Sample records for flat solid substrates

  1. Evaporation of liquid droplets on solid substrates. II. Periodic substrates with moving contact lines

    NASA Astrophysics Data System (ADS)

    Amini, Amirhossein; Homsy, G. M.

    2017-04-01

    Experiments on evaporating droplets on structured surfaces have shown that the contact line does not move with constant speed, but rather in a steplike "stick-slip" fashion. As a first step in understanding such behavior, we study the evaporation of a two-dimensional volatile liquid droplet on a nonplanar heated solid substrate with a moving contact line and fixed contact angle. The model for the flat case is adapted to include curved substrates, numerical solutions are achieved for various periodic and quasiperiodic substrate profiles, and the dynamics of the contact line and the apparent contact angle are studied. In contrast with our results for a flat substrate, for which the contact line recedes in a nearly constant speed, we observe that the contact line speed and position show significant time variation and that the contact line moves in an approximate steplike fashion on relatively steep substrates. For the simplest case of a periodic substrate, we find that the apparent contact angle is periodic in time. For doubly periodic substrates, we find that the apparent contact angle is periodic and that the problem exhibits a phase-locking behavior. For multimode quasiperiodic substrates, we find the contact line behavior to be temporally complex and not only limited to a stick-slip motion. In all cases, we find that the overall evaporation is increased relative to the flat substrate.

  2. Wetting of flat gradient surfaces.

    PubMed

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Nonflat equilibrium liquid shapes on flat surfaces.

    PubMed

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  4. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.

    PubMed

    Nussio, Matthew R; Oncins, Gerard; Ridelis, Ingrid; Szili, Endre; Shapter, Joseph G; Sanz, Fausto; Voelcker, Nicolas H

    2009-07-30

    In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

  5. Droplets move over viscoelastic substrates by surfing a ridge

    PubMed Central

    Karpitschka, S.; Das, S.; van Gorcum, M.; Perrin, H.; Andreotti, B.; Snoeijer, J. H.

    2015-01-01

    Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick–slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers. PMID:26238436

  6. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    NASA Astrophysics Data System (ADS)

    Cho, Kyu-Gong

    2000-12-01

    In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.

  7. It's Harder to Splash on Soft Solids.

    PubMed

    Howland, Christopher J; Antkowiak, Arnaud; Castrejón-Pita, J Rafael; Howison, Sam D; Oliver, James M; Style, Robert W; Castrejón-Pita, Alfonso A

    2016-10-28

    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity, and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses, we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli ≲100  kPa reduce splashing, in agreement with simple scaling arguments. Thus, materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.

  8. It's Harder to Splash on Soft Solids

    NASA Astrophysics Data System (ADS)

    Howland, Christopher J.; Antkowiak, Arnaud; Castrejón-Pita, J. Rafael; Howison, Sam D.; Oliver, James M.; Style, Robert W.; Castrejón-Pita, Alfonso A.

    2016-10-01

    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity, and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses, we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli ≲100 kPa reduce splashing, in agreement with simple scaling arguments. Thus, materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.

  9. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  10. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  11. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2003-01-01

    The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.

  12. It's harder to splash on soft solids

    NASA Astrophysics Data System (ADS)

    Howison, Sam; Howland, Christopher; Antkowiak, Arnaud; Castrejon-Pita, Rafael; Oliver, James; Style, Robert; Castrejon-Pita, Alfonso

    2016-11-01

    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses we show that substrate stiffness also affects the splashing thresh- old. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli < 100kPa reduce splashing, in agreement with simple scaling arguments. Thus materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets. EPSRC (CJH), John Fell Oxford University Press (OUP) Research Fund (AACP and RWS), The Royal Society (AAC-P).

  13. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  14. Shin-Etsu super-high-flat substrate for FPD panel photomask

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki

    2017-07-01

    Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.

  15. Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates

    NASA Astrophysics Data System (ADS)

    Jadidi, M.; Yeganeh, A. Zabihi; Dolatabadi, A.

    2018-01-01

    In thermal spray processes, it is demonstrated that substrate shape and location have significant effects on particle in-flight behavior and coatings quality. In the present work, the suspension high-velocity oxygen fuel (HVOF) spraying process is modeled using a three-dimensional two-way coupled Eulerian-Lagrangian approach. Flat and cylindrical substrates are placed at different standoff distances, and particles characteristics near the substrates and upon impact are studied. Suspension is a mixture of ethanol, ethylene glycol, and mullite solid powder (3Al2O3·2SiO2) in this study. Suspension droplets with predefined size distribution are injected into the combustion chamber, and the droplet breakup phenomenon is simulated using Taylor analogy breakup model. Furthermore, the eddy dissipation model is used to model the premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. To simulate the gas phase turbulence, the realizable k-ɛ model is applied. In addition, as soon as the breakup and combustion phenomena are completed, the solid/molten mullite particles are tracked through the domain. It is shown that as the standoff distance increases the particle temperature and velocity decrease and the particle trajectory deviation becomes more significant. The effect of stagnation region on the particle velocity and temperature is also discussed in detail. The catch rate, which is defined as the ratio of the mass of landed particles to injected particles, is calculated for different substrate shapes and standoff distances in this study. The numerical results presented here is consistent with the experimental data in the literature for the same operating conditions.

  16. Radial restricted solid-on-solid and etching interface-growth models

    NASA Astrophysics Data System (ADS)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  17. Radial restricted solid-on-solid and etching interface-growth models.

    PubMed

    Alves, Sidiney G

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy_{2} process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  18. Evaporation of liquid droplets on solid substrates. I. Flat substrate with pinned or moving contact line

    NASA Astrophysics Data System (ADS)

    Amini, Amirhossein; Homsy, G. M.

    2017-04-01

    We study the evolution of the profile of a two-dimensional volatile liquid droplet that is evaporating on a flat heated substrate. We adopt a one-sided model with thermal control that, together with the lubrication approximation, results in an evolution equation for the local height of the droplet. Without requiring any presumption for the shape of the drop, the problem is formulated for the two modes of evaporation: a pinned contact line and a moving contact line with fixed contact angle. Numerical solutions are provided for each case. For the pinned contact line case, we observe that after a time interval the contact angle dynamics become nonlinear and, interestingly, the local contact angle goes to zero in advance of total evaporation of the drop. For the case of a moving contact line, in which the singularity at the contact line is treated by a numerical slip model, we find that the droplet nearly keeps its initial circular shape and that the contact line recedes with constant speed.

  19. Effects of supercritical carbon dioxide on immobile bound polymer chains on solid substrates

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Asada, Mitsunori; Jiang, Naisheng; Endoh, Maya K.; Akgun, Bulent; Satija, Sushil; Koga, Tadanori

    2013-03-01

    Adsorbed polymer layers formed on flat solid substrates have recently been the subject of extensive studies because it is postulated to control the dynamics of technologically relevant polymer thin films, for example, in lithography. Such adsorbed layers have been reported to hinder the mobility of polymer chains in thin films even at a large length scale. Consequently, this bound layer remains immobile regardless of processing techniques (i.e. thermal annealing, solvent dissolution, etc). Here, we investigate the use of supercritical carbon dioxide (scCO2) as a novel plasticizer for bound polystyrene layers formed on silicon substrates. In-situ swelling and interdiffusion experiments using neutron reflectivity were performed. As a result, we found the anomalous plasticization effects of scCO2 on the bound polymer layers near the critical point where the anomalous adsorption of CO2 molecules in polymer thin films has been reported previously. Acknowledgement: We acknowledge the financial support from NSF Grant No. CMMI-084626.

  20. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).

    PubMed

    Li, Chen; Hsieh, S Tonia; Goldman, Daniel I

    2012-09-15

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  1. STM studies of GeSi thin layers epitaxially grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  2. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    PubMed

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  3. Vortex dynamics of collapsing bubbles: Impact on the boundary layer measured by chronoamperometry.

    PubMed

    Reuter, Fabian; Cairós, Carlos; Mettin, Robert

    2016-11-01

    Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of tacticity on the structure and glass transition temperature of polystyrene adsorbed onto solid surfaces

    NASA Astrophysics Data System (ADS)

    Negash, Solomon; Tatek, Yergou B.; Tsige, Mesfin

    2018-04-01

    We have carried out atomistic (all-atom) molecular dynamics simulations to investigate the effect of tacticity on the structure and glass transition temperature (Tg) of polystyrene (PS) thin films adsorbed on two distinct types of solid substrates. The systems consist of thin films made of atactic, isotactic, and syndiotactic PS chains supported by graphite or hydroxylated α-quartz substrates, which are known to be atomically flat but chemically and structurally different. We have observed a marked dependence of the film structure on substrate type as well as on tacticity. For instance, rings' orientation near substrate surfaces depends on substrate type for atactic PS and isotactic PS films, while no such dependence is observed for syndiotactic PS films whose interfacial structure seems to result from their propensity to adopt the trans conformation rather than their specific interaction with the substrates. Moreover, our results indicate that glass transition temperatures of substrate supported polystyrene films are higher compared to those of the corresponding free-standing films. More specifically, PS films on graphite exhibit larger Tg values than those on α-quartz, and we have noticed that syndiotactic PS has the largest Tg irrespective of the substrate type. Furthermore, the local Tg in the region of the film in contact with the substrates shows a strong tacticity and substrate dependence, whereas no dependencies were found for the local Tg in the middle of the film. Substrate-film interaction energy and chains' dynamics near substrate-film interfaces were subsequently investigated in order to substantiate the obtained Tgs, and it was found that films with higher Tgs are strongly adsorbed on the substrates and/or exhibit smaller interfacial chains' dynamics essentially due to steric hindrance.

  5. Three-dimensional wave evolution on electrified falling films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg

    2016-11-01

    We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).

  6. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2012-11-06

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  7. Method for preparing ultraflat, atomically perfect areas on large regions of a crystal surface by heteroepitaxy deposition

    DOEpatents

    El Gabaly, Farid; Schmid, Andreas K.

    2013-03-19

    A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.

  8. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.

  9. Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance

    PubMed Central

    Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.

    2014-01-01

    Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368

  10. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  11. Optical microwell assay of membrane transport kinetics.

    PubMed

    Kiskin, Nikolai I; Siebrasse, Jan P; Peters, Reiner

    2003-10-01

    In optical single transporter recording, membranes are firmly attached to flat solid substrates containing small wells or test compartments (TC). Transport of fluorescent molecules through TC-spanning membrane patches is induced by solution change and recorded by confocal microscopy. Previously, track-etched membrane filters were used to create solid substrates containing populations of randomly distributed TCs. In this study the possibilities offered by orderly TC arrays as created by laser microdrilling were explored. A theoretical framework was developed taking the convolution of membrane transport, solution change, and diffusion into account. The optical properties of orderly TC arrays were studied and the kinetics of solution change measured. Export and import through the nuclear pore complex (NPC) was analyzed in isolated envelopes of Xenopus oocyte nuclei. In accordance with previous reports nuclear transport receptor NTF2, which binds directly to NPC proteins, was found to be translocated much faster than "inert" molecules of similar size. Unexpectedly, NXT1, a homolog of NTF2 reportedly unable to bind to NPC proteins directly, was translocated as fast as NTF2. Thus, microstructured TC arrays were shown to provide optical single transporter recording with a new basis.

  12. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-04-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  13. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

    PubMed

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-01-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  14. Two-dimensional phase separated structures of block copolymers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  15. Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration

    PubMed Central

    Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît

    2009-01-01

    Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774

  16. Mechanical deformation of carbon nanotube nano-rings on flat substrate

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Ke, Changhong

    2011-04-01

    We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.

  17. Method and apparatus for preparing multiconductor cable with flat conductors

    NASA Technical Reports Server (NTRS)

    Marcell, G. V. (Inventor)

    1969-01-01

    A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film.

  18. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  19. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  20. In-line flat-top comb filter based on a cascaded all-solid photonic bandgap fiber intermodal interferometer.

    PubMed

    Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin

    2013-07-15

    In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.

  1. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    PubMed

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  2. Effect of surface morphology on friction of graphene on various substrates

    NASA Astrophysics Data System (ADS)

    Cho, Dae-Hyun; Wang, Lei; Kim, Jin-Seon; Lee, Gwan-Hyoung; Kim, Eok Su; Lee, Sunhee; Lee, Sang Yoon; Hone, James; Lee, Changgu

    2013-03-01

    The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion.The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion. Electronic supplementary information (ESI) available: Sample preparation method, identification of graphene thickness, AFM and FFM measurements. See DOI: 10.1039/c3nr34181j

  3. Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate.

    PubMed

    Ee, Ho-Seok; Agarwal, Ritesh

    2016-04-13

    A mechanically reconfigurable metasurface that can continuously tune the wavefront is demonstrated in the visible frequency range by changing the lattice constant of a complex Au nanorod array fabricated on a stretchable polydimethylsiloxane substrate. It is shown that the anomalous refraction angle of visible light at 632.8 nm interacting with the tunable metasurface can be adjusted from 11.4° to 14.9° by stretching the substrate by ∼30%. An ultrathin flat 1.7× zoom lens whose focal length can continuously be changed from 150 to 250 μm is realized, which also demonstrates the potential of utilizing metasurfaces for reconfigurable flat optics.

  4. Structure-induced switching of interpolymer adhesion at a solid-polymer melt interface.

    PubMed

    Jiang, Naisheng; Sen, Mani; Zeng, Wenduo; Chen, Zhizhao; Cheung, Justin M; Morimitsu, Yuma; Endoh, Maya K; Koga, Tadanori; Fukuto, Masafumi; Yuan, Guangcui; Satija, Sushil K; Carrillo, Jan-Michael Y; Sumpter, Bobby G

    2018-02-14

    Here we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: "flattened chains" which lie flat on the solid and are densely packed, and "loosely adsorbed polymer chains" which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesion testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer-adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as "connector molecules", bridging the free chains and substrate surface and improving the interfacial adhesion. These findings not only shed light on the structure-property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.

  5. In situ electric properties of Ag films deposited on rough substrates

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Yu, Sen-Jiang; Zhang, Yong-Ju; Chen, Miao-Gen; Jiao, Zhi-Wei; Si, Ping-Zhan

    2013-01-01

    Silver (Ag) films have been deposited on rough substrates (including frosted glass and silicone grease), and for comparison on flat glass, by DC-magnetron sputtering, and their sheet resistances measured in situ during deposition. It is found that the growth of Ag films proceeds through three distinct stages: discontinuous, semi-continuous, and continuous regimes. The sheet resistance on rough substrates jumps in the vicinity of the percolation threshold, whereas the resistance on flat substrates decreases monotonically during deposition. The abnormal in situ electric properties on rough substrates are well explained based on the differences of the growth mechanism and microstructure of Ag films on different substrates.

  6. Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface.

    PubMed

    El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan

    2012-01-21

    Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.

  7. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solid materials; (iii) One (1) g (0.04 ounce) for authorized materials meeting the definition of a... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D...

  8. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    NASA Astrophysics Data System (ADS)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  10. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.

    PubMed

    Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F

    2015-04-01

    We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

  11. Stainless steel porous substrates produced by tape casting

    NASA Astrophysics Data System (ADS)

    Mercadelli, Elisa; Gondolini, Angela; Pinasco, Paola; Sanson, Alessandra

    2017-01-01

    In this work the technological issues related to the production of tape cast large-area porous stainless steel supports for Solid Oxide Fuel Cells (SOFC) applications were carefully investigated. The slurry formulation was optimized in terms of amount and nature of the organic components needed: rice starch and polymethyl metacrylate were found to be, respectively, the most suitable pore former and binder because easily eliminated during the thermal treatment in reducing atmosphere. The compatibility of the binder system chosen with the most widely used solvents for screen printing inks was also evaluated. Finally the influence of the sintering temperature and of the refractory supports to be used during the thermal treatments onto the production of porous stainless steel supports was discussed. The whole process optimization allows to produce flat, crack-free metallic substrate 900-1000 μm thick, dimensions up to 5×5 cm and with a tailored porosity of 40% suitable for SOFCs application.

  12. Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers

    NASA Astrophysics Data System (ADS)

    Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain

    2017-12-01

    High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

  13. Prey versus substrate as determinants of habitat choice in a feeding shorebird

    NASA Astrophysics Data System (ADS)

    Finn, Paul G.; Catterall, Carla P.; Driscoll, Peter V.

    2008-11-01

    Many shorebirds on their non-breeding grounds feed on macrobenthic fauna which become available at low tide in coastal intertidal flats. The Eastern Curlew Numenius madagascariensis in Moreton Bay Australia, varies greatly in density among different tidal flats. This study asks: how important is the abundance of intertidal prey as a predictor of this variation? We quantified feeding curlews' diet across 12 sites (different tidal flats, each re-visited at least eight times), through 970 focal observations. We also estimated the abundance of total macrobenthic fauna, potential prey taxa and crustacean prey on each tidal flat; measured as the number of individuals and a relative biomass index per unit substrate surface area obtained from substrate core samples. We estimated curlew density at each site using low-tide surveys from every site visit. Curlew density showed a strong positive association with both the density and biomass of fauna and of potential prey ( r values all around 0.70) across the 12 flats. Associations with crustacean density and biomass were also statistically significant (r values both 0.60). However, these variables also showed a strong negative correlation with a measure of substrate resistance (based on the amount of hard material in the substrate core), which was the best predictor of curlew density ( r = -0.82). Curlews were most abundant at sites with the least resistant substrate, and these sites also generally had the highest faunal density and biomass. When the effect of substrate resistance was statistically removed, curlew density was no longer significantly correlated with fauna density and biomass. This suggests that macro-scale habitat choice by Eastern Curlew on their non-breeding grounds is more strongly influenced by prey availability (which is higher when substrate resistance is lower) than by prey density or biomass, although in Moreton Bay a positive correlation across sites meant that these factors were synergistic.

  14. Solar shutter arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, P.L.

    1988-02-02

    In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less

  15. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi

    PubMed Central

    Jokiel, Paul L.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1 (offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance. PMID:25653896

  16. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    USGS Publications Warehouse

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  17. Threefold growth efficiency improvement of silica nanosprings by using silica nanosprings as a substrate

    NASA Astrophysics Data System (ADS)

    Corti, Giancarlo; Brown, Justin; Rajabi, Negar; McIlroy, D. N.

    2018-03-01

    The growth efficiency of one-dimension (1D) nanostructures via the vapor-liquid-solid process is commonly attributed to parameters such as precursor vapor pressure, substrate temperature, and the choice of the catalyst. The work presented herein is an investigation of the use of silica nanosprings (SNs) as a 3D substrate for improving the growth efficiency of SN themselves. SNs are a 1D nanomaterial that form a nonwoven structure with optimal geometric characteristics and surface properties that mitigate collisions between growing nanosprings and ripening of the gold catalyst, which should improve SN yield. Nanospring growth, for an eight hour period, on an SN coated surface relative to an equivalent flat substrate increased from ≈25 mgh-1 to ≈80 mgh-1, respectively. All things being equal, by splitting the typical amount of catalyst, in this case gold, between the first and second growth, the double growth procedure produced more than three times more nanosprings than the equivalent single growth of a SN. In addition, using an SN as a substrate increased the sustained growth condition from four to eight hours, and thus increased by a factor of ten the gravimetric yield of SNs relative to the mass of gold used.

  18. Interfacial nanobubbles on atomically flat substrates with different hydrophobicities.

    PubMed

    Wang, Xingya; Zhao, Binyu; Ma, Wangguo; Wang, Ying; Gao, Xingyu; Tai, Renzhong; Zhou, Xingfei; Zhang, Lijuan

    2015-04-07

    The dependence of the morphology of interfacial nanobubbles on atomically flat substrates with different wettability ranges was investigated by using PeakForce quantitative nanomechanics. Interfacial nanobubbles were formed and imaged on silicon nitride (Si3N4), mica, and highly ordered pyrolytic graphite (HOPG) substrates that were partly covered by reduced graphene oxide (rGO). The contact angles and sizes of those nanobubbles were measured under the same conditions. Nanobubbles with the same lateral width exhibited different heights on the different substrates, with the order Si3N4≈mica>rGO>HOPG, which is consistent with the trend of the hydrophobicity of the substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Regenerator seal

    DOEpatents

    Davis, Leonard C.; Pacala, Theodore; Sippel, George R.

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  20. Monitoring transients in low inductance circuits

    DOEpatents

    Guilford, Richard P.; Rosborough, John R.

    1987-01-01

    A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.

  1. Atomically flat platinum films grown on synthetic mica

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  2. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2017-10-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.

  3. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  4. Ultra-low roughness magneto-rheological finishing for EUV mask substrates

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath

    2013-09-01

    EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.

  5. Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries.

    PubMed

    Zhitomirsky, David; Grossman, Jeffrey C

    2016-10-05

    There is tremendous growth in fields where small functional molecules and colloidal nanomaterials are integrated into thin films for solid-state device applications. Many of these materials are synthesized in solution and there often exists a significant barrier to transition them into the solid state in an efficient manner. Here, we develop a methodology employing an electrodepositable copolymer consisting of small functional molecules for applications in solar energy harvesting and storage. We employ azobenzene solar thermal fuel polymers and functionalize them to enable deposition from low concentration solutions in methanol, resulting in uniform and large-area thin films. This approach enables conformal deposition on a variety of conducting substrates that can be either flat or structured depending on the application. Our approach further enables control over film growth via electrodepsition conditions and results in highly uniform films of hundreds of nanometers to microns in thickness. We demonstrate that this method enables superior retention of solar thermal fuel properties, with energy densities of ∼90 J/g, chargeability in the solid state, and exceptional materials utilization compared to other solid-state processing approaches. This novel approach is applicable to systems such as photon upconversion, photovoltaics, photosensing, light emission, and beyond, where small functional molecules enable solid-state applications.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Naisheng; Sen, Mani; Zeng, Wenduo

    In this paper, we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: “flattened chains” which lie flat on the solid and are densely packed, and “loosely adsorbed polymer chains” which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesionmore » testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer–adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as “connector molecules”, bridging the free chains and substrate surface and improving the interfacial adhesion. Finally, these findings not only shed light on the structure–property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.« less

  7. Contact line motion over substrates with spatially non-uniform properties

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir; Gatapova, Elizaveta; Kabov, Oleg

    2017-11-01

    We develop mathematical models of moving contact lines over flat solid surfaces with spatial variation of temperature and wetting properties under the conditions when evaporation is significant. The gas phase is assumed to be pure vapor and a lubrication-type framework is employed for describing viscous flow in the liquid. Marangoni stresses at the liquid surface arise as a result of temperature variation in the vapor phase, non-equilibrium effects during evaporation at the interface, and Kelvin effect. The relative importance of these three factors is determined. Variation of wetting properties is modeled through a two-component disjoining pressure, with the main focus on spatially periodic patterns leading to time-periodic variation of the contact line speed.

  8. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  9. Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water

    PubMed Central

    Connell, J. G.; Nichols, J.; Gruenewald, J. H.; Kim, D.-W.; Seo, S. S. A.

    2016-01-01

    We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns. PMID:27033248

  10. High-quality graphene flakes exfoliated on a flat hydrophobic polymer

    NASA Astrophysics Data System (ADS)

    Pedrinazzi, Paolo; Caridad, José M.; Mackenzie, David M. A.; Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Sordan, Roman; Booth, Timothy J.; Bøggild, Peter

    2018-01-01

    We show that graphene supported on a hydrophobic and flat polymer surface results in flakes with extremely low doping and strain as assessed by their Raman spectroscopic characteristics. We exemplify this technique by micromechanical exfoliation of graphene on flat poly(methylmethacrylate) layers and demonstrate Raman peak intensity ratios I(2D)/I(G) approaching 10, similar to pristine freestanding graphene. We verify that these features are not an artifact of optical interference effects occurring at the substrate: they are similarly observed when varying the substrate thickness and are maintained when the environment of the graphene flake is completely changed, by encapsulating preselected flakes between hexagonal boron nitride layers. The exfoliation of clean, pristine graphene layers directly on flat polymer substrates enables high performance, supported, and non-encapsulated graphene devices for flexible and transparent optoelectronic studies. We additionally show that the access to a clean and supported graphene source leads to high-quality van der Waals heterostructures and devices with reproducible carrier mobilities exceeding 50 000 cm2 V-1 s-1 at room temperature.

  11. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    PubMed

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap.

  12. Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers

    PubMed Central

    Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain

    2017-01-01

    Abstract High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10−4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately –60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements. PMID:28740558

  13. Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers.

    PubMed

    Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain

    2017-01-01

    High-quality thermoelectric La 0.2 Sr 0.8 TiO 3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO 3 (001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10 -4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO 3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

  14. Nanoconfinement platform for nanostructure quantification via grazing-transmission X-ray scattering

    DOEpatents

    Black, Charles T.; Yager, Kevin G.

    2017-01-31

    A nano-confinement platform that may allow improved quantification of the structural order of nanometer-scale systems. Sample-holder `chips` are designed for the GTSAXS experimental geometry. The platform involves fabricated nanostructured sample holders on and in one or more corners of a substrate support where the sample material of interest is positioned at the corner of the substrate support. In an embodiment, the substrate material making up the substrate support beneath the sample-holding area is removed. A scattering x-ray sample platform includes a substrate support arranged in a parallelepiped form, having a substantially flat base and a substantially flat top surface, the top surface being substantially parallel with the base, the parallelepiped having a plurality of corners. At least one corner of the substrate support has a sample holding area formed in the top surface of the substrate support and within a predetermined distance from the corner. The sample holding area includes a regular array of nano-wells formed in the top surface of the substrate support.

  15. Surface properties of atomically flat poly-crystalline SrTiO3

    PubMed Central

    Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok

    2015-01-01

    Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275

  16. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  17. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  18. High-aspect-ratio and high-flatness Cu3(SiGe) nanoplatelets prepared by chemical vapor deposition.

    PubMed

    Klementová, Mariana; Palatinus, Lukás; Novotný, Filip; Fajgar, Radek; Subrt, Jan; Drínek, Vladislav

    2013-06-01

    Cu3(SiGe) nanoplatelets were synthesized by low-pressure chemical vapor deposition of a SiH3C2H5/Ge2(CH3)6 mixture on a Cu-substrate at 500 degrees C, total pressure of 110-115 Pa, and Ge/Si molar ratio of 22. The nanoplatelets with composition Cu76Si15Ge12 are formed by the 4'-phase, and they are flattened perpendicular to the [001] direction. Their lateral dimensions reach several tens of micrometers in size, but they are only about 50 nm thick. Their surface is extremely flat, with measured root mean square roughness R(q) below 0.2 nm. The nanoplatelets grow via the non-catalytic vapor-solid mechanism and surface growth. In addition, nanowires and nanorods of various Cu-Si-Ge alloys were also obtained depending on the experimental conditions. Morphology of the resulting Cu-Si-Ge nanoobjects is very sensitive to the experimental parameters. The formation of nanoplatelets is associated with increased amount of Ge in the alloy.

  19. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1984-01-01

    The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.

  20. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  1. Atomistic study of the solid state inside graphene nanobubbles.

    PubMed

    Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander

    2017-12-20

    A two-dimensional (2D) material placed on an atomically flat substrate can lead to the formation of surface nanobubbles trapping different types of substances. In this paper graphene nanobubbles of the radius of 7-34 nm with argon atoms inside are studied using molecular dynamics (MD). All modeled graphene nanobubbles except for the smallest ones exhibit an universal shape, i.e., a constant ratio of a bubble height to its footprint radius, which is in an agreement with experimental studies and their interpretation using the elastic theory of membranes. MD simulations reveal that argon does exist in a solid close-packed phase, although the internal pressure in the nanobubble is not sufficiently high for the ordinary crystallization that would occur in a bulk system. The smallest graphene bubbles with a radius of 7 nm exhibit an unusual "pancake" shape. Previously, nanobubbles with a similar pancake shape were experimentally observed in completely different systems at the interface between water and a hydrophobic surface.

  2. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    NASA Astrophysics Data System (ADS)

    Steitz, Roland; Schemmel, Sebastian; Shi, Hongwei; Findenegg, Gerhard H.

    2005-03-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle \\theta_{\\mathrm {w}} \\approx 90^\\circ ), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (\\theta_{\\mathrm {w}} \\approx 63^\\circ ). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic CmEn surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO2/C8E4/D2O reveal that there is no preferred lateral organization of the C8E4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without subsequent rinsing, surface patterns of the presumably crystalline polymer on top of the primary adsorption layer develop upon drying under controlled conditions. The morphology depends mainly on the nominal surface coverage with the triblock copolymer. Similar morphologies are found on bare and polystyrene-coated silicon substrates, indicating that the surface patterning is mainly driven by segregation forces within the polymer layers and not by interactions with the substrate.

  4. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  5. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  6. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  7. A convenient method for large-scale STM mapping of freestanding atomically thin conductive membranes

    NASA Astrophysics Data System (ADS)

    Uder, B.; Hartmann, U.

    2017-06-01

    Two-dimensional atomically flat sheets with a high flexibility are very attractive as ultrathin membranes but are also inherently challenging for microscopic investigations. We report on a method using Scanning Tunneling Microscopy (STM) under ultra-high vacuum conditions for large-scale mapping of several-micrometer-sized freestanding single and multilayer graphene membranes. This is achieved by operating the STM at unusual parameters. We found that large-scale scanning on atomically thin membranes delivers valuable results using very high tip-scan speeds combined with high feedback-loop gain and low tunneling currents. The method ultimately relies on the particular behavior of the freestanding membrane in the STM which is much different from that of a solid substrate.

  8. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    PubMed

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  9. Response of Solid He-4 to External Stress: Interdigital Capacitor Solid Level Detector and Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Fay, J.; Wada, Y.; Masutomi, R.; Elkholy, T.; Kojima, H.

    2003-01-01

    Two experiments are being conducted to observe the liquid/solid interface of He-4 near 1 K. Interesting instabilities are expected to occur when the solid is non-hydrostatically stressed. (1)A compact interdigital capacitor is used as a level detector to observe solid He-4 to which stresses are applied externally. The capacitor consists of 38 interlaced 50 m wide and 3.8 mm long gold films separated by 50 m and deposited onto a 5 mm by 5 mm sapphire substrate. The capacitor is placed on one flat end wall of a cylindrical chamber (xx mm diameter and xx mm long). The solid is grown to a known height and a stress is applied by a tubular PZT along the cylindrical axis. The observed small change in height of the solid at the wall is linearly proportional to the applied stress. The solid height decreases under compressive stress but does not change under tensile stress. The response of the solid on compressive stress is consistent with the expected quadratic dependence on strain. (2)Interferometric techniques are being developed for observing the solid He-4 surface profile. A laser light source is brought into the low temperature region via single mode optical fiber. The interference pattern is transmitted back out of the low temperature apparatus via optical fiber bundle. The solid He-4 growth chamber will be equipped with two PZT's such that stress can be applied from orthogonal directions. Orthogonally applied stress is expected to induce surface instability with island-like deformation on a grid pattern. Apparatus design and progress of its construction are described.

  10. Structure-induced switching of interpolymer adhesion at a solid–polymer melt interface

    DOE PAGES

    Jiang, Naisheng; Sen, Mani; Zeng, Wenduo; ...

    2018-01-11

    In this paper, we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: “flattened chains” which lie flat on the solid and are densely packed, and “loosely adsorbed polymer chains” which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesionmore » testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer–adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as “connector molecules”, bridging the free chains and substrate surface and improving the interfacial adhesion. Finally, these findings not only shed light on the structure–property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.« less

  11. 77 FR 69790 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... fully stabilized; high strength low alloy; and the substrate for motor lamination steel may also enter... Steel Flat Products From the People's Republic of China: Final Results and Final No Shipments... antidumping duty order on certain hot- rolled carbon steel flat products (``hot-rolled steel'') from the...

  12. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    PubMed

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  13. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.

  14. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.

  15. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids

    PubMed Central

    Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.

    2016-01-01

    We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777

  16. Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates

    NASA Astrophysics Data System (ADS)

    Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.

    2017-08-01

    In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.

  17. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D) One drop flat on the short side; and (E) One drop on a corner at the junction of three intersecting...

  18. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    PubMed

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  19. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  20. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    PubMed Central

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  1. Methods for growth of relatively large step-free SiC crystal surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  2. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  3. Nonlinear dynamics that appears in the dynamical model of drying process of a polymer solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-01-01

    We have proposed and modified the dynamical model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through some meetings and so on. Though basic equations of the dynamical model have characteristic nonlinearity, character of the nonlinearity has not been studied enough yet. In this paper, at first, we derive nonlinear equations from the dynamical model of drying process of polymer solution. Then we introduce results of numerical simulations of the nonlinear equations and consider roles of various parameters. Some of them are indirectly concerned in strength of non-equilibriumity. Through this study, we approach essential qualities of nonlinearity in non-equilibrium process of drying process.

  4. Use of Glass Reinforced Concrete (GRC) as a substrate for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1980-01-01

    A substrate for flat plate photovoltaic solar panel arrays using a glass fiber reinforced concrete (GRC) material was developed. The installed cost of this GRC panel is 30% less than the cost goal of the Near Term Low-Cost Flat Plate Photovoltaic Solar Array Program. The 4 ft by 8 ft panel is fabricated from readily available inexpensive materials, weighs a nominal 190 lbs., has exceptionally good strength and durability properties (rigid and resists weathering), is amenable to mass production and is easily installed on simple mountings. Solar cells are encapsulated in ethylene/vinyl acetate with Tedlar backing and Korad cover film. The laminates are attached to the GRC substrate with acrylic transfer tape and edge sealed with silicone RTV adhesive.

  5. Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate

    NASA Astrophysics Data System (ADS)

    Young, Y.-N.; Stone, H. A.

    2017-06-01

    The dynamics of an elastic sheet lubricated by a thin liquid film on a wetting solid substrate is examined using both numerical simulations of a long-wave lubrication equation and a quasistatic model. Interactions between the liquid and the wetting substrate are modeled by a disjoining pressure that gives rise to an ultrathin (precursor) film. For a fluid interface without elastic bending stiffness, a flat precursor film may be linearly unstable and evolve towards an equilibrium of a single "drop" connected to a flat ultrathin film. Similar behavior is found when the thin film is covered by an elastic sheet: The sheet deforms, rearranging the thin liquid film, and contributes regulating surface forces such as a bending resistance and/or a tensile force, which may arise from interactions between the sheet and liquid or inextensibility of the sheet. Glasner's quasistatic model [Phys. Fluids 15, 1837 (2003), 10.1063/1.1578076], developed for a liquid film, is adopted to investigate the combined effects of elastic and tensile forces in the sheet on the thin film dynamics. The equilibrium height of the drop is found to vary inversely with the bending rigidity. When the elastic sheet is inextensible (such as a lipid bilayer membrane), a compressive tensile force may occur and the equilibrium film height is dependent less on the bending rigidity and more on the excess area of the membrane. Analyses of the lubrication equation also show that the precursor film transitions monotonically to the core film for tension-dominated dynamics. In contrast, for elasticity-dominated dynamics, a spatial oscillation of film height in the contact line region is found. In addition, elasticity in the sheet causes a sliding motion of the thin film: the contact angle is rendered zero by elasticity, and the contact line moves at a finite speed.

  6. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

    PubMed Central

    Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839

  7. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy.

    PubMed

    Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.

  8. Energetic analysis of drop's maximum spreading on solid surface with low impact speed

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Meng; Chen, Xiao-Peng

    2018-02-01

    Drops impacting on a flat solid surface will spread until it reaches maximum contact with the substrate underneath. After that, it recoils. In the present work, the variations of energy components during the spreading are studied carefully, including kinetic, capillary, and dissipated energies. Our experimental and numerical results show that, when the impact speed is low, the fast slipping of the contact line (in inertia-capillary regime) and corresponding "interface relaxation" lead to extra dissipation. An auxiliary dissipation is therefore introduced into the traditional theoretical model. The energy components predicted by the improved model agree with the experimental and numerical results very well. As the impact speed increases (the Weber number, W e =ρ D0V02/γ , becomes larger than 40 in the present work), the dissipation induced by the initial velocity plays more important roles. The analyses also indicate that on the hydrophobic surfaces the auxiliary dissipation is lower than that on hydrophilic ones. In the later circumstances, the contact angle is larger and the spreading is weaker.

  9. Effects of viscoelasticity on drop impact and spreading on a solid surface

    NASA Astrophysics Data System (ADS)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  10. Opportunities offered by the interaction of plasma and droplets to elaborate nanostructured oxide materials

    NASA Astrophysics Data System (ADS)

    Nikravech, Mehrdad; Rahmani, Abdelkader

    2016-09-01

    The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.

  11. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates

    NASA Astrophysics Data System (ADS)

    Mahato, J. C.; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B. N.

    2017-10-01

    Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types—flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi2 and Si are A-type. In the ridged NWs CoSi2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.

  12. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates.

    PubMed

    Mahato, J C; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B N

    2017-10-20

    Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi 2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types-flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi 2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi 2 and Si are A-type. In the ridged NWs CoSi 2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.

  13. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  14. Gratings Fabricated on Flat Surfaces and Reproduced on Non-Flat Substrates

    NASA Technical Reports Server (NTRS)

    Content, David; Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christopher M.

    2009-01-01

    A method has been developed for fabricating gratings on flat substrates, and then reproducing the groove pattern on a curved (concave or convex) substrate and a corresponding grating device. First, surface relief diffraction grating grooves are formed on flat substrates. For example, they may be fabricated using photolithography and reactive ion etching, maskless lithography, holography, or mechanical ruling. Then, an imprint of the grating is made on a deformable substrate, such as plastic, polymer, or other materials using thermoforming, hot or cold embossing, or other methods. Interim stamps using electroforming, or other methods, may be produced for the imprinting process or if the same polarity of the grating image is required. The imprinted, deformable substrate is then attached to a curved, rigid substrate using epoxy or other suitable adhesives. The imprinted surface is facing away from the curved rigid substrate. As an alternative fabrication method, after grating is imprinted on the deformable substrate as described above, the grating may be coated with thin conformal conductive layer (for example, using vacuum deposition of gold). Then the membrane may be mounted over an opening in a pressured vessel in a manner of a membrane on a drum, grating side out. The pressure inside of the vessel may be changed with respect to the ambient pressure to produce concave or convex membrane surface. The shape of the opening may control the type of the surface curvature (for example, a circular opening would create spherical surface, oval opening would create toroidal surface, etc.). After that, well-known electroforming methods may be used to create a replica of the grating on the concave or convex membrane. For example, the pressure vessel assembly may be submerged into an electro-forming solution and negative electric potential applied to the metal coated membrane using an insulated wire. Positive electric potential may be then applied to a nickel or other metal plate submerged into the same solution. Metal ions would transfer from the plate through the solution into the membrane, producing high fidelity metal replica of the grating on the membrane. In one variation, an adhesive may be deposited on the deformable substrate, and then cured without touching the rigid, curved substrate. Edges of the deformable substrate may be attached to the rigid substrate to ensure uniform deformation of the deformable substrate. The assembly may be performed in vacuum, and then taken out to atmospheric pressure conditions to ensure that no air is trapped between the deformable and rigid substrates. Alternatively, a rigid surface with complementary curvature to the rigid substrate may be used to ensure uniform adhesion of the deformable substrate to the rigid substrate. Liquid may be applied to the surface of the deformable substrate to uniformly distribute pressure across its surface during the curing or hardening of the adhesive, or the film may be pressed into the surface using a deformable object or surface. After the attachment is complete, the grooves may be coated with reflective or dielectric layers to improve diffraction efficiency.

  15. Effects of topography on the functional development of human neural progenitor cells.

    PubMed

    Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L

    2010-07-01

    We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.

  16. Direct Observation of Asphaltene Nanoparticles on Model Mineral Substrates.

    PubMed

    Raj, Gijo; Lesimple, Alain; Whelan, Jamie; Naumov, Panče

    2017-06-27

    The propensity for adherence to solid surfaces of asphaltenes, a complex solubility class of heteropolycyclic aromatic compounds from the heavy fraction of crude oil, has long been the root cause of scale deposition and remains an intractable problem in the petroleum industry. Although the adhesion is essential to understanding the process of asphaltene deposition, the relationship between the conformation of asphaltene molecules on mineral substrates and its impact on adhesion and mechanical properties of the deposits is not completely understood. To rationalize the primary processes in the process of organic scale deposition, here we use atomic force microscopy (AFM) to visualize the morphology of petroleum asphaltenes deposited on model mineral substrates. High imaging contrast was achieved by the differential adhesion of the tip between asphaltenes and the mineral substrate. While asphaltenes form smooth continuous films on all substrates at higher concentrations, they deposit as individual nanoparticles at lower concentrations. The size, shape, and spatial distribution of the nanoaggregates are strongly affected by the nature of the substrate; while uniformly distributed spherical particles are formed on highly polar and hydrophilic substrates (mica), irregular islands and thicker patches are observed with substrates of lower polarity (silica and calcite). Asphaltene nanoparticles flatten when adsorbed on highly oriented pyrolytic graphite due to π-π interactions with the polycyclic core. Force-distance profiles provide direct evidence of the conformational changes of asphaltene molecules on hydrophilic/hydrophobic substrates that result in dramatic changes in adhesion and mechanical properties of asphaltene deposits. Such an understanding of the nature of adhesion and mechanical properties tuned by surface properties, on the level of asphaltene nanoaggregates, would contribute to the design of efficient asphaltene inhibitors for preventing asphaltene fouling on targeted surfaces. Unlike flat surfaces, the AFM phase contrast images of defected calcite surfaces show that asphaltenes form continuous deposits to fill the recesses, and this process could trigger the onset for asphaltene deposition.

  17. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... package or packing different materials in the package must not result in a violation of § 173.21. (6) Each... onto a solid unyielding surface from a height of 1.8 m (5.9 feet): (i) Where the sample is in the shape...; (B) One drop flat on the top; (C) One drop flat on the longest side; (D) One drop flat on the...

  18. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao

    2014-06-01

    Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation. Electronic supplementary information (ESI) available: (1) ESEM cross-sectional view images of the flat silicon and SiNW substrates. (2) Bright field morphology images of fibroblasts cultured in Petri dishes. (3) FIB/SEM 52° tilt images of fibroblasts cultured on SiNW 2 and SiNW 3. (4) Immunofluorescence images of FAP expression in fibroblasts re-cultured in Petri dishes after detachment from flat silicon and a series of SiNW substrates. (5) ESEM images of cells re-cultured in Petri dishes after detachment from each group. See DOI: 10.1039/c4nr01415d

  19. Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger

    2014-06-01

    A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

  20. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  1. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  2. Instability and dynamics of volatile thin films

    NASA Astrophysics Data System (ADS)

    Ji, Hangjie; Witelski, Thomas P.

    2018-02-01

    Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.

  3. Imaging prototypical aromatic molecules on insulating surfaces: a review

    NASA Astrophysics Data System (ADS)

    Hoffmann-Vogel, R.

    2018-01-01

    Insulating substrates allow for in-plane contacted molecular electronics devices where the molecule is in contact with the insulator. For the development of such devices it is important to understand the interaction of molecules with insulating surfaces. As substrates, ionic crystals such as KBr, KCl, NaCl and CaF2 are discussed. The surface energies of these substrates are small and as a consequence intrinsic properties of the molecules, such as molecule–molecule interaction, become more important relative to interactions with the substrates. As prototypical molecules, three variants of graphene-related molecules are used, pentacene, C60 and PTCDA. Pentacene is a good candidate for molecular electronics applications due to its high charge carrier mobility. It shows mainly an upright standing growth mode and the morphology of the islands is strongly influenced by dewetting. A new second flat-lying phase of the molecule has been observed. Studying the local work function using the Kelvin method reveals details such as line defects in the center of islands. The local work function differences between the upright-standing and flat-lying phase can only be explained by charge transfer that is unusual on ionic crystalline surfaces. C60 nucleation and growth is explained by loosely bound molecules at kink sites as nucleation sites. The stability of C60 islands as a function of magic numbers is investigated. Peculiar island shapes are obtained from unusual dewetting processes already at work during growth, where molecules ‘climb’ to the second molecular layer. PTCDA is a prototypical semiconducting molecule with strong quadrupole moment. It grows in the form of elongated islands where the top and the facets can be molecularly resolved. In this way the precise molecular arrangement in the islands is revealed.

  4. Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth

    DOE PAGES

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...

    2016-01-01

    The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  5. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  6. Colloidal diffusion over a quasicrystalline-patterned substrate

    NASA Astrophysics Data System (ADS)

    Su, Yun; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    We report a systematic study of colloidal diffusion over a quasicrystalline-patterned substrate. The sample substrate is made of a flat thin layer of photoresist and contains identical cylindrical holes of diameter dh, which are arranged on a quasicrystal lattice. A monolayer of silica spheres of diameter comparable to dh diffuse over the rugged quasicrystalline-patterned substrate and experience a gravitational potential U (x , y) . With optical microscopy and the particle tracking method, we measure U (x , y) and particle's diffusion trajectories, which are found to undergo two distinct states: a trapped state when the particles are inside the holes and a free diffusion state when they are over the flat portion of the substrate. The dynamic properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-time diffusion coefficient DL are obtained from the particle trajectories. The measured DL is found to be in good agreement with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The experiment demonstrates the applications of this newly constructed colloidal potential landscape. This work was supported by the Research Grants Council of Hong Kong SAR.

  7. Determining the Elastic Modulus of Compliant Thin Films Supported on Substrates from Flat Punch Indentation Measurements

    Treesearch

    M.J. Wald; J.M. Considine; K.T. Turner

    2013-01-01

    Instrumented indentation is a technique that can be used to measure the elastic properties of soft thin films supported on stiffer substrates, including polymer films, cellulosic sheets, and thin layers of biological materials. When measuring thin film properties using indentation, the effect of the substrate must be considered. Most existing models for determining the...

  8. Multilayer heterostructures and their manufacture

    DOEpatents

    Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S

    2015-11-04

    A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C

  9. [Development of X-ray Reflection Grating Technology for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    This Grant supports MIT technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we have focused our efforts on extending our Nanoruler grating fabrication tool to enable it to perform variable-period scanning-beam interference lithography (VP-SBIL). This new capability required extensive optical and mechanical improvements to the system. The design phase of this work is largely completed and key components are now on order and assembly has begun. Over the next several months the new VP-SBIL Nanoruler system will be completed and testing begun. We have also demonstrated a new technique for patterning gratings using the Nanoruler called Doppler mode, which will be important for patterning the radial groove gratings for the RGS using the new VP-SBIL system. Flat and thin grating substrates will be critical for the RGS. In the last year we demonstrated a new technique for flattening thin substrates using magneto-rheologic fluid polishing (MRF) and achieved 2 arcsecond flatness with a 0.5 mm-thick substrate-a world's record. This meets the Con X requirement for grating substrate flatness.

  10. Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates

    PubMed Central

    Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin

    2012-01-01

    Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well. PMID:23277871

  11. Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin

    2012-12-01

    Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well.

  12. LIGO optics manufacture: figuring transmission core optics for best performance

    NASA Astrophysics Data System (ADS)

    Leistner, Achim J.; Farrant, David I.; Oreb, Bozenko F.; Pavlovic, Edita; Seckold, Jeffrey A.; Walsh, Christopher J.

    1999-11-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) is a long baseline Michelson interferometer, with arms of up to 4 km in length each containing a Fabry Perot cavity. CSIRO has manufactured 32 core optical components for the LIGO interferometer consisting of five different groups of optical elements. Long radii of curvature (7 km - 15 km) and tolerances in the order of plus or minus 200 m in the radius are specified. Although the components are made of hyper pure fused silica there are some residual inhomogeneities in the material. The optics used in transmission must be figured so that the influence of these material inhomogeneities on the transmitted wave front is compensated for. This was done by correcting the surface figure on side 2 of the optics. The approach we took to manufacturing the transmission optics was to calculate the quadratic component of refractive index gradient (Delta) n of the substrate from the measurements of the transmitted wavefront and the surface profile of the two substrate surfaces, determine what shape had to be produced on side two of the substrates to compensate for this gradient and then produce this by optical polishing. The surfaces were polished on rigid solid laps of Zerodur coated with a thin layer of Teflon as the polishing matrix, a technique developed by CSIRO for super-polishing very flat surfaces.

  13. Water ring-bouncing on repellent singularities.

    PubMed

    Chantelot, Pierre; Mazloomi Moqaddam, Ali; Gauthier, Anaïs; Chikatamarla, Shyam S; Clanet, Christophe; Karlin, Ilya V; Quéré, David

    2018-03-28

    Texturing a flat superhydrophobic substrate with point-like superhydrophobic macrotextures of the same repellency makes impacting water droplets take off as rings, which leads to shorter bouncing times than on a flat substrate. We investigate the contact time reduction on such elementary macrotextures through experiment and simulations. We understand the observations by decomposing the impacting drop reshaped by the defect into sub-units (or blobs) whose size is fixed by the liquid ring width. We test the blob picture by looking at the reduction of contact time for off-centered impacts and for impacts in grooves that produce liquid ribbons where the blob size is fixed by the width of the channel.

  14. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Jung, Ae Ryang; Kim, Richard Y; Kim, Hyung Woo; Shrestha, Kshitiz Raj; Jeon, Seung Hwan; Cha, Kyoung Je; Park, Yong Hyun; Kim, Dong Sung; Lee, Ji Youl

    2015-07-01

    Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.

  15. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  16. Trends in water monomer adsorption and dissociation on flat insulating surfaces.

    PubMed

    Hu, Xiao Liang; Carrasco, Javier; Klimeš, Jiří; Michaelides, Angelos

    2011-07-21

    The interaction of water with solid surfaces is key to a wide variety of industrial and natural processes. However, the basic principles that dictate how stable and in which state (intact or dissociated) water will be on a given surface are not fully understood. Towards this end, we have used density functional theory to examine water monomer adsorption on the (001) surfaces of a broad range of alkaline earth oxides, alkaline earth sulfides, alkali fluorides, and alkali chlorides. Some interesting general conclusions are arrived at: (i) on all the surfaces considered only a few specific adsorption structures are favoured; (ii) water becomes more stable upon descending the oxide and fluoride series but does not vary much upon going down the chloride and sulfide series; (iii) water is stabilised both by an increase in the lattice constant, which facilitates hydrogen bonding to the substrate, and by the flexibility of the substrate. These are also factors that favour water dissociation. We hope that this study is of some value in better understanding the surface science of water in general, and in assisting in the interpretation and design of future experiments. This journal is © the Owner Societies 2011

  17. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    PubMed

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  18. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  19. Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvilli, Nona A

    2009-11-01

    Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70-80% wheat straw, 10-20% SW, and 10-20% millet were found to produce the highest mushroom yield (874.8-958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants.

  20. Replication of patterned thin-film structures for use in plasmonics and metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, David J; Han, Sang Eon; Bhan, Aditya

    The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.

  1. Environmental change in Yatsushiro tidal flat and the Kuma River (SW Kyushu, Japan) between 2002 and the present

    NASA Astrophysics Data System (ADS)

    Young, S. M.; Ishiga, H.

    2012-12-01

    The chemical compositions of sediments from Yatsushiro tidal flat, Kuma River, and Arase dam (south west Kyushu, Japan) have been determined to examine changes between 2002 and 2012. In 2002 sediment supply to the bay from the Kuma River was restricted by the Arase dam; however in 2010 the dam was opened, allowing resumption of natural sediment transport. Abundances of 24 elements in Yatsushiro tidal flat sediments (n=22), suspended solids in the bay (n=6), Kuma River stream sediments (n=5) and suspended solids (n=2) were determined by XRF. Ripple marks in the Yatsushiro tidal flat indicate inflow of coarser material from the reinvigorated river. Bulk chemical composition of the tidal flat sediments has changed since 2002, with marked decreases in As, Zn and total sulfur, and lesser and more variable decrease in Pb. Mn values are higher in the northern tidal flats, suggesting anoxic conditions in the sediments at those sites. Suspended solids in both the Kuma River and Yatsushiro Bay have very low values of heavy metals, indicating low absorption and dilution by high organic matter contents. Sediments behind the Arase dam in 2002 had high abundances of most of the elements analyzed. However, abundances in Kuma River stream sediments at similar locations have fallen since the dam was opened in 2010. Kuma River sediments are characteristically coarser than those in Yatsushiro Bay, except at three locations. The river sediments are relatively uniform in composition, with ranges of 72.27-75.35 wt% SiO2 and 12.09-14.01 wt% Al2O3, compared to 55.40-77.89 and 11.61-21.44 respectively for Yatsushiro Bay tidal flat sediments. Average values in both suites are similar to UCC. Decreased heavy metal contents in the bay sediments after opening of the dam is attributed to dilution by previously impounded quartz and feldspar. Restoration of natural sediment transport has thus bought about a favorable environmental change. Key words: Yatsushiro bay, Kuma River, Geochemistry, Tidal flat, Environmental change.

  2. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    NASA Astrophysics Data System (ADS)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  3. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  4. Atomic force microscopy of model lipid membranes.

    PubMed

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  5. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.

    PubMed

    Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo

    2010-04-06

    In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.

  6. Comparative Analysis of Hexagonal Solid Silica and Nitro-benzene Filled Hollow Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Shahiruddin; Singh, Dharmendra K.; Hassan, M. A.

    2018-02-01

    A comparative study of five ring solid core and nitrobenzene filled hollow core liquid filled photonic crystal fiber (PCF) are presented. Considering the same structure, one is used as solid silica and another one is filled with nitrobenzene in the core. Here the paper elaborates the confinement loss, dispersion properties and birefringence of an index-guiding PCF with asymmetric cladding designed and analyzed by the finite-element method. The proposed structure shows the low confinement loss in case of solid silica, negative dispersion in nitrobenzene filled hollow core PCF and high birefringence in both the cases. The calculated values shows flat zero confinement loss in 0.7 µm to 1.54 µm range, flat zero dispersion is achieved in solid core and -2000 ps/km-nm in nitrobenzene filled hollow core PCF and high birefringence in the range of 10-3 in nitrobenzene filled hollow core PCF. Results show the relative analysis at different air fill fraction.

  7. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  8. A study on arrangement characteristics of microparticles in sedimentation on flat and round substrates

    NASA Astrophysics Data System (ADS)

    Yeo, Eunju; Son, Minhee; Kim, Kwanoh; Kim, Jeong Hwan; Yoo, Yeong-Eun; Choi, Doo-Sun; Kim, Jungchul; Yoon, Seok Ho; Yoon, Jae Sung

    2017-12-01

    Recent advances of microfabrication techniques have enabled diverse structures and devices on the microscale. This fabrication method using microparticles is one of the most promising technologies because it can provide a cost effective process for large areas. So, many researchers are studying modulation and manipulation of the microparticles in solution to obtain a proper arrangement. However, the microparticles are in sedimentation status during the process in many cases, which makes it difficult to control their arrangement. In this study, droplets containing microparticles were placed on a substrate with minimal force and we investigated the arrangement of these microparticles after evaporation of the liquid. Experiments have been performed with upward and downward substrates to change the direction of gravity. The geometry of substrates was also changed, which were flat or round. The results show that the arrangement depends on the size of particles and gravity and geometry of the substrate. The arrangement also depends on the movement of the contact line of the droplets, which may recede or be pinned during evaporation. This study is expected to provide a method of the fabrication process for microparticles which may not be easily manipulated due to sedimentation.

  9. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.

    PubMed

    Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing

    2015-01-28

    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

  10. Verification of the modified model of the drying process of a polymer liquid film on a flat substrate by experiment (2): through more accurate experiment

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2006-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we done a few kinds of experiments so as to verify the modified model and reported the initial result of them through Photomask Japan 2005. Through the initial result we could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying because a shape of a solution's film coated on a substrate in the experiment was different from one in resists' coating and drying process or imagined in the modified model. In this study, we improved above difference between experiment and the model and did experiments for verification again with a shape of a solution's film coated on a substrate coincident with one imagined in the modified model and using molar concentration. As a result, some were verified more strongly and some need to be examined again. That is, we could confirm like results of last experiment that the smaller average molecular weight of Metoloses was, the larger the gradient of thickness profile of a polymer thin film was. But we could not observe a depression just inside the edge of the thin film also in this improved experiment. We may be able to enumerate the fact that not an organic solution but an aqueous solution was used in the experiment as the cause of non-formation of the depression.

  11. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Device for thermal transfer and power generation

    DOEpatents

    Weaver, Stanton Earl [Northville, NY; Arik, Mehmet [Niskayuna, NY

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  13. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  14. Adjusting the surface areal density of click-reactive azide groups by kinetic control of the azide substitution reaction on bromine-functional SAMs.

    PubMed

    Zhang, Shuo; Maidenberg, Yanir; Luo, Kai; Koberstein, Jeffrey T

    2014-06-03

    Azide-alkyne click chemistry has emerged as an important and versatile means for tethering a wide variety of guest molecules to virtually any substrate. In many of these applications, it is important to exercise control over the areal density of surface functional groups to achieve a desired areal density of the tethered guest molecule of interest. We demonstrate herein that the areal density of surface azide groups on flat germanium surfaces and nanoparticle substrates (silica and iron oxide) can be controlled kinetically by appropriately timed quenching of the S(N)2 substitution reaction of bromo-alkane-silane monolayers induced by the addition of sodium azide. The kinetics of the azide substitution reaction on monolayers formed on flat Ge substrates, determined by attenuated total reflection infrared spectroscopy (ATR-IR), are found to be identical to those for monolayers formed on both silica and iron oxide nanoparticles, the latter determined by transmission infrared spectroscopy. To validate the method, the percentages of surface bromine groups converted to azide groups after various reaction times were measured by quenching the S(N)2 reaction followed by analysis with ATR-IR (for Ge) and thermogravimetric analysis (after a subsequent click reaction with an alkyne-terminal polymer) for the nanoparticle substrates. The conversions found after quenching agree well with those expected from the standard kinetic curves. The latter result suggests that the kinetic method for the control of azide group areal density is a versatile means for functionalizing substrates with a prescribed areal density of azide groups for subsequent click reactions, and that the method is universal for any substrate, flat or nanoparticle, that can be modified with bromo-alkane-silane monolayers. Regardless of the surface geometry, we find that the azide substitution reaction is complete within 2-3 h, in sharp contrast to previous reports that indicate times of 48-60 h required for completion of the reaction.

  15. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy

    DOE PAGES

    Wang, Y.; Song, Y.; Peng, R.; ...

    2017-08-08

    The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less

  16. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  17. Solid surface dependent layering of self-arranged structures with fibril-like assemblies of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Bukauskas, V.; Šetkus, A.; Šimkienė, I.; Tumėnas, S.; Kašalynas, I.; Rėza, A.; Babonas, J.; Časaitė, V.; Povilonienė, S.; Meškys, R.

    2012-03-01

    In present work the formation of hybrid constructions composed of alpha-synuclein-based colloidal solutions on various solid surfaces (silica coated Si, mica, CaF2 and KBr) is investigated by scanning probe microscopy, spectrocopic ellipsometry, Fourier transformed infrared spectroscopy and vibrational circular dichroism. Prior to the modification of the solids, the proteins were intentionally fibrilled under special conditions. It is proved that the multi-component coatings are self-arranged on the solid substrates. Depending on the substrate material, the interface films consisting of individual biomolecules can be detected on the solid surfaces. The coatings with fibril-like alpha-synuclein objects can be obtained on solid surfaces with negligible or comparatively thick interface films. The results are interpreted in terms of the charged surface-controlled electrostatic interaction between the substrate and the biomolecules. Solubility of solids is considered in this interpretation.

  18. "Immortal" liquid film formed by colliding bubble at oscillating solid substrates

    NASA Astrophysics Data System (ADS)

    Zawala, Jan

    2016-05-01

    This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.

  19. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  20. An evaluation of two flat-black silicone paints for space application

    NASA Technical Reports Server (NTRS)

    Clatterbuck, Carroll H.; Scialdone, John J.

    1990-01-01

    Tests were conducted on two flat-black silicone paints suggested for space applications to determine their optical, electrical, and mechanical properties. Three different types of substrate materials were chosen for these paint tests; the application of the paints onto the primed substrates was carried out by spray coating. The adhesion properties were verified by thermal shock and sudden immersion into liquid nitrogen. A controlled thermal vacuum tests was also carried out by varying the temperature of the paint from -100 to 225 C. The measured optical properties included normal and hemispherical emittance, and solar absorption/reflectance. A simultaneous exposure to low-energy proton/UV irradiation in vacuum, and high-energy proton/electron irradiation was carried out. Additional tests of the paints are described.

  1. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  2. Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas

    NASA Astrophysics Data System (ADS)

    Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.

    2009-02-01

    Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.

  3. The influence of roadside solid and vegetation barriers on near-road air quality

    NASA Astrophysics Data System (ADS)

    Ghasemian, Masoud; Amini, Seyedmorteza; Princevac, Marko

    2017-12-01

    The current study evaluates the influence of roadside solid and vegetation barriers on the near-road air quality. Reynolds Averaged Navier-Stokes (RANS) technique coupled with the k - ε realizable turbulence model is utilized to investigate the flow pattern and pollutant concentration. A scalar transport equation is solved for a tracer gas to represent the roadway pollutant emissions. In addition, a broad range of turbulent Schmidt numbers are tested to calibrate the scalar transport equation. Three main scenarios including flat terrain, solid barrier, and vegetative barrier are studied. To validate numerical methodology, predicted pollutant concentration is compared with published wind tunnel data. Results show that the solid barrier induces an updraft motion and lofts the vehicle emission plume. Therefore, the ground-level pollutant concentration decreases compared to the flat terrain. For the vegetation barrier, different sub-scenarios with different vegetation densities ranging from approximately flat terrain to nearly solid barrier are examined. Dense canopies act in a similar manner as a solid barrier and mitigate the pollutant concentration through vertical mixing. On the other hand, the high porosity vegetation barriers reduce the wind speed and lead to a higher pollutant concentration. As the vegetation density increases, i.e. the barrier porosity decreases, the recirculation zone behind the canopy becomes larger and moves toward the canopy. The dense plant canopy with LAD = 3.33m-2m3 can improve the near-road air quality by 10% and high porosity canopy with LAD = 1m-2m3 deteriorates near-road air quality by 15%. The results of this study can be implemented as green infrastructure design strategies by urban planners and forestry organizations.

  4. Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hippola, Chamika; Kaudal, Rajiv; Manna, Eeshita

    A key scientific and technological challenge in organic light-emitting diodes (OLEDs) is enhancing the light outcoupling factor η out, which is typically <20%. This paper reports experimental and modeling results of a promising approach to strongly increase η out by fabricating OLEDs on novel flexible nanopatterned substrates that result in a >2× enhancement in green phosphorescent OLEDs (PhOLEDs) fabricated on corrugated polycarbonate (PC). The external quantum efficiency (EQE) reaches 50% (meaning ηout ≥50%); it increases 2.6x relative to a glass/ITO device and 2× relative to devices on glass/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or flat PC/PEDOT:PSS. A significant enhancement is also observed formore » blue PhOLEDs with EQE 1.7× relative to flat PC. The corrugated PC substrates are fabricated efficiently and cost-effectively by direct room-temperature molding. These substrates successfully reduce photon losses due to trapping/waveguiding in the organic+anode layers and possibly substrate, and losses to plasmons at the metal cathode. Focused ion beam gauged the conformality of the OLEDs. Dome-shaped convex nanopatterns with height of ~280–400 nm and pitch ~750–800 nm were found to be optimal. Lastly, substrate design and layer thickness simulations, reported first for patterned devices, agree with the experimental results that present a promising method to mitigate photon loss paths in OLEDs.« less

  5. Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates

    DOE PAGES

    Hippola, Chamika; Kaudal, Rajiv; Manna, Eeshita; ...

    2018-02-19

    A key scientific and technological challenge in organic light-emitting diodes (OLEDs) is enhancing the light outcoupling factor η out, which is typically <20%. This paper reports experimental and modeling results of a promising approach to strongly increase η out by fabricating OLEDs on novel flexible nanopatterned substrates that result in a >2× enhancement in green phosphorescent OLEDs (PhOLEDs) fabricated on corrugated polycarbonate (PC). The external quantum efficiency (EQE) reaches 50% (meaning ηout ≥50%); it increases 2.6x relative to a glass/ITO device and 2× relative to devices on glass/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or flat PC/PEDOT:PSS. A significant enhancement is also observed formore » blue PhOLEDs with EQE 1.7× relative to flat PC. The corrugated PC substrates are fabricated efficiently and cost-effectively by direct room-temperature molding. These substrates successfully reduce photon losses due to trapping/waveguiding in the organic+anode layers and possibly substrate, and losses to plasmons at the metal cathode. Focused ion beam gauged the conformality of the OLEDs. Dome-shaped convex nanopatterns with height of ~280–400 nm and pitch ~750–800 nm were found to be optimal. Lastly, substrate design and layer thickness simulations, reported first for patterned devices, agree with the experimental results that present a promising method to mitigate photon loss paths in OLEDs.« less

  6. Influence of surface topography on RBS measurements: case studies of (Cu/Fe/Pd) multilayers and FePdCu alloys nanopatterned by self-assembly

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Zabila, Y.; Zarzycki, A.; Marszałek, M.

    2017-03-01

    In this paper the influence of surface topography on Rutherford backscattering spectrometry (RBS) is discussed. (Cu/Fe/Pd) multilayers with total thickness of about 10 nm were deposited by physical vapor deposition on self-organized array of SiO2 nanoparticles with the size of 50 nm and 100 nm. As a reference, the multilayered systems were also prepared on flat substrates under the same conditions. After the deposition, morphology of the systems was studied by scanning electron microscopy (SEM), while chemical analysis was performed using Rutherford backscattering spectrometry. It was found that the RBS spectra and determined compositions for flat and patterned multilayers differ. The difference is discussed by taking into account the effect of additional inelastic scattering and energy straggling occurring due to developed topography of patterned systems. Then, the multilayers were annealed in 600 °C in order to obtain FePdCu alloy. The phenomenon of solid-state dewetting resulted in the formation of isolated alloy islands on the top of SiO2 nanoparticles. The SEM and RBS analysis were repeated showing correlation between the size distribution of obtained alloy islands and broadening of peaks appearing in RBS spectra. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  7. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  8. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing

    PubMed Central

    Villegas, Irene F.; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  9. Towards the modeling of nanoindentation of virus shells: Do substrate adhesion and geometry matter?

    NASA Astrophysics Data System (ADS)

    Bousquet, Arthur; Dragnea, Bogdan; Tayachi, Manel; Temam, Roger

    2016-12-01

    Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a consequence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate corrugation on the mechanical response to indentation has not been studied. This is somewhat surprising considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular interactions while relatively strong adhesion forces are required for virus immobilization for nanoindentation. This article presents numerical simulations via finite elements discretization investigating the deformation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion interactions with the substrate. We study the influence of the adhesion forces in the deformation of the virus model under axial compression on a flat substrate by comparing the force-displacement curves for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders with that on a flat surface.

  10. Long-lasting antifog plasma modification of transparent plastics.

    PubMed

    Di Mundo, Rosa; d'Agostino, Riccardo; Palumbo, Fabio

    2014-10-08

    Antifog surfaces are necessary for any application requiring optical efficiency of transparent materials. Surface modification methods aimed toward increasing solid surface energy, even when supposed to be permanent, in fact result in a nondurable effect due to the instability in air of highly hydrophilic surfaces. We propose the strategy of combining a hydrophilic chemistry with a nanotextured topography, to tailor a long-lasting antifog modification on commercial transparent plastics. In particular, we investigated a two-step process consisting of self-masked plasma etching followed by plasma deposition of a silicon-based film. We show that the deposition of the silicon-based coatings on the flat (pristine) substrates allows a continuous variation of wettability from hydrophobic to superhydrophilic, due to a continuous reduction of carbon-containing groups, as assessed by Fourier transform infrared and X-ray photoelectron spectroscopies. By depositing these different coatings on previously nanotextured substrates, the surface wettability behavior is changed consistently, as well as the condensation phenomenon in terms of microdroplets/liquid film appearance. This variation is correlated with advancing and receding water contact angle features of the surfaces. More importantly, in the case of the superhydrophilic coating, though its surface energy decreases with time, when a nanotextured surface underlies it, the wetting behavior is maintained durably superhydrophilic, thus durably antifog.

  11. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  12. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  13. Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates

    NASA Astrophysics Data System (ADS)

    Guiliani, Jason; Cadena, John; Monton, Carlos

    2018-02-01

    We present a variant of the template-assisted electrodeposition method that enables the synthesis of large arrays of nanowires (NWs) on flat and curved substrates. This method uses ultra-thin (50 nm-10 μm) anodic aluminum oxide membranes as a template. We have developed a procedure that uses a two-polymer protective layer to transfer these templates onto almost any surface. We have applied this technique to the fabrication of large arrays of Ni and segmented composition Ni/Au NWs on silicon wafers, Cu tapes, and thin (0.2 mm) Cu wires. In all cases, a complete coverage with NWs is achieved. The magnetic properties of these samples show an accentuated in-plane anisotropy which is affected by the form of the substrate (flat or curve) and the length of the NWs. Unlike current lithography techniques, the fabrication method proposed here allows the integration of complex nanostructures into devices, which can be fabricated on unconventional surfaces.

  14. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    PubMed

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  15. Verification of the modified model of drying process of a polymer liquid film on a flat substrate by experiment (3) - using organic solvent

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004, Smart Materials, Nano-, and Micro-Smart Systems 2006 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we did a few kinds of experiments so as to verify the modified model and reported the results of them through Photomask Japan 2005 and 2006. We could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying. After some trial of various improved experiments we reached the conclusion that the characteristic region didn't appear by reason that water which vaporized slower than organic solvent was used as solvent. Then, in this study, we adopted organic solvent instead of water as solvent for experiments. As a result, that the characteristic region as mentioned above could be seen and we could verify the model more accurately. In this paper, we present verification of the model through above improved experiments for verification using organic solvent.

  16. Thin glass substrates for mobile applications

    NASA Astrophysics Data System (ADS)

    Mauch, Reiner H.; Wegener, Holger; Kruse, Anke; Hildebrand, Norbert

    2000-10-01

    Flat panel displays play an important role as the visual interface for today's electronic devices (Notebook computers, PDA's, pagers, mobile phones, etc.). Liquid Crystal Display's are dominating the market. While for higher resolution displays active matrix displays like Thin Film Transistor LCD's are used, portable devices are mainly using Super Twisted Nematic (STN) displays. Based on the application, STN displays for mobile applications require thinner glass substrates with improved surface quality at a lower cost. The requirements and trends for STN glass substrates are identified and discussed. Different glass manufacturing processes are used today for the manufacture of these substrates. Advantages and disadvantages of the different glass substrate types are presented and discussed.

  17. Method of forming emitters for a back-contact solar cell

    DOEpatents

    Li, Bo; Cousins, Peter J.; Smith, David D.

    2015-09-29

    Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

  18. Method of forming emitters for a back-contact solar cell

    DOEpatents

    Li, Bo; Cousins, Peter J; Smith, David D

    2014-12-16

    Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

  19. Method or forming emitters for a back-contact solar cell

    DOEpatents

    Li, Bo; Cousins, Peter J.; Smith, David D.

    2014-08-12

    Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

  20. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  1. Development and Implementation of Methods and Means for Achieving a Uniform Functional Coating Thickness

    NASA Astrophysics Data System (ADS)

    Shishlov, A. V.; Sagatelyan, G. R.; Shashurin, V. D.

    2017-12-01

    A mathematical model is proposed to calculate the growth rate of the thin-film coating thickness at various points in a flat substrate surface during planetary motion of the substrate, which makes it possible to calculate an expected coating thickness distribution. Proper software package is developed. The coefficients used for computer simulation are experimentally determined.

  2. A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation.

    PubMed

    Survase, Shrikant A; Shaligram, Nikhil S; Pansuriya, Ruchir C; Annapure, Uday S; Singhal, Rekha S

    2009-05-01

    Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at 25+/-2 degrees for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of 3,872+/-156 mg CyA/kg substrate as compared with 792+/-33 mg/kg substrate before optimization. Furthermore, supplementation of salts, glycerol (1%w/w), and ammonium sulfate (1%w/w) increased the production of CyA to 5,454+75 mg/kg substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of 6,480+95 mg CyA/kg substrate.

  3. A Conserved Current Solid-on-Solid Model on a Sierpinski Tetrahedron Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jin Min; Kang, Daeseung

    2018-03-01

    A conserved current solid-on-solid model with conservative noise on a 3D Sierpinski tetrahedron substrate is studied. The interface width W grows as t β , with β = 0.0396 ± 0.0009, and becomes saturated as L α, with α = 0.195±0.005, where L is the system size. The dynamic exponent z ≈ 4.92 is estimated from the relation z = α/β. These values satisfy a scaling relation α+z = 2z rw , where z rw is the random walk exponent of the fractal substrate. Our results are consistent with the values estimated from a fractional Langevin equation with a conservative noise.

  4. Commercialization of a novel fermentation concept.

    PubMed

    Mazumdar-Shaw, Kiran; Suryanarayan, Shrikumar

    2003-01-01

    Fermentation is the core of biotechnology where current methodologies span across technologies based on the use of either solid or liquid substrates. Traditionally, solid substrate fermentation technologies have been the widely practiced in the Far East to manufacture fermented foods such as soya sauce, sake etc. The Western World briefly used solid substrate fermentation for the manufacture of antibiotics and enzymes but rapidly replaced this technology with submerged fermentation which proved to be a superior technology in terms of automation, containment and large volume fermentation. Biocon India developed its enzyme technology based on solid substrate fermentation as a low-cost, low-energy option for the production of specialty enzymes. However, the limitations of applying solid substrate fermentation to more sophisticated biotechnology products as well as large volume fermentations were recognized by Biocon India as early as 1990 and the company embarked on a 8 year research and development program to develop a novel bioreactor capable of conducting solid substrate fermentation with comparable levels of automation and containment as those practiced by submerged fermentation. In addition, the novel technology enabled fed-batch fermentation, in situ extraction and other enabling features that will be discussed in this article. The novel bioreactor was christened the "PlaFractor" (pronounced play-fractor). The next level of research on this novel technology is now focused on addressing large volume fermentation. This article traces the evolution of Biocon India's original solid substrate fermentation to the PlaFractor technology and provides details of the scale-up and commercialization processes that were involved therein. What is also apparent in the article is Biocon India's commercially focused research programs and the perceived need to be globally competitive through low costs of innovation that address, at all times, processes and technologies that exhibit high degrees of conformance to the international standards of regulatory and good manufacturing practice.

  5. Stress concentration in periodically rough Hertzian contact: Hertz to soft-flat-punch transition

    PubMed Central

    Raphaël, E.; Léger, L.; Restagno, F.; Poulard, C.

    2016-01-01

    We report on the elastic contact between a spherical lens and a patterned substrate, composed of a hexagonal lattice of cylindrical pillars. The stress field and the size of the contact area are obtained by means of numerical methods: a superposition method of discrete pressure elements and an iterative bisection-like method. For small indentations, a transition from a Hertzian to a soft-flat-punch behaviour is observed when the surface fraction of the substrate that is covered by the pillars is increased. In particular, we present a master curve defined by two dimensionless parameters, which allows one to predict the stress at the centre of the contact region in terms of the surface fraction occupied by pillars. The transition between the limiting contact regimes, Hertzian and soft-flat-punch, is well described by a rational function. Additionally, a simple model to describe the Boussinesq–Cerruti-like contact between the lens and a single elastic pillar, which takes into account the pillar geometry and the elastic properties of the two bodies, is presented. PMID:27713659

  6. Evaluation of fruit quality, bioactive compounds and total antioxidant activity of flat peach cultivars.

    PubMed

    Di Vaio, Claudio; Marallo, Nadia; Graziani, Giulia; Ritieni, Alberto; Di Matteo, Antonio

    2015-08-15

    Fruit quality traits (fresh weight, dry weight, soluble solids content, titratable acidity and firmness) as well as the content of bioactive compounds (phenolic compounds) and total antioxidant activity were evaluated in four commercial cultivars of peach (Greta, Ufo 4, Rome Star and Ufo 6) and four of nectarine (Neve, Planet 1, Maria Carla and Mesembrina) differing in fruit shape (standard or flat) and flesh colour (white or yellow), important cultivars of the Italian and foreign market. The higher fruit organoleptic quality and nutritional profile of flat peach and nectarine cultivars make them candidates for exploiting new market opportunities and the chance to improve profits of farmers. The results showed that assayed quality parameters differed greatly among cultivars. In particular, flesh color and fruit shape accounted for most of the variation in traits underlying organoleptic and nutritional quality. Overall data suggested that the flat white-fleshed nectarine Planet 1, the yellow-fleshed nectarine Mesembrina and the yellow-fleshed peach Ufo 6, because of their profiles in terms of soluble solids content, titratable acidity and bioactive compounds, have the greatest potential to meet current consumer requirements. © 2014 Society of Chemical Industry.

  7. Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.

    PubMed

    Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh

    2017-06-14

    We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.

  8. Two-dimensional nature of the active Brownian motion of catalytic microswimmers at solid and liquid interfaces

    NASA Astrophysics Data System (ADS)

    Dietrich, Kilian; Renggli, Damian; Zanini, Michele; Volpe, Giovanni; Buttinoni, Ivo; Isa, Lucio

    2017-06-01

    Colloidal particles equipped with platinum patches can establish chemical gradients in H2O2-enriched solutions and undergo self-propulsion due to local diffusiophoretic migration. In bulk (3D), this class of active particles swim in the direction of the surface heterogeneities introduced by the patches and consequently reorient with the characteristic rotational diffusion time of the colloids. In this article, we present experimental and numerical evidence that planar 2D confinements defy this simple picture. Instead, the motion of active particles both on solid substrates and at flat liquid-liquid interfaces is captured by a 2D active Brownian motion model, in which rotational and translational motion are constrained in the xy-plane. This leads to an active motion that does not follow the direction of the surface heterogeneities and to timescales of reorientation that do not match the free rotational diffusion times. Furthermore, 2D-confinement at fluid-fluid interfaces gives rise to a unique distribution of swimming velocities: the patchy colloids uptake two main orientations leading to two particle populations with velocities that differ up to one order of magnitude. Our results shed new light on the behavior of active colloids in 2D, which is of interest for modeling and applications where confinements are present.

  9. Programmable, reversible and repeatable wrinkling of shape memory polymer thin films on elastomeric substrates for smart adhesion.

    PubMed

    Wang, Yu; Xiao, Jianliang

    2017-08-09

    Programmable, reversible and repeatable wrinkling of shape memory polymer (SMP) thin films on elastomeric polydimethylsiloxane (PDMS) substrates is realized, by utilizing the heat responsive shape memory effect of SMPs. The dependencies of wrinkle wavelength and amplitude on program strain and SMP film thickness are shown to agree with the established nonlinear buckling theory. The wrinkling is reversible, as the wrinkled SMP thin film can be recovered to the flat state by heating up the bilayer system. The programming cycle between wrinkle and flat is repeatable, and different program strains can be used in different programming cycles to induce different surface morphologies. Enabled by the programmable, reversible and repeatable SMP film wrinkling on PDMS, smart, programmable surface adhesion with large tuning range is demonstrated.

  10. Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design.

    PubMed

    Lutter, Christoph; Nothhaft, Matthias; Rzany, Alexander; Garlichs, Christoph D; Cicha, Iwona

    2015-01-01

    In coronary artery disease, highly stenosed arteries are frequently treated by stent implantation, which thereafter necessitates a dual-antiplatelet therapy (DAPT) in order to prevent stent-thrombosis. We hypothesized that specific patterns of microstructures on stents can accelerate endothelialisation thereby reducing their thrombogenicity and the DAPT duration. Differently designed, 2-5 μm high elevations or hollows were lithographically etched on silicon plates, subsequently coated with silicon carbide. Smooth silicon plates and bare metal substrates were used as controls. To assess attachment and growth of human umbilical vein endothelial cells under static or flow conditions, actin cytoskeleton was visualised with green phalloidin. Endothelial migration was assessed in a modified barrier assay. To investigate surface thrombogenicity, platelets were incubated on the structured surfaces in static and flow conditions, and visualised with fluorescein-conjugated P-selectin antibody. Images were taken with incident-light fluorescent microscope for non-transparent objects. Compared to smooth surface, flat cubic elevations (5 μm edge length) improved endothelial cell attachment and growth under static and dynamic conditions, whereas smaller, spiky structures (2 μm edge length) had a negative influence on endothelialisation. Endothelial cell migration was fastest on flat cubic elevations, hollows, and smooth surfaces, whereas spiky structures and bare metal had a negative effect on endothelial migration. Thrombogenicity assays under static and flow conditions showed that platelet adhesion was reduced on the flat elevations and the smooth surface, as compared to the spiky structures, the hollow design and the bare metal substrates. Surface microstructures strongly influence endothelialisation of substrates. Designing stents with surface topography which accelerates endothelialisation and reduces thrombogenicity may be of clinical benefit by improving the safety profile of coronary interventions.

  11. Ice Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling.

    PubMed

    Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron

    2017-05-16

    The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.

  12. Chirality in adsorption on solid surfaces.

    PubMed

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral chromatography, and enantioselective catalysis.

  13. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    PubMed

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  14. Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin films.

    PubMed

    Woo, Sungmin; Lee, Sang A; Mun, Hyeona; Choi, Young Gwan; Zhung, Chan June; Shin, Soohyeon; Lacotte, Morgane; David, Adrian; Prellier, Wilfrid; Park, Tuson; Kang, Won Nam; Lee, Jong Seok; Kim, Sung Wng; Choi, Woo Seok

    2018-03-01

    Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO 3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO 3 substrate, an epitaxial polycrystalline SrRuO 3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.

  15. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    NASA Astrophysics Data System (ADS)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter ones and that 3 volume percent dPS-b-PMMA is the optimum additive concentration for this system. For a dPS-b-PMMA:PS blend, atomic force microscopy of the hole floor reveals mounds of residual polymer and a modulated contact line where the rim meets the substrate.

  16. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation.

    PubMed

    Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin

    2018-01-01

    This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.

  17. Development of Plastic Substrate Technology for Active Matrix Liquid Crystal Displays Final Report CRADA No. TC-761-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, P.; Kamath, H.

    Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.

  18. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  19. Solid perception mechanism by a shading pattern: spatial frequency components in a corrugated wave pattern.

    PubMed

    Nameda, N

    1988-01-01

    Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.

  20. Solid Lubrication Fundamentals and Applications. Chapter 2

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.

  1. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    PubMed

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  3. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less

  4. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    PubMed Central

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-01-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611

  5. Lubrication and wear mechanisms of polyimide-bonded graphite fluoride films subjected to low contact stress

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were studied with a pin-on-disk friction apparatus. A 440 C HT stainless steel rider with a 0.95 millimeter diameter flat area was slid against the film in order to achieve a light, closely controlled contact stress. A 1 kilogram load was applied to this flat to give a projected contact stress of 14 megapascals. Two stages of lubrication were operating. In the first stage, the film supported the load and the lubricating mechanism appeared to be the shear of a thin surface layer of the film between the rider and the bulk of the film. The second stage began after the original film was worn away, and the lubricating mechanism appeared to be the shear of very thin lubricant layers between the flat area on the rider and flat plateaus generated on the sandblasted asperities of the metallic substrate. The major difference between the lubricating mechanisms of the hemispherical and flat riders was that the flat wore through the film much more slowly than did the hemisphere.

  6. Adsorption of the Three-phase Emulsion on Various Solid Surfaces.

    PubMed

    Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo

    2017-07-01

    The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.

  7. Reflective small angle electron scattering to characterize nanostructures on opaque substrates

    NASA Astrophysics Data System (ADS)

    Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  8. Reflective Small Angle Electron Scattering to Characterize Nanostructures on Opaque Substrates.

    PubMed

    Friedman, Lawrence H; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Features sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering and of course the electron and scanning probe microscopy techniques. Each of these techniques have their advantages and limitations. Here the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  9. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    PubMed

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    NASA Astrophysics Data System (ADS)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  11. Urban construction and safety project

    NASA Technical Reports Server (NTRS)

    Hogarth, P. T.

    1976-01-01

    Technology utilization projects in the area of urban construction and safety included the following: development of undercarpet and baseboard flat conductor cables, flood insurance studies, tornado safety engineering, the Project TECH house at the Langley Research Center, assistance to the City of Atlanta in their environmental habitability and resource allocation program, and market assessment of a solid state diesel engine controller. The flat conductor cable and the flood insurance studies are given particular attention.

  12. Smooth diamond films as low friction, long wear surfaces

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Erdemir, Ali; Bindal, Cuma; Zuiker, Christopher D.

    1999-01-01

    An article and method of manufacture of a nanocrystalline diamond film. The nanocrystalline film is prepared by forming a carbonaceous vapor, providing an inert gas containing gas stream and combining the gas stream with the carbonaceous containing vapor. A plasma of the combined vapor and gas stream is formed in a chamber and fragmented carbon species are deposited onto a substrate to form the nanocrystalline diamond film having a root mean square flatness of about 50 nm deviation from flatness in the as deposited state.

  13. Low gloss UV-cured coatings for aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Mark; Muschar, Harry

    A method of applying a low gloss coating to a substrate such as the exterior surface of an aircraft is disclosed. The coating composition comprising a polyene, a polythiol, a flatting agent and a coloring pigment is applied to the substrate and given a first dosage of UV radiation followed by a second dosage in which the second dosage is greater than the first resulting in an ultralow gloss coating.

  14. Extended asymmetric-cut multilayer X-ray gratings.

    PubMed

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  15. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates.

    PubMed

    Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong

    2016-02-21

    Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.

  16. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    NASA Astrophysics Data System (ADS)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  17. SU-F-T-464: Development of a Secondary Check Procedure to Evaluated Flatness and Symmetry Discrepancies Detected During Daily Morning QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagar, M; Friesen, S; Lyatskaya, Y

    2016-06-15

    Purpose: A daily QA device is used to monitor output, flatness and symmetry constancy for all linac photon and electron energies. If large deviations from baseline in flatness or symmetry are reported it becomes necessary to crosscheck the measurements with a second device. Setting up another device such as Matrixx (IBA Dosimetry) can be time consuming, due to its warm-up time, and trained personnel may not be readily available to analyze the results. Furthermore, this discrepancy is frequently isolated to a single energy. Unaffected energies could still be used, avoiding further patient delays, if a method to gather data formore » offline analysis could be developed. We find that optically stimulated luminescent dosimeters (OSLDs) provide a quick, simple, and inexpensive solution to this important clinical problem. Methods: The exact geometry of the detectors on the daily tracker (Keithley Therapy Beam Evaluator) was reproduced by placing nanoDot OSLDs (Landauer) on a solid water phantom. A combination of bolus and solid water was placed on top to provide buildup and prevent air gaps. Standard daily measurements of output, flatness and symmetry were taken for 2 photon energies (6x,10x) and 5 electron energies (6e,9e,12e,15e,18e) using the tracker. These measurements were then repeated with the OSLD phantom. Results: The time it took to set up the OSLD phantom was comparable to that of the tracker. The inline and crossline OSLD phantom measurements of flatness and symmetry agreed with the tracker results to within 2%. Conclusion: OSLDs provide a good solution for a quick second check when questionable flatness and symmetry results are detected with the tracker during daily QA.« less

  18. Microfluidic structures and methods for integrating a functional component into a microfluidic device

    DOEpatents

    Simmons, Blake [San Francisco, CA; Domeier, Linda [Danville, CA; Woo, Noble [San Gabriet, CA; Shepodd, Timothy [Livermore, CA; Renzi, Ronald F [Tracy, CA

    2008-04-01

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.

  19. Methods for integrating a functional component into a microfluidic device

    DOEpatents

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2014-08-19

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.

  20. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    PubMed

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. RADIANCE PROCESS EVALUATION FOR PARTICLE REMOVAL

    EPA Science Inventory

    The microelectronics industry (wafer, flat panel displays, photomasks, and storage media) is transitioning to higher device densities and larger substrate formats. These changes will challenge standard cleaning methods and will require significant increases to the fabricator inf...

  2. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  3. Impact resistance performance of diamond film on a curved molybdenum substrate

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Gou, Li

    2017-08-01

    Diamond films with different thicknesses were deposited on flat and curved molybdenum substrate by the microwave plasma chemical vapour deposition (MPCVD) method. Scanning electronic microscopy, atomic force microscopy and Raman spectroscopy were employed to characterise the morphology, the surface roughness and the composition of the films, respectively. A NanoTest system was used for hardness, elastic modulus and nanoimpact tests. The curved surface and ductility of the molybdenum substrate allow large deformation for the thinner films. The substrate has less effect on impact for the thicker film, the deformation of which is mainly determined by the film composition. Under a load of 50 mN and 75 cycles, less deformation occurred for the 22 μm thick film on the curved molybdenum substrate.

  4. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Gawlitza, P.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Braun, S.; Yashchuk, V. V.; Padmore, H. A.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  5. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Cambie, R.; Dhuey, S.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimizemore » degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  6. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in ordermore » to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr + ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  7. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    PubMed

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  8. Molecular dynamics study of the growth of a metal nanoparticle array by solid dewetting

    NASA Astrophysics Data System (ADS)

    Luan, Yanhua; Li, Yanru; Nie, Tiaoping; Yu, Jun; Meng, Lijun

    2018-03-01

    We investigated the effect of the substrate and the ambient temperature on the growth of a metal nanoparticle array (nanoarray) on a solid-patterned substrate by dewetting a Au liquid film using an atomic simulation technique. The patterned substrate was constructed by introducing different interaction potentials for two atom groups ( C 1 and C 2) in the graphene-like substrate. The C 1 group had a stronger interaction between the Au film and the substrate and was composed of regularly distributed circular disks with radius R and distance D between the centers of neighboring disks. Our simulation results demonstrate that R and D have a strikingly different influence on the growth of the nanoparticle arrays. The degree of order of the nanoarray increases first before it reaches a peak and then decreases for increasing R at fixed D. However, the degree of order increases monotonously when D is increased and reaches a saturated value beyond a critical value of D for a fixed R. Interestingly, a labyrinth-like structure appeared during the dewetting process of the metal film. The simulation results also indicated that the temperature was an important factor in controlling the properties of the nanoarray. An appropriate temperature leads to an optimized nanoarray with a uniform grain size and well-ordered particle distribution. These results are important for understanding the dewetting behaviors of metal films on solid substrates and understanding the growth of highly ordered metal nanoarrays using a solid-patterned substrate method.

  9. Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors.

    PubMed

    Song, Zhilong; Huang, Zhao; Liu, Jingyao; Hu, Zhixiang; Zhang, Jianbing; Zhang, Guangzu; Yi, Fei; Jiang, Shenglin; Lian, Jiabiao; Yan, Jia; Zang, Jianfeng; Liu, Huan

    2018-05-25

    Stretchable gas sensors that accommodate the shape and motion characteristics of human body are indispensable to a wearable or attachable smart sensing system. However, these gas sensors usually have poor response and recovery kinetics when operated at room temperature, and especially suffer from humidity interference and mechanical robustness issues. Here, we demonstrate the first fully stretchable gas sensors which are operated at room temperature with enhanced stability against humidity. We created a crumpled quantum dot (QD) sensing layer on elastomeric substrate with flexible graphene as electrodes. Through the control over the prestrain of the flexible substrate, we achieved a 5.8 times improvement in NO 2 response at room temperature with desirable stretchability even under 1000 stretch/relax cycles mechanism deformation. The uniformly wavy structural configuration of the crumpled QD gas-sensing layer enabled an improvement in the antihumidity interference. The sensor response shows a minor vibration of 15.9% at room temperature from relative humidity of 0 to 86.7% compared to that of the flat-film sensors with vibration of 84.2%. The successful assembly of QD solids into a crumpled gas-sensing layer enabled a body-attachable, mechanically robust, and humidity-resistant gas sensor, opening up a new pathway to room-temperature operable gas sensors which may be implemented in future smart sensing systems such as stretchable electronic nose and multipurpose electronic skin.

  10. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  11. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  12. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  13. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  14. [Design method of convex master gratings for replicating flat-field concave gratings].

    PubMed

    Zhou, Qian; Li, Li-Feng

    2009-08-01

    Flat-field concave diffraction grating is the key device of a portable grating spectrometer with the advantage of integrating dispersion, focusing and flat-field in a single device. It directly determines the quality of a spectrometer. The most important two performances determining the quality of the spectrometer are spectral image quality and diffraction efficiency. The diffraction efficiency of a grating depends mainly on its groove shape. But it has long been a problem to get a uniform predetermined groove shape across the whole concave grating area, because the incident angle of the ion beam is restricted by the curvature of the concave substrate, and this severely limits the diffraction efficiency and restricts the application of concave gratings. The authors present a two-step method for designing convex gratings, which are made holographically with two exposure point sources placed behind a plano-convex transparent glass substrate, to solve this problem. The convex gratings are intended to be used as the master gratings for making aberration-corrected flat-field concave gratings. To achieve high spectral image quality for the replicated concave gratings, the refraction effect at the planar back surface and the extra optical path lengths through the substrate thickness experienced by the two divergent recording beams are considered during optimization. This two-step method combines the optical-path-length function method and the ZEMAX software to complete the optimization with a high success rate and high efficiency. In the first step, the optical-path-length function method is used without considering the refraction effect to get an approximate optimization result. In the second step, the approximate result of the first step is used as the initial value for ZEMAX to complete the optimization including the refraction effect. An example of design problem was considered. The simulation results of ZEMAX proved that the spectral image quality of a replicated concave grating is comparable with that of a directly recorded concave grating.

  15. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  16. Metallization of ultra-thin, non-thiol SAMs with flat-lying molecular units: Pd on 1, 4-dicyanobenzene.

    PubMed

    Eberle, Felix; Metzler, Martin; Kolb, Dieter M; Saitner, Marc; Wagner, Patrick; Boyen, Hans-Gerd

    2010-09-10

    Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.

  17. Methods for using atomic layer deposition to produce a film for solid state electrolytes and protective electrode coatings for lithium batteries

    DOEpatents

    Elam, Jeffrey W.; Meng, Xiangbo

    2018-03-13

    A method for using atomic layer deposition to produce a film configured for use in an anode, cathode, or solid state electrolyte of a lithium-ion battery or a lithium-sulfur battery. The method includes repeating a cycle for a predetermined number of times in an inert atmosphere. The cycle includes exposing a substrate to a first precursor, purging the substrate with inert gas, exposing the substrate to a second precursor, and purging the substrate with inert gas. The film is a metal sulfide.

  18. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    PubMed Central

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  19. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...

  20. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...

  1. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...

  2. Titanium based flat heat pipes for computer chip cooling

    NASA Astrophysics Data System (ADS)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  3. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    PubMed

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  4. Control of three-dimensional waves on thin liquid films. I - Optimal control and transverse mode effects

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios

    2017-11-01

    We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. In this talk we explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. In this case and the case of an overlying film, we additionally study the influence of controlling to non-trivial transverse states on the streamwise and mixed mode dynamics. Finally, we solve the full optimal control problem by deriving the first order necessary conditions for existence of an optimal control, and solving these numerically using the forward-backward sweep method.

  5. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    DOEpatents

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  6. Tailoring of Nano- and Microstructure in Biomimetically Synthesized Ceramic Films

    DTIC Science & Technology

    2006-11-01

    Eq. 5 where the Hamaker constant (A) for a flat and infinitely large substrate (subscript 1) and a spherical particle...is determined as (Israelachvili 1985): 232 12a A RV x = − Eq. 7 where the Hamaker constant for two like spherical particle (2) in a medium...close enough to be attracted to the equilibrium separation (0.3 nm). The Hamaker constants and the minimal interaction energies for substrate-solution

  7. Performance characteristics of a conformal ultra-wideband multilayer applicator (CUMLA) for hyperthermia in veterinary patients: a pilot evaluation of its use in the adjuvant treatment of non-resectable tumours.

    PubMed

    Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C

    2013-03-01

    Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.

  8. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sung, Young Hoon; Jung, Pil-Hoon; Han, Kyung-Hoon; Kim, Yang Doo; Kim, Jang-Joo; Lee, Heon

    2017-10-01

    In order to increase the out-coupling efficiency of organic light emitting diodes, conical Si oxide nanostructures were formed on a glass substrate using nanoimprint lithography with hydrogen silsesquioxane. Then, the substrate was planarized with TiO2 nanoparticles. Since TiO2 nanoparticles have a higher refractive index than Si oxide, the surface of substrate is physically flat, but optically undulated in a manner that enables optical scattering and suppression of total internal reflection. Subsequently, OLEDs formed on a substrate with nanostructured Si oxide and a TiO2 planarization layer exhibit a 25% increase in out-coupling efficiency by suppressing total internal reflection.

  9. Pt-coated cylindrical micropatterned honeycomb Petri dishes as an efficient TCO-free counter electrode in liquid junction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Dao, Van-Duong; Bui, Van-Tien; Choi, Ho-Suk

    2018-02-01

    The Pt layer deposited on a cylindrical micro cavity patterned Petri dish, which is produced using a one-step solvent-immersion phase separation, is fabricated for the first time as an FTO-free counter electrode (CE) for dye-sensitized solar cells (DSCs). Due to the high specific active surface area of the Pt-deposited honeycomb substrate CE, the efficiency of the DSC using the developed CE substrate is enhanced by 14.5% compared with the device using a Pt-sputtered flat substrate. This design strategy has potential in fabricating highly efficient and low-cost CE materials with FTO-free substrates for DSCs.

  10. Growth and dielectric properties of ZnO nanoparticles deposited by using electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Chung, Yoonsung; Park, Hyejin; Kim, Dong-Joo; Cho, Sung Baek; Yoon, Young Soo

    2015-05-01

    The deposition behavior of ZnO nanoparticles on metal plates and conductive fabrics was investigated using electrophoretic deposition (EPD). The deposition kinetics on both metal plates and fabrics were examined using the Hamaker equation. Fabric substrates give more deposited weight than flat substrates due to their rougher shape and higher surface area. The morphologies and the structures of the deposited ZnO layers showed uniform deposition without any preferred orientation on both substrates. The dielectric properties of the ZnO layers formed by using EPD showed values that were reduced, but comparable to those of bulk ZnO. This result suggests that EPD is a convenient method to deposit functional oxides on flexible substrates.

  11. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  12. A study to improve the mechanical properties of silicon carbide ribbon fibers

    NASA Technical Reports Server (NTRS)

    Debolt, H. E.; Robey, R. J.

    1976-01-01

    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.

  13. Self-organized broadband light trapping in thin film amorphous silicon solar cells.

    PubMed

    Martella, C; Chiappe, D; Delli Veneri, P; Mercaldo, L V; Usatii, I; Buatier de Mongeot, F

    2013-06-07

    Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells.

  14. High speed electrostatic photomultiplier tube for the 1.06 micrometer wavelength. Cup and slat dynode chain combined with flat cathode and coax output produces 0.25 nsec rise time

    NASA Technical Reports Server (NTRS)

    Sparks, S. D.

    1973-01-01

    The Varian cup and slat dynode chain was modified to have a flat cathode. These modifications were incorporated in an all-electrostatic photomultiplier tube having a rise time of 0.25 n sec. The tube delivered under the contract had a flat S-20 opaque cathode with a useful diameter of 5 mm. The design of the tube is such that a III to V cathode support is mounted in place of the existing cathode substrate. This cathode support is designed to accept a transferred III to V cathode and maintain the cathode surface in the same position as the S-20 photocathode.

  15. Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings

    NASA Astrophysics Data System (ADS)

    Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun

    2008-03-01

    Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.

  16. Effect of Interaction of the Temperature Field and Supersaturation on the Morphology of the Solid-Vapor Interface in Crystal Growth by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.

  17. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.

    PubMed

    Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I

    2005-04-01

    This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.

  18. β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design.

    PubMed

    Kazemi, Samaneh; Khayati, Gholam; Faezi-Ghasemi, Mohammad

    2016-01-01

    Enzymatic hydrolysis of lactose is one of the most important biotechnological processes in the food industry, which is accomplished by enzyme β-galactosidase (β-gal, β-D-galactoside galactohydrolase, EC 3.2.1.23), trivial called lactase. Orthogonal arrays design is an appropriate option for the optimization of biotechnological processes for the production of microbial enzymes. Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was employed to screen the most significant levels of parameters, including the solid substrates (wheat straw, rice straw, and peanut pod), the carbon/nitrogen (C/N) ratios, the incubation time, and the inducer. The level of β-gal production was measured by a photometric enzyme activity assay using the artificial substrate ortho-Nitrophenyl-β-D-galactopyranoside. The results showed that C/N ratio (0.2% [w/v], incubation time (144 hour), and solid substrate (wheat straw) were the best conditions determined by the design of experiments using the Taguchi approach. Our finding showed that the use of rice straw and peanut pod, as solid-state substrates, led to 2.041-folds increase in the production of the enzyme, as compared to rice straw. In addition, the presence of an inducer did not have any significant impact on the enzyme production levels.

  19. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  20. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  1. Near-field polarization distribution of Si nanoparticles near substrate

    NASA Astrophysics Data System (ADS)

    Reshetov, S. A.; Vladimirova, Yu. V.; Gevorkian, L. P.; Zadkov, V. N.

    2017-01-01

    Structure of the near-field intensity and polarization distributions, the latter is described with the generalized 3D Stokes parameters, of a spherical Si subwavelength nanoparticle in a non-magnetic and non-absorbing media near a dielectric substrate has been studied in detail with the help of the Mie theory and an extension of the Weyl's method for the calculation of the reflection of dipole radiation by a flat surface. It is shown that for the nanoparticle near the substrate the interference effects due to the scattering by the nanoparticle and interaction with the substrate play an essential role. We also demonstrate how these effects depend on the dielectric properties of the nanoparticle, its size, distance to the substrate as well as on the polarization, wavelength and incident angle of the external light field.

  2. Copolymer Synthesis and Characterization by Post-Polymerization Modification

    NASA Astrophysics Data System (ADS)

    Galvin, Casey James

    This PhD thesis examines the physical behavior of surface-grafted polymer assemblies (SGPAs) derived from post-polymerization modification (PPM) reactions in aqueous and vapor enriched environments, and offers an alternative method of creating SGPAs using a PPM approach. SGPAs comprise typically polymer chains grafted covalently to solid substrates. These assemblies show promise in a number of applications and technologies due to the stability imparted by the covalent graft and ability to modify interfacial properties and stability. SGPAs also offer a set of rich physics to explore in fundamental investigations as a result of confining macromolecules to a solid substrate. PPM reactions (also called polymer analogous reactions) apply small molecule organic chemistry reactions to the repeat units of polymer chains in order to generate new chemistries. By applying a PPM strategy to SGPAs, a wide variety of functional groups can be introduced into a small number of well-studied and well-behaved model polymer systems. This approach offers the advantage of holding constant other properties of the SGPA (e.g., molecular weight, MW, and grafting density, sigma) to isolate the effect of chemistry on physical behavior. Using a combination of PPM and fabrication methods that facilitate the formation of SPGAs with position-dependent gradual variation of sigma on flat impenetrable substrate, the influence of polymer chemistry and sigma is examined on the stability of weak polyelectrolyte brushes in aqueous environments at different pH levels. Degrafting of polymer chains in SGPAs exhibits a complex dependence on side chain chemistry, sigma, pH and the charge fraction (alpha) within the brush. Results of these experiments support a proposed mechanism of degrafting, wherein extension of the grafted chains away from the substrate generates tension along the polymer backbone, which activates the grafting chemistry for hydrolysis. The implications of these findings are important in developing technologies that use SGPAs in aqueous environments, and point to a need for potential alternative grafting chemistries. The behavior of SGPAs in vapor environments remains an underexplored phenomenon. By changing systematically the chemistry of SGPAs derived from a parent sample, the influence of side chain functional groups on the swelling of weak and strong polyelectrolyte brushes in the presence of water, methanol and ethanol vapors is explored. The extent of swelling and solvent uptake depends strongly on the chemistry in the polymer side chain and of the solvent. Despite bearing a permanent electrostatic charge in the side chain, the strong polyelectrolyte brushes exhibit no behavior typical of polyelectrolytes in water due to no dissociation of the counterion. Of particular interest is the behavior in humid environments of an SGPA bearing a zwitterionic group in its side chain, which results in exposure of electrostatic charges without counterions. Using substrates bearing the aforementioned sigma gradient of polymeric grafts, evidence of inter- and intramolecular complex formation is presented. Finally, a method of developing SGPAs by polymerizing bulk polymer chains through surface-grafted monomers (SGMs) is described. The SGMs are incorporated onto a solid substrate using the same PPM reaction employed in the degrafting and vapor swelling experiments, highlighting the versatility of PPM. The thickness of these SGPAs is correlated to the bulk polymer chains MW, suggesting this technique can be used in existing industrial bulk polymerization processes.

  3. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.

  4. Incomplete Puzzle

    NASA Technical Reports Server (NTRS)

    2006-01-01

    15 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of a portion of the south polar residual cap of Mars. The large, relatively flat-lying, puzzle-like pieces in this scene are mesas composed largely of solid carbon dioxide.

    Location near: 85.5oS, 76.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  5. Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy

    PubMed Central

    Docheva, Denitsa; Padula, Daniela; Popov, Cvetan; Mutschler, Wolf; Clausen-Schaumann, Hauke; Schieker, Matthias

    2008-01-01

    Abstract Within the bone lie several different cell types, including osteoblasts (OBs) and mesenchymal stem cells (MSCs). The MSCs are ideal targets for regenerative medicine of bone due to their differentiation potential towards OBs. Human MSCs exhibit two distinct morphologies: rapidly self-renewing cells (RS) and flat cells (FC) with very low proliferation rates. Another cell type found in pathological bone conditions is osteosarcoma. In this study, we compared the topographic and morphometric features of RS and FC cells, human OBs and MG63 osteosarcoma cells by atomic force microscopy (AFM). The results demonstrated clear differences: FC and hOB cells showed similar ruffled topography, whereas RS and MG63 cells exhibited smoother surfaces. Furthermore, we investigated how selected substrates influence cell morphometry. We found that RS and MG63 cells were flatter on fibrous substrates such as polystyrene and collagen I, but much more rounded on glass, the smoothest surface. In contrast, cells with large area, namely FC and hOB cells, did not exhibit pronounced changes in flatness with regards to the different substrates. They were, however, remarkably flatter in comparison to RS and MG63 cells. We could explain the differences in flatness by the extent of adhesion. Indeed, FC and hOB cells showed much higher content of focal adhesions. Finally, we used the AFM to determine the cellular Young's modulus. RS, FC and hOB cells showed comparable stiffness on the three different substrates, while MG63 cells demonstrated the unique feature of increased elasticity on collagen I. In summary, our results show, for the first time, a direct comparison between the morphometric and biophysical features of different human cell types derived from normal and pathological bone. Our study manifests the opinion that along with RNA, proteomic and functional research, morphological and biomechanical characterization of cells also reveals novel cell features and interrelationships. PMID:18419596

  6. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qibing

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  7. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate.

    PubMed

    Mahanta, Nilkamal; Gupta, Anshu; Khare, S K

    2008-04-01

    Deoiled Jatropha seed cake was assessed for its suitability as substrate for enzyme production by solid-state fermentation (SSF). Solvent tolerant Pseudomonas aeruginosa PseA strain previously reported by us was used for fermentation. The seed cake supported good bacterial growth and enzyme production (protease, 1818 U/g of substrate and lipase, 625 U/g of substrate) as evident by its chemical composition. Maximum protease and lipase production was observed at 50% substrate moisture, a growth period of 72 and 120 h, and a substrate pH of 6.0 and 7.0, respectively. Enrichment with maltose as carbon source increased protease and lipase production by 6.3- and 1.6-fold, respectively. Nitrogen supplementation with peptone for protease and NaNO(3) for lipase production also enhanced the enzyme yield reaching 11,376 U protease activity and 1084 U lipase activity per gram of Jatropha seed cake. These results demonstrated viable approach for utilization of this huge biomass by solid-state fermentation for the production of industrial enzymes. This offers significant benefit due to low cost and abundant availability of cake during biodiesel production.

  8. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  9. The Mechanical Robustness of Atomic-Layer- and Molecular-Layer-Deposited Coatings on Polymer Substrates

    DTIC Science & Technology

    2009-01-01

    coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch

  10. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates.

  11. Pinning effects from substrate and AFM tip surfaces on interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2017-11-01

    Measurement accuracy of atomic force microscopy (AFM) is vital to understand the mechanism of interfacial nanobubbles. In this study, we report the influence of pinning derived from both substrate and AFM tip surfaces on the measured shape of interfacial nanobubbles in peak force tapping mode. First, we pushed the nanobubbles using the AFM tip with high peak force setpoint. As a result, the deformed nanobubbles kept their flat shape for several tens of minutes. We quantitatively discuss the pinning force from substrate surface, which retains the flat shape enhancing the stability of nanobubbles. Next, we prepared three AFM tips with different wettability and measured the nanobubbles with an identical setpoint. By comparing the force curves obtained during the measurements, it seems that the (middle-)hydrophobic tips penetrated the liquid/gas interface and received repulsive force resulting from positive meniscus formed by pinning at the tip surface. In contrast, hydrophilic tip didn't penetrate the interface and received the force from the deformation of the interface of the nanobubbles. In addition, the measurements using the (middle-)hydrophobic tips led to the underestimation of the nanobubbles profile corresponding to the pinning position at the tip surfaces.

  12. Pentacene on Au(1 1 1), Ag(1 1 1) and Cu(1 1 1): From physisorption to chemisorption.

    PubMed

    Lu, Meng-Chao; Wang, Rong-Bin; Yang, Ao; Duhm, Steffen

    2016-03-09

    We measured the electronic and the molecular surface structure of pentacene deposited on the (1 1 1)-surfaces of coinage metals by means of ultraviolet photoelectron spectroscopy (UPS) and low-energy electron diffraction (LEED). Pentacene is almost flat-lying in monolayers on all three substrates and highly ordered on Au(1 1 1) and on Cu(1 1 1). On Ag(1 1 1), however, weak chemisorption leads to almost disordered monolayers, both, at room temperature and at 78 K. On Cu(1 1 1) pentacene is strongly chemisorbed and the lowest unoccupied molecular orbital becomes observable in UPS by a charge transfer from the substrate. On Ag(1 1 1) and Cu(1 1 1) multilayers adopt a tilted orientation and a high degree of crystallinity. On Au(1 1 1), most likely, also in multilayers the molecular short and long axes are parallel to the substrate, leading to a distinctively different electronic structure than on Ag(1 1 1) and Cu(1 1 1). Overall, it could be demonstrated that the substrate not only determines the geometric and electronic characteristics of molecular monolayer films but also plays a crucial role for multilayer film growth.

  13. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  14. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  15. The Thomas-Fermi model in the theory of systems of charged particles above the surface of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.

    2012-10-01

    A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.

  16. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  17. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    PubMed

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Method of making reflecting film reflector

    DOEpatents

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  19. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Treesearch

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  20. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  1. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  2. Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents

    NASA Technical Reports Server (NTRS)

    Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)

    2001-01-01

    Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.

  3. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    NASA Astrophysics Data System (ADS)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  4. Influence of the liquid crystal behaviour on the Langmuir and Langmuir-Blodgett film supramolecular architecture of an ionic liquid crystal.

    PubMed

    Pérez-Gregorio, Víctor; Giner, Ignacio; López, M Carmen; Gascón, Ignacio; Cavero, Emma; Giménez, Raquel

    2012-06-01

    A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  6. Early Detection Of Failure Mechanisms In Resilient Biostructures: A Network Flow Study

    DTIC Science & Technology

    2017-10-01

    of flat blades of solid cartilage (sawfishes and some sharks) or simple tubes of bone (swordfish, marlin, etc.) and do not vary appreciably in size...cartilage The hard cartilage is formed by two flat sections that are almost parallel to each other and run along the longitudinal axis of the rostrum...rostrum subjected to a uniform pressure: soft cartilage The soft cartilage is located at the center of the rostrum and runs in the longitudinal Z

  7. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate.

    PubMed

    Aydinoğlu, Tuğba; Sargin, Sayit

    2013-02-01

    The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4-1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.

  8. Physical vapor deposition as a route to glasses with liquid crystalline order

    NASA Astrophysics Data System (ADS)

    Gomez, Jaritza

    Physical vapor deposition (PVD) is an effective route to prepare glasses with a unique combination of properties. Substrate temperatures near the glass transition (Tg) and slow deposition rates can access enhanced mobility at the surface of the glass allowing molecules at the surface additional time to sample different molecular configurations. The temperature of the substrate can be used to control molecular mobility during deposition and properties in the resulting glasses such as higher density, kinetic stability and preferential molecular orientation. PVD was used to prepare glasses of itraconazole, a smectic A liquid crystal. We characterized molecular orientation using infrared and ellipsometry. Molecular orientation can be controlled by choice of Tsubstrate in a range of temperatures near Tg. Glasses deposited at Tsubstrate = Tg show nearly vertical molecular orientation relative to the substrate; at lower Tsubstrate, molecules are nearly parallel to the substrate. The molecular orientation depends on the temperature of the substrate during preparation and not on the molecular orientation of the underlying layer. This allows preparing samples of layers with differing orientations. We find these glasses are homogeneous solids without evidence of domain boundaries and are molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. We report the thermal and structural properties of glasses prepared using PVD of a rod-like molecule, posaconazole, which does not show equilibrium liquid crystal phases. These glasses show substantial molecular orientation that can be controlled by choice of Tsubstrate during deposition. Ellipsometry and IR indicate that glasses prepared at Tg - 3 K are highly ordered. At these Tsubstrate, molecules show preferential vertical orientation and orientation is similar to that measured in aligned nematic liquid crystal. Our results are consistent with a recently proposed mechanism where molecular orientation in equilibrium liquids can be trapped in PVD glasses and suggest that the orientation at the free surface of posaconazole is nematic-like. In addition, we show posaconazole glasses show high kinetic stability controlled by Tsubstrate.

  9. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-07-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  10. Identifying suitable substrates for high-quality graphene-based heterostructures

    NASA Astrophysics Data System (ADS)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  11. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, M.C.; Shoemarker, E.L.; Fraioli, A.V.

    1995-07-04

    An electrocatalytic device for sensing gases is described. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte. 41 figs.

  12. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  13. Deformation of an Elastic Substrate Due to a Resting Sessile Droplet

    NASA Astrophysics Data System (ADS)

    Bardall, Aaron; Daniels, Karen; Shearer, Michael

    2017-11-01

    On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates which deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal force. This talk will present a model for the static deformation of the substrate that includes a non-zero tangential contact line force as well as general interfacial energy conditions governing the angle of a two-dimensional droplet. We discuss extensions of this model to non-symmetric droplets and their effect on the static configuration of the droplet/substrate system. NSF #DMS-1517291.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. R. Marshall

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  15. Monascus pigment production by solid-state fermentation with corn cob substrate.

    PubMed

    Velmurugan, Palanivel; Hur, Hyun; Balachandar, Vellingiri; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Lee, Sang-Myung; Chae, Jong-Chan; Shea, Patrick J; Oh, Byung-Taek

    2011-12-01

    Natural pigments are an important alternative to potentially harmful synthetic dyes. We investigated the feasibility of corn cob powder as a substrate for production of pigments by Monascus purpureus KACC 42430 in solid-state fermentation. A pigment yield of 25.42 OD Units/gram of dry fermented substrate was achieved with corn cob powder and optimized process parameters, including 60% (w/w) initial moisture content, incubation at 30°C, inoculation with 4mL of spores/gram of dry substrate, and an incubation period of 7 days. Pigment yield using corn cobs greatly exceeded those of most other agricultural waste substrates. The pigments were stable at acidic pH, high temperatures, and in salt solutions; all important considerations for industrial applications. Our results indicate the viability of corn cob substrate in combination with M. purpureus for industrial applications. Copyright © 2011 The Society for Biotechnology, Japan. All rights reserved.

  16. Zaccaria Lilio and the shape of the earth: A brief response to Allegro's "Flat earth science".

    PubMed

    Nothaft, C Philipp E

    2017-12-01

    This is a response to James J. Allegro's article "The Bottom of the Universe: Flat Earth Science in the Age of Encounter," published in Volume 55, Number 1, of this journal. Against the solid consensus of modern scholars, Allegro contends that the decades around 1500 saw a resurgence of popular and learned doubts about the existence of a southern hemisphere and the concept of a spherical earth more generally. It can be shown that a substantial part of Allegro's argument rests on an erroneous reading of his main textual witness, Zaccaria Lilio's Contra Antipodes (1496), and on a failure adequately to place this source in the context of the cosmographical debate of the late fifteenth and early sixteenth centuries. Once this context is taken into account, the notion that Lilio was a flat-earther falls flat.

  17. Modeling, simulation and optimization of a no-chamber solid oxide fuel cell operated with a flat-flame burner

    NASA Astrophysics Data System (ADS)

    Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.

    A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.

  18. Mathematical model of organic substrate degradation in solid waste windrow composting.

    PubMed

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  19. Interaction of rippled shock wave with flat fast-slow interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  20. Deformation of Surface Nanobubbles Induced by Substrate Hydrophobicity.

    PubMed

    Wei, Jiachen; Zhang, Xianren; Song, Fan

    2016-12-13

    Recent experimental measurements have shown that there exists a population of nanobubbles with different curvature radii, whereas both computer simulations and theoretical analysis indicated that the curvature radii of different nanobubbles should be the same at a given supersaturation. To resolve such inconsistency, we perform molecular dynamics simulations on surface nanobubbles that are stabilized by heterogeneous substrates either in the geometrical heterogeneity model (GHM) or in the chemical heterogeneity model (CHM) and propose that the inconsistency could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected from theory and computer simulation, for either the GHM or the CHM, there exists a universal upper limit of contact angle for the nanobubbles, which is determined by the degree of supersaturation alone. By analyzing the evolution of the shape of nanobubbles as a function of substrate hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of nanobubble deformation are identified. For substrates in the GHM, where the contact line is pinned by surface roughness, variation in the liquid-solid interaction changes only the location of the contact line and the measured contact angle, without causing a change in the nanobubble curvature. For substrates in the CHM, however, the liquid-solid interaction exerted by the bottom substrate can deform the vapor-liquid interface, resulting in variations in both the curvature of the vapor-liquid interface and the contact angle.

  1. Elastic and plastic buckling of simply supported solid-core sandwich plates in compression

    NASA Technical Reports Server (NTRS)

    Seide, Paul; Stowell, Elbridge Z

    1950-01-01

    A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.

  2. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-28

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  3. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber.

    PubMed

    Zhang, Bo-Bo; Xing, Hong-Bo; Jiang, Bing-Jie; Chen, Lei; Xu, Gan-Rong; Jiang, Yun; Zhang, Da-Yong

    2018-03-01

    In this study, various grains such as rice, millet, corn, barley and wheat were used as raw materials for monacolin K production by solid-state fermentation of Monascus ruber. Among these substrates, millet was found to be the best one for monacolin K production, by which the yield reached 7.12 mg/g. For enhanced monacolin K production, the effects of fermentation time, charge amount, initial moisture content and inoculum volume were systematically investigated in the solid-state fermentation of M. ruber. Moreover, complementary carbon source and nitrogen source were added for further improving the production of monacolin K. Results showed that the maximum production of monacolin K (19.81 mg/g) could be obtained at the optimal conditions. Compared with the traditional red mold rice, using millet as substrate is promising for high production of monacolin K in the solid-state fermentation of M. ruber. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subchapter) cargo tank motor vehicles. Bottom outlets are not authorized. Trailer-on-flat-car service is not... conveyances 1. LSA-I No limit. 2. LSA-II and LSA-III; Non-combustible solids No limit. 3. LSA-II and LSA-III; Combustible solids and all liquids and gases 100 A2 4. SCO 100 A2 Table 6—Industrial Package Integrity...

  5. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subchapter) cargo tank motor vehicles. Bottom outlets are not authorized. Trailer-on-flat-car service is not... conveyances 1. LSA-I No limit. 2. LSA-II and LSA-III; Non-combustible solids No limit. 3. LSA-II and LSA-III; Combustible solids and all liquids and gases 100 A2 4. SCO 100 A2 Table 6—Industrial Package Integrity...

  6. Diffractive optical elements on non-flat substrates using electron beam lithography

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)

    2002-01-01

    The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.

  7. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. An experimental investigation of the effect of hydrophobicity on the rate of frost growth in laminar channel flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.M.; Storey, B.D.; Hoke, J.L.

    2000-07-01

    An experimental investigation of the effect of the substrate on frost growth rate is presented. Measurements of frost height as a function of time are presented for a flat, bare, horizontally oriented aluminum substrate and four coated substrates, two hydrophilic and two hydrophobic. The average frost growth rate on the hydrophilic coated aluminum substrate is 13% higher than the control substrate, while the frost growth rate on the hydrophilic kapton substrate is 4% higher. Frost grows on the hydrophobic substrates at a rate 19% and 3% lower than the reference substrate for the polytetrafluoroethylene (PTFE) coated steel and PTFE tape,more » respectively. Differences in the receding and advancing contact angles for these substrates do not fully explain the difference in growth rates. Differences in initial water deposition, freezing, and frost growth on hydrophilic and hydrophobic substrates are examined using confocal microscopy. On the basis of the microscopic observations, the authors hypothesize that the water coverage on the substrate before and after freezing can affect the thermal resistance of the mature frost layer. Differences in thermal resistance, in turn, affect the growth rate.« less

  9. Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Zhouling

    2013-07-01

    Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.

  10. Structural properties of atactic polystyrene adsorbed onto solid surfaces.

    PubMed

    Tatek, Yergou B; Tsige, Mesfin

    2011-11-07

    In the present work, we are studying the local conformation of chains in a thin film of polystyrene adsorbed on a solid substrate by using atomistically detailed simulations. The simulations are carried out by using the readily available and massively parallel molecular dynamics code known as LAMMPS. In particular, a special emphasis is given to the density and orientation of side chains (which consist of phenyl groups and methylene units) at solid/polymer and polymer/vacuum interfaces. Three types of substrates were used in our study: α-quartz, graphite, and amorphous silica. Our investigation was restricted to atactic polystyrene. Our results show that the density and structural properties of side chains depend on the type of surface. An excess of phenyl rings is observed near the α-quartz substrate while the film adsorbed on graphite is depleted in C(6)H(5). Moreover, the orientation of the rings and methylene units on the substrate/film interface show a strong dependence on the type of the substrate, while the rings at the film/vacuum interface show a marked tendency to point outward, away from the film. The results we obtained are in a large part in good agreement with previous experimental and simulation results.

  11. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-04

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.

  12. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  13. The influence of the surrounding gas on drop impact onto a wet substrate

    NASA Astrophysics Data System (ADS)

    Deegan, Robert; Zhang, Li; Toole, Jameson

    2011-11-01

    The impact of a droplet with a wet or solid substrate creates a spray of secondary droplets. The effect of the surrounding gas on this process was widely neglected prior to the work of Xu, Zhang, & Nagel which showed that lowering the gas pressure suppresses splashing for impact with a dry solid substrate. Here we present the results of our experimental investigation of the effect of the surrounding gas on the evolution of splashes from a wet substrate. We varied the density and pressure of the surrounding gas. We find quantitative changes to the onset thresholds of splashing and on the size distribution of, but no qualitative changes. The effects are most pronounced on the evolution of the ejecta sheet.

  14. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  15. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  16. Debonding Stress Concentrations in a Pressurized Lobed Sandwich-Walled Generic Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2004-01-01

    A finite-element stress analysis has been conducted on a lobed composite sandwich tank subjected to internal pressure and cryogenic cooling. The lobed geometry consists of two obtuse circular walls joined together with a common flat wall. Under internal pressure and cryogenic cooling, this type of lobed tank wall will experience open-mode (a process in which the honeycomb is stretched in the depth direction) and shear stress concentrations at the junctures where curved wall changes into flat wall (known as a curve-flat juncture). Open-mode and shear stress concentrations occur in the honeycomb core at the curve-flat junctures and could cause debonding failure. The levels of contributions from internal pressure and temperature loading to the open-mode and shear debonding failure are compared. The lobed fuel tank with honeycomb sandwich walls has been found to be a structurally unsound geometry because of very low debonding failure strengths. The debonding failure problem could be eliminated if the honeycomb core at the curve-flat juncture is replaced with a solid core.

  17. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

  18. The resistance of Bacillus atrophaeus spores to the bactericidal activity of peracetic acid is influenced by both the nature of the solid substrates and the mode of contamination.

    PubMed

    Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M

    2010-11-01

    To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus -selected as surrogates of Bacillus anthracis- to a disinfectant, peracetic acid. Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to French government works.

  19. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction.

    PubMed

    Aichinger, Peter; Wadhawan, Tanush; Kuprian, Martin; Higgins, Matthew; Ebner, Christian; Fimml, Christian; Murthy, Sudhir; Wett, Bernhard

    2015-12-15

    Making good use of existing water infrastructure by adding organic wastes to anaerobic digesters improves the energy balance of a wastewater treatment plant (WWTP) substantially. This paper explores co-digestion load limits targeting a good trade-off for boosting methane production, and limiting process-drawbacks on nitrogen-return loads, cake-production, solids-viscosity and polymer demand. Bio-methane potential tests using whey as a model co-substrate showed diversification and intensification of the anaerobic digestion process resulting in a synergistical enhancement in sewage sludge methanization. Full-scale case-studies demonstrate organic co-substrate addition of up to 94% of the organic sludge load resulted in tripling of the biogas production. At organic co-substrate addition of up to 25% no significant increase in cake production and only a minor increase in ammonia release of ca. 20% have been observed. Similar impacts were measured at a high-solids digester pilot with up-stream thermal hydrolyses where the organic loading rate was increased by 25% using co-substrate. Dynamic simulations were used to validate the synergistic impact of co-substrate addition on sludge methanization, and an increase in hydrolysis rate from 1.5 d(-1) to 2.5 d(-1) was identified for simulating measured gas production rate. This study demonstrates co-digestion for maximizing synergy as a step towards energy efficiency and ultimately towards carbon neutrality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Glass for Solid State Devices

    NASA Technical Reports Server (NTRS)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  1. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    NASA Astrophysics Data System (ADS)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  2. Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate

    NASA Astrophysics Data System (ADS)

    Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi

    2018-04-01

    One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.

  3. Enhancement of white light OLED efficiency by combining both internal and external light extraction structures

    NASA Astrophysics Data System (ADS)

    Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng

    2012-09-01

    We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.

  4. Significance of nearshore trace-fossil assemblages of the cambro-ordovician deadwood formation and Aladdin Sandstone, South Dakota

    USGS Publications Warehouse

    Stanley, T.M.; Feldmann, R.M.

    1998-01-01

    The Cambro-Ordovician Deadwood Formation and Aladdin Sandstone represent intertidal and subtidal, nearshore deposystems that contain few well-preserved body fossils, but contain abundant trace fossils. The present study uses the much neglected trace-fossil fauna to describe the diverse paleoenvironments represented in the Deadwood-Aladdin deposystems, and to better understand the environmental conditions that controlled benthic life in the Early Paleozoic. The Deadwood-Aladdin ichnotaxa can be separated into three distinct assemblages based on the changing sedimentologic and hydrodynamic conditions that existed across the Cambro-Ordovician shelf. Trace-fossil assemblages and corresponding lithofacies characteristics indicate that the Deadwood-Aladdin deposystems formed within an intertidal-flat and subtidal-shelf environment. Based on the distribution and numbers of preserved ichnotaxa, the intertidal flat can be subdivided further into an ecologically stressful inner sand-flat environment, and a more normal marine outer sand-flat environment, both of which belong to a mixed, Skolithos-Cruziana softground ichnofacies. The inner sand flat is characterized by low diversity, low numbers, and a general lack of complexly constructed ichnotaxa. Trace fossils common to both assemblages tend to be smaller in the inner flat compared to the outer sand flat. Taphonomic effects, such as substrate type and sediment heterogeneity, also aid in differentiating between the inner and outer sand-flat assemblages. The subtidal shelf environment is categorized in the Cruziana Ichnofacies. Ichnological evidence of periodic tempestite deposition and hardground development within this subtidal regime is manifested by high diversity and low abundance of ichnogenera.

  5. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  6. Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors.

    PubMed

    Pillai, Suresh Kumar Raman; Wang, Jing; Wang, Yilei; Sk, Md Moniruzzaman; Prakoso, Ari Bimo; Rusli; Chan-Park, Mary B

    2016-12-08

    There is a great need for viable alternatives to today's transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the RMS roughness of the top surface of the film is 3 nm. Addition of SWCNTs networks make the film resistance uniform; without SWCNTs, sheet resistance of the surface composed of just AgNWs in resin varies from 20 Ω/sq to 10 7  Ω/sq. With addition of SWCNTs embedded in the resin, sheet resistance of the hybrid film is 29 ± 5 Ω/sq and uniform across the 47 mm diameter film discs; further, the optimized film has 85% transparency. Our lamination-transfer UV process doesn't need solvent for sacrificial substrate removal and leads to good mechanical interlocking of the nano-material networks. Additionally, electrochemical study of the film for supercapacitors application showed an impressive 10 times higher current in cyclic voltammograms compared to the control without SWCNTs. Our fabrication method is simple, cost effective and enables the large-scale fabrication of flat and flexible transparent conductive films.

  7. Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors

    NASA Astrophysics Data System (ADS)

    Pillai, Suresh Kumar Raman; Wang, Jing; Wang, Yilei; Sk, Md Moniruzzaman; Prakoso, Ari Bimo; Rusli; Chan-Park, Mary B.

    2016-12-01

    There is a great need for viable alternatives to today’s transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the RMS roughness of the top surface of the film is 3 nm. Addition of SWCNTs networks make the film resistance uniform; without SWCNTs, sheet resistance of the surface composed of just AgNWs in resin varies from 20 Ω/sq to 107 Ω/sq. With addition of SWCNTs embedded in the resin, sheet resistance of the hybrid film is 29 ± 5 Ω/sq and uniform across the 47 mm diameter film discs; further, the optimized film has 85% transparency. Our lamination-transfer UV process doesn’t need solvent for sacrificial substrate removal and leads to good mechanical interlocking of the nano-material networks. Additionally, electrochemical study of the film for supercapacitors application showed an impressive 10 times higher current in cyclic voltammograms compared to the control without SWCNTs. Our fabrication method is simple, cost effective and enables the large-scale fabrication of flat and flexible transparent conductive films.

  8. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE PAGES

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...

    2017-09-12

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  9. Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors

    PubMed Central

    Pillai, Suresh Kumar Raman; Wang, Jing; Wang, Yilei; Sk, Md Moniruzzaman; Prakoso, Ari Bimo; Rusli; Chan-Park, Mary B.

    2016-01-01

    There is a great need for viable alternatives to today’s transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the RMS roughness of the top surface of the film is 3 nm. Addition of SWCNTs networks make the film resistance uniform; without SWCNTs, sheet resistance of the surface composed of just AgNWs in resin varies from 20 Ω/sq to 107 Ω/sq. With addition of SWCNTs embedded in the resin, sheet resistance of the hybrid film is 29 ± 5 Ω/sq and uniform across the 47 mm diameter film discs; further, the optimized film has 85% transparency. Our lamination-transfer UV process doesn’t need solvent for sacrificial substrate removal and leads to good mechanical interlocking of the nano-material networks. Additionally, electrochemical study of the film for supercapacitors application showed an impressive 10 times higher current in cyclic voltammograms compared to the control without SWCNTs. Our fabrication method is simple, cost effective and enables the large-scale fabrication of flat and flexible transparent conductive films. PMID:27929125

  10. The Habitat of Yellow Mouth Turban Turbo Chrysostomus, Linnaeus, 1758

    NASA Astrophysics Data System (ADS)

    Soekendarsi, E.

    2018-03-01

    In general, yellow mouth turban snail Turbo chrysostomus L. 1758 was found in intertidal and coral reef area. This animal is active at night (nocturnal) and settles the coral reef-flats area to do its activity as substrate. In doing its activity, yellow mouth turban snail can be found in the depth of 50 cm until 4 m of tidal area. The adult yellow mouth turban snails are found in great number at intertidal area’s border and at coastal area of coral reef-flats. Methodology that was used in this study is visual analysis (descriptive method), and divided into two parameters which were observed, i.e. abiotic and biotic. Abiotic components that were measured are; Oxygen (ppm), pH, Water Temperature (°C), Salinity (ppm), Ammonia (mg/L), Nitrate (mg/L), Nitrite (mg/L), and Calsium Carbonat (mg/L).Whereas, biotic components that were measured are; substrates, seaweeds, other organisms, and epilithon. The observation’s result of yellow mouth turban snail’s environmental condition showed: abiotic condition of the waters consists of oxygen 3-5 ppm, seawater pH 7-8, seawater temperature 23-26°C, and the salinity of 32-33 ppm. The Habitat of yellow mouth turban snail settled the reef-flats area that is overgrown covered by seaweed Sargassum sp. as the place to do its activity.

  11. Do Penaeid Shrimps have a Preference for Mangrove Habitats? Distribution Pattern Analysis on Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Rönnbäck, P.; Macia, A.; Almqvist, G.; Schultz, L.; Troell, M.

    2002-09-01

    Scientific information on how penaeid shrimps are distributed within mangrove ecosystems is scarce, which presents an obstacle for fisheries as well as mangrove management. This study investigated the prime nursery microhabitats for the two major commercial species in Mozambique-Penaeus indicus and Metapenaeus monoceros. Stake net enclosures were used to sample shrimps living among unvegetated shallows and mangroves at Inhaca Island, Mozambique, during three consecutive spring tide periods. Four microhabitats were sampled: (1) sand flat; (2) fringe Avicennia marina on sandy substrate; (3) fringe A. marina on muddy substrate; and (4) interior A. marina adjacent to the supratidal terrestrial margin. P. indicus had a significant preference for fringe mangroves over the adjacent sand flat (P<0·001 and P=0·05). Postlarval shrimps only occupied the sand flat, whereas the mangrove was utilized by postlarval, juvenile and sub-adult life stages. Within the fringe mangrove, there was no correlation between shrimp abundance and organic content of sediment (5·7-11·6 shrimps m-2). Shrimps utilized the most interior margin of the mangroves (0·35 shrimps m-2), although catch rates were significantly lower than in the mangrove fringe (P<0·001). M. monoceros was significantly (P<0·01), more abundant in the sand flat (0·44-2·1 shrimps m-2) than in the mangrove fringe (0·04-0·61 shrimps m-2), although this habitat preference was not evident for juvenile and sub-adult life stages. The results demonstrate the extensive use of mangrove habitats by penaeid shrimps. The confinement to mangroves for P. indicus, but not for M. monoceros, is discussed in the context of habitat characteristics and predation avoidance behaviour. Methodological considerations of the stake net technique are also outlined.

  12. Ultrafast Thermal Plasma Preparation of Solid Si Films with Potential Application in Photovoltaic Cells: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Mostajeran Goortani, Behnam; Gitzhofer, François; Bouyer, Etienne; Mousavi, Mehdi

    2009-03-01

    An innovative method, namely ultrafast plasma surface melting, is developed to fabricate solid films of silicon with very high rates (150 cm2/min). The method is composed of preparing a suspension of solid particles in a volatile solvent and spreading it on a refractory substrate such as Mo. After solvent evaporation, the resulting porous layer is exposed to the flame tale of inductively coupled RF plasma to sinter and melt the surface particles and to prepare a solid film of silicon. It is shown that by controlling the flow dynamics and heat transfer around the substrate, and managing the kinetic parameters (i.e., exposure time, substrate transport speed, and reaction kinetics) in the reactor, we can produce solid crystalline Si films with the potential applications in photovoltaic cells industry. The results indicate that the optimum formation conditions with a film thickness of 250-700 μm is when the exposure time in the plasma is in the range of 5-12.5 s for a 100 × 50 mm large layer. By combining the Fourier’s law of conduction with the experimental measurements, we obtained an effective heat diffusivity and developed a model to obtain heat diffusion in the porous layer exposed to the plasma. The model further predicts the minimum and maximum exposure time for the substrate in the plasma flame as a function of material properties, the porous layer thickness and of the imposed heat flux.

  13. Production of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (higher Basidiomycetes), biomass and polysaccharides by solid state cultivation.

    PubMed

    Berovic, Marin; Habijanic, Jozica; Boh, Bojana; Wraber, Branka; Petravic-Tominac, Vlatka

    2012-01-01

    Solid state cultivation of Ganoderma lucidum biomass, strain BFWS Gal 4, originally isolated from the Slovenian forest, was studied in a horizontal stirred tank reactor. Periodic mixing of N = 80 rpm, 2 min/day was used. Production of fungal polysaccharides and fungal biomass on solid substrate based on beech sawdust, olive oil, and mineral salts was studied. Optimal moisture of the solid matrix was in the range of 80% to 74%. When the moisture content dropped below 57%, the growth of the mycelium and polysaccharide production stopped, but it revived when wet air was applied in further processing. Final concentration of biomass was 0.68 mg/g of solid substrate, while proportions of extracellular and intracellular polysaccharides were 4.5 mg/g and 1.05 mg/g, respectively.

  14. Does CT evidence of a flat inferior vena cava indicate hypovolemia in blunt trauma patients with solid organ injuries?

    PubMed

    Liao, Yu-Ying; Lin, Hung-Jung; Lu, Yu-Hui; Foo, Ning-Ping; Guo, How-Ran; Chen, Kuo-Tai

    2011-06-01

    Nonoperative management for selective patients with solid organ injuries from blunt trauma has gained wide acceptance. However, for trauma surgeons, it is often difficult to estimate a patient's circulatory volume. Some authors have proposed that the presence of a collapsed inferior vena cava (IVC) on computed tomography (CT) scan correlates with inadequate circulatory volume. Our aim was to verify whether CT evidence of a flat IVC (FI) is an indicator of hypovolemia in blunt trauma patients with solid organ injuries. We conducted a retrospective chart review of all blunt trauma patients with solid organ injuries admitted to our Medical Center from July 2003 to September 2006. Of the 226 patients reviewed, 29 had CT evidence of FI. We compared Injury Severity Scores, hemodynamic parameters, fluid and blood transfusion requirements, mortality rate, and hospital course between patients with (FI group) and without FI (non-FI [NFI] group). The FI group had higher rates of intensive care unit admission and mortality, in addition to longer intensive care unit stays, when compared with the NFI group. In addition, the patients in the FI group needed larger amounts of fluid and blood transfusions and presented lower hemoglobin levels during the first week of admission; furthermore, the majority deteriorated to a state of shock in the emergency department. CT evidence of FI is a good indicator of hypovolemia and an accurate predictor for prognosis in trauma patients with blunt solid organ injuries.

  15. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  16. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  17. Improving freight fire safety : modifying droplet behavior to minimize ignition.

    DOT National Transportation Integrated Search

    2014-03-01

    ydrocarbon drops impacting on a flat solid surface were computationally studied to identify the key issues : in the : dynamics of drop spreading. The experimental data available for diesel, methanol : , : and glycerin were used : , : and a general : ...

  18. Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture

    NASA Astrophysics Data System (ADS)

    van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.

    2017-11-01

    The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.

  19. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    PubMed

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.

  20. Voltage- and temperature- controlled LC:PDMS waveguide channels

    NASA Astrophysics Data System (ADS)

    Rutkowska, Katarzyna A.; Asquini, Rita; d'Alessandro, Antonio

    2017-08-01

    In this paper, we present our studies on electrical and thermal tuning of light propagation in waveguide channels, made for the scope from a polydimethylsiloxane (PDMS) substrate infiltrated with nematic liquid crystal (LC). We demonstrated, via numerical simulations, the changes of the waveguide optical parameters when solicited by temperature changes or electric fields. Moreover, the paper goes through the fabrication process of a waveguide channel sample and its characterization, as well as some preliminary experimental trials of sputtering indium tin oxide (ITO) and chromium layers on PDMS substrate to obtain flat electrodes.

  1. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  2. Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs

    NASA Technical Reports Server (NTRS)

    Grunthaner, Paula; Elliott, Stythe; Jones, Todd; Nikzad, Shouleh

    2004-01-01

    An improved process that includes a high-temperature bonding subprocess has been developed to enable the fabrication of robust, flat, silicon-based charge-coupled devices (CCDs) for imaging in ultraviolet (UV) light and/or for detecting low-energy charged particles. The CCDs in question are devices on which CCD circuitry has already been formed and have been thinned for backsurface illumination. These CCDs may be delta doped, and aspects of this type of CCD have been described in several prior articles in NASA Tech Briefs. Unlike prior low-temperature bonding subprocesses based on the use of epoxies or waxes, the high-temperature bonding subprocess is compatible with the deltadoping process as well as with other CCD-fabrication processes. The present improved process and its bonding, thinning, and delta-doping subprocesses, are characterized as postfabrication processes because they are undertaken after the fabrication of CCD circuitry on the front side of a full-thickness silicon substrate. In a typical case, it is necessary to reduce the thickness of the CCD to between 10 and 20 m in order to take advantage of back-side illumination and in order to perform delta doping and/or other back-side treatment to enhance the quantum efficiency. In the prior approach to the fabrication of back-side-illuminated CCDs, the thinning subprocess turned each CCD into a free-standing membrane that was fragile and tended to become wrinkled. In the present improved process, prior to thinning and delta doping, a CCD is bonded on its front side to a silicon substrate that has been prefabricated to include cutouts to accommodate subsequent electrical connections to bonding pads on the CCD circuitry. The substrate provides structural support to increase ruggedness and maintain flatness. At the beginning of this process, the back side of a CCD as fabricated on a full-thickness substrate is polished. Silicon nitride is deposited on the back side, opposite the bonding pads on the front side, in order to define a relatively thick frame. The portion of the CCD not covered by the frame is the portion to be thinned by etching.

  3. Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.

    PubMed

    Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand

    2017-05-01

    Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.

  4. Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.

    1986-01-01

    Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.

  5. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate.

    PubMed

    Zhu, Zhen; Zhang, Guoyi; Luo, Yi; Ran, Wei; Shen, Qirong

    2012-05-01

    This work was aimed to produce lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using agro-industrial byproducts. A central composite design was used to get the highest lipopeptides production. Results revealed that the optimal conditions for maximum lipopeptides production were 1.79% starch and 1.91% yeast extract by employing 5.58 g soybean flour and 3.67 g rice straw as the solid substrate with initial pH 7.5, moisture content 55% and a 10% inoculum level at 30°C for 2 days. Under these conditions, the experimental yield of lipopeptides reached 50.01 mg/gds, which was very close to the predicted value (49.91 mg/gds). At high concentration, the lipopeptides extracted from fermented substrates showed strong antibiotic activity against Rhizoctonia solani and Ralstonia solanacearum and certain emulsification but good emulsion stability. This is the first report on lipopeptides production that uses rice straw as a major substrate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Systems and methods for the combinatorial synthesis of novel materials

    DOEpatents

    Wu, Xin Di; Wang, Youqi; Goldwasser, Isy

    2000-01-01

    Methods and apparatus for the preparation of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by depositing components of target materials to predefined regions on the substrate, and, in some embodiments, simultaneously reacting the components to form at least two resulting materials. In particular, the present invention provides novel masking systems and methods for applying components of target materials onto a substrate in a combinatorial fashion, thus creating arrays of resulting materials that differ slightly in composition, stoichiometry, and/or thickness. Using the novel masking systems of the present invention, components can be delivered to each site in a uniform distribution, or in a gradient of stoichiometries, thicknesses, compositions, etc. Resulting materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. Once prepared, these resulting materials can be screened sequentially, or in parallel, for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical and other properties.

  7. Liquid drops attract or repel by the inverted Cheerios effect.

    PubMed

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  8. Selective growth of Ge nanowires by low-temperature thermal evaporation.

    PubMed

    Sutter, Eli; Ozturk, Birol; Sutter, Peter

    2008-10-29

    High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.

  9. Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C. Y.; Torfi, A.; Pei, C.

    2016-05-09

    In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientationmore » presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.« less

  10. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates.

    PubMed

    Li, Song-Lin; Miyazaki, Hisao; Song, Haisheng; Kuramochi, Hiromi; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2012-08-28

    We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.

  11. Analysis of heat and mass transfer during condensation over a porous substrate.

    PubMed

    Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L

    2006-09-01

    Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.

  12. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude [Livermore, CA; Folta, James Allen [Livermore, CA; Tan, Swie-In [San Jose, CA; Reiss, Ira [New City, NY

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  13. Three-dimensional flat shell-to-shell coupling: numerical challenges

    NASA Astrophysics Data System (ADS)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  14. Automatic paper sliceform design from 3D solid models.

    PubMed

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  15. Interaction of Substrate Mechanics with Dental Pulp Stem Cells (DPSCs) differentiation to generate a scaffold for Bone regeneration

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam; Bhatnagar, Divya; Bherwani, Aneel; Simon, Marcia

    2012-02-01

    This work investigates the interaction of the substrate mechanics with the differentiation in the absence of chemical induction and only resulting from the stimuli of the substrate mechanics and chemistry. We chose enzymatically cross-linked gelatin hydrogels substrates of different stiffness varying from 8KPa to 100Pa. DPSCs were cultured and differentiated on the substrates for 7, 14 and 21 days with and without dexamethasone induction media. SEM and EDX analysis after 21 days indicate that cells produced a sheet of biomineralized deposits, several tenths of mm thick on the hard substrate irrespective of chemical induction. Modulli of the cells was independent of the induction and stiffness of the hydrogels. RT-PCR assays indicated that cells expressed more osteocalcin when cultured in non-induction media and harder substrate. The shape of the deposits was more uniform and in close packing on the harder substrate with a higher Ca:P ratio. On soft substrate the deposits were more flat with less Ca:P ratio. Further experiments indicated that conformational change due to the crosslinking of gelatin could be the reason for biomineralization.

  16. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates

    PubMed Central

    Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki

    2017-01-01

    We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests. PMID:28436426

  17. Enhancement of thermoelectric characteristics in AlGaN/GaN films deposited on inverted pyramidal Si surfaces

    NASA Astrophysics Data System (ADS)

    Yalamarthy, Ananth Saran; So, Hongyun; Senesky, Debbie G.

    2017-07-01

    In this letter, we demonstrate an engineering strategy to boost thermoelectric power factor via geometry-induced properties of the pyramid structure. Aluminum gallium nitride (AlGaN)/GaN heterostructured films grown on inverted pyramidal silicon (Si) demonstrate higher power factor as compared to those grown on conventional flat Si substrates. We found that the magnitude of the Seebeck coefficient at room temperature increased from approximately 297 μVK-1 for the flat film to approximately 849 μVK-1 for the film on inverted pyramidal Si. In addition, the "effective" electrical conductivity of the AlGaN/GaN on the inverted pyramidal structure increased compared to the flat structure, generating an enhancement of thermoelectric power factor. The results demonstrate how manipulation of geometry can be used to achieve better thermoelectric characteristics in a manner that could be scaled to a variety of different material platforms.

  18. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    PubMed Central

    Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia

    2010-01-01

    We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621

  19. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  20. Extendable nickel complex tapes that reach NIR absorptions.

    PubMed

    Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier

    2014-12-14

    Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.

  1. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  2. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  3. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  4. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  5. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  6. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  7. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  8. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  9. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  10. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  11. Comment on "Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction" [Water Research 87, 416-423].

    PubMed

    Insam, Heribert; Markt, Rudolf

    2016-05-15

    Co-digestion of organic waste and sewage sludge enhances biogas production and reduces the mass of remaining solids. This phenomenon of enhanced organic matter decomposition by adding labile substrate is known from other habitats like soils and sediments where it is called priming effect. It is thus suggested to adopt the term priming effect also in environmental biotechnology, and in particular for biomethanisation of wastewater sludges by the addition of energy-rich co-substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impact of a compound droplet on a flat surface: A model for single cell epitaxy.

    PubMed

    Tasoglu, Savas; Kaynak, Gozde; Szeri, Andrew J; Demirci, Utkan; Muradoglu, Metin

    2010-08-01

    The impact and spreading of a compound viscous droplet on a flat surface are studied computationally using a front-tracking method as a model for the single cell epitaxy. This is a technology developed to create two-dimensional and three-dimensional tissue constructs cell by cell by printing cell-encapsulating droplets precisely on a substrate using an existing ink-jet printing method. The success of cell printing mainly depends on the cell viability during the printing process, which requires a deeper understanding of the impact dynamics of encapsulated cells onto a solid surface. The present study is a first step in developing a model for deposition of cell-encapsulating droplets. The inner droplet representing the cell, the encapsulating droplet, and the ambient fluid are all assumed to be Newtonian. Simulations are performed for a range of dimensionless parameters to probe the deformation and rate of deformation of the encapsulated cell, which are both hypothesized to be related to cell damage. The deformation of the inner droplet consistently increases: as the Reynolds number increases; as the diameter ratio of the encapsulating droplet to the cell decreases; as the ratio of surface tensions of the air-solution interface to the solution-cell interface increases; as the viscosity ratio of the cell to encapsulating droplet decreases; or as the equilibrium contact angle decreases. It is observed that maximum deformation for a range of Weber numbers has (at least) one local minimum at We=2. Thereafter, the effects of cell deformation on viability are estimated by employing a correlation based on the experimental data of compression of cells between parallel plates. These results provide insight into achieving optimal parameter ranges for maximal cell viability during cell printing.

  13. An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarikaya, A.; Ladisch, M.R.

    1997-01-01

    Inedible plant material, generated in a Controlled Ecological Life Support System (CELSS), should be recycled preferably by bioregenerative methods that utilize enzymes or micro-organisms. This material consists of hemicellulose, cellulose, and lignin with the lignin fraction representing a recalcitrant component that is not readily treated by enzymatic methods. Consequently, the white-rot fungus, Pleurotus ostreatus, is attractive since it effectively degrades lignin and produces edible mushrooms. This work describes an unstructured model for the growth of P. ostreatus in a solid-state fermentation system using lignocellulosic plant materials from Brassica napus (rapeseed) as a substrate at three different particle sizes. A logisticmore » function model based on area was found to fit the surface growth of the mycelium on the solid substrate with respect to time, whereas a model based on diameter, alone, did not fit the data as well. The difference between the two measures of growth was also evident for mycelial growth in a bioreactor designed to facilitate a slow flowrate of air through the 1.5 cm thick mat of lignocellulosic biomass particles. The result is consistent with the concept of competition of the mycelium for the substrate that surrounds it, rather than just substrate that is immediately available to single cells. This approach provides a quantitative measure of P. ostreatus growth on lignocellulosic biomass in a solid-state fermentation system. The experimental data show that the best growth is obtained for the largest particles (1 cm) of the lignocellulosic substrate. 13 refs., 6 figs., 2 tabs.« less

  14. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei.

    PubMed

    Nagavalli, M; Ponamgi, S P D; Girijashankar, V; Venkateswar Rao, L

    2015-01-01

    Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production. © 2014 The Society for Applied Microbiology.

  15. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Solid-state fermentation for cellulase production by Pestalotiopsis versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, M.N.A.; Mithal, B.M.; Thakkur, R.N.

    1983-03-01

    Solid-state fermentation (SSF) refers to the fermentation process on solid substrate without the presence of free liquid. It is found to be ideal when the organism is a fungus and the substrate is insoluble, like cellulose. Production of cellulase by SSF has been studied in detail by Toyama and Ogawa. It has been found that more concentrated enzyme preparations can be obtained by SSF than in liquid type since the enzyme gets diluted in the whole medium in liquid culture. In the present study, a plant pathogenic fungus Pestalotiopsis versicolor has been grown on various solid cultures of cellulosic substancesmore » and production of cellulase has been studied. Earlier, we had studied the production of cellulase by P. versicolor in liquid culture. (Refs. 7).« less

  17. Enzyme activities and substrate degradation during white rot fungi growth on sugar-cane straw in a solid state fermentation.

    PubMed

    Ortega, G M; Martinez, E O; González, P C; Betancourt, D; Otero, M A

    1993-03-01

    Two strains of Pleurotus spp., grown in solid state fermentation on sugar-cane straw, degraded the dry matter by 50% after 60 days. The rate of substrate consumption and the dry weight of fruiting bodies decreased in consecutive flushings. Both strains vigorously attacked hemicellulose (80% of total degradation) and lignin (70%). Fruiting bodies were rich in protein and lipids, and had a low content of carbohydrates and ash.

  18. The electrochemical fluorination of polymeric materials for high energy density aqueous and non-aqueous battery and fuel cell separators

    NASA Technical Reports Server (NTRS)

    Liu, C. C.

    1983-01-01

    A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.

  19. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    PubMed

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  20. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.

    PubMed

    Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil

    2017-03-01

    Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.

  1. Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent.

    PubMed

    Herrera, Marvin Ustaris; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki

    2013-12-01

    The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Determination of Etch Rate Behavior of 4H-SiC Using Chlorine Trifluoride Gas

    NASA Astrophysics Data System (ADS)

    Miura, Yutaka; Habuka, Hitoshi; Katsumi, Yusuke; Oda, Satoko; Fukai, Yasushi; Fukae, Katsuya; Kato, Tomohisa; Okumura, Hajime; Arai, Kazuo

    2007-12-01

    The etch rate of single-crystalline 4H-SiC is studied using chlorine trifluoride gas at 673-973 K and atmospheric pressure in a cold wall horizontal reactor. The 4H-SiC etch rate can be higher than 10 μm/min at substrate temperatures higher than 723 K. The etch rate increases with the chlorine trifluoride gas flow rate. The etch rate is calculated by taking into account the transport phenomena in the reactor including the chemical reaction at the substrate surface. The flat etch rate at the higher substrate temperatures is caused mainly by the relationship between the transport rate and the surface chemical reaction rate of chlorine trifluoride gas.

  3. Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Hua; Hou, Chia-Hung; Tseng, Shao-Ze; Chen, Tsing-Jen; Chien, Hung-Ta; Hsiao, Fu-Li; Lee, Chien-Chieh; Tsai, Yen-Ling; Chen, Chii-Chang

    2009-07-01

    This letter describes the improved output power of GaN-based light-emitting diodes (LEDs) formed on a nanopatterned sapphire substrate (NPSS) prepared through etching with a self-assembled monolayer of 750-nm-diameter SiO2 nanospheres used as the mask. The output power of NPSS LEDs was 76% greater than that of LEDs on a flat sapphire substrate. Three-dimensional finite-difference time-domain calculation predicted a 40% enhancement in light extraction efficiency of NPSS LEDs. In addition, the reduction of full widths at half maximum in the ω-scan rocking curves for the (0 0 2) and (1 0 2) planes of GaN on NPSS suggested improved crystal quality.

  4. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  5. The Place for Thermoplastic Composites in Structural Components

    DTIC Science & Technology

    1987-12-01

    The molten tube is then squashed flat and consolidated into ribbon form by continuous opposed-belt laminating. Existing graphite-epoxy pultrusion...the solid form it must have a molecular weight that exceeds the critical entanglement value. Thus thermoplastic materials of commercial worth almost

  6. Thermodynamic and kinetic anisotropies in octane thin films.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent structure calculations, and observe no noticeable difference between the free surface and the bulk in efficiently exploring the potential energy landscape. This is unlike the films of model atomic glass formers that tend to sample their respective landscape more efficiently at free surfaces. We discuss the implications of this finding to the ability of octane-and other n-alkanes-to form ultrastable glasses.

  7. Drop dynamics on a thin film: Thin film rupture

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Kim, Pilnam; Stone, Howard A.

    2011-11-01

    The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.

  8. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater.

    PubMed

    Park, Younghyun; Park, Seonghwan; Nguyen, Van Khanh; Kim, Jung Rae; Kim, Hong Suck; Kim, Byung Goon; Yu, Jaecheul; Lee, Taeho

    2017-02-01

    In order to confirm the effects of the low conductivity and biodegradability of wastewater, flat-panel air-cathode microbial fuel cells (FA-MFCs) were operated by supplying substrates with different volume ratios of domestic wastewater mixed with an artificial medium: the artificial medium only, 25% wastewater, 50% wastewater, 75% wastewater, 100% of wastewater with 500mg-COD/L by adding acetate, and raw domestic wastewater (230mg-COD/L). With the increase of wastewater ratio, the maximum power density and organic removal efficiency decreased from 187 to 60W/m 3 and 51.5 to 37.4%, respectively, but the Coulombic efficiency was maintained in the range of 18.0-18.9%. The FA-MFCs could maintain their low internal resistances and overcome the decreasing conductivity. The acetate concentration was more important than the total organics for power production. This study suggests that the FA-MFC configuration has great applicability for practical applications when supplied by domestic wastewater with low conductivity and biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays.

    PubMed

    Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao

    2014-07-21

    Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.

  10. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Knoll, A. H.

    1996-01-01

    Silicified carbonates of the late Mesoproterozoic to early Neoproterozoic Society Cliffs Formation, Baffin Island, contain distinctive microfabrics and microbenthic assemblages whose paleo-environmental distribution within the formation parallels the distribution of these elements through Proterozoic time. In the Society Cliffs Formation, restricted carbonates--including microdigitate stromatolites, laminated tufa, and tufted microbial mats--consist predominantly of synsedimentary cements; these facies and the cyanobacterial fossils they contain are common in Paleoproterozoic successions but rare in Neoproterozoic and younger rocks. Less restricted tidal-flat facies in the formation are composed of laminated microbialites dominated by micritic carbonate lithified early, yet demonstrably after compaction; these strata contain cyanobacteria that are characteristic in Neoproterozoic rocks. Within the formation, the facies-dependent distribution of microbial populations reflects both the style and timing of carbonate deposition because of the strong substrate specificity of benthic cyanobacteria. A reasonable conclusion is that secular changes in microbenthic assemblages through Proterozoic time reflect a decrease in the overall representation of rapidly lithified carbonate substrates in younger peritidal environments, as well as concomitant changes in the taphonomic window of silicification through which early life is observed.

  11. Production, Survival, and Evaluation of Solid-Substrate Inocula of Penicillium oxalicum, a Biocontrol Agent Against Fusarium Wilt of Tomato.

    PubMed

    Larena, I; Melgarejo, P; De Cal, A

    2002-08-01

    ABSTRACT Production of conidia of Penicillium oxalicum (ATCC number pending), a biocontrol agent of Fusarium oxysporum f. sp. lycopersici, was tested in liquid and solid fermentation. P. oxalicum produced 250-fold more conidia in solid than in liquid fermentation at 30 days after inoculation of substrate. Solid fermentation was carried out in plastic bags (600 cm(3)) especially designed for solid fermentation (VALMIC) containing 50 g of peat/vermiculite (PV) (1:1, wt/wt) with 40% moisture, sealed, sterilized, and then inoculated with 1 ml of a conidial suspension of P. oxalicum (10(5) conidia g(-1) dry substrate), sealed again, and incubated in darkness at 20 to 25 degrees C for 30 days. Addition of amendments to PV in a proportion of 0.5 (wt/wt) significantly increased conidial production of P. oxalicum. The best production was obtained on PV plus meal of cereal grains (barley) or leguminous seeds (lentil) (100-fold higher). Conidial production obtained after 5 days of inoculation was similar to that obtained at 30 days. However, viability of conidia produced in PV plus lentil meal was 35% higher than that of conidia produced in PV plus barley meal. Changes in proportions (1:1:0.5, wt/wt/wt; 1:1:1, wt/wt/wt; 1:0.5:0.5, wt/wt/wt; 1:1:0.5, vol/vol/vol) of components of the substrate (peat/vermiculite/lentil meal) did not enhance production or viability of conidia. Optimal initial moisture in the substrate was 30 to 40%. At lower moistures, significant reductions of production of conidia were observed, particularly at 10%. There was a general decline in the number of conidia in bags with time of storage at -80, -20, 4, and 25 degrees C, or at room temperature (range from 30 to 15 degrees C), with the highest decline occurring from 60 to 180 days. Conidial viability also was reduced with time, except for conidia stored at -20 degrees C. Fresh conidia produced in solid fermentation system or those conidia stored at -20 degrees C for 180 days reduced Fusarium wilt of tomato by 49 and 61%, respectively.

  12. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, K.H.

    1996-04-16

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.

  13. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  14. Flexible TFTs based on solution-processed ZnO nanoparticles.

    PubMed

    Jun, Jin Hyung; Park, Byoungjun; Cho, Kyoungah; Kim, Sangsig

    2009-12-16

    Flexible electronic devices which are lightweight, thin and bendable have attracted increasing attention in recent years. In particular, solution processes have been spotlighted in the field of flexible electronics, since they provide the opportunity to fabricate flexible electronics using low-temperature processes at low-cost with high throughput. However, there are few reports which describe the characteristics of electronic devices on flexible substrates. In this study, we fabricated flexible thin-film transistors (TFTs) on plastic substrates with channel layers formed by the spin-coating of ZnO nanoparticles and investigated their electrical properties in the flat and bent states. To the best of our knowledge, this study is the first attempt to fabricate fully functional ZnO TFTs on flexible substrates through the solution process. The ZnO TFTs showed n-channel device characteristics and operated in enhancement mode. In the flat state, a representative ZnO TFT presented a very low field-effect mobility of 1.2 x 10(-5) cm(2) V(-1) s(-1), while its on/off ratio was as high as 1.5 x 10(3). When the TFT was in the bent state, some of the device parameters changed. The changes of the device parameters and the possible reasons for these changes will be described. The recovery characteristics of the TFTs after being subjected to cyclic bending will be discussed as well.

  15. Kinematic analysis of the thoracic limb of healthy dogs during descending stair and ramp exercises.

    PubMed

    Kopec, Nadia L; Williams, Jane M; Tabor, Gillian F

    2018-01-01

    OBJECTIVE To compare the kinematics of the thoracic limb of healthy dogs during descent of stairs and a ramp with those during a trot across a flat surface (control). ANIMALS 8 privately owned dogs. PROCEDURES For each dog, the left thoracic limb was instrumented with 5 anatomic markers to facilitate collection of 2-D kinematic data during each of 3 exercises (descending stairs, descending a ramp, and trotting over a flat surface). The stair exercise consisted of 4 steps with a 35° slope. For the ramp exercise, a solid plank was placed over the steps to create a ramp with a 35° slope. For the flat exercise, dogs were trotted across a flat surface for 2 m. Mean peak extension, peak flexion, and range of movement (ROM) of the shoulder, elbow, and carpal joints were compared among the 3 exercises. RESULTS Mean ROM for the shoulder and elbow joints during the stair exercise were significantly greater than during the flat exercise. Mean peak extension of the elbow joint during the flat exercise was significantly greater than that during both the stair and ramp exercises. Mean peak flexion of the elbow joint during the stair exercise was significantly greater than that during the flat exercise. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that descending stairs may be beneficial for increasing the ROM of the shoulder and elbow joints of dogs. Descending stair exercises may increase elbow joint flexion, whereas flat exercises may be better for targeting elbow joint extension.

  16. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  17. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    PubMed

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Vapor bridges between solid substrates in the presence of the contact line pinning effect: Stability and capillary force

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2016-12-01

    In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.

  19. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    PubMed Central

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  20. Epitaxial ferromagnetic single clusters and smooth continuous layers on large area MgO/CVD graphene substrates

    NASA Astrophysics Data System (ADS)

    Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David

    2018-02-01

    We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.

  1. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    NASA Astrophysics Data System (ADS)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  2. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    USDA-ARS?s Scientific Manuscript database

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  3. Plasmon resonance enhanced mid-infrared generation by graphene on gold gratings through difference frequency mixing

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng

    2018-01-01

    Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.

  4. Volmer–Weber InAs quantum dot formation on InP (113)B substrates under the surfactant effect of Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yu, E-mail: yu.zhao@insa-rennes.fr; Bertru, Nicolas; Folliot, Hervé

    We report on Sb surfactant growth of InAs nanostructures on GaAs{sub 0.51}Sb{sub 0.49} layers deposited on InP (001) and on (113)B oriented substrates. On the (001) orientation, the presence of Sb significantly favors the two-dimensional growth regime. Even after the deposition of 5 mono-layers of InAs, the epitaxial film remains flat and InAs/GaAs{sub 0.51}Sb{sub 0.49} type-II quantum wells are achieved. On (113)B substrates, same growth runs resulted in formation of high density InAs islands. Microscopic studies show that wetting layer is missing on (113)B substrates, and thus, a Volmer-Weber growth mode is concluded. These different behaviors are attributed to themore » surface energy changes induced by Sb atoms on surface.« less

  5. On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hokkanen, Matti J.; Lautala, Saara; Shao, Dongkai; Turpeinen, Tuomas; Koivistoinen, Juha; Ahlskog, Markus

    2016-07-01

    Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT) have been proven to be of high quality, but their use is very limited due to difficulties in obtaining them in a clean and undamaged form. Here, we present a simple method that purifies raw AD-MWNT material in laboratory scale without damage, and that in principle can be scaled up. The method consists of depositing raw AD-MWNT material on a flat substrate and immersing the substrate slowly in water, whereby the surface tension force of the liquid-substrate contact line selectively sweeps away the larger amorphous carbon debris and leaves relatively clean MWNTs on the substrate. We demonstrate the utility of the method by preparing clean individual MWNTs for measurement of their Raman spectra. The spectra exhibit the characteristics of high-quality tubes free from contaminants. We also show how one concomitantly with the purification process can obtain large numbers of clean suspended MWNTs.

  6. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in themore » Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.« less

  7. Polarized Raman spectra in β-Ga2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Onuma, T.; Fujioka, S.; Yamaguchi, T.; Itoh, Y.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T.

    2014-09-01

    Polarized Raman spectra were measured from (010) Mg-doped, (100) Si-doped, and (001) unintentionally-doped β-Ga2O3 substrates prepared by either the floating zone growth or edge-defined film-fed growth methods. The Ag and Bg Raman active modes were perfectly separated in the spectra according to the polarization selection rules. To the best of our knowledge, this is the first experimental observation of a complete set of polarized Raman spectra of β-Ga2O3. The results are ensured by the high uniformity of crystalline orientation and surface flatness of the present substrates.

  8. Microscopic modeling of confined crystal growth and dissolution.

    PubMed

    Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K; Jettestuen, Espen

    2016-08-01

    We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.

  9. Microscopic modeling of confined crystal growth and dissolution

    NASA Astrophysics Data System (ADS)

    Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K.; Jettestuen, Espen

    2016-08-01

    We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.

  10. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    PubMed Central

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  11. The Synthesis of L-Alanyl and β-Alanyl Derivatives of 2-Aminoacridone and Their Application in the Detection of Clinically-Important Microorganisms.

    PubMed

    Cellier, Marie; James, Arthur L; Orenga, Sylvain; Perry, John D; Turnbull, Graeme; Stanforth, Stephen P

    2016-01-01

    In clinical microbiology the speed with which pathogenic microorganisms may be detected has a direct impact on patient health. One important strategy used in the laboratory is the growth of cultures in the presence of an enzymatic substrate which, once transformed by the appropriate microbial enzyme, generates a detectable colour or fluorescence output. Such substrates have previously been prepared by our group and others and are available as commercial diagnostic kits, however they all suffer from some degree of diffusion when used in a solid growth medium. This diffusion complicates the detection and differentiation of species in polymicrobial cultures and so we sought to improve on our previous work. In this work we have prepared and evaluated a series of novel fluorogenic enzyme substrates based on N-substituted-2-aminoacridones. All of the prepared substrates were found to be suitable for the detection and differentiation of certain microorganisms, however those based on the 2-amino-10-benzylacridone core in particular showed no apparent diffusion when incorporated into solid growth media. On transformation these substrates generated brightly fluorescent colonies that are clearly contrasted with the background medium due to the difference in emission wavelength (λem 445-450 nm for the substrate, λem 550 nm for the product). Here we have shown that our L-alanyl aminopeptidase substrate, 2-(N-L-alanylamino)-10-benzylacridone, is particularly suited to the detection of Gram-negative bacteria, and our β-alanyl aminopeptidase substrate, 2-(N- β-alanylamino)-10-benzylacridone, to the detection of Pseudomonas aeruginosa and Serratia marcescens when grown on solid media incorporating these substrates. The resulting fluorophore shows no apparent diffusion from the colonies of interest, and the enhanced sensitivity offered by fluorescent emission may allow for the detection of these organisms as microcolonies using automated fluorescence microscopy.

  12. Ultra-high heat flux cooling characteristics of cryogenic micro-solid nitrogen particles and its application to semiconductor wafer cleaning technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya

    2014-01-01

    The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.

  13. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  14. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  15. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  16. Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering.

    PubMed

    Rebollar, Esther; Sanz, Mikel; Pérez, Susana; Hernández, Margarita; Martín-Fabiani, Ignacio; Rueda, Daniel R; Ezquerra, Tiberio A; Domingo, Concepción; Castillejo, Marta

    2012-12-05

    We report on the fabrication of gold coated nanostructured polymer thin films and on their characterization as substrates for surface enhanced Raman spectroscopy (SERS). Laser induced periodic surface structures (LIPSS) were obtained on thin polymer films of poly(trimethylene terephthalate) (PTT) upon laser irradiation with the fourth harmonic of a Nd:YAG laser (266 nm, pulse duration 6 ns) resulting in a period close to the incident wavelength. The nanostructured polymer substrates were coated with a nanoparticle assembled gold layer by pulsed laser deposition using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns). Different deposition times resulted in thicknesses from a few nanometres up to several tens of nanometres. Analysis by atomic force microscopy and grazing incident small angle X-ray scattering showed that gold coating preserved the LIPSS relief. The capabilities of the produced nanostructures as substrates for SERS have been investigated using benzenethiol as a test molecule. The SERS signal is substantially larger than that observed for a gold-coated flat substrate. Advantages of this new type of SERS substrates are discussed.

  17. Hydrogen generation via anaerobic fermentation of paper mill wastes.

    PubMed

    Valdez-Vazquez, Idania; Sparling, Richard; Risbey, Derek; Rinderknecht-Seijas, Noemi; Poggi-Varaldo, Héctor M

    2005-11-01

    The objective of this work was to determine the hydrogen production from paper mill wastes using microbial consortia of solid substrate anaerobic digesters. Inocula from mesophilic, continuous solid substrate anaerobic digestion (SSAD) reactors were transferred to small lab scale, batch reactors. Milled paper (used as a surrogate paper waste) was added as substrate and acetylene or 2-bromoethanesulfonate (BES) was spiked for methanogenesis inhibition. In the first phase of experiments it was found that acetylene at 1% v/v in the headspace was as effective as BES in inhibiting methanogenic activity. Hydrogen gas accumulated in the headspace of the bottles, reaching a plateau. Similar final hydrogen concentrations were obtained for reactors spiked with acetylene and BES. In the second phase of tests the headspace of the batch reactors was flushed with nitrogen gas after the first plateau of hydrogen was reached, and subsequently incubated, with no further addition of inhibitor nor substrate. It was found that hydrogen production resumed and reached a second plateau, although somewhat lower than the first one. This procedure was repeated a third time and an additional amount of hydrogen was obtained. The plateaux and initial rates of hydrogen accumulation decreased in each subsequent incubation cycle. The total cumulative hydrogen harvested in the three cycles was much higher (approx. double) than in the first cycle alone. We coined this procedure as IV-SSAH (intermittently vented solid substrate anaerobic hydrogen generation). Our results point out to a feasible strategy for obtaining higher hydrogen yields from the fermentation of industrial solid wastes, and a possible combination of waste treatment processes consisting of a first stage IV-SSAH followed by a second SSAD stage. Useful products of this approach would be hydrogen, organic acids or methane, and anaerobic digestates that could be used as soil amenders after post-treatment.

  18. Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-07-01

    Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.

  19. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less

  20. Does the Hertz solution estimate pressures correctly in diamond indentor experiments?

    NASA Astrophysics Data System (ADS)

    Bruno, M. S.; Dunn, K. J.

    1986-05-01

    The Hertz solution has been widely used to estimate pressures in a spherical indentor against flat matrix type high pressure experiments. It is usually assumed that the pressure generated when compressing a sample between the indentor and substrate is the same as that generated when compressing an indentor against a flat surface with no sample present. A non-linear finite element analysis of this problem has shown that the situation is far more complex. The actual peak pressure in the sample is highly dependent on plastic deformation and the change in material properties due to hydrostatic pressure. An analysis with two material models is presented and compared with the Hertz solution.

  1. Channel surface plasmons in a continuous and flat graphene sheet

    NASA Astrophysics Data System (ADS)

    Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.

    2018-05-01

    We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.

  2. Investigation of Thermal Processing on the Properties of PS304: A Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Williams, Syreeta (Technical Monitor)

    2002-01-01

    The effect of thermal processing on PS304, a solid lubricant coating, was investigated. PS304 is a plasma sprayed solid lubricant consisting of 10% Ag and 10% BaF2 and CaF2 in a eutectic mixture for low and high temperature lubricity respectively. In addition, PS304 contains 20% Cr2O3 for increased hardness and 60% NiCr which acts as a binder. All percents are in terms of weight not volume. Previous research on thermal processing (NAG3-2245) of PS304 revealed that substrate affected both the pre- and post-anneal hardness of the plasma spray coating. The objective of this grant was to both quantify this effect and determine whether the root cause was an artifact of the substrate or an actual difference in hardness due to interaction between the substrate and the coating. In addition to clarifying past research developments new data was sought in terms of coating growth due to annealing.

  3. Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates

    PubMed Central

    Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud

    2017-01-01

    Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid. PMID:28569840

  4. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Combinatorial synthesis and screening of non-biological polymers

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2006-04-25

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Polymer arrays from the combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong

    2004-09-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Giant magnetoresistive cobalt oxide compounds

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1998-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. Giant magnetoresistive cobalt oxide compounds

    DOEpatents

    Schultz, P.G.; Xiang, X.; Goldwasser, I.

    1998-07-07

    Methods and apparatus are disclosed for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties. 58 figs.

  12. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  13. Synthesis and screening combinatorial arrays of zeolites

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2003-11-18

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  14. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  15. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  16. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass.

    PubMed

    Ghimire, Anish; Trably, Eric; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni; Cazier, Elisabeth A; Escudié, Renaud

    2018-01-01

    Production of biohydrogen and related metabolic by-products was investigated in Solid State Dark Fermentation (SSDF) of food waste (FW) and wheat straw (WS). The effect of the total solids (TS) content and H 2 partial pressure (pp H2 ), two of the main operating factors of SSDF, were investigated. Batch tests with FW at 10, 15, 20, 25 and 30% TS showed considerable effects of the TS on metabolites distribution. H 2 production was strongly inhibited for TS contents higher than 15% with a concomitant accumulation of lactic acid and a decrease in substrate conversion. Varying the pp H2 had no significant effect on the conversion products and overall degradation of FW and WS, suggesting that pp H2 was not the main limiting factor in SSDF. This study showed that the conversion of complex substrates by SSDF depends on the substrate type and is limited by the TS content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2005-03-08

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin

    1997-01-01

    Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.

  20. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.

  1. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  2. Recrystallization method to selenization of thin-film Cu(In,Ga)Se.sub.2 for semiconductor device applications

    DOEpatents

    Albin, David S.; Carapella, Jeffrey J.; Tuttle, John R.; Contreras, Miguel A.; Gabor, Andrew M.; Noufi, Rommel; Tennant, Andrew L.

    1995-07-25

    A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.

  3. A pentacene monolayer trapped between graphene and a substrate.

    PubMed

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  4. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  5. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  6. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  7. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  8. Bound acoustic modes in the radiation continuum in isotropic layered systems without periodic structures

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Every, A. G.

    2018-01-01

    We study the existence of guided acoustic modes in layered structures whose phase velocity is higher than that of bulk waves in a solid substrate or an adjacent fluid half space, which belong to the class of bound states in the radiation continuum (BICs). We demonstrate that in contrast to the electromagnetic case, non-symmetry-protected BICs exist in isotropic layered systems without periodic structures. Two systems supporting non-symmetry-protected sagittally polarized BICs have been identified: (i) a supported solid layer yields BICs whose phase velocity is higher than the transverse velocity of the substrate but lower than the longitudinal velocity; (ii) a supported solid layer loaded by a fluid half space supports BICs whose velocity is higher that the bulk velocity of the fluid but lower than acoustic velocities of the substrate. The latter case is a unique example of BICs in the sense that it does not involve an evanescent field in the fluid half space providing the radiation continuum. In either case, BICs are represented by isolated points in the dispersion relations located within "leaky" branches. We show that these BICs are robust with respect to small perturbations of the system parameters. Numerical results are provided for realistic materials combinations. We also show that no BICs exist in all-fluid layered structures, whereas in solid layered structures there are no shear horizontal BICs and no sagittally polarized BICs whose velocity exceeds the longitudinal velocity of the substrate.

  9. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  10. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    PubMed

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  11. Structure of a two-dimensional crystal in a Langmuir monolayer: grazing incidence X-ray diffraction and macroscopic properties

    NASA Astrophysics Data System (ADS)

    Flament, C.; Gallet, F.; Graner, F.; Goldmann, M.; Peterson, I.; Renault, A.

    1994-06-01

    Grazing incidence X-ray diffraction is performed on a Langmuir monolayer made of pure fluorescent NBD-stearic acid, spread at the free surface of water. It shows several intense narrow peaks in the solid phase, at the same wavevectors as the brightest peaks observed earlier by electron diffraction, for a monolayer transferred onto an amorphous polymer substrate. Thus the solid phase has the same crystalline structure on water and on solid substrate. The relative peak intensities are comparable in both experiments, and in the proposed model for the molecular structure. This model also accounts for the very large anisotropy of the crystalline phase and its optical properties. This phase could be ferroelectric, as previously assumed in order to explain the elongated shape of the crystals. Une monocouche de Langmuir, composée d'acide NBD-stéarique fluorescent pur, déposée à la surface libre de l'eau, est analysée par diffraction de rayons X sous incidence rasante. On détecte plusieurs pics étroits et intenses dans la phase solide, aux mêmes vecteurs d'onde que les pics les plus brillants précédemment observés par diffraction électronique, pour une monocouche transférée sur un substrat de polymère amorphe. La phase solide a donc la même structure cristalline sur l'eau et sur substrat solide. Les intensités relatives des pics sont comparables dans les deux expériences, ainsi que dans le modèle proposé pour la structure moléculaire. Ce modèle rend également compte de l'anisotropie très importante de la phase cristalline et de ses propriétés optiques. Il pourrait s'agir d'une phase ferroélectrique, comme cela avait été précédemment supposé pour expliquer la forme allongée des cristaux.

  12. Excitations of interface pinned domain walls in constrained geometries

    NASA Astrophysics Data System (ADS)

    Martins, S. M. S. B.; Oliveira, L. L.; Rebouças, G. O. G.; Dantas, Ana L.; Carriço, A. S.

    2018-05-01

    We report a theoretical investigation of the equilibrium pattern and the spectra of head-to-head and Neel domain walls of flat Fe and Py stripes, exchange coupled with a vicinal antiferromagnetic substrate. We show that the domain wall excitation spectrum is tunable by the strength of the interface field. Furthermore, strong interface coupling favors localized wall excitations.

  13. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  14. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  15. Production of microbial biosurfactants by solid-state cultivation.

    PubMed

    Krieger, Nadia; Camilios Neto, Doumit; Mitchell, David Alexander

    2010-01-01

    In recent years biosurfactants have attracted attention because of their low toxicity, biodegradability and ecological acceptability. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Solid-state cultivation represents an alternative technology for biosurfactant production that can bring two important advantages: firstly, it allows the use of inexpensive substrates and, secondly, it avoids the problem of foaming that complicates submerged cultivation processes for biosurfactant production. In this chapter we show that, despite its potential, to date relatively little attention has been given to solid-state cultivation for biosurfactant production. We also note that this cultivation technique brings its own challenges, such as the selection of a bioreactor type that will allow adequate heat removal, of substrates with appropriate physico-chemical properties and of methods for monitoring of the cultivation process and recovering the biosurfactants from the fermented solid. With suitable efforts in research, solid-state cultivation can be used for large-scale production of biosurfactants.

  16. Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments.

    PubMed

    Du, Jian; Song, Wenxia; Zhang, Xiu; Zhao, Jian; Liu, Guodong; Qu, Yinbo

    2018-04-23

    High dosage of enzyme is required to achieve effective lignocellulose hydrolysis, especially at high-solid loadings, which is a significant barrier to large-scale bioconversion of lignocellulose. Here, we screened four chemical additives and three accessory proteins for their effects on the enzymatic hydrolysis of various lignocellulosic materials. The effects were found to be highly dependent on the composition and solid loadings of substrates. For xylan-extracted lignin-rich corncob residue, the enhancing effect of PEG 6000 was most pronounced and negligibly affected by solid content, which reduced more than half of enzyme demand at 20% dry matter (DM). Lytic polysaccharide monooxygenase enhanced the hydrolysis of ammonium sulfite wheat straw pulp, and its addition reduced about half of protein demand at the solid loading of 20% DM. Supplementation of the additives in the hydrolysis of pure cellulose and complex lignocellulosic materials revealed that their effects are tightly linked to pretreatment strategies.

  17. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations.

    PubMed

    Du, Jian; Cao, Yuan; Liu, Guodong; Zhao, Jian; Li, Xuezhi; Qu, Yinbo

    2017-04-01

    Cellulose conversion decreases significantly with increasing solid concentrations during enzymatic hydrolysis of insoluble lignocellulosic materials. Here, mass transfer limitation was identified as a significant determining factor of this decrease by studying the hydrolysis of delignified corncob residue in shake flask, the most used reaction vessel in bench scale. Two mass transfer efficiency-related factors, mixing speed and flask filling, were shown to correlate closely with cellulose conversion at solid loadings higher than 15% DM. The role of substrate characteristics in mass transfer performance was also significant, which was revealed by the saccharification of two corn stover substrates with different pretreatment methods at the same solid loading. Several approaches including premix, fed-batch operation, and particularly the use of horizontal rotating reactor were shown to be valid in facilitating cellulose conversion via improving mass transfer efficiency at solid concentrations higher than 15% DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    PubMed

    Shi, Suan; Li, Jing; Blersch, David M

    2018-06-01

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  19. Junction-based field emission structure for field emission display

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

    2002-01-01

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  20. Modelling the anaerobic digestion of solid organic waste - Substrate characterisation method for ADM1 using a combined biochemical and kinetic parameter estimation approach.

    PubMed

    Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M

    2016-07-01

    This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Miniaturized LEDs for flat-panel displays

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Meitl, Matthew; Prevatte, Carl; Bonafede, Salvatore; Rotzoll, Robert; Gomez, David; Moore, Tanya; Raymond, Brook; Cok, Ronald; Fecioru, Alin; Trindade, António Jose; Fisher, Brent; Goodwin, Scott; Hines, Paul; Melnik, George; Barnhill, Sam; Bower, Christopher A.

    2017-02-01

    Inorganic light emitting diodes (LEDs) serve as bright pixel-level emitters in displays, from indoor/outdoor video walls with pixel sizes ranging from one to thirty millimeters to micro displays with more than one thousand pixels per inch. Pixel sizes that fall between those ranges, roughly 50 to 500 microns, are some of the most commercially significant ones, including flat panel displays used in smart phones, tablets, and televisions. Flat panel displays that use inorganic LEDs as pixel level emitters (μILED displays) can offer levels of brightness, transparency, and functionality that are difficult to achieve with other flat panel technologies. Cost-effective production of μILED displays requires techniques for precisely arranging sparse arrays of extremely miniaturized devices on a panel substrate, such as transfer printing with an elastomer stamp. Here we present lab-scale demonstrations of transfer printed μILED displays and the processes used to make them. Demonstrations include passive matrix μILED displays that use conventional off-the shelf drive ASICs and active matrix μILED displays that use miniaturized pixel-level control circuits from CMOS wafers. We present a discussion of key considerations in the design and fabrication of highly miniaturized emitters for μILED displays.

  2. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  3. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  4. Film growth, adsorption and desorption kinetics of indigo on SiO2

    PubMed Central

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2015-01-01

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer des orption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption. PMID:24832297

  5. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation ofmore » dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.« less

  6. Film growth, adsorption and desorption kinetics of indigo on SiO2.

    PubMed

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  7. Combined analysis of energy band diagram and equivalent circuit on nanocrystal solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kano, Shinya, E-mail: kano@eedept.kobe-u.ac.jp, E-mail: fujii@eedept.kobe-u.ac.jp; Sasaki, Masato; Fujii, Minoru, E-mail: kano@eedept.kobe-u.ac.jp, E-mail: fujii@eedept.kobe-u.ac.jp

    We investigate a combined analysis of an energy band diagram and an equivalent circuit on nanocrystal (NC) solids. We prepared a flat silicon-NC solid in order to carry out the analysis. An energy band diagram of a NC solid is determined from DC transport properties. Current-voltage characteristics, photocurrent measurements, and conductive atomic force microscopy images indicate that a tunneling transport through a NC solid is dominant. Impedance spectroscopy gives an equivalent circuit: a series of parallel resistor-capacitors corresponding to NC/metal and NC/NC interfaces. The equivalent circuit also provides an evidence that the NC/NC interface mainly dominates the carrier transport throughmore » NC solids. Tunneling barriers inside a NC solid can be taken into account in a combined capacitance. Evaluated circuit parameters coincide with simple geometrical models of capacitances. As a result, impedance spectroscopy is also a useful technique to analyze semiconductor NC solids as well as usual DC transport. The analyses provide indispensable information to implement NC solids into actual electronic devices.« less

  8. Engineering ultra-flattened normal dispersion photonic crystal fiber with silica material

    NASA Astrophysics Data System (ADS)

    Ferhat, Mohamed Lamine; Cherbi, Lynda; Bahloul, Lies; Hariz, Abdelhafid

    2017-05-01

    The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.

  9. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M.; Zhao, W.; Tanioka, K.

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less

  10. Coherent structures in turbulence and Prandtl's mixing length theory (27th Ludwig Prandtl Memorial Lecture)

    NASA Astrophysics Data System (ADS)

    Landahl, M. T.

    1984-08-01

    The fundamental ideas behind Prandtl's famous mixing length theory are discussed in the light of newer findings from experimental and theoretical research on coherent turbulence structures in the region near solid walls. A simple theoretical model for 'flat' structures is used to examine the fundamental assumptions behind Prandtl's theory. The model is validated by comparisons with conditionally sampled velocity data obtained in recent channel flow experiments. Particular attention is given to the role of pressure fluctuations on the evolution of flat eddies. The validity of Prandtl's assumption that an element of fluid retains its streamwise momentum as it is moved around by turbulence is confirmed for flat eddies. It is demonstrated that spanwise pressure gradients give rise to a contribution to the vertical displacement of a fluid element which is proportional to the distance from the wall. This contribution is particularly important for eddies that are highly elongated in the streamwise direction.

  11. Belt separation system under slat in fattening pig housing: effect of belt type and extraction frequency.

    PubMed

    Alonso, F; Vázquez, J; Ovejero, I; Garcimartín, M A; Mateos, A; Sánchez, E

    2010-08-01

    The efficiency of manure separation by a conveyor belt under a partially slatted floor for fattening pigs was determined for two types of belts, a flat belt with an incline of up to 6 degrees transversely and a concave belt with an incline of up to 1 degrees longitudinally. A 31.20% and 23.75% dry matter content of the solid fraction was obtained for the flat and concave belt, respectively. The flat belt was more efficient at 6 degrees than other slope angles. The residence time of the manure on the two belt types influenced the separation efficiency from a live weight of 63.00 kg upwards. The quantity of residue produced with this system was reduced to 25-40% with respect to a pit system under slat. This could mean a remarkable reduction in costs of storage, transport and application of manure. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.

    PubMed

    Gunjan, Madhu Ranjan; Raj, Rishi

    2017-07-18

    The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among others.

  13. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme

    PubMed Central

    Xiong, Wei; Chen, Fang-Yuan; Xu, Li; Han, Zheng-Gang

    2017-01-01

    The cellulose binding domain (CBD) of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids. PMID:28475645

  14. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  15. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2017-04-01

    A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  17. Conceptual approach study of a 200 watt per kilogram solar array

    NASA Technical Reports Server (NTRS)

    Stanhouse, R. W.; Fox, D.; Wilson, W.

    1976-01-01

    Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.

  18. Method of forming contacts for a back-contact solar cell

    DOEpatents

    Manning, Jane

    2015-10-20

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  19. Method of forming contacts for a back-contact solar cell

    DOEpatents

    Manning, Jane

    2014-07-15

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  20. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Solid organ fabrication: comparison of decellularization to 3D bioprinting.

    PubMed

    Jung, Jangwook P; Bhuiyan, Didarul B; Ogle, Brenda M

    2016-01-01

    Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.

  3. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  4. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  5. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  6. Energy gap opening by crossing drop cast single-layer graphene nanoribbons.

    PubMed

    Yamada, Toyo Kazu; Fukuda, Hideto; Fujiwara, Taizo; Liu, Polin; Nakamura, Kohji; Kasai, Seiya; Vazquez de Parga, Amadeo L; Tanaka, Hirofumi

    2018-08-03

    Band gap opening of a single-layer graphene nanoribbon (sGNR) sitting on another sGNR, fabricated by drop casting GNR solution on Au(111) substrate in air, was studied by means of scanning tunneling microscopy and spectroscopy in an ultra-high vacuum at 78 K and 300 K. GNRs with a width of ∼45 nm were prepared by unzipping double-walled carbon nanotubes (diameter ∼15 nm) using the ultrasonic method. In contrast to atomically-flat GNRs fabricated via the bottom-up process, the drop cast sGNRs were buckled on Au(111), i.e., some local points of the sGNR are in contact with the substrate (d ∼ 0.5 nm), but other parts float (d ∼ 1-3 nm), where d denotes the measured distance between the sGNR and the substrate. In spite of the fact that the nanoribbons were buckled, dI/dV maps confirmed that each buckled sGNR had a metallic character (∼3.5 G o ) with considerable uniform local density of states, comparable to a flat sGNR. However, when two sGNRs crossed each other, the crossed areas showed a band gap between -50 and +200 meV around the Fermi energy, i.e., the only upper sGNR electronic property changed from metallic to p-type semiconducting, which was not due to the bending, but the electronic interactions between the up and down sGNRs.

  7. Locomotor variation and bending regimes of capuchin limb bones.

    PubMed

    Demes, Brigitte; Carlson, Kristian J

    2009-08-01

    Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further.

  8. Electrochemical growth of controlled tip shapes of ZnO nanorod arrays on silicon substrate and enhanced photoluminescence emission from nanopyramid arrays compared with flat-head nanorods

    NASA Astrophysics Data System (ADS)

    Alimanesh, Mahmoud; Hassan, Z.; Zainal, Norzaini

    2017-10-01

    Zinc oxide (ZnO) nanorod arrays (NRAs) with different morphologies such as; perfect hexagon flat-head, pyramidal, compact pencil, nail-shaped, and high-compact ZnO nanorod thin films, were successfully grown on silicon substrates. These NRAs were formed on substrates using a simple low-temperature electrochemical method without adding any catalyst or template via the precursors of zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine [HMT; C6H12N4] with an equal molar concentration of 0.025 mol/l. The morphologies of the ZnO nanorods (NRs) could be controlled and transformed successfully in to other morphologies by changing the growth conditions, such as; growth temperature and applied current density. Detailed structural investigations reveal that the synthesized various NRs are single crystalline with wurtzite hexagonal phase and preferentially grow along the c-axis direction. The room temperature photoluminescence spectra show that each spectrum consists of an ultraviolet (UV) band and a relative broad visible light emission and infrared emission peak. The enhanced light emission intensity at UV peak (∼375 nm) is observed significantly from ZnO nanopyramid (NP) arrays because of the conical shape of NP. The photoluminescence intensity of the UV peak from the NPs is found to be 1.5-17 times larger than those from the other various NRs.

  9. Development of a low cost high precision three-layer 3D artificial compound eye.

    PubMed

    Zhang, Hao; Li, Lei; McCray, David L; Scheiding, Sebastian; Naples, Neil J; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas; Yi, Allen Y

    2013-09-23

    Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously.

  10. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  11. The control of float zone interfaces by the use of selected boundary conditions

    NASA Technical Reports Server (NTRS)

    Foster, L. M.; Mcintosh, J.

    1983-01-01

    The main goal of the float zone crystal growth project of NASA's Materials Processing in Space Program is to thoroughly understand the molten zone/freezing crystal system and all the mechanisms that govern this system. The surface boundary conditions required to give flat float zone solid melt interfaces were studied and computed. The results provide float zone furnace designers with better methods for controlling solid melt interface shapes and for computing thermal profiles and gradients. Documentation and a user's guide were provided for the computer software.

  12. Solid-State Neutron Detector Device

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.

  13. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    PubMed

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  14. Electrowetting of liquid polymer on petal-mimetic microbowl-array surfaces for formation of microlens array with varying focus on a single substrate

    NASA Astrophysics Data System (ADS)

    Li, Xiangmeng; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao

    2015-03-01

    In this paper, microlens array with varying focal lengths were fabricated on a single microbowl-array textured substrate. The solid microbowl-arrayed NOA61 (kind of polyurethane-based polymer with UV curablity) surface was resulted from nanoimprinting by polydimethylsiloxane (PDMS) mold. The PDMS mold was replicated from an SU-8 master which was generated by electron beam lithography. Such microbowl-arrayed surfaces demonstrate petal-mimetic highly adhesive hydrophobic wetting properties, which can promote an irreversible electrowetting (EW) effect and a dereased contact angle of water droplets as well as other liquid droplets by applying direct current (DC) voltage. To fabricate a microlens array with varying focal-lengths, liquid NOA61 was supplied from a syringe on the solid NOA61 microtextured film and DC voltage was applied succesively. After removing the DC voltage, these liquid NOA61 microdrops deposited on the solid microtextured NOA61 surface on tin-indium-oxide coated substrate could be solidified via UV irradiation, thus leading to microlens array with uneven numerical apertures on a single substrate. Numerical simulation was also done to verify the EW effect. Finally, optical imaging characterization was performed to confirm the varied focus of the NOA61 microdrops.

  15. Co-digestion of municipal sewage sludge and solid waste: modelling of carbohydrate, lipid and protein content influence.

    PubMed

    Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M

    2015-03-01

    Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.

  16. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings

    PubMed Central

    2014-01-01

    Background Economically feasible cellulosic ethanol production requires that the process can be operated at high solid loadings, which currently imparts technical challenges including inefficient mixing leading to heat and mass transfer limitations and high concentrations of inhibitory compounds hindering microbial activity during simultaneous saccharification and fermentation (SSF) process. Consequently, there is a need to develop cost effective processes overcoming the challenges when working at high solid loadings. Results In this study we have modified the yeast cultivation procedure and designed a SSF process to address some of the challenges at high water insoluble solids (WIS) content. The slurry of non-detoxified pretreated spruce when used in a batch SSF at 19% (w/w) WIS was found to be inhibitory to Saccharomyces cerevisiae Thermosacc that produced 2 g l-1 of ethanol. In order to reduce the inhibitory effect, the non-washed solid fraction containing reduced amount of inhibitors compared to the slurry was used in the SSF. Further, the cells were cultivated in the liquid fraction of pretreated spruce in a continuous culture wherein the outflow of cell suspension was used as cell feed to the SSF reactor in order to maintain the metabolic state of the cell. Enhanced cell viability was observed with cell, enzyme and substrate feed in a SSF producing 40 g l-1 ethanol after 96 h corresponding to 53% of theoretical yield based on available hexose sugars compared to 28 g l-1 ethanol in SSF with enzyme and substrate feed but no cell feed resulting in 37% of theoretical yield at a high solids loading of 20% (w/w) WIS content. The fed-batch SSF also significantly eased the mixing, which is usually challenging in batch SSF at high solids loading. Conclusions A simple modification of the cell cultivation procedure together with a combination of yeast, enzyme and substrate feed in a fed-batch SSF process, made it possible to operate at high solids loadings in a conventional bioreactor. The proposed process strategy significantly increased the yeast cell viability and overall ethanol yield. It was also possible to obtain 4% (w/v) ethanol concentration, which is a minimum requirement for an economical distillation process. PMID:24713027

  17. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings.

    PubMed

    Koppram, Rakesh; Olsson, Lisbeth

    2014-04-08

    Economically feasible cellulosic ethanol production requires that the process can be operated at high solid loadings, which currently imparts technical challenges including inefficient mixing leading to heat and mass transfer limitations and high concentrations of inhibitory compounds hindering microbial activity during simultaneous saccharification and fermentation (SSF) process. Consequently, there is a need to develop cost effective processes overcoming the challenges when working at high solid loadings. In this study we have modified the yeast cultivation procedure and designed a SSF process to address some of the challenges at high water insoluble solids (WIS) content. The slurry of non-detoxified pretreated spruce when used in a batch SSF at 19% (w/w) WIS was found to be inhibitory to Saccharomyces cerevisiae Thermosacc that produced 2 g l-1 of ethanol. In order to reduce the inhibitory effect, the non-washed solid fraction containing reduced amount of inhibitors compared to the slurry was used in the SSF. Further, the cells were cultivated in the liquid fraction of pretreated spruce in a continuous culture wherein the outflow of cell suspension was used as cell feed to the SSF reactor in order to maintain the metabolic state of the cell. Enhanced cell viability was observed with cell, enzyme and substrate feed in a SSF producing 40 g l-1 ethanol after 96 h corresponding to 53% of theoretical yield based on available hexose sugars compared to 28 g l-1 ethanol in SSF with enzyme and substrate feed but no cell feed resulting in 37% of theoretical yield at a high solids loading of 20% (w/w) WIS content. The fed-batch SSF also significantly eased the mixing, which is usually challenging in batch SSF at high solids loading. A simple modification of the cell cultivation procedure together with a combination of yeast, enzyme and substrate feed in a fed-batch SSF process, made it possible to operate at high solids loadings in a conventional bioreactor. The proposed process strategy significantly increased the yeast cell viability and overall ethanol yield. It was also possible to obtain 4% (w/v) ethanol concentration, which is a minimum requirement for an economical distillation process.

  18. Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams

    DOEpatents

    Siriwardane, Ranjani V.

    2016-05-10

    Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  19. On sub-T(g) dewetting of nanoconfined liquids and autophobic dewetting of crystallites.

    PubMed

    Souda, Ryutaro

    2012-03-28

    The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.

  20. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top