and salt-rich, changes in time as a consequence of interactions between hydrologic and geomorphic processes in the playa environment. The results highlight the dynamic response of the playa-surface to wind erosion, and suggest that this technique is useful for continuously detecting dust emission potential in sources characterized by a small extension and a complex surface.

  10. Technical and clinical results of an experimental flat dynamic (digital) x-ray image detector (FDXD) system with real-time corrections

    NASA Astrophysics Data System (ADS)

    Bruijns, Tom J. C.; Alving, P. L.; Baker, Edmund L.; Bury, Robert F.; Cowen, Arnold R.; Jung, Norbert; Luijendijk, Hans A.; Meulenbrugge, Henk J.; Stouten, Hans J.

    1998-07-01

    A clinical imaging system based upon an amorphous-Silicon (a- Si) flat dynamic (digital) X-ray image detector (FDXD) has been developed. The objectives of this experimental set-up were to determine the physical image quality and to establish the clinical feasibility of a flat-panel x-ray detector for radiography and fluoroscopy (R&F) applications. The FDXD acquires dynamic X-ray images at high frame rates in both continuous and pulsed fluoroscopic modes, lower frame rate exposures and single shots. The system has been installed in a clinical research room at The General Infirmary, Leeds (UK; is being evaluated in a variety of universal R&F contrast medium aided examinations, including barium swallows, meals and enema examinations. In addition, general radiographic examinations have been performed. Both the established benefits and possible drawbacks of this type of system, together with the potential solutions, are discussed in this paper. Approach, design and set-up of the system are presented, and the dose efficiency and image quality achieved in clinical operation are explained. The technical and medical phantom images have been evaluated and analyzed. The results of the clinical examinations in mixed applications are discussed. The results of the measurements and examinations performed to date on this experimental FDXD system confirm the potential of this new type of digital X-ray image detector.

  11. Hydrography and bottom boundary layer dynamics: Influence on inner shelf sediment mobility, Long Bay, North Carolina

    USGS Publications Warehouse

    Davis, L.A.; Leonard, L.A.; Snedden, G.A.

    2008-01-01

    This study examined the hydrography and bottom boundary-layer dynamics of two typical storm events affecting coastal North Carolina (NC); a hurricane and the passages of two small consecutive extratropical storms during November 2005. Two upward-looking 1200-kHz Acoustic Doppler Current Profilers (ADCP) were deployed on the inner shelf in northern Long Bay, NC at water depths of less than 15 m. Both instruments profiled the overlying water column in 0.35 in bins beginning at a height of 1.35 in above the bottom (mab). Simultaneous measurements of wind speed and direction, wave and current parameters, and acoustic backscatter were coupled with output from a bottom boundary layer (bbl) model to describe the hydrography and boundary layer conditions during each event. The bbl model also was used to quantify sediment transport in the boundary layer during each storm. Both study sites exhibited similar temporal variations in wave and current magnitude, however, wave heights during the November event were higher than waves associated with the hurricane. Near-bottom mean and subtidal currents, however, were of greater magnitude during the hurricane. Peak depth-integrated suspended sediment transport during the November event exceeded transport associated with the hurricane by 25-70%. Substantial spatial variations in sediment transport existed throughout both events. During both events, along-shelf sediment transport exceeded across-shelf transport and was related to the magnitude and direction of subtidal currents. Given the variations in sediment type across the bay, complex shoreline configuration, and local bathymetry, the sediment transport rates reported here are very site specific. However, the general hydrography associated with the two storms is representative of conditions across northern Long Bay. Since the beaches in the study area undergo frequent renourishment to counter the effects of beach erosion, the results of this study also are relevant to coastal

  12. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment

  13. Tracing and modelling water and sediment dynamics in a conventional irrigated bed system under different scenarios

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Laguna, Ana; Cañasveras, Juan Carlos; Boulal, Hakim; Gómez-Macpherson, Helena; Barrón, Vidal; Giráldez, Juan Vicente; Gómez, José Alfonso

    2013-04-01

    soil conservation techniques in these agricultural systems. Guzmán Díaz, María Gema. Development of sediment tracers to study soil redistribution and sediment dynamic due to water erosion. 2012. Universidad de Córdoba, Servicio de Publicaciones, pp: 181

  14. A new sensor system for accurate and precise determination of sediment dynamics and position.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Hoey, Trevor; Sventek, Joseph; Hodge, Rebecca

    2014-05-01

    Sediment transport processes control many significant geomorphological changes. Consequently, sediment transport dynamics are studied across a wide range of scales leading to application of a variety of conceptually different mathematical descriptions (models) and data acquisition techniques (sensing). For river sediment transport processes both Eulerian and Lagrangian formulations are used. Data are gathered using a very wide range of sensing techniques that are not always compatible with the conceptual formulation applied. We are concerned with small to medium sediment grain-scale motion in gravel-bed rivers, and other coarse-grained environments, and: a) are developing a customised environmental sensor capable of providing coherent data that reliably record the motion; and, b) provide a mathematical framework in which these data can be analysed and interpreted, this being compatible with current stochastic approaches to sediment transport theory. Here we present results from three different aspects of the above developmental process. Firstly, we present a requirement analysis for the sensor based on the state of the art of the existing technologies. We focus on the factors that enhance data coherence and representativeness, extending the common practice for optimization which is based exclusively on electronics/computing related criteria. This analysis leads to formalization of a method that permits accurate control on the physical properties of the sensor using contemporary rapid prototyping techniques [Maniatis et al. 2013]. Secondly the first results are presented from a series of entrainment experiments in a 5 x 0.8 m flume in which a prototype sensor was deployed to monitor entrainment dynamics under increasing flow conditions (0.037 m3.s-1). The sensor was enclosed in an idealized spherical case (111 mm diameter) and placed on a constructed bed of hemispheres of the same diameter. We measured 3-axial inertial acceleration (as a measure of flow stress

  15. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    PubMed

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains.

  16. An Investigation of the F-14A Departure/Flat Spin Environment as Simulated by the Dynamic Flight Simulator.

    DTIC Science & Technology

    1987-08-16

    Stability Augmentation System (Roll SAS) ON/OFF, aircraft loading, and asymmetric thrust on the severity of simulated F-14A aircraft departure/spin entry; and (2) Determine the effect of increased throttle friction, Roll SAS, harness lock, and -Gx on the pilot’s capability to recover the simulated F-14A aircraft from a departure/flat spin. The time/altitude loss data, and pilot questionnaire data, indicate that the optimal recovery aid is the locking of the harness, with Roll SAS activation and throttle friction remaining as secondary recovery aids. In

  17. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, Central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Albright, R.; Langdon, C.; Anthony, K. R. N.

    2013-05-01

    Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -22 ± 20 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.

  18. Applicability of the hodograph method for the problem of long-scale nonlinear dynamics of a thin vortex filament near a flat boundary.

    PubMed

    Ruban, V P

    2003-06-01

    Hamiltonian dynamics of a thin vortex filament in an ideal incompressible fluid near a flat fixed boundary is considered under the conditions that at any point of the curve, determining the shape of the filament, the angle between tangent vector and the boundary plane is small. Also the distance from a point on the curve to the plane is small in comparison with the curvature radius. The dynamics is shown to be effectively described by a nonlinear system of two (1+1)-dimensional partial differential equations. The hodograph transformation reduces this system to a single linear differential equation of the second order with separable variables. Simple solutions of the linear equation are investigated for real values of spectral parameter lambda, when the filament projection on the boundary plane has shape of a two-branch spiral or a smoothed angle, depending on the sign of lambda.

  19. Population Dynamics of Polychlorinated Biphenyl-Dechlorinating Microorganisms in Contaminated Sediments

    PubMed Central

    Kim, J.; Rhee, G.

    1997-01-01

    The growth dynamics of polychlorinated biphenyl (PCB)-dechlorinating microorganisms were determined for the first time, along with those of sulfate reducers and methanogens, by using the most-probable-number technique. The time course of Aroclor 1248 dechlorination mirrored the growth of dechlorinators; dechlorination ensued when the dechlorinating population increased by 2 orders of magnitude from 2.5 x 10(sup5) to 4.6 x 10(sup7) cells g of sediment(sup-1), at a specific growth rate of 6.7 day(sup-1) between 2 and 6 weeks. During this period, PCB-dechlorinating microorganisms dechlorinated Aroclor 1248 at a rate of 3.9 x 10(sup-8) mol of Cl g of sediment(sup-1) day(sup-1), reducing the average number of Cl molecules per biphenyl from 3.9 to 2.8. The growth yield was 4.2 x 10(sup13) cells mol of Cl dechlorinated(sup-1). Once dechlorination reached a plateau, after 6 weeks, the number of dechlorinators began to decrease. On the other hand, dechlorinators inoculated into PCB-free sediments decreased over time from their initial level, suggesting that PCBs are required for their selective enrichment. The numbers of sulfate reducers and methanogens increased in both PCB-free and contaminated sediments, showing little difference between them. The maximum population size of sulfate reducers was about an order of magnitude higher than that of dechlorinators, whereas that of methanogens was slightly less. Unlike those of dechlorinators, however, numbers of both sulfate reducers and methanogens remained high even when dechlorination ceased. The results of this study imply that PCB concentrations may have to exceed a certain threshold to maintain the growth of PCB dechlorinators. PMID:16535594

  20. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools.

    PubMed

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate

  1. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools

    PubMed Central

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate

  2. An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries.

    PubMed

    Lazar, Attila N; Butterfield, Dan; Futter, Martyn N; Rankinen, Katri; Thouvenot-Korppoo, Marie; Jarritt, Nick; Lawrence, Deborah S L; Wade, Andrew J; Whitehead, Paul G

    2010-05-15

    There is a need for better links between hydrology and ecology, specifically between landscapes and riverscapes to understand how processes and factors controlling the transport and storage of environmental pollution have affected or will affect the freshwater biota. Here we show how the INCA modelling framework, specifically INCA-Sed (the Integrated Catchments model for Sediments) can be used to link sediment delivery from the landscape to sediment changes in-stream. INCA-Sed is a dynamic, process-based, daily time step model. The first complete description of the equations used in the INCA-Sed software (version 1.9.11) is presented. This is followed by an application of INCA-Sed made to the River Lugg (1077 km(2)) in Wales. Excess suspended sediment can negatively affect salmonid health. The Lugg has a large and potentially threatened population of both Atlantic salmon (Salmo salar) and Brown Trout (Salmo trutta). With the exception of the extreme sediment transport processes, the model satisfactorily simulated both the hydrology and the sediment dynamics in the catchment. Model results indicate that diffuse soil loss is the most important sediment generation process in the catchment. In the River Lugg, the mean annual Guideline Standard for suspended sediment concentration, proposed by UKTAG, of 25 mg l(-1) is only slightly exceeded during the simulation period (1995-2000), indicating only minimal effect on the Atlantic salmon population. However, the daily time step simulation of INCA-Sed also allows the investigation of the critical spawning period. It shows that the sediment may have a significant negative effect on the fish population in years with high sediment runoff. It is proposed that the fine settled particles probably do not affect the salmonid egg incubation process, though suspended particles may damage the gills of fish and make the area unfavourable for spawning if the conditions do not improve.

  3. Sedimentation Dynamics in Bahia de Banderas Nayarit, from Ameca River to Bucerias

    NASA Astrophysics Data System (ADS)

    Pedroza Ruciles, S.; Cupul Magaña, A.; Escudero Ayala, C.

    2013-05-01

    At last years different actions had made it on the coast in Banderas Bay modifying its dynamics, sand process extractions in Ameca River, deforestation in the zone of estuary and extensions in urban zone affects the beach and coastal dunes. Keeping a lot of sand in circulation which has made changes in erosion process and triggering retrocession in coastline as hazard because an increment of sea level affects edifications near to the beach and estuaries. We present analysis of sedimentation dynamics in an extension approximately, 10 km from the north of the end in Ameca River until Bucerias, Nayarit. For that reason we have made topographic and bathymetric studies with total station and GPS in four zones using technics at the edge of the beach every 109.3613 yards and transversals transect and longitudinal, every 3 months starting in august 2012 and ending in march 2013;

  4. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A. J.; Syvitski, J. P.

    2015-12-01

    Establishing a quantitative description of global riverine fluxes is one of themain goals of contemporary hydrol-ogy and geomorphology. Herewe study changes in global riverinewater discharge and suspended sediment fluxover a 50-year period, 1960-2010, applying a new version of theWBMsed (WBMsed v.2.0) global hydrologicalwater balancemodel. A newfloodplain component is introduced to better representwater and sediment dynam-ics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsedv.2.0 simulation results show considerable improvement over the original model. Normalized departure froman annual mean is used to quantify spatial and temporal dynamics in both water discharge and sediment flux.Considerable intra-basin variability in both water and sediment discharge is observed for the first time in differ-ent regions of the world. Continental-scale analysis shows considerable variability in water and sediment dis-charge fluctuations both in time and between continents. A correlation analysis between predicted continentalsuspended sediment and water discharge shows strong correspondence in Australia and Africa (R2 of 0.93 and 0.87 respectively), moderate correlation in North and South America (R2 of 0.64 and 0.73 respectively) and weak correlation in Asia and Europe (R2 of 0.35 and 0.24 respectively). We propose that yearly changes inintra-basin precipitation dynamics explain most of these differences in continental water discharge andsuspended sediment correlation. The mechanism proposed and demonstrated here (for the Ganges, Danubeand Amazon Rivers) is that regions with high relief and soft lithology will amplify the effect of higher than aver-age precipitation by producing an increase in sediment yield that greatly exceeds increase in water discharge.

  5. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    SciTech Connect

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y.

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  6. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France).

    PubMed

    Dhivert, E; Grosbois, C; Rodrigues, S; Desmet, M

    2015-02-01

    Floodplains are often cored to build long-term pollutant trends at the basin scale. To highlight the influences of depositional environments on archiving processes, aggradation rates, archived trace element signals and vertical redistribution processes, two floodplain cores were sampled near in two different environments of the Upper Loire River (France): (i) a river bank ridge and (ii) a paleochannel connected by its downstream end. The base of the river bank core is composed of sandy sediments from the end of the Little Ice Age (late 18th century). This composition corresponds to a proximal floodplain aggradation (<50 m from the river channel) and delimits successive depositional steps related to progressive disconnection degree dynamism. This temporal evolution of depositional environments is associated with mineralogical sorting and variable natural trace element signals, even in the <63-μm fraction. The paleochannel core and upper part of the river bank core are composed of fine-grained sediments that settled in the distal floodplain. In this distal floodplain environment, the aggradation rate depends on the topography and connection degree to the river channel. The temporal dynamics of anthropogenic trace element enrichments recorded in the distal floodplain are initially synchronous and present similar levels. Although the river bank core shows general temporal trends, the paleochannel core has a better resolution for short-time variations of trace element signals. After local water depth regulation began in the early 1930s, differences of connection degree were enhanced between the two cores. Therefore, large trace element signal divergences are recorded across the floodplain. The paleochannel core shows important temporal variations of enrichment levels from the 1930s to the coring date. However, the river bank core has no significant temporal variations of trace element enrichments and lower contamination levels because of a lower deposition of

  7. The effects of stellar dynamics on the X-ray emission of flat early-type galaxies

    NASA Astrophysics Data System (ADS)

    Negri, Andrea; Ciotti, Luca; Pellegrini, Silvia

    2014-03-01

    Past observational and numerical studies indicated that the hot gaseous haloes of early-type galaxies may be sensitive to the stellar kinematics. With high-resolution ZEUS 2D hydrosimulations, we study the hot gas evolution in flat early-type galaxies of fixed (stellar plus dark) mass distribution, but with variable amounts of azimuthal velocity dispersion and rotational support, including the possibility of a (counter) rotating inner disc. The hot gas is fed by stellar mass-losses, and heated by supernova explosions and thermalization of stellar motions. The simulations provide γth, the ratio between the heating due to the relative velocity between the stellar streaming and the interstellar medium bulk flow, and the heating attainable by complete thermalization of the stellar streaming. We find that (1) X-ray emission-weighted temperatures and luminosities match observed values and are larger in fully velocity dispersion supported systems; X-ray isophotes are boxy where rotation is significant; (2) γth ≃ 0.1-0.2 for isotropic rotators and (3) γth ≃ 1 for systems with an inner (counter) rotating disc. The lower X-ray luminosities of isotropic rotators are not explained just by their low γth but by a complicated flow structure and evolution, consequence of the angular momentum stored at large radii. Rotation is therefore important to explain the lower average X-ray emission and temperature observed in flat and more rotationally supported galaxies.

  8. A participatory modelling approach to developing a numerical sediment dynamics model

    NASA Astrophysics Data System (ADS)

    Jones, Nicholas; McEwen, Lindsey; Parker, Chris; Staddon, Chad

    2016-04-01

    Fluvial geomorphology is recognised as an important consideration in policy and legislation in the management of river catchments. Despite this recognition, limited knowledge exchange occurs between scientific researchers and river management practitioners. An example of this can be found within the limited uptake of numerical models of sediment dynamics by river management practitioners in the United Kingdom. The uptake of these models amongst the applied community is important as they have the potential to articulate how, at the catchment-scale, the impacts of management strategies of land-use change affect sediment dynamics and resulting channel quality. This paper describes and evaluates a new approach which involves river management stakeholders in an iterative and reflexive participatory modelling process. The aim of this approach was to create an environment for knowledge exchange between the stakeholders and the research team in the process of co-constructing a model. This process adopted a multiple case study approach, involving four groups of river catchment stakeholders in the United Kingdom. These stakeholder groups were involved in several stages of the participatory modelling process including: requirements analysis, model design, model development, and model evaluation. Stakeholders have provided input into a number of aspects of the modelling process, such as: data requirements, user interface, modelled processes, model assumptions, model applications, and model outputs. This paper will reflect on this process, in particular: the innovative methods used, data generated, and lessons learnt.

  9. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China.

    PubMed

    Gao, Jun-Min; Zhang, Ke; Chen, You-Peng; Guo, Jin-Song; Wei, Yun-Mei; Jiang, Wen-Chao; Zhou, Bin; Qiu, Hui

    2015-06-01

    The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.

  10. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  11. The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA

    PubMed Central

    Brown, Lauren E.; Chen, Celia Y.; Voytek, Mary A.; Amirbahman, Aria

    2016-01-01

    Estuarine sediments store particulate contaminants including mercury (Hg). We studied Hg sediment dynamics in two intertidal mudflats at Great Bay estuary, NH, over multiple years. Sediments at both mudflats were physically mixed down to ~10 cm, as determined by 7Be measurements, albeit via different mechanisms. Portsmouth mudflat (PT) sediments were subject to bioturbation by infaunal organisms and Squamscott mudflat (SQ) sediments were subject to erosion and redeposition. The presence of higher concentrations of fresh Fe(III) hydroxide at PT suggested bioirrigation by the polychaetes (Nereis virens). At depths where infaunal bioirrigation was observed, pore-water inorganic Hg (Hgi) and methylmercury (MeHg) were lower potentially due to their interaction with Fe(III) hydroxide. Methylmercury concentrations increased immediately below this zone in some samples, suggesting that the observed increase in material flux in bioirrigated sediments may initiate from lower depths. Pore water in sediment at PT also had higher fractions of more protein-like and labile DOC than those at SQ that can lead to increased MeHg production in PT, especially at depths where Hgi is not removed from solution by Fe(III) hydroxide. Where sediment erosion and redeposition were observed at SQ, Hg species distribution was extended deeper into the sediment column. Moreover, methyl coenzyme M reductase (MCR) and mercury reductase (mer-A) genes were higher at SQ than PT suggesting differences in conditions for Hg cycling. Results showed that the near-surface region of high MeHg concentrations commonly observed in unmixed sediments does not exist in physically mixed sediments that are common in many estuarine environments. PMID:26924879

  12. The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA.

    PubMed

    Brown, Lauren E; Chen, Celia Y; Voytek, Mary A; Amirbahman, Aria

    2015-12-01

    Estuarine sediments store particulate contaminants including mercury (Hg). We studied Hg sediment dynamics in two intertidal mudflats at Great Bay estuary, NH, over multiple years. Sediments at both mudflats were physically mixed down to ~10 cm, as determined by (7)Be measurements, albeit via different mechanisms. Portsmouth mudflat (PT) sediments were subject to bioturbation by infaunal organisms and Squamscott mudflat (SQ) sediments were subject to erosion and redeposition. The presence of higher concentrations of fresh Fe(III) hydroxide at PT suggested bioirrigation by the polychaetes (Nereis virens). At depths where infaunal bioirrigation was observed, pore-water inorganic Hg (Hgi) and methylmercury (MeHg) were lower potentially due to their interaction with Fe(III) hydroxide. Methylmercury concentrations increased immediately below this zone in some samples, suggesting that the observed increase in material flux in bioirrigated sediments may initiate from lower depths. Pore water in sediment at PT also had higher fractions of more protein-like and labile DOC than those at SQ that can lead to increased MeHg production in PT, especially at depths where Hgi is not removed from solution by Fe(III) hydroxide. Where sediment erosion and redeposition were observed at SQ, Hg species distribution was extended deeper into the sediment column. Moreover, methyl coenzyme M reductase (MCR) and mercury reductase (mer-A) genes were higher at SQ than PT suggesting differences in conditions for Hg cycling. Results showed that the near-surface region of high MeHg concentrations commonly observed in unmixed sediments does not exist in physically mixed sediments that are common in many estuarine environments.

  13. Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi bay, Kenya.

    PubMed

    Okello, Judith A; Robert, Elisabeth M R; Beeckman, Hans; Kairo, James G; Dahdouh-Guebas, Farid; Koedam, Nico

    2014-08-01

    Sedimentation results in the creation of new mudflats for mangroves to colonize among other benefits. However, large sediment input in mangrove areas may be detrimental to these forests. The dynamics of phenological events of three mangrove tree species (Avicennia marina, Ceriops tagal, and Rhizophora mucronata) were evaluated under experimental sediment burial simulating sedimentation levels of 15, 30, and 45 cm.While there was generally no shift in timing of phenological events with sedimentation, the three mangrove tree species each responded differently to the treatments.Partially buried A. marina trees produced more leaves than the controls during the wet season and less during the dry season. Ceriops tagal on the other hand had higher leaf loss and low replacement rates in the partially buried trees during the first 6 months of the experiment but adapted with time, resulting in either equal or higher leaf emergence rates than the controls.Rhizophora mucronata maintained leaf emergence and loss patterns as the unaffected controls but had a higher fecundity and productivity in the 15-cm sedimentation level.The results suggest that under incidences of large sedimentation events (which could be witnessed as a result of climate change impacts coupled with anthropogenic disturbances), mangrove trees may capitalize on "advantages" associated with terrestrial sediment brought into the biotope, thus maintaining the pattern of phenological events.

  14. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    USGS Publications Warehouse

    Steve M. Jepsen,; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2016-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  15. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography.

    PubMed

    Cowen, A R; Davies, A G; Sivananthan, M U

    2008-10-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design.

  16. Sediment transport dynamics in response to large-scale human intervention

    NASA Astrophysics Data System (ADS)

    Eelkema, Menno; Wang, Zheng Bing

    2010-05-01

    SEDIMENT TRANSPORT DYNAMICS IN RESPONSE TO LARGE-SCALE HUMAN INTERVENTION M. Eelkema and Z.B. Wang The Eastern Scheldt basin in the southwestern part of the Netherlands is an elongated tidal basin of approximately 50 km in length with an average tidal range of roughly 3 meters at the inlet. Before 1969 A.D., this basin was also connected to two more tidal basins to the north through several narrow, yet deep channels. These connections were closed off with dams in the nineteen sixties in response to the catastrophic flooding in 1953. In the inlet of the Eastern Scheldt a storm-surge barrier was built in order to safeguard against flooding during storms while retaining a part of the tidal influence inside the basin during normal conditions. This barrier was finalized in 1986. The construction of the back-barrier dams in 1965 and 1969 had a significant impact on the tidal hydrodynamics and sediment transport (Van den Berg, 1986). The effects of these interventions were still ongoing when the hydrodynamic regime was altered again by the construction of the storm-surge barrier between 1983 and 1986. This research aims to describe the hydrodynamic and morphodynamic evolution of the Eastern Scheldt between 1953 and 1983, before construction of the storm-surge barrier had started. An analysis is made of the manner in which the back-barrier dams changed the tidal flow through the basin, and how these altered hydrodynamics influenced the sediment transport and morphology. This analysis consists first of all of a description of the observed hydrodynamical and bathymetrical changes. Second, these observations are used as input for a process-based hydrodynamic model (Delft3D), which is applied in order to gain more insight into the changes in sediment transport patterns. The model is used to simulate the situations before and after the closures of the connections between the Eastern Scheldt and the basins north of it In the decades before 1965, the Eastern Scheldt exported

  17. Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Tsujioka, Katsumi; Matsui, Takeshi; Takata, Tadanori; Matsui, Osamu

    2008-01-01

    The purpose of this study is to investigate the feasibility of cardiac evaluation with a dynamic flat-panel detector (FPD), based on changes in pixel values during cardiac pumping. To investigate the feasibility of cardiac evaluation with a dynamic flat-panel detector (FPD), based on changes in pixel values during cardiac pumping. Sequential radiographs of a cardiac motion phantom and water-equivalent material step were obtained with an FPD system. Various combinations of cardiac output and heart rate were evaluated with and without contrast medium. The ventricular area and summation of pixel values in the ventricles were measured. The ejection fraction (EF) was calculated based on the rate of changes and then compared to EF obtained from computed tomography images. In addition, slight changes in pixel values were visualized by use of inter-frame subtraction and color-mapping. The result of a clinical case was examined according to cardiac physiology. There were strong correlations between EF and our results. There was no significant difference between the findings with and without contrast medium. When the heart rate was greater than 60 bpm, EF obtained with our method were underestimated. It is necessary for a patient to be examined at an imaging rate between 7.5 and 10 fps at least. In addition, a +/-1.2% change in pixel value was equivalent to a +/-10 mm change in the thickness of water. Color-mapping images were supported by cardiac physiology. Evaluating changes in pixel values on dynamic chest radiography with FPD has the potential to demonstrate cardiac function without contrast medium. Inter-frame subtraction and color-mapping are very useful for interpreting changes in pixel value as velocities of blood flow.

  18. Coastal circulation and sediment dynamics in Hanalei Bay, Kaua'i, Hawaii, part III, studies of sediment toxicity

    USGS Publications Warehouse

    Carr, Robert S.; Nipper, Marion; Field, Michael; Biedenbach, James M.

    2006-01-01

    Toxicity tests are commonly conducted as a measure of the bioavailability of toxic chemicals to biota in an environment. Chemical analyses alone are insufficient to determine whether contaminants pose a threat to biota. Porewater toxicity tests are extremely sensitive to a broad range of contaminants in marine environments and provide ecologically relevant data on sensitive life stages. The inclusion of porewater toxicity testing as an additional indicator of sediment quality provides a more comprehensive picture of contaminant effects in these sensitive habitats. In this study purple-spined sea urchin (Arbacia punctulata) fertilization and embryological development porewater toxicity tests were used to evaluate the sediments collected from the coastal environment around Hanalei Bay, Kaua’i, Hawaii. These tests have been used previously to assess the bioavailability of contaminants associated with sediments in the vicinity of coral reefs.

  19. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Albright, R.; Langdon, C.; Anthony, K. R. N.

    2013-10-01

    Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -30 ± 25 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ωarag for both seasons, indicating that relatively small shifts in Ωarag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.

  20. Dynamics of suspended sediment borne persistent organic pollutants in a large regulated Mediterranean river (Ebro, NE Spain).

    PubMed

    Quesada, S; Tena, A; Guillén, D; Ginebreda, A; Vericat, D; Martínez, E; Navarro-Ortega, A; Batalla, R J; Barceló, D

    2014-03-01

    Mediterranean rivers are characterized by highly variable hydrological regimes that are strongly dependent on the seasonal rainfall. Sediment transport is closely related to the occurrence of flash-floods capable to deliver enough kinetic energy to mobilize the bed and channel sediments. Contaminants accumulated in the sediments are likely to be mobilized as well during such events. However, whereas there are many studies characterizing contaminants in steady sediments, those devoted to the transport dynamics of suspended-sediment borne pollution are lacking. Here we examined the occurrence and transport of persistent organic microcontaminants present in the circulating suspended sediments during a controlled flushing flow in the low part of the River Ebro (NE Spain) 12 km downstream of a well-known contaminated hot-spot associated to a nearby chloro-alkali industry. Polycyclic aromatic hydrocarbons (PAHs) and semi-volatile organochlorine pollutants (DDT and related compounds, DDX; polychlorinated byphenils, PCBs; and other organochlorine compound, OCs) were measured in the particulate material by GC-MS and GC-MS/MS, using previously developed analytical methods. The concentration levels observed were compared to previously reported values in steady sediments in the same river and discussed on a regulatory perspective. Hydrographs and sedigraphs recorded showed a peak-flow of 1,300 m(3)s(-1) and a corresponding peak of suspended sediments of 315 mg L(-1). Combination of flow discharge, suspended sediments and pollutants' concentrations data allowed for quantifying the mass flows (mass per unit of time) and setting the load budgets (weight amount) of the different pollutants transported by the river during the monitored event. Mean mass-flows and total load values found were 20.2 mg s(-1) (400 g) for PAHs, 38 mg s(-1) (940 g) for DDX, 44 mg s(-1) (1,038 g) for PCBs and 8 mg s(-1) (200 g) for OCs. The dynamic pattern behavior of PAHs differs substantially to that of

  1. Sediment dynamics in the Mekong Delta: impacts of planned hydropower development, climate change and sea level rise

    NASA Astrophysics Data System (ADS)

    Van Manh, Nguyen; Viet Dung, Nguyen; Nghia Hung, Nguyen; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Mekong Delta is under threat due to human activities endangering the livelihood of millions of people. Hydropower development, climate change and the combined effects of sea level rise and deltaic subsidence are the main drivers impacting future flow regimes, sedimentation patterns and erosion in the Mekong Delta. In order to estimate the individual and combined impacts of the different drivers sensitivity-based scenario simulations were performed. The hydraulic processes and the sediment transport and deposition in the Mekong delta including the Tonle Sap Lake was simulated with a quasi-2D hydrodynamic for a baseline (2000-2010) and a future (2050-2060) period. For each driver a plausible range of future states was determined based on existing literature and studies. The ranges were discretized into different levels, resulting in 216 combinations of driver combinations. The results thus cover all plausible future pathways of sediment dynamics in the delta based on current knowledge. The results indicate that hydropower development dominates the changes in floodplain sediment dynamics of the Mekong Delta, while sea level rise has the smallest effect. The floodplains of the Vietnamese Mekong Delta are much more sensitive to the changes compared to other subsystems of the delta. The median changes of the three drivers combined indicate that the inundation extent would increase slightly, but the overall floodplain sedimentation would decrease by approximately 40%, and the suspended sediment load to the South China Sea would diminish to half of the current rates. The maximum changes in all drivers would mean a nearly 90% reduction of delta sedimentation, and a 95% reduction of the suspended sediment reaching the sea. These findings provide new and valuable information on the possible future development of floodplain hydraulics and sedimentation in the Mekong Delta, and identify the areas that are most vulnerable to these changes. This, in turn, provides a

  2. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Kettner, Albert J.; Syvitski, James P. M.

    2014-04-01

    Establishing a quantitative description of global riverine fluxes is one of the main goals of contemporary hydrology and geomorphology. Here we study changes in global riverine water discharge and suspended sediment flux over a 50-year period, 1960-2010, applying a new version of the WBMsed (WBMsed v.2.0) global hydrological water balance model. A new floodplain component is introduced to better represent water and sediment dynamics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsed v.2.0 simulation results show considerable improvement over the original model. Normalized departure from an annual mean is used to quantify spatial and temporal dynamics in both water discharge and sediment flux. Considerable intra-basin variability in both water and sediment discharge is observed for the first time in different regions of the world. Continental-scale analysis shows considerable variability in water and sediment discharge fluctuations both in time and between continents. A correlation analysis between predicted continental suspended sediment and water discharge shows strong correspondence in Australia and Africa (R2 of 0.93 and 0.87 respectively), moderate correlation in North and South America (R2 of 0.64 and 0.73 respectively) and weak correlation in Asia and Europe (R2 of 0.35 and 0.24 respectively). We propose that yearly changes in intra-basin precipitation dynamics explain most of these differences in continental water discharge and suspended sediment correlation. The mechanism proposed and demonstrated here (for the Ganges, Danube and Amazon Rivers) is that regions with high relief and soft lithology will amplify the effect of higher than average precipitation by producing an increase in sediment yield that greatly exceeds increase in water discharge.

  3. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages

    NASA Astrophysics Data System (ADS)

    Domaizon, I.; Savichtcheva, O.; Debroas, D.; Arnaud, F.; Villar, C.; Pignol, C.; Alric, B.; Perga, M. E.

    2013-02-01

    While picocyanobacteria (PC) are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes). We particularly investigated the long-term (100 yr) diversity and dynamics of Synechococcus, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR) results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus (fraction of Synechococcus in total cyanobacteria). The diversity of Synechococcus in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and internal transcribed spacer (ITS). Up to 23 different OTUs (based on 16S rRNA), which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, study of the ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (here, in temperature and phosphorus concentration) affected Synechococcus community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus clusters. Providing such novel insights into the long-term history of an important group of primary producers

  4. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages

    NASA Astrophysics Data System (ADS)

    Domaizon, I.; Savichtcheva, O.; Debroas, D.; Arnaud, F.; Villar, C.; Pignol, C.; Alric, B.; Perga, M. E.

    2013-06-01

    While picocyanobacteria (PC) are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes). In particular, we investigated the long-term (100 yr) diversity and dynamics of Synechococcus,, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided the ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR; quantitative Polymerase Chain Reaction) results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus, (fraction of Synechococcus, in total cyanobacteria). The diversity of Synechococcus, in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and the following internally transcribed spacer (ITS). Up to 23 different OTUs (based on 16S rRNA), which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, the study of ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (in temperature and phosphorus concentration) affected Synechococcus, community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus, clusters. Providing such novel insights into the

  5. Event-Scale Morphodynamics and Sediment Sorting in a Dynamic Braided River Revealed by TLS

    NASA Astrophysics Data System (ADS)

    Vericat, D.; Brasington, J.

    2008-12-01

    In the last decade, advances in topographic survey and digital elevation modelling have enabled a revolution in the study of fluvial morphodynamics. Despite this recent progress, our understanding of braided river dynamics remains limited by the time-space scale of studies. Hindered by high labour and flight costs, together with slow ground-based survey methods, studies to date have focused either on event-scale dynamics of morphological units (Ferguson and Ashworth, 1992; Lane et al., 1995; Milan et al., 2007) or seasonal-annual dynamics of larger system-scale reaches (sensu Lane, 2006; e.g., Brasington et al., 2003; Lane et al., 2003). Terrestrial Laser Scanning technology offers the potential to acquire rapidly, reach-scale datasets which record topographic information at the resolution of bed grain-scale upwards. However, as yet, no detailed 3d datasets exist that reveal the system-scale evolution of a braided river through a continuous sequence of floods. Such data are urgently required to address unresolved and fundamental questions concerning the controls and behaviour of braided rivers and are also needed to validate morphodynamic simulation models (Brasington and Richards, 2007). Our recent wok has demonstrated that TLS can be applied to recover centimetre-scale channel morphology, maps of particle size, sorting, packing and floodplain roughness (Brasington et al., 2007, 2008; Antonarakis, 2008a,b; Hodge et al., in review). This potential is illustrated by the results obtained in a field study conducted in January 2008. This used TLS to monitor the evolution of channel morphology and develop methods to derive models of bed roughness and facies in a small 500 x 300 m reach of the actively braided Rees River, New Zealand. Fieldwork comprised repeat surveys before and after 3 competent events, combining laser scans from eight positions with bathymetric data obtained by RTK GPS. The resulting point clouds incorporated between 48-110 million survey points, with

  6. Sediment dynamics and the changing nature of the subduction component beneath the Kurile volcanic Arc

    NASA Astrophysics Data System (ADS)

    Dreyer, B.; Morris, J.; Tera, F.; Gill, J.

    2006-12-01

    Strong slab signatures in the lavas of the of the Kurile volcanic arc and their systematic changes across this unusually wide (~120-200km above the downgoing slab) arc provide excellent leverage for investigating the changing nature of subduction components and mixing processes across volcanic arcs. Results of new and published geochemical transects of the Kurile arc indicate a waning fluid subduction component across the arc (Bailey et al., Contrib. Mineral. Petrol., 1987; Zhuralev et al., Chem. Geol., 1987; Ryan et al., Science, 1995; Noll, et al., Geochimica et Cosmochimica Acta, 1996; Ishikawa and Tera, Earth Planet. Sci. Lett., 1997; Morris and Ryan, Treatise on Geochemistry, 2003); little geochemical change is observed along the arc. Boron, Sb, As, Pb, Cs, Ba, and Be, are progressively distilled from the slab in approximately decreasing efficiency. When the effects of decreasing degree of partial melting towards the rear-arc are minimized, Cs, Ba, and Be do not return to Pacific MORB values, indicating that they are still being added to the mantle wedge beneath the rear-arc. Despite the longer transit times, and hence additional decay of cosmogenic 10Be (t1/2=1.5Ma), 10Be/9Be ratios in the rear arc are frequently greater than or comparable to those measured at the front and requires (young, <10Ma) sediment contribution across the width of the arc, which likely reflects a greater proportion of sediment Be in rear-arc lavas, possibly as a melt or supercritical fluid (Johnson and Plank, G3, 1999). To characterize the incoming sediment and clarify the sediment dynamics beneath the Kurile arc and, new trace element, radiogenic isotope, and 10Be concentration data have been measured for a 250 meter section of marine sediments from ODP Site 1179 ~550 km outboard of the trench; these data are integrated with those of the Kurile arc lavas. Initial calculations suggest a maximum 10Be inventory of ~1.5x1013 atoms/cm2 in the incoming sediment column, which translates to

  7. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta

    USGS Publications Warehouse

    Cahoon, Donald R.; White, David A.; Lynch, James C.

    2011-01-01

    Crevasse splay environments provide a mesocosm for evaluating wetland formation and maintenance processes on a decadal time scale. Site elevation, water levels, vertical accretion, elevation change, shallow subsidence, and plant biomass were measured at five habitats along an elevation gradient to evaluate wetland formation and development in Brant Pass Splay; an active crevasse splay of the Balize delta of the Mississippi River. The processes of vertical development (vertical accretion, elevation change, and shallow subsidence) were measured with the surface elevation table–marker horizon method. There were three distinct stages to the accrual of elevation capital and wetland formation in the splay: sediment infilling, vegetative colonization, and development of a mature wetland community. Accretion, elevation gain, and shallow subsidence all decreased by an order of magnitude from the open water (lowest elevation) to the forest (highest elevation) habitats. Vegetative colonization occurred within the first growing season following emergence of the mud surface. An explosively high rate of below-ground production quickly stabilized the loosely consolidated sub-aerial sediments. After emergent vegetation colonization, vertical development slowed and maintenance of marsh elevation was driven both by sediment trapping by the vegetation and accumulation of plant organic matter in the soil. Continued vertical development and survival of the marsh then depended on the health and productivity of the plant community. The process of delta wetland formation is both complex and nonlinear. Determining the dynamics of wetland formation will help in understanding the processes driving the past building of the delta and in developing models for restoring degraded wetlands in the Mississippi River delta and other deltas around the world.

  8. Death and landscape dynamics: The effect of tree throw on sediment transport and landscape evolution

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Evans, K.; McDonnell, J. J.; Hopp, L.; Reaney, S.

    2010-12-01

    In many regions of the world tree throw occurs as a result of storms. The fall of a tree usually produces a pit where the tree roots and surrounding soil are removed and a mound of dumped soil placed adjacent to the pit. This pit-mound topography has the potential to increase sediment transport and also be a point of incision for the commencement of gullies. Little work has been done to evaluate how tree throw affects hillslope and catchment evolution over decadal to centennial time scales. Here we examine this issue for a small study catchment in Arnhem Land, Northern Territory, Australia. In 2006 a Category 5 cyclone (Cyclone Monica) passed over the region with wind speeds greater than 100 m/s. Data on tree throw including number and size of trees, species, as well as size and depth of the pit-mound topography was measured. The pit-mound topography was input into a 1m DEM of a small 20 ha catchment and the effect of the cyclone induced tree throw was evaluated using a computer based Landscape Evolution Model (LEM) at both the annual and decadal time scales. Results show that a single tree throw event has little effect on sediment transport and landscape evolution over geological time scales. However, multiple tree-throw events at characteristic Category 5 hurricane recurrence intervals have quantifiable effects on erosion and landscape evolution. The results demonstrate changes in sediment transport as well as subtle changes in hillslope form. The modelling results are now being compared with available catchment-scale field erosion rates from both pre- and post-cyclone to calibrate the model and to use it as a learning tool for linking life to these dynamic landscape processes.

  9. Dynamic of Mud Banks In French Guiana : An Experimental Investigation of Sediment Settling Processes

    NASA Astrophysics Data System (ADS)

    Gratiot, N.; Lefebvre, J. P.

    The coast of French Guiana is characterized by the periodic northwestward migration of mud banks originated from the Amazone mouth. From previous studies, the char- acteristical size of banks has been estimated by remote sensing processing as well as their mean rate of alongshore transport. However, the physical mecanisms leading to their displacements are not yet fully quantified. The present work aimed at investigating different processes known to be involved in coastal and estuarine dynamics and expected to occur during the migration of mud banks. The relative magnitudes of flocculation, hindered settling and consolidation have been determined. The material tested has been sampled during a field survey of the french National Pro- gram of Coastal Environment (PNEC-Chantier Guyane). Settling column experiments have been performed under quiescent condition for various mean sediment concen- trations in the range of 2-110g/l. The time dependent vertical profiles of suspended sediment concentration were monitored by mean of a 32 pre-calibrated optical sen- sors device. The corresponding settling velocity was deduced from the conservation of mass equation. This study yields usefull information for a better understanding of settling processes related to the fluid mud layer observed on the forepart of the bank. Time scales of hindering and consolidation processes are larger than these of mixing mecanisms such as tides or propagating waves. Therefore, it prevents any consolidation to occur. At the opposite, the individual floc settling velocity is too small to counterbalance the turbulent mixing induced by breaking waves. The experiments also pointed out that additional flocculation by differential settling should enhance sedimentation during slack water conditions.

  10. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River

    NASA Astrophysics Data System (ADS)

    Coynel, Alexandra; Seyler, Patrick; Etcheber, Henri; Meybeck, Michel; Orange, Didier

    2005-12-01

    The Congo (Zaire) River, the world's second largest river in terms both of water discharges and of drainage area after the Amazon River, has remained to date in a near-pristine state. For a period between 2 and 6 years, the mainstream near the river mouth (Brazzaville/Kinshasa station) and some of the major and minor tributaries (the Oubangui, Mpoko, and Ngoko-Sangha) were monitored every month for total suspended sediment (TSS), particulate organic carbon (POC), and dissolved organic carbon (DOC). In this large but relatively flat equatorial basin, TSS levels are very low and organic carbon is essentially exported as DOC: from 74% of TOC for the tributaries flowing in savannah regions and 86% for those flowing in the rain forest. The seasonal patterns of TSS, POC, and DOC show clockwise hysteresis in relation to river discharges, with maximum levels recorded 2 to 4 months before peak flows. At the Kinshasa/Brazzaville station, the DOC distribution is largely influenced by the input from the tributaries draining the large marshy forest area located in the center of the basin. There is a marked difference between specific fluxes, threefold higher in the forest basins than in the savannah basins. The computation of inputs to the Atlantic Ocean demonstrates that the Congo is responsible for 14.4 × 106 t/yr of TOC of which 12.4 × 106 t/yr is DOC and 2 × 106 t/yr is POC. The three biggest tropical rivers (the Amazon, the Congo, and the Orinoco), with only 10% of the exoreic world area drained to world oceans, contribute ˜4% of its TSS inputs but 15-18% of its organic carbon inputs. These proportions may double when considering only world rivers discharging into the open ocean.

  11. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    USGS Publications Warehouse

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  12. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    NASA Astrophysics Data System (ADS)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  13. Spatial and Temporal Oxygen Dynamics in Macrofaunal Burrows in Sediments: A Review of Analytical Tools and Observational Evidence

    PubMed Central

    Satoh, Hisashi; Okabe, Satoshi

    2013-01-01

    The availability of benthic O2 plays a crucial role in benthic microbial communities and regulates many important biogeochemical processes. Burrowing activities of macrobenthos in the sediment significantly affect O2 distribution and its spatial and temporal dynamics in burrows, followed by alterations of sediment microbiology. Consequently, numerous research groups have investigated O2 dynamics in macrofaunal burrows. The introduction of powerful tools, such as microsensors and planar optodes, to sediment analysis has greatly enhanced our ability to measure O2 dynamics in burrows at high spatial and temporal resolution with minimal disturbance of the physical structure of the sediment. In this review, we summarize recent studies of O2-concentration measurements in burrows with O2 microsensors and O2 planar optodes. This manuscript mainly focuses on the fundamentals of O2 microsensors and O2 planar optodes, and their application in the direct measurement of the spatial and temporal dynamics of O2 concentrations in burrows, which have not previously been reviewed, and will be a useful supplement to recent literature reviews on O2 dynamics in macrofaunal burrows. PMID:23594972

  14. Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments

    NASA Astrophysics Data System (ADS)

    Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; Stegen, James C.; Hobson, Chad; Wilkins, Michael J.

    2016-12-01

    Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.

  15. A dynamic approach to urban road deposited sediment pollution monitoring (Marylebone Road, London, UK)

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Fullen, M. A.; Booth, C. A.; Searle, D. E.

    2014-06-01

    The use of mineral magnetic measurements (χLF, χARM and SIRM) as a potential pollution proxy using road deposited sediment (RDS) is explored as an alternative means of monitoring pollution on a busy city road. Comparison of sediment-related analytical data by correlation analysis between mineral magnetic, particle size and geochemical properties is reported. Mineral magnetic concentration parameters (χLF, χARM and SIRM) reveal significant (p < 0.001; n = 61) associations with PM1.0, PM2.5 and PM10. Significant associations were also found with mineral magnetic concentrations (χLF and SIRM) and specific concentrations of the elements Fe, Ni, Cu, Zn and Mn (p < 0.001; n = 61). Inter-geochemical correlation analysis found strong associations (p < 0.001; n = 61) between Fe, Ni, Cu, Zn and Mn and suggest anthropogenic enrichment influences. Low χFD% measurements imply an influence of multi-domain mineralogy, indicative of anthropogenic combustion processes. SEM micrographs also support this, as all samples contain Fe spherules indicative of vehicular combustion processes. This study advocates rapid and simple initial assessment of urban pollution episodes using mineral magnetic measurements as a dynamic explorative technology.

  16. Glacier retreat and associated sediment dynamics in proglacial areas: a case study from the Silvretta Alps, Austria

    NASA Astrophysics Data System (ADS)

    Felbauer, Lucia; Pöppl, Ronald

    2016-04-01

    Global warming results in an ongoing retreat of glaciers in the Alps, leaving behind large amounts of easily erodible sediments. In addition, the debuttressing of rock-walls and the decay of permafrost in the high mountain regions facilitates mass movements of potential disastrous consequences, such as rock falls, landslides and debris flows. Therefore, it is highly important to quantify the amount of sediments that are supplied from the different compartments and to investigate how glacial retreat influences sediment dynamics in proglacial areas. In the presented work glacier retreat and associated sediment dynamics were investigated in the Kromer valley (Silvretta Alps, Austria) by analyzing remote sensing data. Glacial retreat from the period of 1950 to 2012 was documented by interpreting aerial photographs. By digitizing the different stages of the glaciers for six time frames, changes in glacier area and length were mapped and quantified. In order to identify, characterize and quantify sediment dynamics in the proglacial areas a high resolution DEM of difference (DoD) between 2007 and 2012 was created and analyzed, further differentiating between different zones (e.g. valley bottom, hillslope) and types of geomorphic processes (e.g. fluvial, gravitational). First results will be presented at the EGU General Assembly 2016.

  17. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California

    USGS Publications Warehouse

    Karl, Herman A.

    1980-01-01

    A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.

  18. Microbial community dynamics and biodegradation of polycyclic aromatic hydrocarbons in polluted marine sediments in Hong Kong.

    PubMed

    Wang, Y F; Tam, N F Y

    2011-01-01

    Dynamics of microbial community and biodegradation of polycyclic aromatic hydrocarbons (PAHs) in polluted marine sediments, artificially spiked with a mixture of PAHs (fluorene, phenanthrene, fluoranthene and pyrene), were examined for a period of 60 days. Microbial communities were characterised by bacterial counts, ester-linked fatty acid methyl ester (EL-FAME) analysis and denaturing gradient gel electrophoresis (DGGE). A noted reduction in species diversity occurred only in the high PAH level treatment at onset. Both EL-FAME and DGGE demonstrated a marked shift in microbial community, in all the PAH level treatments, afterwards, with increases in the number of fatty acid degraders, the relative abundance of fatty acid biomarkers for gram-negative bacteria and a decrease in species diversity. The shift was also accompanied by the significant decrease in PAH concentrations. By the end of the experiment, diversity indices, based on both approaches, recovered when PAH concentrations declined to their background levels, except in the high PAH level treatment.

  19. Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector: quantitative correlation analysis with findings on perfusion scan.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Fujimura, Masaki; Yasui, Masahide; Hayashi, Norio; Tsuji, Shiro; Okamoto, Hiroyuki; Nanbu, Yuko; Matsui, Osamu

    2010-01-01

    Pulmonary blood flow is reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. Thus, decreased blood flow should be observed as a reduction of the variation of X-ray translucency. We performed the present study to investigate the feasibility of pulmonary blood flow evaluation with a dynamic flat-panel detector (FPD). Sequential chest radiographs of 14 subjects were obtained with a dynamic FPD system. The changes in pixel value in each local area were measured and mapped on the original image by use of a gray scale in which small and large changes were shown in white and black, respectively. The resulting images were compared to the findings in perfusion scans. The cross-correlation coefficients of the changes in pixel value and radioactivity counts in each local area were also computed. In all patients, pulmonary blood flow disorder was indicated as a reduction of changes in pixel values on the mapping image, and a correlation was observed between the distribution of changes in pixel value and those in radioactivity counts (0.7

  20. Modelling the initial structure dynamics of soil and sediment exemplified for a constructed hydrological catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Schneider, Anna; Gerke, Horst H.

    2014-05-01

    Knowledge about spatial heterogeneity is of essential for the analysis of the hydrological catchment behavior. Heterogeneity is directly related to the distribution of the solid phase, and in initial hydrological systems, the solid phase is mainly composed of mineral particles. In artificial catchments, such sediment structures relate to the applied construction technology. It is supposed that the development of catchment ecosystems is strongly influenced by such specific initial spatial distributions of the solid phase. Moreover, during the initial development period, the primary structures in a catchment are altered rapidly by translocation processes, thereby subdividing the initial system in different compartments. Questions are: How does initial sediment distribution affect further structural development? How is catchment hydrology influenced by the initial structural development? What structures have a relevant impact on catchment-scale hydrological behavior? We present results from a structural modelling approach using a process-based structure generator program. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) served exemplarily for the model development. A set of scenarios was created describing possible initial heterogeneities of the catchment. Both the outcrop site from where the parent material was excavated and the specific excavation procedures were considered in the modelling approach. Generated distributions are incorporated in a gridded 3D volume model constructed with the GOCAD software. Results were evaluated by semivariogram analysis and by quantifying point-to-point deviations. We also introduce a modelling conception for simulating the highly dynamic initial structural change, based on the generated initial distributions. We present a strategy on how to develop the initial structure generator into an integrative tool in order to (i) simulate and analyse the spatio-temporal development dynamics

  1. Sediment Transport and bedform dynamics during a major, typhoon-driven, flood on a large tropical river

    NASA Astrophysics Data System (ADS)

    Unsworth, Christopher; Parsons, Daniel; Keevil, Claire; Darby, Stephen; Hackney, Chris; Leyland, Julian; Best, Jim; Nicholas, Andy; Aalto, Rolf

    2015-04-01

    Fluvial sediment transport in tropical-monsoonal rivers are characterised by some of the highest sediment yields on Earth, yet the unsteady dynamics and partitioning of sediment transport as bedload and suspended load during floods has received little attention. Herein, results from multiple field surveys of a section of the Mekong River (in Cambodia) reveal the variability in sediment transport during a large flood in 2013. High-resolution MultiBeam EchoSounder (MBES) surveys produced river bed bathymetric maps to record the movement of sedimentary bedforms though time. Suspended sediment transport rates and flow velocities were concurrently measured using an acoustic Doppler current profiler (ADCP). These surveys found major changes in the type and size of bedforms present through time. Barchan dunes that were present before, during and after the peak flood are denudated massively at the peak of the flood by large numbers of secondary superimposed bedforms. However, during the falling limb of the flood these secondary dunes merged with the Barchans to produce the largest bedforms measured in the surveys. The difference in bedload sediment transport rates between the peak and waning leg of a major flood event was also quantified. Data from the ADCP reveals a match between local flow velocities, bed shear stress and Rouse number that can be related to the changes in suspended sediment concentration across the river channel. This impacted the shape of bedforms though alteration of the dominant mode of sediment transport, which varied considerably across the channel. These factors contributed to a spatial disparity in local storing and erosion of sediment within the river channel. This paper will highlight the above findings and discuss the implications for modelling the response of large river morphodynamics to large flood events.

  2. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.

    PubMed

    Böttcher, Michael; Hespenheide, Britta; Brumsack, Hans-Jürgen; Bosselmann, Katja

    2004-12-01

    A biogeochemical and stable isotope geochemical study was carried out in surface sediments of an organic-matter poor temperate intertidal sandy surface sediment (German Wadden Sea of the North Sea) to investigate the activity of sulfate-reducing bacteria and the dynamics of the vertical partitioning of sedimentary sulfur, iron, and manganese species in relation to the availability of total organic carbon (TOC) and mud contents. The contents and stable isotopic compositions ((34)S/(32)S) of total reduced inorganic sulfur species (TRIS) and dissolved sulfate were measured. Maximum oxygen penetration depths were estimated from the onset of a blackening of the sediments due to FeS accumulation and ranged from 5 to 10 mm below surface (mmbsf). A zone of relatively moderate relative organic-matter enrichment was found between 5 and 20 mmbsf leading to enhanced activities of sulfate-reducing bacteria with sulfate-reduction rates (SRR) up to 350 nmol cm(-3) d(-1). Below this zone, microbial SRR dropped significantly. Depth integrated SRR seem to depend not only on temperature but also on the availability of reactive organic matter. The sulfur-isotopic composition of TRIS was depleted in (34)S by 33-40 per thousand with respect to coexisting dissolved sulfate (constant at about +21 per thousand vs. Vienna-Canyon Diablo Troilite (V-CDT)). Since sulfate reduction is not limited by dissolved sulfate (open system), depth variations of the isotopic composition of TRIS reflect changes in overall isotope effect due to superimposed microbial and abiotic reactions. Most of the solid-phase iron and manganese was bonded to (non-reactive) heavy minerals. However, a layer of reactive Fe(III) and Mn(IV) oxi(hydroxi)des was found in the uppermost sediment section due to re-oxidation of dissolved Fe(II) and Mn(II) species at the sediment-water interface. Metal cycling below the surface is at least partially coupled to intense sulfur cycling.

  3. Quantitative kinetic analysis of lung nodules by temporal subtraction technique in dynamic chest radiography with a flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2007-03-01

    Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  4. Cadmium dynamics in estuarine sediments: Effects of salinity and lugworm bioturbation

    SciTech Connect

    Rasmussen, A.D.; Banta, G.T.; Andersen, O.

    2000-02-01

    The authors investigated the effects of lugworm bioturbation on the fate of Cd added either to a thin layer at the sediment surface or homogeneously mixed throughout the sediment. In both situations, the Cd release to the overlying water was highest when lugworms were not present, most likely because bioturbation transported Cd-contaminated sediment away from the sediment surface. Also, irrigation transported water-borne Cd back into the sediment. When Cd was added to the sediment surface, a Cd peak emerged at the feeding depth of the worm within 1 d because of the transport of water-borne Cd down into the sediment by lugworm irrigation. In addition, the conveyor-belt feeding mode of the worm caused both burial of Cd by fecal casts and a gradual spreading of the Cd distribution within the sediment column. When Cd was added to the entire sediment column, bioturbation caused a net transport of Cd upwards, resulting in the surface layers having higher Cd concentrations than the deeper layers, indicating a net release of Cd from deeper sediments. The distribution of Cd in lugworms depended on the Cd exposure situation and suggested that worms were exposed mainly to water-borne Cd when Cd was added to the top of the sediment, whereas worms were exposed mainly by ingesting Cd-labeled sediment when Cd was mixed homogeneously throughout the sediment.

  5. The FlatModel: a 2D numerical code to evaluate debris flow dynamics. Eastern Pyrenees basins application.

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Medina, V.; Hürlimann, M.

    2009-04-01

    Debris flows are present in every country where a combination of high mountains and flash floods exists. In the northern part of the Iberian Peninsula, at the Pyrenees, sporadic debris events occur. We selected two different events. The first one was triggered at La Guingueta by the big exceptional flood event that produced many debris flows in 1982 which were spread all over the Catalonian Pyrenees. The second, more local event occurred in 2000 at the mountain Montserrat at the Pre-litoral mountain chain. We present here some results of the FLATModel, entirely developed at the Research Group in Sediment Transport of the Hydraulic, Marine and Environmental Engineering Department (GITS-UPC). The 2D FLATModel is a Finite Volume method that uses the Godunov scheme. Some numerical arranges have been made to analyze the entrainment process during the events, the Stop & Go phenomena and the final deposit of the material. The material rheology implemented is the Voellmy approach, because it acts very well evaluating the frictional and turbulent behavior. The FLATModel uses a GIS environment that facilitates the data analysis as the comparison between field and numerical data. The two events present two different characteristics, one is practically a one dimensional problem of 1400 m in length and the other has a more two dimensional behavior that forms a big fan.

  6. Spatial pattern of early recruitment of Macoma balthica (L.) and Cerastoderma edule (L.) in relation to sediment dynamics on a highly dynamic intertidal sandflat

    NASA Astrophysics Data System (ADS)

    Bouma, H.; Duiker, J. M. C.; de Vries, P. P.; Herman, P. M. J.; Wolff, W. J.

    2001-05-01

    To investigate the possible relationship between sediment dynamics and spatial distribution of early bivalve recruits, a correlative field study was carried out on a highly dynamic intertidal sandflat in the Westerschelde estuary, SW Netherlands. On a spatial grid, 43 plots over an area of 700×800 m 2, early recruits (300-1000 μm mesh fraction) of the tellinid clam Macoma balthica (L.) and the edible cockle Cerastoderma edule (L.) were sampled during the spatfall period (May-June) in 1997. Data were also collected on bed-level height, sediment dynamics and -composition and abundance of adult benthos. The grid covered a range of -50 to +140 cm with respect to mean-tide level. In both species, maximum early recruitment was found at the higher part of this range of intertidal levels. The strong gradient in densities from the lower towards the higher intertidal was significantly negatively correlated with sediment dynamics. No significant correlations of early-recruit densities were found with silt content, or with densities of adult benthos. The relationship between early recruitment and bed-level height differed from that observed in Wadden Sea studies of recruits of similar size, where maximum early recruitment occurred in the lower intertidal. It is suggested that in highly dynamic environments, sediment dynamics may have an important influence on passive resuspension of early recruits and on spatial patterns of early recruitment. Based on field and model data, it is discussed which processes could cause the difference in early recruitment patterns in low and highly dynamic intertidal environments. It is concluded that the presence of low-dynamic areas is essential for the success of early recruitment, and thus for the maintenance of bivalve populations.

  7. Computational fluid dynamics modelling of hydraulics and sedimentation in process reactors during aeration tank settling.

    PubMed

    Jensen, M D; Ingildsen, P; Rasmussen, M R; Laursen, J

    2006-01-01

    Aeration tank settling is a control method allowing settling in the process tank during high hydraulic load. The control method is patented. Aeration tank settling has been applied in several waste water treatment plants using the present design of the process tanks. Some process tank designs have shown to be more effective than others. To improve the design of less effective plants, computational fluid dynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during aeration tank settling. Secondly, several process tank design changes have been suggested and tested by means of computational fluid dynamics modelling. The most promising design changes have been found and reported.

  8. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  9. Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA

    NASA Astrophysics Data System (ADS)

    Parker, Stephen R.; West, Robert F.; Boyd, Eric S.; Feyhl-Buska, Jayme; Gammons, Christopher H.; Johnston, Tyler B.; Williams, George P.; Poulson, Simon R.

    2016-08-01

    This manuscript details investigations of a productive, mountain freshwater lake and examines the dynamic relationship between the chemical and stable isotopes and microbial composition of lake bed sediments with the geochemistry of the lake water column. A multidisciplinary approach was used in order to better understand the lake water-sediment interactions including quantification and sequencing of microbial 16S rRNA genes in a sediment core as well as stable isotope analysis of C, S, and N. One visit included the use of a pore water sampler to gain insight into the composition of dissolved solutes within the sediment matrix. Sediment cores showed a general decrease in total C with depth which included a decrease in the fraction of organic C combined with an increase in the fraction of inorganic C. One sediment core showed a maximum concentration of dissolved organic C, dissolved inorganic C, and dissolved methane in pore water at 4 cm depth which corresponded with a sharp increase in the abundance of 16S rRNA templates as a proxy for the microbial population size as well as the peak abundance of a sequence affiliated with a putative methanotroph. The isotopic separation between dissolved inorganic and dissolved organic carbon is consistent with largely aerobic microbial processes dominating the upper water column, while anaerobic microbial activity dominates the sediment bed. Using sediment core carbon concentrations, predictions were made regarding the breakdown and return of stored carbon per year from this temperate climate lake with as much as 1.3 Gg C yr-1 being released in the form of CO2 and CH4.

  10. The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon Flat Observatory, California

    USGS Publications Warehouse

    Gomberg, Joan S.; Agnew, Duncan Carr

    1996-01-01

    The dynamic strains associated with seismic waves may play a significant role in earthquake triggering, hydrological and magmatic changes, earthquake damage, and ground failure. We determine how accurately dynamic strains may be estimated from seismometer data and elastic-wave theory by comparing such estimated strains with strains measured on a three-component long-base strainmeter system at Pin??on Flat, California. We quantify the uncertainties and errors through cross-spectral analysis of data from three regional earthquakes (the M0 = 4 ?? 1017 N-m St. George, Utah; M0 = 4 ?? 1017 N-m Little Skull Mountain, Nevada; and M0 = 1 ?? 1019 N-m Northridge, California, events at distances of 470, 345, and 206 km, respectively). Our analysis indicates that in most cases the phase of the estimated strain matches that of the observed strain quite well (to within the uncertainties, which are about ?? 0.1 to ?? 0.2 cycles). However, the amplitudes are often systematically off, at levels exceeding the uncertainties (about 20%); in one case, the predicted strain amplitudes are nearly twice those observed. We also observe significant ?????? strains (?? = tangential direction), which should be zero theoretically; in the worst case, the rms ?????? strain exceeds the other nonzero components. These nonzero ?????? strains cannot be caused by deviations of the surface-wave propagation paths from the expected azimuth or by departures from the plane-wave approximation. We believe that distortion of the strain field by topography or material heterogeneities give rise to these complexities.

  11. Sediment and vegetation spatial dynamics facing sea-level rise in microtidal salt marshes: Insights from an ecogeomorphic model

    NASA Astrophysics Data System (ADS)

    Belliard, J.-P.; Di Marco, N.; Carniello, L.; Toffolon, M.

    2016-07-01

    Modeling efforts have considerably improved our understanding on the chief processes that govern the evolution of salt marshes under climate change. Yet the spatial dynamic response of salt marshes to sea-level rise that results from the interactions between the tidal landforms of interest and the presence of bio-geomorphic features has not been addressed explicitly. Accordingly, we use a modeling framework that integrates the co-evolution of the marsh platform and the embedded tidal networks to study sea-level rise effects on spatial sediment and vegetation dynamics in microtidal salt marshes considering different ecological scenarios. The analysis unveils mechanisms that drive spatial variations in sedimentation rates in ways that increase marsh resilience to rising sea-levels. In particular, marsh survival is related to the effectiveness of transport of sediments toward the interior marshland. This study hints at additional dynamics related to the modulation of channel cross-sections affecting sediment advection in the channels and subsequent delivery in the inner marsh, which should be definitely considered in the study of marsh adaptability to sea-level rise and posterior management.

  12. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors

    PubMed Central

    Zhang, Dongda; Dechatiwongse, Pongsathorn; del Rio‐Chanona, Ehecatl Antonio; Maitland, Geoffrey C.; Hellgardt, Klaus

    2015-01-01

    ABSTRACT This paper investigates the scaling‐up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo‐heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low‐chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold. Biotechnol. Bioeng. 2015;112: 2429–2438. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Peiodicals, Inc. PMID:26041472

  13. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    PubMed

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.

  14. PLASMA INSTABILITIES IN THE CONTEXT OF CURRENT HELIUM SEDIMENTATION MODELS: DYNAMICAL IMPLICATIONS FOR THE ICM IN GALAXY CLUSTERS

    SciTech Connect

    Berlok, Thomas; Pessah, Martin E. E-mail: mpessah@nbi.dk

    2015-11-01

    Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.

  15. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    USGS Publications Warehouse

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.

    2012-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  16. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    NASA Astrophysics Data System (ADS)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.

    2013-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  17. Slab Detachment, Flat Subduction and Slab Rollback in Central Mexico: Fitting the Neogene Evolution of the Trans-Mexican Volcanic Belt into the History and Dynamics of Subduction

    NASA Astrophysics Data System (ADS)

    Ferrari, L.

    2001-12-01

    I present a comparative analysis of the volcanic record of the Trans-Mexican Volcanic Belt (TMVB) and the plate tectonic history since 16 Ma in central Mexico that has important implications for the dynamic of the Cocos-Rivera subduction system. The TMVB volcanism has occurred in episodes characterized by across-arc and along strike variation and/or migration. In its first stage (16 to 10 Ma) the TMVB consisted of a broad andesitic arc emplaced between Long. 102° and 97° 30' (central Mexico). During this period volcanism was absent in the western and eastern TMVB. Between 11 and 6 Ma a voluminous mafic volcanism was emplaced to the northof the previous arc with ages progressively younger from west (Tepic-Guadalajara) to east (Queretaro-Hidalgo). Large calderas and silicic dome complexes developed in latest Miocene and early Pliocene (7.5 to 3.5 Ma) west of the Taxco-San Miguel de Allende fault system (TSMA). East of the TSMA a volcanic gap is clearly observed between ~9 and 3.5 Ma. In the western TMVB small amount of lavas with an intra-plate affinity started to be emplaced since 5 Ma. At the same time the volcanic front migrated to the south by about 70 km. East of the TSMA volcanism resumed at about 3.5 Ma in the Mexico City region and at the end of Pliocene in the eastern TMVB (excluding the Palma Sola area). In the Toluca - Mexico City area the volcanic front migrated trenchward in the Quaternary. No southward migration of the volcanic front is observed in the eastern TMVB. The Middle Miocene volcanism represent a "normal" volcanic arc developed after a gap of ~15 Ma following the formation of the Acapulco trench. I propose that the following unusual volcanic evolution was controlled by the detachment of the deeper part of the Cocos slab and the resulting variation in slab inclination. Slab must have detached after 12.5 following the end of subduction off Baja California. This is a kinematic-dynamic requirement, also supported by the fact that the present

  18. Non-equilibrium sedimentation of colloids: confocal microscopy and Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthias; Royall, C. Patrick; van Blaaderen, Alfons; Dzubiella, Joachim

    2008-12-01

    Experimental and computational details are presented for an investigation of the transient time evolution of colloidal dispersions confined in a horizontal slit pore and under the influence of gravity (Royall et al 2007 Phys. Rev. Lett. 98 188304). We demonstrate that the interparticle interactions can be well described by those of effective hard spheres by comparing experimental results for the pair distribution function obtained in the homogeneous part of the settling system to the theoretical result for hard spheres in equilibrium. Using an effective hard sphere diameter that is 10% larger than that obtained by static light scattering takes account of the (screened) electrostatic repulsion between particles. As a simple computational model, we use Brownian dynamics computer simulations with hard sphere pair interactions and investigate the time evolution of the one-body density profile during sedimentation. We show that an 'intrinsic clock', that ticks only when trial moves are accepted, facilitates high accuracy of the time evolution of the density profile, even when using relatively large integration time steps for the Langevin equations of motion.

  19. Sediment dynamics in paired High Arctic lakes revealed from high-resolution swath bathymetry and acoustic stratigraphy surveys

    NASA Astrophysics Data System (ADS)

    Normandeau, A.; Lamoureux, S. F.; Lajeunesse, P.; Francus, P.

    2016-09-01

    High Arctic lakes are commonly used for paleoclimatic reconstructions because they are particularly sensitive to climate variability. However, the processes leading to sediment deposition and distribution in these lakes are often poorly understood. Here for the first time in the Canadian High Arctic, we present original data resulting from swath bathymetry and subbottom surveys carried out on two lakes at Cape Bounty, Melville Island. The results reveal the dynamic nature of the lakes, in which mass movement deposits and bedforms on the deltas reflect frequent slope instabilities and hyperpycnal flow activity. The analysis of the mass movement deposits reveals that small blocky debris flows/avalanches, debris flows, and a slide occurred during the Holocene. These mass movements are believed to have been triggered by earthquakes and potentially by permafrost thawing along the shoreline. Altogether, these mass movement deposits cover more than 30% of the lake floors. Additionally, the river deltas on both lakes were mapped and reveal the presence of several gullies and bedforms. The presence of gullies along the delta front indicates that hyperpycnal flows generated at the river mouth can transport sediment in different trajectories downslope, resulting in a different sediment accumulation pattern and record. The dynamic nature of these two lakes suggests that further analysis on sediment transport and distribution within Arctic lakes is required in order to improve paleoclimatic reconstructions.

  20. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition.

    PubMed

    Han, Chao; Ding, Shiming; Yao, Lei; Shen, Qiushi; Zhu, Chungang; Wang, Yan; Xu, Di

    2015-12-30

    This study addresses the previously unknown effects of algae blooms on the dynamics of phosphorus (P), iron (Fe) and sulfur (S) across a lacustrine sediment-water interface (SWI). A mesocosm experiment was conducted in-situ to investigate these effects based on two recently-developed diffusive gradients in thin-films techniques (DGT). Soluble P, Fe(II), and S(-II) exhibited similar changing trends in a water column subject to the algae addition. Peak concentrations appeared on day 7 of the 16-day experiment. The lowest Eh occurred at the experiment's midway point indicating a strong algae degradation. A maximum increase in DGT-labile S appeared on day 8 near the SWI, while the DGT-labile P and Fe exhibited persistent increases almost to the end of experiment. Significantly positive correlations of labile P were observed switching from between labile Fe and labile S in sediments, suggesting a significant change in original Fe-coupled dynamics of P under algae decomposition. Apparent fluxes were calculated based on DGT profiles where a simultaneous release of P and S occurred from degraded algae, resulting in bidirectional diffusion fluxes from sediment to overlying water. In contrast, sediment acted as a major source of labile Fe due to added depth and apparently positive fluxes.

  1. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  2. Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.

    2009-12-01

    The Cointzio river basin is located within the Mexican Transvolcanic Belt, in the Michoacán state. Land-use changes undergone over last decades lead to significant erosion processes, though affecting limited areas of the basin. Apart from generating a minor depletion of arable land by incising small headwater areas, this important sediment delivery contributed to siltation in the reservoir of Cointzio, situated right downstream of the basin. During 2009 rainy season, a detailed monitoring of water and sediment fluxes was undertaken in three headwater catchments located within the Cointzio basin (Huertitas, Potrerillos and La Cortina, respectively 2.5, 9.3 and 12.0 km2), as well as at the outlet of the main river basin (station of Santiago Undameo, 627 km2). Preliminary tests realized in 2008 underlined the necessity of carrying out a high-frequency monitoring strategy to assess the sediment dynamics in the basins of this region. In each site, water discharge time-series were obtained from continuous water-level measurements (5-min time-step), and stage-discharge rating curves. At the river basin outlet, Suspended Sediment Concentration (SSC) was estimated every 10 minutes through turbidity measurements calibrated with data from automatic sampling. In the three sub-catchments, SSC time-series were calculated using stage-triggered automatic water samplers. The three upland areas monitored in our study present distinct landforms, morphology and soil types. La Cortina is underlain by andisols, rich in organic matter and with an excellent microstructure under wet conditions. Huertitas and Potrerillos both present a severely gullied landscape, bare and highly susceptible to water erosion in degraded areas. As a result, suspended sediment yields in 2009 were expectedly much higher in these two sub-catchments (≈320 t.km-2 in Huertitas and ≈270 t.km-2 in Potrerillos) than in La Cortina (≈40 t.km-2). The total suspended sediment export was approximately of 30 t.km-2

  3. Wave- and tidally-driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii

    USGS Publications Warehouse

    Storlazzi, C.D.; Ogston, A.S.; Bothner, Michael H.; Field, M.E.; Presto, M.K.

    2004-01-01

    The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1m) and its advection across the reef crest and onto the deeper fore reef. The time-series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.

  4. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy.

    PubMed

    Tanaka, Rie; Ichikawa, Katsuhiro; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Kawashima, Hiroki; Minohara, Shinichi; Sanada, Sigeru

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ± 5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation.

  5. Incorporating H2 Dynamics and Inhibition into a Microbially Based Methanogenesis Model for Restored Wetland Sediments

    NASA Astrophysics Data System (ADS)

    Pal, David; Jaffe, Peter

    2015-04-01

    Estimates of global CH4 emissions from wetlands indicate that wetlands are the largest natural source of CH4 to the atmosphere. In this paper, we propose that there is a missing component to these models that should be addressed. CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are multiple sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2, while the H2 and CO2 are used to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. Changing planted species, or genetically modifying new species of plants may control this transport of soil gases. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. The results of an incubation study were combined with a new model of propionate degradation for methanogenesis that also examines other natural parameters (i.e. gas transport through plants). This presentation examines how we would expect this model to behave in a natural field setting with changing sulfate and carbon loading schemes. These changes can be controlled through new plant species and other management practices. Next, we compare the behavior of two variations of this model, with or without the incorporation of H2 interactions, with changing sulfate, carbon loading and root volatilization. Results show that while the models behave similarly there may be a discrepancy of nearly

  6. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dawson, John L.; Smithers, Scott G.; Hua, Quan

    2014-10-01

    Low-lying reef islands are among the most vulnerable environments on earth to anthropogenic-induced climate change and sea-level rise over the next century because they are low, composed of unconsolidated sediment that is able to be mobilised by waves and currents, and depend on sediments supplied by reef organisms that are particularly sensitive to environmental changes (e.g. ocean temperatures and chemistry). Therefore, the spatial and temporal links between active carbonate production and island formation and dynamics are fundamental to predicting future island resilience, yet remain poorly quantified. In this paper we present results of a detailed geomorphological and sedimentological study of a reef and sand cay on the northern Great Barrier Reef. We provide an empirical investigation of the temporal linkages between sediment production and reef island development using a large collection of single grain AMS 14C dates. Large benthic foraminifera (LBF) are the single most important contributor to contemporary island sand mass (47%; ranging from 36% to 63%) at Raine Island, reflecting rapid rates of sediment production and delivery. Standing stock data reveal extremely high production rates on the reef (1.8 kg m- 2 yr- 1), while AMS 14C dates of single LBF tests indicate rapid rates of sediment transferral across the reef. We also demonstrate that age is statistically related to preservation and taphonomic grade (severely abraded tests > moderately abraded tests > pristine tests). We construct a contemporary reef and island sediment budget model for Raine Island that shows that LBF (Baculogypsina, Marginopora and Amphistegina) contribute 55% of the sediment produced on the reef annually, of which a large proportion (54%) contribute to the net annual accretion of the island. The tight temporal coupling between LBF growth and island sediment supply combined with the sensitivity of LBF to bleaching and ocean acidification suggests that islands dominated by LBF are

  7. Sediment Dynamics and Fate of Heavy Metals, Carbon, and Inorganic Matter in the Hudson Estuary, New York

    NASA Astrophysics Data System (ADS)

    Sritrairat, S.; Kenna, T. C.; Peteet, D. M.; Nguyen, K.; Perez, M.; Huang, Z.; Miller, A.

    2010-12-01

    The Hudson River Estuary is typical of a large, intensively used and modified estuary. Its watershed is an important resource for small communities along the river as well as large population centers such as the Metropolitan area of New York City. In addition to past industrial activities within the region that have resulted in many instances of environmental contamination, the estuary is at high risk for climatic and other anthropogenic changes. This study focuses on sediment dynamics and the fate of heavy metals, inorganic matter, and carbon in 27 sediment cores and 15 surface samples taken from wetlands and tributaries of the Hudson Estuary along a north-south transect from Troy, NY to New York harbor. Each site experiences different salinity, vegetation, landscape, and flow pattern. 1) We quantified and mapped the distribution of toxic heavy metals, including Pb, Cu, and Zn, in the estuary to examine the fate of these contaminants. Jamaica Bay and the East River sediments from New York City are the most contaminated with heavy metals among the sites analyzed. 2) We examined the sedimentation rate and sedimentation pattern, using pollution chronology along with radiometric methods. Sedimentation rates at 17 sites range from 0.26 - 2.63 cm/yr during the last century. Cores taken from high-energy or non-vegetated area are more likely to have a disturbed sedimentation pattern, and thus there is a higher risk of contaminant resuspension at those locations. 3) We quantified Ti and K concentration as a measure of the fluctuation of inorganic matter input and the fate of inorganic matter in the estuary. We quantified organic matter content with the Loss-on-Ignition (LOI) method at selected sites to identify carbon sequestration rate in the estuary. Inorganic matter content during the last century at most sites is significantly higher than that found prior to the European Settlements at the same location, suggesting increasing erosion and disturbances. However, more

  8. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA

    NASA Astrophysics Data System (ADS)

    Levine, Rebekah; Meyer, Grant A.

    2014-01-01

    Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment

  9. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    NASA Astrophysics Data System (ADS)

    Shellenbarger, Gregory G.; Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2015-11-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (˜90 m3 s-1) correlated to episodic winter storms and low base flow (˜0.85 m3 s-1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.

  10. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    USGS Publications Warehouse

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (∼90 m3 s−1) correlated to episodic winter storms and low base flow (∼0.85 m3 s−1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.

  11. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-05-01

    . Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m-3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.

  12. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    USGS Publications Warehouse

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-01-01

    column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.

  13. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    PubMed Central

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-01-01

    column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation. PMID:25288829

  14. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine.

    PubMed

    Butman, Bradford; Aretxabaleta, Alfredo L; Dickhudt, Patrick J; Dalyander, P Soupy; Sherwood, Christopher R; Anderson, Donald M; Keafer, Bruce A; Signell, Richard P

    2014-05-01

    column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 10(4) cysts m(-3). In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.

  15. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport

    USGS Publications Warehouse

    Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.

    2011-01-01

    Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.

  16. Impact of dam construction on river banks evolution and sediment dynamics. A case study from the Po River (Italy).

    NASA Astrophysics Data System (ADS)

    Maselli, V.; Pellegrini, C.; Crose, L.; Del Bianco, F.; Mercorella, A.

    2014-12-01

    Rivers draining densely populated landscapes are extremely impacted by modern human engineering: armored beds, artificial levees and dams modified natural fluvial dynamics, and consequently, the evolution of alluvial plains, deltas and coastal environments. Dams, in particular, segmented the longitudinal continuity of the river and reduced (or even interrupted) the export of sediment toward the sea. Here we investigate the impact of the Isola Serafini dam on the upstream portion of the Po River (Italy) influenced by backwater, by using an integrated approach of aerial and satellite images, longitudinal cross-sections, grain size analysis, backscatter data and multibeam bathymetry. The analysis of aerial photographs, acquired every 10 yr since the dam construction in 1960, and of longitudinal cross-sections, allows understanding how the river adjusts its profile in response to the backwater and quantifying areas of net river banks erosion and deposition in meanders. The drowning of the reaches influenced by backwater reduced the progradation of point bars and promoted the deposition of fine grained sediments, as highlighted by grain size analysis on surficial sediment sampled across and along the river course. Calibrated back-scatter data with grain-size distributions of two selected meanders, under the backwater effect and beyond, show how sands are progressively replaced by fine-grained sediments in the meander belt and in the river axis, mainly reflecting the reduction of flow velocity, inferred also by river bed roughness. The understanding of river and sediment dynamics under the influence of backwater due to dam construction is useful when studying pristine systems in which natural backwater affects their evolution, as in the case of the formation of standing water bodies during the drowning of an incised valley.

  17. Origin and dynamics of suspended sediment during a 10-yr return period flood on the Bès River, Southern French Alps

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Navratil, O.; Esteves, M.; Legout, C.; Ayrault, S.; Némery, J.; Lefèvre, I.; Bonté, P.; Tacon, S.; Liébault, F.

    2011-12-01

    In mountains, an excessive sediment supply to the rivers typically leads to an increase in water turbidity and a rapid filling of reservoirs in downstream areas. This situation is particularly problematic in regions where reservoirs are used to provide drinking water to large cities or clear water to hydroelectric power plants (e.g., in the French Southern Alps). Sediment source areas must first be delineated and sediment fluxes between hillslopes and the river system must be better understood to implement efficient sediment management. In this context, the Sediment Transport and Erosion Across MountainS STREAMS project (2007-2010) funded by the French National Research Agency (ANR) aimed at understanding the spatial and temporal dynamics of fine sediment at the scale of two mountainous watersheds located in contrasted environments (range, 10 - 1,000 km2). One of the main specificities of this project consisted in combining traditional monitoring techniques and sediment fingerprinting using elemental geochemistry (determined using Instrumental Neutron Activation Analysis - INAA, and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry) as potential discriminant properties. The combination of both these approaches provided valuable information on the temporal variability of suspended sediment sources and sediment transfer within the river network. This presentation will focus on the results obtained during a 10-years return period flood that occurred on the Bès River (165 km2), the main tributary of the Bléone River (905 km2), Southern French Alps. Suspended sediment concentrations and yields were estimated using discharge and turbidity monitoring (records with 10 min. time step) and sediment sampling during the flood. Rainfall intensity, volume, distribution and nature were estimated using 3 rain gauges and rainfall radar images. Sediment fingerprinting was conducted using a mixing model based on

  18. Integrating structural and functional connectivity to characterize sediment dynamics in a small Alpine catchment

    NASA Astrophysics Data System (ADS)

    Cavalli, Marco; Crema, Stefano; Blok, Michiel; Lucía, Ana; Comiti, Francesco; Marchi, Lorenzo; Keesstra, Saskia

    2016-04-01

    Sediment connectivity can be regarded as a descriptor of the internal linkages between different landscape components within a catchment. The recent focus of the scientific community on connectivity related topics, both concerning hydrological and sediment connectivity, stresses the importance of understanding the main active pathways for a better estimation of energy and matter transfer at catchment scale. This task can be addressed using topography-based indices that analyse the linkages between landscape units. This approach to characterize connectivity is known as structural connectivity. The main limitation of structural connectivity is that it does not account for the processes driving sediment and energy fluxes (i.e., functional connectivity). In this work the integration between structural and functional approaches is proposed for characterizing sediment connectivity in mountain catchments. The structural approach, based on a topography-based sediment connectivity index, was used for assessing hillslope-to-channel connectivity. Since field data on processes driving sediment transport along the channel network are available, a functional approach has been devised to estimate within-channel connectivity. An index of unit stream power computed from the hydraulic properties of the channel (i.e., discharge, slope and channel width) has been compared with the critical unit stream power computed from incipient motion thresholds derived from field data to identify the cells of the Digital Terrain Model (DTM) in which sediment can be mobilized under near-bankfull conditions. The index expressing the within-channel connectivity is given by the length of the reaches consisting of contiguous cells that exceed the critical unit stream power. During high-magnitude floods, when unit stream power values exceed the threshold for incipient motion, channels experience an increase in both hydrological and sediment connectivity. The proposed index characterizes those sections

  19. Hypolyminetic Oxygen Depletion And Dynamics of P Binding Forms: Insights From Modeling Sediment Early Diagenesis Coupled With Automatic Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Shafei, Babak; Schmid, Martin; Müller, Beat; Chwalek, Thomas

    2014-05-01

    Sediment diagenesis can significantly impact on lake water quality through depleting hypolimnion oxygen and acting as a sink or source of nutrients and contaminants. In this study, we apply MATsedLAB, a sediment diagenesis module developed in MATLAB [1, 2] to quantify benthic oxygen consumption and biogeochemical cycling of phosphate (P) in lacustrine sediments of Lake Baldegg, located in central Switzerland. MATsedLAB provides an access to the advanced computational and visualization capabilities of the interactive programming environment of MATLAB. It allows for a flexible definition of non steady-state boundary conditions at the sediment-water interface (SWI), the model parameters as well as transport and biogeochemical reactions. The model has been extended to facilitate the model-independent parameter estimation and uncertainty analysis using the software package, PEST. Lake Baldegg represents an interesting case where sediment-water interactions control P loading in an eutrophic lake. It is of 5.2 km2 surface area and has been artificially aerated since 1982. Between 1960 and 1980, low oxygen concentrations and meromictic condition were established as a result of high productivity. Here, we use the cores for the measurements of anions and cations which were collected in April and June 2012 respectively from the deepest location (66 m), by Torres et al. (2013) to calibrate the developed model [3]. Depth profiles of thirty three species were simulated by including thirty mixed kinetic-equilibrium biogeochemical processes as well as imposing the fluxes of organic and inorganic matters along with solute concentrations at the SWI as dynamic boundary conditions. The diffusive transport in the boundary layer (DBL) above the SWI was included as the supply of O2 to the sediment surface can be diffusion-limited, and applying a constant O2 concentration at the sediment surface may overestimate O2 consumption. Benthic oxygen consumption was calculated as a function of

  20. Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.

    2014-12-01

    In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary

  1. Anchor ice, seabed freezing, and sediment dynamics in shallow arctic seas

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.; Barnes, P.W.

    1987-01-01

    Diving investigations confirm previous circumstantial evidence of seafloor freezing and anchor ice accretion during freeze-up storms in the Alaskan Beaufort Sea. These related bottom types were found to be continuous from shore to 2 m depth and spotty to 4.5 m depth. The concretelike nature of frozen bottom, where present, should prohibit sediment transport by any conceivable wave or current regime during the freezing storm. But elsewhere, anchor ice lifts coarse material off the bottom and incorporates it into the ice canopy, thereby leading to significant ice rafting of shallow shelf sediment and likely sediment loss to the deep sea. -from Authors

  2. Contextualising impacts of logging on tropical rainforest catchment sediment dynamics using the stratigraphic record of in-channel bench deposits

    NASA Astrophysics Data System (ADS)

    Blake, Will; Walsh, Rory; Bidin, Kawi; Annammala, Kogila

    2015-04-01

    It is widely recognised that commercial logging and conversion of tropical rainforest to oil palm plantation leads to enhanced fluvial sediment flux to the coastal zone but the dynamics of delivery and mechanisms that act to retain sediment and nutrients within rainforest ecosystems, e.g. riparian zone and floodplain storage, are poorly understood and underexploited as a management tool. While accretion of lateral in-channel bench deposits in response to forest clearance has been demonstrated in temperate landscapes, their development and value as sedimentary archives of catchment response to human disturbance remains largely unexplored in tropical rainforest river systems. Working within the Segama River basin, Sabah, Malaysian Borneo, this study aimed to test the hypothesis that (1) lateral bench development in tropical rainforest rivers systems is enhanced by upstream catchment disturbance and that (2) the sedimentary record of these deposits can be used to infer changes in sediment provenance and intensification of sediment flux associated with logging activities. Sediment cores were taken from in-channel bench deposits with upstream catchment contributing areas of 721 km2 and 2800 km2 respectively. Accretion rates were determined using fallout 210Pb and 137Cs and the timing of peak accumulation was shown to correspond exactly with the known temporal pattern of logging and associated fluvial sediment response over the period 1980 to present following low pre-logging rates. Major and minor element geochemistry of deposits was used to assess the degree of weathering that deposited sediment had experienced. This was linked to surface (heavily weathered) and subsurface (less weathered) sediment sources relating to initial disturbance by logging and post-logging landsliding responses respectively. A shift in the dominant source of deposited material from surface (i.e. topsoil) to subsurface (i.e. relatively unweathered subsoil close to bedrock) origin was observed

  3. ORGANIC CARBON AND SUSPENDED SEDIMENT DYNAMICS IN WESTERN LAKE SUPERIOR COASTAL WETLANDS

    EPA Science Inventory

    Little is known about the influence of loading of sediment and organic carbon on coastal wetlands fringing the Laurentian Great Lakes. In conjunction with our studies of nutrient retention in coastal wetland ecosystems...

  4. DYNAMICS OF MINERAL STRUCTURES AND THE FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction with reasonable ...

  5. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    USGS Publications Warehouse

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously-measuring temperature, salinity, depth, turbidity, and velocity sensors since 2010, and added a dissolved-oxygen sensor in 2012, at a near-bottom location in Alviso Slough (Alviso, California USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows correlated to episodic winter storms (~85 m3 s-1) and low base flow during the summer (~0.85 m3 s-1). Storms and associated runoff have the greatest influence on sediment flux. Strong spring tides promote upstream sediment flux and weak neap tides have only a small net flux. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides.

  6. Wave-Turbulence-Sediment Dynamics on the Atchafalaya Shelf, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Safak, I.; Sheremet, A.; Allison, M.; Hsu, T. J.

    2008-12-01

    Two synchronized Sontek Hydra ADVs (Acoustic Doppler Velocimeter) were deployed for 2 weeks in early spring 2008 on the muddy Atchafalaya Shelf to observe near-bed wave, turbulence and cohesive sediment transport processes. The ADVs sampled at 10 Hz and were mounted in a vertical array to separate the effects of waves and turbulence and estimate Reynolds stresses. Near bottom velocity profile and suspended sediment concentration were also monitored using a pulse-coherent acoustic Doppler current profiler together with optical and acoustic backscatter sensors. A uni-dimensional boundary layer model for cohesive sediment transport was used to reconstruct the near bed suspended sediment concentration and simulate its interaction with the flow field.

  7. The Importance of Lake Sediments as a Pathway for Microcystin Dynamics in Shallow Eutrophic Lakes

    PubMed Central

    Song, Haihong; Coggins, Liah X.; Reichwaldt, Elke S.; Ghadouani, Anas

    2015-01-01

    Microcystins are toxins produced by cyanobacteria. They occur in aquatic systems across the world and their occurrence is expected to increase in frequency and magnitude. As microcystins are hazardous to humans and animals, it is essential to understand their fate in aquatic systems in order to control health risks. While the occurrence of microcystins in sediments has been widely reported, the factors influencing their occurrence, variability, and spatial distribution are not yet well understood. Especially in shallow lakes, which often develop large cyanobacterial blooms, the spatial variability of toxins in the sediments is a complex interplay between the spatial distribution of toxin producing cyanobacteria, local biological, physical and chemical processes, and the re-distribution of toxins in sediments through wind mixing. In this study, microcystin occurrence in lake sediment, and their relationship with biological and physicochemical variables were investigated in a shallow, eutrophic lake over five months. We found no significant difference in cyanobacterial biomass, temperature, pH, and salinity between the surface water and the water directly overlying the sediment (hereafter ‘overlying water’), indicating that the water column was well mixed. Microcystins were detected in all sediment samples, with concentrations ranging from 0.06 to 0.78 µg equivalent microcystin-LR/g sediments (dry mass). Microcystin concentration and cyanobacterial biomass in the sediment was different between sites in three out of five months, indicating that the spatial distribution was a complex interaction between local and mixing processes. A combination of total microcystins in the water, depth integrated cyanobacterial biomass in the water, cyanobacterial biomass in the sediment, and pH explained only 21.1% of the spatial variability of microcystins in the sediments. A more in-depth analysis that included variables representative of processes on smaller vertical or local

  8. Hydrology and sediment dynamics above and below the St. Croix Falls dam, MN/WI

    NASA Astrophysics Data System (ADS)

    MacGregor, K. R.; Hornbach, D.; Hove, M.

    2011-12-01

    Sediment budgets in river networks are notoriously difficult to construct but key for quantifying both short and long-term changes to fluvial environments. Hydrologic and sedimentologic conditions in the St. Croix River, one of the first rivers in the US to be designated a National Wild and Scenic River, play a significant role in the stability of native freshwater mussel populations. The availability and transport of sediment controls overall geomorphology, riverbed composition, and water turbidity, all of which are important to mussel habitat. Mussel habitat analyses show a decrease in the grain size of bed sediment and a >90% decline in the juvenile mussel population in the last decade, but only in a region below the St. Croix Falls dam. This reach of the St. Croix River is home to two federally endangered mussel species; we need to better understand the controls on sediment transport into and out of this stretch of river to understand the causes for the mussel decline, and to evaluate future threats to these species. In conjunction with mussel habitat analyses, we collected surface and near-bed suspended sediment, as well as bedload transport samples below the dam. Since January 2008 we have collected suspended sediment samples weekly at four locations, two above the dam and two below. Comparison to data collected in the 1970's suggests a decrease in suspended sediment, although the frequency of summer/fall high flow events has increased. We measured near-bed sediment transport using a BL-84 bedload sampler at Wild River, a sandy habitat upstream of the St. Croix Falls dam and Interstate Park, a rockier habitat downstream of the dam. A significant relationship was found between water discharge and bed sediment transport at both high (>5000 cfs) and low flows at both sites. Using historical maps and recent bathymetric data, we used GIS to construct changes in reservoir volume over time. Our results indicate that there has been substantial sediment infilling

  9. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    PubMed

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-04-13

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, are limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~ 2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175 - 504 Mg ha(-1) ) than those in Non-Riverine settings (44 - 271 Mg ha(-1) ). Variation in OC stocks among Non-Riverine sites was high in comparison to Riverine and Mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the north-west of the bay. Sediment OC stocks increased with elevation within Non-Riverine settings, but not in Riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000 - 5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between Riverine and Non-Riverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage

  10. Morphology and Sediment Dynamics of the East Friesian Tidal Inlets, West Germany.

    DTIC Science & Technology

    1982-01-01

    positions. To the geologists the tidal inlets represent major sediment sinks in the littoral transport system , sinks which may account for a significant...Norderneyer Seegat. The model is generally thought to be valid also for the other inlets. The pattern of bar migration identified on the reefbow...tidal cycle tends to develop strongly ebb-dominant flow in such a bay -inlet system . The peak ebb current and the consequent seaward- directed sediment

  11. Predicting Sediment Transport Dynamics in Ephemeral Channels: A Review of Literature

    DTIC Science & Technology

    2006-09-01

    collected during flash floods in desert gravel-bed streams. The bed-load flux is presented as a function of hydraulic parameters such as depth, hydraulic...investigations are found in the literature. Alexandrov (2003) presents suspended sediment concentration as a function of flash flood discharge for the...that the size distribution of the flash flood sediments is controlled by the flow. Related studies in the literature include Frostick (1983), Dunkerley

  12. Flow dynamics and sediment transport over a reversing barchan, Changli, China

    NASA Astrophysics Data System (ADS)

    Yuxiang, Dong; Hesp, Patrick A.; Dequan, Huang; Namikas, S. L.

    2017-02-01

    The flow and sediment transport over a reversing 6.9 m-high barchan dune is examined on the Changli Gold Coast in Hebei Province, China. Wind velocity profiles are non-logarithmic, exhibit rapid accelerations up slope, and display near-surface jets at the dune crest and downwind lee slope. From the windward lower slope to dune crest, the wind speed at 5 cm height increased by 55%. The windward slope is a slipface and therefore has a significantly greater gradient than most 'normal' windward slopes, and the magnitude of speed-up is significantly greater (speed-up ratio of 5.25). The majority of sediment was transported in the 0-4 cm height above the bed range. Maximum total sediment flux occurred at the dune crest and was greater than the total flux from three other sites combined. The leeward mid-slope sedimentation rate is strongly influenced by the sediment plume streaming upwards and downwind from the actively reversing dune crest. Dunes in the process of reversing display quite different wind flow and sedimentation patterns than when the dune is in 'normal' flow conditions.

  13. Remote monitoring of sediment dynamics in a coastal lagoon: Long-term spatio-temporal variability of suspended sediment in Chilika

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Equeenuddin, Sk. Md.; Mishra, Deepak R.; Acharya, Bhaskar C.

    2016-03-01

    We present a comprehensive analysis of sediment dynamics in a coastal lagoon by synthesizing various remote sensing datasets. The goal of the study was to monitor and analyze the spatio-temporal variability of total suspended sediment (TSS) concentration and associated environmental forcings in Chilika Lagoon, the largest brackish water lagoon in Asia. Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance cloud free data was used to calibrate a TSS model. MODIS daily 250 m surface reflectance (MOD09GQ) and 8-day composite products (MOD09Q1) were chosen because they are atmospherically corrected and available for free thus making them widely applicable for frequent monitoring of environmental phenomena. Three variants of Miller and McKee (2004) TSS model were recalibrated to establish the relationship between in situ TSS and surface reflectance value in band 1 (Rrs at 645 nm). A significant relationship (R2 = 0.91; n = 54; p < 0.001) was obtained between in situ TSS and MODIS Rrs (645 nm) using a polynomial model. The other two models, exponential and linear, showed comparatively low R2 (0.77 and 0.73 respectively). Accuracy of the models were assessed by comparing the field measured TSS with MODIS derived TSS. Based on R2 values, validation analysis (RMSE = 2.64 mg/L), and residual trend, the polynomial model was found to be the best performing TSS model with an estimation range of 6.5 mg/L - 200 mg/L. The model was then implemented to derive weekly time-series TSS maps of Chilika Lagoon for 14 years (2001-2014). Marked seasonal and inter-annual variations in TSS distribution were observed in different sectors (northern, central and southern) of the lagoon. It was found that the TSS variability is primarily driven by three factors: monsoon effect (precipitation and runoff), wind-driven bottom re-suspension, and river discharge into the lagoon. Further analysis of the relationship between MODIS derived time-series TSS and meteorological

  14. Effects of Hydrologic Restoration on Flood Resilience and Sediment Dynamics of Urban Creeks in the UK and USA

    NASA Astrophysics Data System (ADS)

    Wright, N.

    2015-12-01

    Hydrologic restoration in urban creeks is increasingly regarded as a more sustainable option than traditional grey infrastructures in many countries including the UK and USA. Hydrologic restoration aims to recreate naturally oriented hydro-morphodynamic processes while adding ecological and amenity value to a river corridor. Nevertheless, the long-term hydraulic performance of river restorations is incompletely understood. The aim of this research was to investigate the long-term effects of river restoration on the water storage, flood attenuation and sediment dynamics of two urban creeks through detailed hydro-morphodynamic modelling. The first case study is based on Johnson Creek located at Portland, Oregon, USA, and the second case based on Ouseburn River in Newcastle upon Tyne, N.E. England. This study focuses on the downstream of the Johnson Creek, where creek is reconnected to a restored East Lents floodplain of 0.28 km2. In order to offset the increased urban runoff in the Ouseburn catchment, a number of attenuation ponds were implemented along the river. In this study, an integrated 1D and 2D flood model (ISIS - TUFLOW) and the recently updated layer-based hydro-morphodynamic model have been used to understand the long-term impacts of these restorations on the flood and sediment dynamics. The event-based simulations (500 year, 100 year, 50 year, 10 year and 5 year), as well as the continuous simulations based on the historical flow datasets were systematically undertaken. Simulation results showed that the flood storage as a result of river restoration attenuate the flood peak by up to 25% at the downstream. Results also indicated that about 30% of the sediments generated from the upstream deposited in the resorted regions. The spatial distribution and amount of short and long-term sediment deposition on the floodplain and pond are demonstrated, and the resulting potential loss of the flood storage capacity are analysed and discussed.

  15. Surface sediment dynamics along the Tunisian coast at Skhira (Gulf of Gabès, south-eastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Brahim, Mouldi; Abdelfattah, Atoui; Sammari, Chérif; Aleya, Lotfi

    2015-12-01

    An investigation was conducted in the summer of 2012 at 24 study stations along the Tunisian coast near Skhira (south-eastern Mediterranean Sea) through high resolution of analyses, grain size and mineral composition of surface sediment. An Acoustic Doppler Current Profiler showed Skhira's main coastal current to follow a direction 60°E, with its main axis south-west/north-east parallel to the coastline and its minor axis east-west. Current speeds were approximately 13 cm s-1 and 4.5 cm s-1 for the major and minor axes, respectively. Parallel to the coast, currents were generally mild to moderate, but often exceeded 20 cm s-1. An Argonaut meter recorded the dominant current direction as north/north-east with a speed not exceeding 18 cm s-1. Orthogonal Empirical Function analysis of tidal currents showed that the major axis velocity dispersion was north-east/south-west, the water mass flow parallel to the shoreline being almost unidirectional, driving littoral drift parallel to the coast. Spatial distribution of particle size, along with speed and current direction analysis, furnish an overview of the Skhira area's sediment dynamics and transport. Average sand grain size shows that the bottom consists of fine and especially of medium sands near the coast, with muddy sands offshore. The fine fraction percentage (<63 microns) as opposed to the coarse fraction (>63 microns) is higher at the two offshore study stations, 20 m deep. Fine particles are discharged into the sea by rip currents. Sediment dynamics along the Skhira coast are complex, being subject to the combined effect of swell and tide. Sediments are permanently re-suspended and in constant movement, especially during storms.

  16. Geochemical dynamics of the Atlantis II Deep (Red Sea): II. Composition of metalliferous sediment pore waters

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Blanc, Gérard; Monnin, Christophe; Boulègue, Jacques

    2000-12-01

    The Atlantis II Deep is an axial depression of the Red Sea filled with highly saline brines and covered by layered metalliferous sediment. We report new data on the vertical distribution of major salts and trace metals dissolved in the pore waters of the metalliferous sediments. We have studied the chemical composition of interstitial waters of two sediment cores of the western (core 684) and southwestern (core 683) basins. The major dissolved elements are Na and Cl. Their concentrations are close to those of the brine overlying the sediment. The pore waters are undersaturated with respect to halite at the in situ conditions (62°C, 220 bars), but are saturated at the shipboard conditions (10°C, 1 bar). The salt and water contents of the bulk sediment show that core 683 contained halite in the solid fraction. A part of it precipitated after core collection, but most of it was present in situ. Thermodynamic calculations with a water-rock interaction model based on Pitzer's ion interaction approach reveal that equilibrium between the pore waters and anhydrite is achieved in sediment layers for which observations report the presence of this mineral. We used a transport model, which shows that molecular diffusion can smooth the profile of dissolved salt and partly erase the pore water record of past variations of salinity in the lower brine. For example, we calculated that the pore water record of modern variation of brine salinity is rapidly smoothed by molecular diffusion. The dissolved transition metals show large variations with depth in the interstitial waters. The profiles of core 683 reflect the possible advection of hydrothermal fluid within the sediment of the southwestern basin. The distribution of dissolved metals in core 684 is the result of diagenetic reactions, mainly the reduction of Mn-oxide with dissolved Fe(II), the recrystallization of primary oxide minerals, and the precipitation of authigenic Mn-carbonates.

  17. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    USGS Publications Warehouse

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  18. A History of Vegetation, Sediment and Nutrient Dynamics at Tivoli North Bay, Hudson Estuary, New York

    NASA Technical Reports Server (NTRS)

    Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray; Kurdyla, Dorothy; Guilderson, Tom

    2012-01-01

    We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays.

  19. Dynamic Coupling of Iron, Manganese, and Phosphorus Behavior in Water and Sediment of Shallow Ice-Covered Eutrophic Lakes.

    PubMed

    Schroth, Andrew W; Giles, Courtney D; Isles, Peter D F; Xu, Yaoyang; Perzan, Zachary; Druschel, Gregory K

    2015-08-18

    Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn(oxy)hydroxides below the SWI. Redox dynamics are driven by benthic O2 consumption, limited air-water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and "truly dissolved" Fe near the water column surface, and a relatively well-mixed "truly dissolved" Mn and "colloidal" Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.

  20. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  1. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    PubMed Central

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm−3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  2. An FTIR-DRIFT study on river sediment particle structure: implications for biofilm dynamics and pollutant binding.

    PubMed

    Gallé, Tom; Van Lagen, Barend; Kurtenbach, Andreas; Bierl, Reinhard

    2004-09-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectrometry was applied to a set of sediment samples collected by traps over one and a half years in a mid-mountainous river. Dynamic changes in hydrological and life-cycle conditions generated sediment particles of different C(org) content and organic composition. Periods in the midst of or shortly after flood events left particles poor in C(org) content with spectral features that were enriched in carboxylic and aromatic signals. These are characteristic of terrestrial oxidized vascular plant debris. Low-flow conditions saw the consequent build-up of amide, aliphatic, and polysaccharide moieties as expected for autochthonous biofilm derived material. A peak ratio of two bands representing the alternation of these two types of organic matter showed that flood particle C(org) had a higher affinity for metals than the high C(org) of mature biofilms, probably owing to higher COO- contents in the first. The relative dietary bioavailability of the metals from sediment C(org), which is related to the nutritional value of the substrate, is therefore probably lower in the aftermath of a flood than in prolonged low-flow situations. This needs to be accounted for in future metal speciation and bioavailability modeling approaches.

  3. Sediment Transport, Complex Topography, and Hydrokinetic Turbines: Bedform Dynamics, Local Scour, and the Effect on Turbine Performance.

    NASA Astrophysics Data System (ADS)

    Guala, M.; Hill, C.; Kozarek, J. L.; Sotiropoulos, F.

    2015-12-01

    Multi-scale experiments on the interactions between axial-flow marine hydrokinetic (MHK) turbines, sediment transport and complex channel topography were performed at St. Anthony Falls Laboratory (SAFL), University of Minnesota. Model axial-flow three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. In erodible channels, device-induced local scour was monitored over several hydraulic conditions (clear water vs. live bedload transport) and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. A novel data acquisition imaging system provided methods for monitoring the dynamics of bedform transport as they approached and migrated past an operating axial-flow turbine. Experiments were also performed in a realistic meandering outdoor research channel with active sediment transport to investigate MHK turbine interactions with bedform migration and turbulent flow in asymmetric channels, providing new insight into turbine-sediment interactions and turbine wake behavior in curving channels. Results provide the foundation for investigating advanced turbine control strategies for optimal power production in non-stationary environments, while also providing robust data for computational model validation enabling further investigations into the interactions between energy conversion devices and the physical environment.

  4. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments.

    PubMed

    Nunoura, Takuro; Nishizawa, Manabu; Kikuchi, Tohru; Tsubouchi, Taishi; Hirai, Miho; Koide, Osamu; Miyazaki, Junichi; Hirayama, Hisako; Koba, Keisuke; Takai, Ken

    2013-11-01

    There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments.

  5. Beaver dams, sediment dynamics and morphological change, Odell Creek, southwest Montana

    NASA Astrophysics Data System (ADS)

    Levine, R.; Meyer, G. A.

    2012-12-01

    Beaver (Castor canadensis) were historically part of riverine systems across North America, and enhancement of beaver populations is increasingly considered an important remedy for stream degradation problems such as incised channels. However, how beaver affect fluvial processes and resulting morphology in different fluvial environments and on various channel types requires further attention. We examine the effects of beaver damming on Odell Creek, a relatively high-energy piedmont stream in the upper Missouri River basin of southwest Montana, where air photo and real-time observations indicate that main-channel dams typically persist for only a few years. Odell Creek has a basin area of 46 km2, a snowmelt-dominated hydrograph, and peak flows of 2-10 m3s-1. Odell Creek is broadly incised along most of its length within a late Pleistocene fluvial fan surface, with mean floodplain width between confining terraces of 240 m. Channel gradient declines downstream from 0.018 - 0.004, and mean channel width for 46 cross-sections is 8.1 m. We examined the geomorphic effects of active beaver dams and the persistence of dam-induced changes in nine study reaches representing downstream channel variability and variations in dam history. In-channel sediment characteristics and storage were investigated using pebble counts, fine sediment surveys and bed sediment mapping. Discharges exceeding bankfull during 2011 spring runoff breached three active dams within reaches surveyed in 2009 and 2010, allowing for repeat channel cross-section and sediment surveys. Channel geometry and sediment analyses were also conducted at several other active and breached dam sites. Volumes of fine (≤ 2 mm) sediment stored upstream of active beaver dams ranged from 40 - 135 m3. Observations and surveys of abandoned dam sites and dam breaches revealed that the majority of sediment stored upstream of beaver dams is quickly evacuated following a breach. However, while general aggradation from damming

  6. Geomorphic field experiment to quantify grain size and biotic influence on riverbed sedimentation dynamics in a dry-season reservoir, Russian River, CA

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Ulrich, C.; Hubbard, S. S.; Borglin, S. E.; Rosenberry, D. O.

    2013-12-01

    An important problem in geomorphology is to differentiate between abiotic and biotic fine sediment deposition on coarse gravel river beds because of the potential for fine sediment to infiltrate and clog the pore space between gravel clasts. Infiltration of fines into gravel substrate is significant because it may reduce permeability; therefore, differentiation of abiotic vs. biotic sediment helps in understanding the causes of such changes. We conducted a geomorphic field experiment during May to November 2012 in the Russian River near Wohler, CA, to quantify biotic influence on riverbed sedimentation in a small temporary reservoir. The reservoir is formed upstream of a small dam inflated during the dry season to enhance water supply pumping from the aquifer below the channel; however, some flow is maintained in the reservoir to facilitate fish outmigration. In the Russian River field area, sediment transport dynamics during storm flows prior to dam inflation created an alternate bar-riffle complex with a coarser gravel surface layer over the relatively finer gravel subsurface. The objective of our work was to link grain size distribution and topographic variation to biotic and abiotic sediment deposition dynamics in this field setting where the summertime dam annually increases flow depth and inundates the bar surfaces. The field experiment investigated fine sediment deposition over the coarser surface sediment on two impounded bars upstream of the reservoir during an approximately five month period when the temporary dam was inflated. The approach included high resolution field surveys of topography, grain size sampling and sediment traps on channel bars, and laboratory analyses of grain size distributions and loss on ignition (LOI) to determine biotic content. Sediment traps were installed at six sites on bars to measure sediment deposited during the period of impoundment. Preliminary results show that fine sediment deposition occurred at all of the sample

  7. An experimental investigation of the dynamics of submarine leveed channel initiation as sediment-laden density currents experience sudden unconfinement

    SciTech Connect

    Rowland, Joel C; Hilley, George E; Fildani, Andrea

    2009-01-01

    Leveed submarine channels play a critical role in the transfer of sediment from the upper continental slopes to interslope basins and ultimately deepwater settings. Despite a reasonable understanding of how these channels grow once established, how such channels initiate on previously unchannelized portions of the seafloor remains poorly understood. We conducted a series of experiments that elucidate the influence of excess density relative to flow velocity on the dynamics of, and depositional morphologies arising from, density currents undergoing sudden unconfinement across a sloped bed. Experimental currents transported only suspended sediment across a non-erodible substrate. Under flow conditions ranging from supercritical to subcritical (bulk Richardson numbers of 0.02 to 1.2) our experiments failed to produce deposits resembling or exhibiting the potential to evolve into self-formed leveed channels. In the absence of excess density, a submerged sediment-laden flow produced sharp crested lateral deposits bounding the margins of the flow for approximately a distance of two outlet widths down basin. These lateral deposits terminated in a centerline deposit that greatly exceeded marginal deposits in thickness. As excess density increased relative to the outlet velocity, the rate of lateral spreading of the flow increased relative to the downstream propagation of the density current, transitioning from a narrow flow aligned with the channel outlet to a broad radially expanding flow. Coincident with these changes in flow dynamics, the bounding lateral deposits extended for shorter distances, had lower, more poorly defined crests that were increasingly wider in separation than the initial outlet, and progressively became more oblong rather than linear. Based on our results, we conclude that leveed channels cannot initiate from sediment-laden density currents under strictly depositional conditions. Partial confinement of these currents appears to be necessary to

  8. Turbidite Paleoseismology: Site Selection, Physiography, Sediment Supply, Current Dynamics and Temporal Considerations as Applied in Cascadia and Elsewhere

    NASA Astrophysics Data System (ADS)

    Goldfinger, C.; Hamilton, T. S.; Beeson, J.; Galer, S.; Nelson, C. H.; Morey, A. E.; Udrekh, U.

    2014-12-01

    Turbidite paleoseismology requires careful consideration of site context, temporal interval of interest, sediment supply, and the flow dynamics before interpretations can be drawn. These factors are predicated on precise navigation so that the context of the core within modern bathymetric, sub-bottom, sidescan, and backscatter data are known. In Cascadia, numerous channel systems exist and cover a range of time intervals since the Early Pleistocene. During high stands, many of these systems are relict, with limited terrigenous sediment supply. Holocene paleoseismic records may depend on recycled materials from failure of local slopes to supply channels, slope basins, or fans. Local failures may serve to supply sediment at any point along a canyon system under expected shaking levels of ~ 1.0 g with or without recent sediment recharge. Recharge by active terrigenous sedimentation is apparently not required in Cascadia or Sumatra, where site locations, without this recharge possibility have excellent records correlable to other paleoseismic sites. By comparison to Pleistocene fan-building currents, Holocene currents are weak, rendering most areas of fan systems inactive. Core and backscatter data show the Astoria and Nitinat Fans have little Holocene activity outside the main channels. Pleistocene channels are crosscut by active Holocene incisions and levees, restricting their role as depocenters. In the main channels, the most recent currents are largely confined closely within their levees. Recent proposals for alternate Holocene pathways in Cascadia attempt to integrate data from inactive fans, pose implausible pathways over the top of the growing accretionary wedge, or use other inactive channels. Resolution of observations is also critical and simple visual core logging is inadequate when compared to modern CT data. Thus for Holocene paleoseismology, cores must be collected from within main channels or near enough to local slopes (1-2 km) to receive

  9. Glyphosate distribution in loess soils as a result of dynamic sediment transport processes during a simulated rainstorm

    NASA Astrophysics Data System (ADS)

    Commelin, Meindert; Martins Bento, Celia; Baartman, Jantiene; Geissen, Violette

    2016-04-01

    Glyphosate is one of the most widely used herbicides in the world. The wide and extensive use of glyphosate makes it important to be certain about the safety of glyphosate to off-target environments and organisms. This research aims to create more detailed insight into the distribution processes of glyphosate, and the effect that dynamic sediment transport processes have on this distribution, during water erosion in agricultural fields. Glyphosate distribution characteristics are investigated for two different soil surfaces: a smooth surface, and a surface with seeding lines on the contour. The capacity to transport glyphosate for different sediment groups was investigated. These groups were water-eroded sediment and sedimentation areas found on the plot surface. The contribution of particle bonded and dissolved transport to total overland transportation of glyphosate was analysed with a mass balance study. The experiment was conducted in the Wageningen UR rainfall simulator. Plots of 0.5m2 were used, with a 5% slope, and a total of six experimental simulations were done. A rainfall event with an intensity of 30mm/h was simulated, applied in four showers of 15 minutes each with 30 minutes pause in between. Glyphosate (16mg/kg) was applied on the top 20cm of each plot, and in the downstream part, soil samples were taken. Glyphosate analysis was done using HPLC-MS/MS (High Performance Liquid Chromatography tandem Mass Spectrometry). Besides that, photo analysis with eCognition was used to derive the soil surface per sediment group. The results show that particle bonded transport of glyphosate contributes significantly (for at least 25%) to glyphosate transport during a rainstorm event. Particle size and organic matter have a large influence on the mobility of glyphosate and on the transported quantity to off-target areas. Moreover, seeding lines on the soil surface decreased total overland transport, both of sediment and glyphosate. Taking this into account, plots

  10. What really causes flat slab subduction?

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Perez-Gussinye, M.; Manea, M.

    2014-12-01

    How flat slab geometries are generated has been long debated. It has been suggested thattrenchward motion of thick cratons in some areas of South America and Cenozoic NorthAmerica progressively closed the asthenospheric wedge and induced flat subduction. Here wedevelop time-dependent numerical experiments to explore how trenchward motion of thickcratons may result in flat subduction. We find that as the craton approaches the trench andthe wedge closes, two opposite phenomena control slab geometry: the suction between oceanand continent increases, favoring slab flattening, while the mantle confined within the closingwedge dynamically pushes the slab backward and steepens it. When the slab retreats, as inthe Peru and Chile flat slabs, the wedge closure rate and dynamic push are small and suctionforces generate, in some cases, flat subduction. We model the past 30 m.y. of subduction in theChilean flat slab area and demonstrate that trenchward motion of thick lithosphere, 200-300km, currently ~700-800 km away from the Peru-Chile Trench, reproduces a slab geometrythat fits the stress pattern, seismicity distribution, and temporal and spatial evolution ofdeformation and volcanism in the region. We also suggest that varying trench kinematics mayexplain some differing slab geometries along South America. When the trench is stationaryor advances, the mantle flow within the closing wedge strongly pushes the slab backward andsteepens it, possibly explaining the absence of flat subduction in the Bolivian orocline.

  11. Assessing post-dam removal sediment dynamics using the CONCEPTS computer model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dam removal will impact stream morphology not just locally, but both far upstream and downstream. There is a critical need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sedime...

  12. Fractionation of elements in soils, sludges and sediments: batch and dynamic methods

    NASA Astrophysics Data System (ADS)

    Fedotov, P. S.; Spivakov, B. Ya

    2008-07-01

    Methods and approaches employed in the fractionation of elements according to their physicochemical mobility and bioavailability in soils, sludges and sediments are generalised. Comparative analysis of sequential extraction schemes for heavy metals, arsenic, selenium and phosphorus is performed. Special consideration is given to the flow-through fractionation and kinetic aspects of selective leaching.

  13. Methyl mercury dynamics in littoral sediments of a temperate seepage lake

    USGS Publications Warehouse

    Krabbenhoft, D.P.; Gilmour, C.C.; Benoit, J.M.; Babiarz, C.L.; Andren, A.W.; Hurley, J.P.

    1998-01-01

    The sites and rates of methyl mercury (MeHg) production and transport in littoral zone sediments were investigated at Pallette Lake in northern Wisconsin. In littoral areas where groundwater inflow occurs, sulfate supply from groundwater creates profiles of electron acceptors (sulfate) and donors (methane, sulfide) that are reversed from those found in sediments whose sulfate supply is delivered from overlying water. The highest MeHg concentrations in porewaters and the maximal advective MeHg flux rates (4.5-61.7 ng??m-2??day-1) were observed in the spring, while highest bulk phase concentrations occur later in the summer. These estimated MeHg fluxes are greater than the mean areal production rates estimated previously for the water column and are similar to the atmospheric flux. Gross MeHg production was measured using the addition of 203Hg as a tracer to sediments. The depth at which maximal 203Hg methylation occurred coincided with the observed maximums m solid-phase and porewater MeHg concentrations. Because input, advection, and accumulation of MeHg in these sediments were measured directly, an independent estimate of MeHg production could be made and compared with 203Hg-derived rates. This comparison suggests that the 203Hg tracer method provides reasonable estimates of gross methylation rates and that a substantial fraction of solid-phase Hg is available for methylation.

  14. Sediment morpho-dynamics induced by a swirl-flow: an experimental study

    NASA Astrophysics Data System (ADS)

    Gonzalez-Vera, Alfredo; Duran-Matute, Matias; van Heijst, Gertjan

    2016-11-01

    This research focuses on a detailed experimental study of the effect of a swirl-flow over a sediment bed in a cylindrical domain. Experiments were performed in a water-filled cylindrical rotating tank with a bottom layer of translucent polystyrene particles acting as a sediment bed. The experiments started by slowly spinning the tank up until the fluid had reached a solid-body rotation at a selected rotation speed (Ωi). Once this state was reached, a swirl-flow was generated by spinning-down the system to a lower rotation rate (Ωf). Under the flow's influence, particles from the bed were displaced, which changed the bed morphology, and under certain conditions, pattern formation was observed. Changes in the bed height distribution were measured by utilizing a Light Attenuation Technique (LAT). For this purpose, the particle layer was illuminated from below. Images of the transmitted light distribution provided quantitative information about the local thickness of the sediment bed. The experiments revealed a few characteristic regimes corresponding to sediment displacement, pattern formation and the occurrence of particle pick-up. Such regimes depend on both the Reynolds (Re) and Rossby (Ro) numbers. This research is funded by CONACYT (Mexico) through the Ph.D. Grant (383903) and NWO (the Netherlands) through the VENI Grant (863.13.022).

  15. Remobilization of trace metals from contaminated marine sediment in a simulated dynamic environment.

    PubMed

    Xu, Weihai; Li, Xiangdong; Wai, Onyx W H; Huang, Weilin; Yan, Wen

    2015-12-01

    In this study, release and redistribution of sediment bound trace metals due to resuspension were investigated by a lid-driven elongated annular flume (LEAF). The total suspended particulate matters (SPMs) increased significantly in quantity with the raised resuspension energies and varied distinctively in particle size and mineral composition. Except for Cu, Ni, Cd, Pb, and Zn showed an increase in dissolved phase as the resuspension energy increased. Relatively low Cu was observed in dissolved phase whereas it owned the highest original concentration in the sediment. This is primarily due to the very low solubility of Cu sulfide. In comparison to sediment, all metals were evidently enriched in SPMs which primarily contributed to the much more fine particles (silt/clay fraction) contained in the SPMs. Metals enrichment followed the Irving-Williams order of complex stability. However, metals content varied indistinctively in the SPMs among the three selected resuspension levels. The distribution coefficients (K d) exhibited opposite trend with the increasing resuspension level with the exception of Cu. It indicated that physical and chemical characters of sediment such as grain composition, Fe/Mn, and organic matter content may also act as major factors in the release of metals and control their phase distribution in the water column.

  16. RFID tags as a direct tracer for water and sediment dynamics

    NASA Astrophysics Data System (ADS)

    Sommerer, Erik; Plate, Simon; Güntner, Andreas

    2014-05-01

    RFID (Radio Frequency IDentification) is a wireless automatic identification system to track objects with widespread application in industrial operations, but also selected applications in ecological research (animal tracking) and for hydro-sedimentological studies (sediment transport with RFID tags embedded in bedload material). In this study, for the first time, we test and apply RFID tags as a direct tracer to track water pathways, erosion patterns and sediment transport on the surface at the hillslope and headwater scale. The RFID system used here consists of tags with a size of 12 x 2 mm and a combination of mobile and stationary antennas. The transport pathways and velocities of the RFID tags can be individually assessed due to their unique identification numbers. The study area is a badland of easily erodible marls and carbonates located in the Villacarli catchment (42 km²) in the Central Spanish Pyrenees. The badlands have been identified as one of the main sediment sources for siltation of the downstream Barasona Reservoir. More than 700 tags were placed in different terrain units using three experimental setups, including lab experiments: (i) intensive feasibility tests ranging from laboratory flume experiments to tracer studies under natural channel and slope conditions to compare the transport of RFID tags relative to colored particles of the natural sediment; (ii) several transects across the badland to investigate sediment transfer characteristics on different morphological units (i.e. channel, rills, slopes); (iii) a raster of 99 RFID tags covering a slope flank with vegetated and unvegetated parts to reveal the influence of vegetation to erosion and transport processes. The detection of transported tags was carried out with a mobile antenna system to map the spatial distribution of tags after selected rainfall events and with two stationary antennas in channel cross-sections for time-continuous observation of tag passage. From the observations, we

  17. Reach-Scale Hydraulic Influence on Sediment Dynamics and Morphological Development in a Bedrock Influenced River

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.; Tooth, S.

    2014-12-01

    Many large rivers in southern Africa are characterised by a macro-channel cut 10 - 20 m into the ancient planation surface. This has resulted in a variable channel morphology strongly influenced by bedrock outcrops. The influence of bedrock upon flow hydraulics and sediment transport often results in a repeat sequence of alluvial channel types behind bedrock obstructions. This study investigates the hydraulic controls on channel type sequencing on the Sabie River, which drains a 6500 km2 semi-arid catchment of the Lowveld of South Africa and Mozambique. Aerial LIDAR data within the Kruger National Park was interrogated to isolate a bedrock influenced anastomosing reach, together with its associated alluvial sequences up- and downstream. These data were used to create a 2m DEM and a 2D flow model (JFLOW) was used to simulate a sequence of flows from 20 m3s-1 to 5000 m3s-1, with spatial data on water surface, flow depth and channel velocity extracted from the model. Water surface data revealed the strong gradient control exerted by the bedrock influenced anastomosed channel, creating hydraulic conditions suitable for deposition upstream and restricting sedimentation downstream. Steepening of the gradient through the anastomosing reach resulted in altered hydraulics and a changed pattern of sedimentation. At moderate discharges, flow is distributed efficiently across numerous interconnected channels, over low berms and islands, promoting sedimentation. Similarly the backwater effect encourages deposition of fine sediments upstream to create and maintain the alluvial sequence. Under higher flows, water levels rise significantly in the confined upstream reach and shear stress exceeds the threshold necessary to strip stored sediment. In contrast, conditions within the anastomosed reach remain less energetic due to the continued effect of flow distribution. Under extreme flow conditions the bedrock influence is drowned out resulting in dramatically increased energy levels

  18. Effects of river morphology, hydraulic gradients, and sediment deposition on water exchange and oxygen dynamics in salmonid redds.

    PubMed

    Schindler Wildhaber, Y; Michel, C; Epting, J; Wildhaber, R A; Huber, E; Huggenberger, P; Burkhardt-Holm, P; Alewell, C

    2014-02-01

    Fine sediment decreasing gravel permeability and oxygen supply to incubating salmonid embryos, is often considered the main contributing factor for the observed decline of salmonid populations. However, oxygen supply to salmonid embryos also depends on hydraulic conditions driving water flow through the redd. A more generalized perspective is needed to better understand the constraints on successful salmonid incubation in the many heavily modified fluvial ecosystems of the Northern Hemisphere. The effects of hydraulic gradients, riverbed and redd morphology as well as fine sediment deposition on dissolved oxygen (DO) and water exchange was studied in 18 artificial redds at three sites along a modified river. Fifty percent of the redds in the two downstream sites were lost during high flow events, while redd loss at the upstream site was substantially lower (8%). This pattern was likely related to increasing flood heights from up- to downstream. Specific water infiltration rates (q) and DO were highly dynamic and driven on multiple temporal a