Large numbers hypothesis. IV - The cosmological constant and quantum physics
NASA Technical Reports Server (NTRS)
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Gravitons as Embroidery on the Weave
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Rovelli, Carlo
We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.
On the Ck-embedding of Lorentzian manifolds in Ricci-flat spaces
NASA Astrophysics Data System (ADS)
Avalos, R.; Dahia, F.; Romero, C.
2018-05-01
In this paper, we investigate the problem of non-analytic embeddings of Lorentzian manifolds in Ricci-flat semi-Riemannian spaces. In order to do this, we first review some relevant results in the area and then motivate both the mathematical and physical interests in this problem. We show that any n-dimensional compact Lorentzian manifold (Mn, g), with g in the Sobolev space Hs+3, s >n/2 , admits an isometric embedding in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold. The sharpest result available for these types of embeddings, in the general setting, comes as a corollary of Greene's remarkable embedding theorems R. Greene [Mem. Am. Math. Soc. 97, 1 (1970)], which guarantee the embedding of a compact n-dimensional semi-Riemannian manifold into an n(n + 5)-dimensional semi-Euclidean space, thereby guaranteeing the embedding into a Ricci-flat space with the same dimension. The theorem presented here improves this corollary in n2 + 3n - 2 codimensions by replacing the Riemann-flat condition with the Ricci-flat one from the beginning. Finally, we will present a corollary of this theorem, which shows that a compact strip in an n-dimensional globally hyperbolic space-time can be embedded in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold.
NASA Astrophysics Data System (ADS)
Anastassiu, Hristos T.
2003-04-01
The physical optics approximation is employed in the derivation of a closed form expression for the radar cross section (RCS) of a flat, perfectly conducting plate of various shapes, located over a dielectric, possibly lossy half-space. The half-space is assumed to lie in the far field region of the plate. The well-known "four-path model" is invoked in a first-order approximation of the half-space contribution to the scattering mechanisms. Numerical results are compared to a reference, Moment Method solution, and the agreement is investigated, to assess the accuracy of the approximations used. The analytical expressions derived can facilitate very fast RCS calculations for realistic scatterers, such as ships in a sea environment, or aircraft flying low over the ground.
Surprising structures hiding in Penrose’s future null infinity
NASA Astrophysics Data System (ADS)
Newman, Ezra T.
2017-07-01
Since the late1950s, almost all discussions of asymptotically flat (Einstein-Maxwell) space-times have taken place in the context of Penrose’s null infinity, I+. In addition, almost all calculations have used the Bondi coordinate and tetrad systems. Beginning with a known asymptotically flat solution to the Einstein-Maxwell equations, we show first, that there are other natural coordinate systems, near I+, (analogous to light-cones in flat-space) that are based on (asymptotically) shear-free null geodesic congruences (analogous to the flat-space case). Using these new coordinates and their associated tetrad, we define the complex dipole moment, (the mass dipole plus i times angular momentum), from the l = 1 harmonic coefficient of a component of the asymptotic Weyl tensor. Second, from this definition, from the Bianchi identities and from the Bondi-Sachs mass and linear momentum, we show that there exists a large number of results—identifications and dynamics—identical to those of classical mechanics and electrodynamics. They include, among many others, {P}=M{v}+..., {L}= {r} × {P} , spin, Newton’s second law with the rocket force term (\\dotM v) and radiation reaction, angular momentum conservation and others. All these relations take place in the rather mysterious H-space rather than in space-time. This leads to the enigma: ‘why do these well known relations of classical mechanics take place in H-space?’ and ‘What is the physical meaning of H-space?’
Building non-commutative spacetimes at the Planck length for Friedmann flat cosmologies
NASA Astrophysics Data System (ADS)
Tomassini, Luca; Viaggiu, Stefano
2014-09-01
We propose physically motivated spacetime uncertainty relations (STUR) for flat Friedmann-Lemaître cosmologies. We show that the physical features of these STUR crucially depend on whether a particle horizon is present or not. In particular, when this is the case we deduce the existence of a maximal value for the Hubble rate (or equivalently for the matter density), thus providing an indication that quantum effects may rule out a pointlike big bang singularity. Finally, we construct a concrete realization of the corresponding quantum Friedmann spacetime in terms of operators on a Hilbert space. In loving memory of Francesco Saverio de Blasi, mathematician and friend.
Flat space (higher spin) gravity with chemical potentials
NASA Astrophysics Data System (ADS)
Gary, Michael; Grumiller, Daniel; Riegler, Max; Rosseel, Jan
2015-01-01
We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.
Computation of Tone Noise From Supersonic Jet Impinging on Flat Plates
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Blech, Richard A. (Technical Monitor)
2005-01-01
A supersonic jet impinging normally on a flat plate has both practical importance and theoretical interests. The physical phenomenon is not fully understood yet. Research concentrates either on the hydrodynamics (e.g., lift loss for STOVL) or on the aeroacoustic loading. In this paper, a finite volume scheme - the space-time conservation element and solution element (CE/SE) method - is employed to numerically study the near-field noise of an underexpanded supersonic jet from a converging nozzle impinging normally on a flat plate. The numerical approach is of the MILES type (monotonically integrated large eddy simulation). The computed results compare favorably with the experimental findings.
Classical dynamics on curved Snyder space
NASA Astrophysics Data System (ADS)
Ivetić, B.; Meljanac, S.; Mignemi, S.
2014-05-01
We study the classical dynamics of a particle in nonrelativistic Snyder-de Sitter space. We show that for spherically symmetric systems, parameterizing the solutions in terms of an auxiliary time variable, which is a function only of the physical time and of the energy and angular momentum of the particles, one can reduce the problem to the equivalent one in classical mechanics. We also discuss a relativistic extension of these results, and a generalization to the case in which the algebra is realized in flat space.
Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration
Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît
2009-01-01
Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774
Gravitation. [Book on general relativity
NASA Technical Reports Server (NTRS)
Misner, C. W.; Thorne, K. S.; Wheeler, J. A.
1973-01-01
This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.
Killeen, P R
1992-01-01
Behavior is treated as basic physics. Dimensions are identified and their transformations from physical specification to axes in behavioral space are suggested. Responses are treated as action patterns arrayed along a continuum of activation energy. Behavior is seen as movement along a trajectory through this behavior space. Incentives or reinforcers are attractors in behavior space, at the centers of basins of lowered potential. Trajectories impinging on such basins may be captured; repeated capture will warp the trajectory toward a geodesic, a process called conditioning. Conditioning is enhanced by contiguity, the proximity between the measured behavior and the incentive at the end of the trajectory, and by contingency, the depth of the trajectory below the average level of the potential energy landscape. Motivation is seen as the potential of an organism for motion under the forces impinging on it. Degree of motivation is characterized by the depth of the potential field, with low motivation corresponding to a flat field and a flat gradient of activation energy. Drives are the forces of incentives propagated through behavior space. Different laws for the attenuation of drive with behavioral distance are discussed, as is the dynamics of action. The basic postulate of behavior mechanics is incentive-tracking in behavior space, the energy for which is provided by decreases in potential. The relation of temporal gradients to response differentiation and temporal discrimination is analyzed. Various two-body problems are sketched to illustrate the application of these ideas to association, choice, scalar timing, self-control, and freedom. PMID:1602272
Development of reaction-sintered SiC mirror for space-borne optics
NASA Astrophysics Data System (ADS)
Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio
2017-11-01
We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.
Aeolian processes aboard a space station: Saltation and particle trajectory analysis
NASA Technical Reports Server (NTRS)
White, B. R.; Greeley, R.; Iversen, J. D.; Leach, R. N.
1986-01-01
The Carousel wind tunnel (CWT) proposed to study aeolian processes aboard a space station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel test section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simulate flat plate turbulent boundary layer flow. The two dimensional flat plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricted to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.
Superconducting transitions in flat-band systems
Iglovikov, V. I.; Hébert, F.; Grémaud, B.; ...
2014-09-11
The physics of strongly correlated quantum particles within a flat band was originally explored as a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state of the repulsive Hubbard model on a bipartite lattice with unequal number of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard model on the Lieb lattice by using Determinant Quantum Montemore » Carlo to study real space charge and pair correlation functions not addressed by the Lieb theorems. Specifically, our results show unusual charge and charge transfer signatures within the flat band, and a reduction in pairing order at ρ = 2/3 and ρ = 4/3, the points at which the flat band is first occupied and then completely filled. Lastly, we compare our results to the case of flat bands in the Kagome lattice and demonstrate that the behavior observed in the two cases is rather different.« less
Asymptotic structure of space-time with a positive cosmological constant
NASA Astrophysics Data System (ADS)
Kesavan, Aruna
In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in detail. i) We show explicitly that conformal flatness of the boundary removes half the degrees of freedom of the gravitational field by hand and is not justified by physical considerations; ii) We obtain gauge invariant expressions of energy-momentum and angular momentum fluxes carried by gravitational waves in terms of fields defined at [special character omitted]+; iii) We demonstrate that the flux formulas reduce to the familiar ones in Minkowski spacetime in spite of the fact that the limit Lambda → 0 is discontinuous (since, in particular, [special character omitted]+ changes its space-like character to null in the limit); iv) We obtain a generalization of Einstein's 1918 quadrupole formula for power emission by a linearized source to include a positive Lambda; and, finally v) We show that, although energy of linearized gravitational waves can be arbitrarily negative in general, gravitational waves emitted by physically reasonable sources carry positive energy.
Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.
2013-01-01
This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.
Flat-space quantum gravity in the AdS / CFT correspondence
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.
2016-03-22
Motivated by the task of understanding microscopic dynamics of an evolving black hole, we present a scheme describing gauge-fixed continuous time evolution of quantum gravitational processes in asymptotically flat spacetime using the algebra of conformal field theory operators. This allows us to study the microscopic dynamics of the Hawking emission process, although obtaining a full S-matrix may require a modification of the minimal scheme. The role of the operator product expansion is to physically interpret the resulting time evolution by decomposing the Hilbert space of the states for the entire system into those for smaller subsystems. We translate the picturemore » of an evaporating black hole previously proposed by the authors into predictions for nonperturbative properties of the conformal field theories that have weakly coupled dual gravitational descriptions. Finally, we also discuss a possible relationship between the present scheme and a reference frame change in the bulk.« less
On the structure and applications of the Bondi-Metzner-Sachs group
NASA Astrophysics Data System (ADS)
Alessio, Francesco; Esposito, Giampiero
This work is a pedagogical review dedicated to a modern description of the Bondi-Metzner-Sachs (BMS) group. Minkowski space-time has an interesting and useful group of isometries, but, for a generic space-time, the isometry group is simply the identity and hence provides no significant informations. Yet symmetry groups have important role to play in physics; in particular, the Poincaré group describing the isometries of Minkowski space-time plays a role in the standard definitions of energy-momentum and angular-momentum. For this reason alone it would seem to be important to look for a generalization of the concept of isometry group that can apply in a useful way to suitable curved space-times. The curved space-times that will be taken into account are the ones that suitably approach, at infinity, Minkowski space-time. In particular we will focus on asymptotically flat space-times. In this work, the concept of asymptotic symmetry group of those space-times will be studied. In the first two sections we derive the asymptotic group following the classical approach which was basically developed by Bondi, van den Burg, Metzner and Sachs. This is essentially the group of transformations between coordinate systems of a certain type in asymptotically flat space-times. In the third section the conformal method and the notion of “asymptotic simplicity” are introduced, following mainly the works of Penrose. This section prepares us for another derivation of the BMS group which will involve the conformal structure, and is thus more geometrical and fundamental. In the subsequent sections we discuss the properties of the BMS group, e.g. its algebra and the possibility to obtain as its subgroup the Poincaré group, as we may expect. The paper ends with a review of the BMS invariance properties of classical gravitational scattering discovered by Strominger, that are finding application to black hole physics and quantum gravity in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl
In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.
2009-01-01
Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.
2009-01-01
Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.
Flat connections in open string mirror symmetry
NASA Astrophysics Data System (ADS)
Alim, Murad; Hecht, Michael; Jockers, Hans; Mayr, Peter; Mertens, Adrian; Soroush, Masoud
2012-06-01
We study a flat connection defined on the open-closed deformation space of open string mirror symmetry for type II compactifications on Calabi-Yau threefolds with D-branes. We use flatness and integrability conditions to define distinguished flat coordinates and the superpotential function at an arbitrary point in the open-closed deformation space. Integrability conditions are given for concrete deformation spaces with several closed and open string deformations. We study explicit examples for expansions around different limit points, including orbifold Gromov-Witten invariants, and brane configurations with several brane moduli. In particular, the latter case covers stacks of parallel branes with non-Abelian symmetry.
K-decompositions and 3d gauge theories
NASA Astrophysics Data System (ADS)
Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B.
2016-11-01
This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL( K, ℂ)-connections on a large class of 3-manifolds M with boundary. We introduce a moduli space ℒ K ( M) of framed flat connections on the boundary ∂ M that extend to M. Our goal is to understand an open part of ℒ K ( M) as a Lagrangian subvariety in the symplectic moduli space {{X}}_K^{un}(partial M) of framed flat connections on the boundary — and more so, as a "K2-Lagrangian," meaning that the K2-avatar of the symplectic form restricts to zero. We construct an open part of ℒ K ( M) from elementary data associated with the hypersimplicial K-decomposition of an ideal triangulation of M, in a way that generalizes (and combines) both Thurston's gluing equations in 3d hyperbolic geometry and the cluster coordinates for framed flat PGL( K, ℂ)-connections on surfaces. By using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of ℒ K ( M) is K2-isotropic as long as ∂ M satisfies certain topological constraints (theorem 4.2). In some cases this easily implies that ℒ K ( M) is K2-Lagrangian. For general M, we extend a classic result of Neumann and Zagier on symplectic properties of PGL(2) gluing equations to reduce the K2-Lagrangian property to a combinatorial statement.
Management system of simple rental flats study based on technical aspect and health in Medan city
NASA Astrophysics Data System (ADS)
Novrial; Indra Cahaya, S.
2018-03-01
Medan city is a metropolis city in Sumatera that has slums area. Simple rental flats have been built to overcome the problem. However the preliminary survey result showed that the physical and non-physical environment management of simple rent flats is very bad. This study conducted in 3 simple rent flats. It has observed the simple rent flats environment and has interviewed occupants and related agencies. Results of conducted research showed the occupant’s characteristics based on the largest percentage are Javanese; last education is senior high with self-employed work with average income Rp 1,000,000 – Rp 2,500,000. Waste retribution submitted to their cleanliness except for Amplas simple rent flats, their waste management system does not manage properly and the garbage littered. The number of family members of Wisma Labuhan and Amplas simple rent flats exceeds the regulation number of occupants, so it is crowded and noisy. Physical conditions of Amplas simple rent flats are bad, septic tank is full and are not vacuumed. Clean water sources derived from wells and artesian wll are vulnerable to be contaminated by pollutants such as leachate and bad quality water. It is necessary to improve the physical, basic sanitation, and guidance for the simple rent flats occupants to the management system of Simple Rent Flats.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.
2007-01-01
Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.
BFV quantization on hermitian symmetric spaces
NASA Astrophysics Data System (ADS)
Fradkin, E. S.; Linetsky, V. Ya.
1995-02-01
Gauge-invariant BFV approach to geometric quantization is applied to the case of hermitian symmetric spaces G/ H. In particular, gauge invariant quantization on the Lobachevski plane and sphere is carried out. Due to the presence of symmetry, master equations for the first-class constraints, quantum observables and physical quantum states are exactly solvable. BFV-BRST operator defines a flat G-connection in the Fock bundle over G/ H. Physical quantum states are covariantly constant sections with respect to this connection and are shown to coincide with the generalized coherent states for the group G. Vacuum expectation values of the quantum observables commuting with the quantum first-class constraints reduce to the covariant symbols of Berezin. The gauge-invariant approach to quantization on symplectic manifolds synthesizes geometric, deformation and Berezin quantization approaches.
Le Gonidec, Yves; Gibert, Dominique
2006-11-01
We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.
NASA Astrophysics Data System (ADS)
Muzafar Shah, Mazlina; Fatah Wahab, Abdul
2017-09-01
There are an abnormal electric activities or irregular interference in brain of epilepsy patient. Then a sensor will be put in patient’s scalp to measure and records all electric activities in brain. The result of the records known as Electroencephalography (EEG). The EEG has been transfer to flat EEG because it’s easier to analyze. In this study, the uncertainty in flat EEG data will be considered as fuzzy digital space. The purpose of this research is to show that the flat EEG is fuzzy topological digital space. Therefore, the main focus for this research is to introduce fuzzy topological digital space concepts with their properties such as neighbourhood, interior and closure by using fuzzy set digital concept and Chang’s fuzzy topology approach. The product fuzzy topology digital also will be shown. By introduce this concept, the data in flat EEG can considering having fuzzy topology digital properties and can identify the area in fuzzy digital space that has been affected by epilepsy seizure in epileptic patient’s brain.
Automatic paper sliceform design from 3D solid models.
Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N
2013-11-01
A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.
Alternatives to flat panel displays in vehicle turrets
NASA Astrophysics Data System (ADS)
Nicholson, Gail
2011-06-01
Space is a premium in vehicle turrets. Reducing the footprint of displays inside turrets frees up space for the warfighter. Traditional military ruggedized flat panel displays cannot reside flush with the curved turret wall and consumes more space than their advertized size. The lack of turret space also makes balancing human factors difficult. To better meet the Warfighter needs, alternatives and incremental upgrades to the flat panel displays in turrets were compiled. Each alternative technology was assessed against the constraints of a turret. Benefits, issues, and predictions to implementation are summarized. Viable alternatives are being developed into suitable options.
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2015-07-01
We propose a new class of gravity-matter theories, describing R + R2 gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space-time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root -F2 of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space-time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” φ. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) φ = const and a nonzero gauge field vacuum -F2≠0, which corresponds to a charge confining phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum -F2 = 0 which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum -F2≠0, which again corresponds to a charge confining phase. In all three cases, the space-time metric is de Sitter or Schwarzschild-de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner-Nordström-de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.
Projective flatness in the quantisation of bosons and fermions
NASA Astrophysics Data System (ADS)
Wu, Siye
2015-07-01
We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.
Supernova 2010as: The Lowest-velocity Member of a Family of Flat-velocity Type IIb Supernovae
NASA Astrophysics Data System (ADS)
Folatelli, Gastón; Bersten, Melina C.; Kuncarayakti, Hanindyo; Olivares Estay, Felipe; Anderson, Joseph P.; Holmbo, Simon; Maeda, Keiichi; Morrell, Nidia; Nomoto, Ken'ichi; Pignata, Giuliano; Stritzinger, Maximilian; Contreras, Carlos; Förster, Francisco; Hamuy, Mario; Phillips, Mark M.; Prieto, José Luis; Valenti, Stefano; Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny; Greiner, Jochen; Updike, Adria; Haislip, Joshua B.; LaCluyze, Aaron P.; Moore, Justin P.; Reichart, Daniel E.
2014-09-01
We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name "flat-velocity Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s-1 for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M ⊙. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor. This paper includes data gathered with the following facilities in Chile: the 6.5 m Magellan Telescopes located at Las Campanas Observatory, the Gemini Observatory, Cerro Pachón (Gemini Program GS-2008B-Q-56), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO Programmes 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526). We have also used data from the ESO Science Archive Facility under request number gfolatelli74580 and from the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
Ghost Condensation and Modification of Gravity at Long distances
NASA Astrophysics Data System (ADS)
Luty, Markus
2004-05-01
This talk will describe the physics of a "ghost condensate", a new kind of cosmological fluid that can fill the universe and give rise to novel gravitational effects. The fluid has a preferred rest frame, but is nonetheless compatible with maximally symmetric spacetimes such as flat space or de Sitter. In the presence of a ghost condensate, gravity is modified in a nontrivial way at large distances and late times. New phenomena include new contributions to dark energy and dark matter, antigravity, new spin-dependent forces, and oscillatory potentials. All of this new physics can be described by a completely explicit and consistent effective field theory.
Some Consequences of a Time Dependent Speed of Light
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2007-06-01
For reasons connected with both cosmology (the flatness and horizon problems) and atomic physics (n-body Dirac equation, etc.), various proposals have been made to modify general or special relativity(SR) to accommodate a cosmologically decreasing light speed [J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003)]. Two such theories, projective SR [S.N. Manida, gr-qc/9905046; S. S. Stepanov, physics/9909009 and Phys. Rev. D, 62, 023507 (2000)] and symmetric SR [F.T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005)] adapt special relativity to in different ways to an expanding, hyperbolically curved position space and predict time-dependences of c within reach of measurement but differing by a factor of two. Both theories bring in a new constant λ-1=σ=c^2H0-1. As Magueijo points, out the role of c in physics and cosmology is so profound that many deep changes must follow if is not absolutely invariant in space and time. In particular, symmetric SR brings a new light to the Dirac large-number relationship between the constants of gravitation and atomic physics.
Ideas of Flat and Curved Space in History of Physics
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2006-04-01
Since ``everything which is not prohibited is compulsory'' (assigned to Gell-Mann) we can postulate infinite flat Cartesian N-dimensional (N: any integer) space-time (ST) as embedding for any curved ST. Ergodicity raises quest of whether total number of inflationary and/or Everett bubbles (mini-verses) is finite, countably infinite (aleph-zero) or uncountably infinite (aleph-one). Are these bubbles form Gaussian distribution or form some non-random subsetting? Perhaps, communication between mini-verses (idea of D.Deutsch) can be facilitated by a kind of minimax non-local dynamics akin to Fermat principle? (Minimax Principle in Bubble Cosmology). Even such classical effects as magnetism and polarization have some non-local features. Can we go below the Planck length to perhaps Compton wavelength of our ``Hubble's bubble'' (h/Mc = 10 to minus 95 m, if M = 10 to 54 kg)? When talking about time loops and ergodicity (eternal return paradigm) is there some hysterisis in the way quantum states are accessed in ``forward'' or ``reverse'' direction? (reverse direction implies backward causality of J.Wheeler and/or Aristotelian final causation).
Dynamic Deformation of Theatrical Flats
NASA Astrophysics Data System (ADS)
Walton, Jamiahus; Martell, Eric; Martell, Verda
2013-03-01
In theatre, flats are used as walls and background scenery. During construction, flats are often built on the ground and then ``walked up,'' where a group of stagehands manually lift one end while another anchors the other end in place. When flats are very large, they can deform during this process. Stiffeners are used to decrease the amount of deformation in the flat. The purpose of this research is to determine the strain along the flat during the process of raising it up with and without stiffeners. We will also explore the effect of the person anchoring the pivot edge of the flat and discuss the safety concerns this presents. This research is part of the Physics of Theatre Project, an interdisciplinary collaboration designed to improve safety, reduce costs, and increase knowledge of physics principles within the technical theatre community.
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
NASA Astrophysics Data System (ADS)
Nurdiani, N.
2018-03-01
Low cost flats in Jakarta – Indonesia is provided by the government for low-income people in urban areas, in line with the program to redevelop or renew slum areas. Low cost flat is built with the minimum standard of building materials. The purpose of this study is to know efforts of the occupants to change of building materials at residential unit of low cost flats. The research was conducted by descriptive method at four of low cost housing in Jakarta: Rusuna Bendungan Hilir 1, Rusuna Tambora IIIA, Rusuna Bidara Cina, and Rusuna Sukapura. The results showed that physical changes which happened in low cost flats are aesthetic (residence paint color change), or improvement of physical quality of residential unit (change of building material), become dominant aspects done by residents in four rusuna.
Sombrero Galaxy Not So Flat After All
2012-04-24
New observations from NASA Spitzer Space Telescope reveal the Sombrero galaxy is not simply a regular flat disk galaxy of stars as previously believed, but a more round elliptical galaxy with a flat disk tucked inside.
Flatness-based control in successive loops for stabilization of heart's electrical activity
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Melkikh, Alexey
2016-12-01
The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.
Hammering Yucca Flat, Part One: P-Wave Velocity
NASA Astrophysics Data System (ADS)
Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II
2015-12-01
Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A Natural Language for AdS/CFT Correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared
2012-02-14
We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators, in direct analogy with the factorization channels of scattering amplitudes. In the regime where these correlators can be computed by tree level Witten diagrams in AdS, we derive an explicit formula for the residues of Mellin amplitudes at the corresponding factorization poles, and we use the conformal Casimir to show that these amplitudes obey algebraic finite difference equations. By analyzing the recursivemore » structure of our factorization formula we obtain simple diagrammatic rules for the construction of Mellin amplitudes corresponding to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules using our finite difference equations. Finally, we show that our factorization formula and our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproducing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout we emphasize a deep analogy with the properties of flat space scattering amplitudes in momentum space, which suggests that the Mellin amplitude may provide a holographic definition of the flat space S-Matrix.« less
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Grumiller, Daniel
2013-07-01
The holographic principle has a concrete realization in the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. If this principle is a true fact about quantum gravity then it must also hold beyond AdS/CFT. In this paper, we address specifically holographic field theory duals of gravitational theories in asymptotically flat spacetimes. We present some evidence of our recent conjecture that three-dimensional (3d) conformal Chern-Simons gravity (CSG) with flat space boundary conditions is dual to an extremal CFT.
Pair production in the gravitational field of a cosmic string
NASA Astrophysics Data System (ADS)
Harari, Diego D.; Skarzhinsky, Vladimir D.
1990-04-01
We show that many elementary particle physics processes, such as pair production by a high energy photon, that take place in Minkowski space only if a non-uniform external field provides for momentum non-conservation, do occur in the space-time around a straight cosmic string, even though the space is locally flat and there is no local gravitational potential. We exemplify this mechanism through the evaluation of the cross section per unit length of string for the decay of a massless scalar particle into a pair of massive particles. The cross sections for this kind of processes are typically small. Nevertheless, it is interesting to realize how these reactions occur due to topological properties of space, rather than to the action of a local field. V.S. is grateful to Mario Castagnino for hospitality at the Instituto de Astronomía y Física del Espacio during a visit while this work was done.
Otani, Sosuke; Kozuki, Yasunori; Kurata, Kengo; Ueda, Kaori; Nakai, Shigefumi; Murakami, Hitoshi
2008-01-01
The investigations were carried out at 6 tidal flats located on the eastern part of the Seto Inland Sea, Japan. This study was focused on physical characteristics of sediments, namely as particle size of sediment and difference in elevation, and generalizes the relationship between sediments and macrobenthos. A total of 192 species were collected at 187 stations at 6 tidal flats. Physical characteristics of sediment were classified into 9 groups by cluster analysis in relation to sediment particle size and difference in elevation. Those groups had also significant difference in physical characteristics of sediments, and were characterized by some specific macrobenthos species. Distribution of macrobenthos can be explained by the classification of physical characteristics of sediment. These findings show the possibility to predict the variety of macrobenthos community using the physical characteristics of sediment.
Loop Quantum Gravity and Asymptotically Flat Spaces
NASA Astrophysics Data System (ADS)
Arnsdorf, Matthias
2002-12-01
Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...
Development of flat-plate solar collectors for the heating and cooling of buildings
NASA Technical Reports Server (NTRS)
Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.
1975-01-01
The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.
NASA Astrophysics Data System (ADS)
Chen, Anffany; Pikulin, Dmitry I.; Franz, Marcel
A linear Josephson junction mediated by the surface states of a time-reversal-invariant Weyl or Dirac semimetal localizes Majorana flat bands protected by the time-reversal symmetry. We show that as a result, the Josephson current exhibits a discontinuous jump at π phase difference which can serve as an experimental signature of the Majorana bands. The magnitude of the jump scales proportionally to the junction length and the momentum space distance between the Weyl nodes projected onto the junction. It also exhibits a characteristic dependence on the junction orientation. We demonstrate that the jump is robust against the effects of non-zero temperature and weak non-magnetic disorder. This work was supported by NSERC and CIfAR. In addition A.C. acknowledges support by the 2016 Boulder Summer School for Condensed Matter and Materials Physics through NSF Grant DMR-13001648.
Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi
2018-03-01
Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.
Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets
NASA Technical Reports Server (NTRS)
Siegel, R.
1975-01-01
A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.
Supersymmetric black holes with lens-space topology.
Kunduri, Hari K; Lucietti, James
2014-11-21
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.
78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...
NASA Astrophysics Data System (ADS)
Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.
2013-11-01
The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.
Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx; Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es; Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl
We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under themore » symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.« less
Modeling of dynamic effects of a low power laser beam
NASA Technical Reports Server (NTRS)
Lawrence, George N.; Scholl, Marija S.; Khatib, AL
1988-01-01
Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.
NASA Astrophysics Data System (ADS)
Lian, D. K.; Hu, L. D.; Liu, Q. H.
2017-12-01
In classical mechanics, a nonrelativistic particle constrained on an N - 1 curved hypersurface embedded in N flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is "driven" by not only the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.
Exotica and the status of the strong cosmic censor conjecture in four dimensions
NASA Astrophysics Data System (ADS)
Etesi, Gábor
2017-12-01
An immense class of physical counterexamples to the four dimensional strong cosmic censor conjecture—in its usual broad formulation—is exhibited. More precisely, out of any closed and simply connected 4-manifold an open Ricci-flat Lorentzian 4-manifold is constructed which is not globally hyperbolic, and no perturbation of which, in any sense, can be globally hyperbolic. This very stable non-global-hyperbolicity is the consequence of our open spaces having a ‘creased end’—i.e. an end diffeomorphic to an exotic \
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Raju, Avinash
2018-04-01
We note that large classes of contractions of algebras that arise in physics can be understood purely algebraically via identifying appropriate Zm-gradings (and their generalizations) on the parent algebra. This includes various types of flat space/Carroll limits of finite and infinite dimensional (A)dS algebras, as well as Galilean and Galilean conformal algebras. Our observations can be regarded as providing a natural context for the Grassmann approach of Krishnan et al. [J. High Energy Phys. 2014(3), 36]. We also introduce a related notion, which we call partial grading, that arises naturally in this context.
BFV approach to geometric quantization
NASA Astrophysics Data System (ADS)
Fradkin, E. S.; Linetsky, V. Ya.
1994-12-01
A gauge-invariant approach to geometric quantization is developed. It yields a complete quantum description for dynamical systems with non-trivial geometry and topology of the phase space. The method is a global version of the gauge-invariant approach to quantization of second-class constraints developed by Batalin, Fradkin and Fradkina (BFF). Physical quantum states and quantum observables are respectively described by covariantly constant sections of the Fock bundle and the bundle of hermitian operators over the phase space with a flat connection defined by the nilpotent BVF-BRST operator. Perturbative calculation of the first non-trivial quantum correction to the Poisson brackets leads to the Chevalley cocycle known in deformation quantization. Consistency conditions lead to a topological quantization condition with metaplectic anomaly.
2002-03-29
KENNEDY SPACE CENTER, FLA. -- A mixed group of water birds searches for food in a lake near Kennedy Space Center. Identified are a Great Egret (background, with yellow beak), White Ibis (far right and center, orange beak), and Roseate Spoonbills. All prefer marshes, mud flats, ponds, lagoons and tidal flats as habitat. They are frequently found in the warm, coastal areas of Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, P.L.
1988-02-02
In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less
Differential Flatness and Cooperative Tracking in the Lorenz System
NASA Technical Reports Server (NTRS)
Crespo, Luis G.
2002-01-01
In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.
77 FR 61642 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... educational institutions have conducted suborbital rocket launches from the PFRR. While the PFRR is owned and...
Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin; Vadacchino, Davide
2018-03-01
We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Topological properties of flat electroencephalography's state space
NASA Astrophysics Data System (ADS)
Ken, Tan Lit; Ahmad, Tahir bin; Mohd, Mohd Sham bin; Ngien, Su Kong; Suwa, Tohru; Meng, Ong Sie
2016-02-01
Neuroinverse problem are often associated with complex neuronal activity. It involves locating problematic cell which is highly challenging. While epileptic foci localization is possible with the aid of EEG signals, it relies greatly on the ability to extract hidden information or pattern within EEG signals. Flat EEG being an enhancement of EEG is a way of viewing electroencephalograph on the real plane. In the perspective of dynamical systems, Flat EEG is equivalent to epileptic seizure hence, making it a great platform to study epileptic seizure. Throughout the years, various mathematical tools have been applied on Flat EEG to extract hidden information that is hardly noticeable by traditional visual inspection. While these tools have given worthy results, the journey towards understanding seizure process completely is yet to be succeeded. Since the underlying structure of Flat EEG is dynamic and is deemed to contain wealthy information regarding brainstorm, it would certainly be appealing to explore in depth its structures. To better understand the complex seizure process, this paper studies the event of epileptic seizure via Flat EEG in a more general framework by means of topology, particularly, on the state space where the event of Flat EEG lies.
NASA Astrophysics Data System (ADS)
Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.
2016-06-01
A new implementation of indirect boundary element method allows simulating the elastic wave propagation in complex configurations made of embedded regions that are homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the discrete wavenumber (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full-space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2-D and 3-D problems. Higher efficiency is achieved in 3-D.
Surface-Wave Tomography of Yucca Flat, Nevada
NASA Astrophysics Data System (ADS)
Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.
2016-12-01
In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Flat conductor cable design, manufacture, and installation
NASA Technical Reports Server (NTRS)
Angele, W.; Hankins, J. D.
1973-01-01
Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.
Weighted Lq-estimates for stationary Stokes system with partially BMO coefficients
NASA Astrophysics Data System (ADS)
Dong, Hongjie; Kim, Doyoon
2018-04-01
We prove the unique solvability of solutions in Sobolev spaces to the stationary Stokes system on a bounded Reifenberg flat domain when the coefficients are partially BMO functions, i.e., locally they are merely measurable in one direction and have small mean oscillations in the other directions. Using this result, we establish the unique solvability in Muckenhoupt type weighted Sobolev spaces for the system with partially BMO coefficients on a Reifenberg flat domain. We also present weighted a priori Lq-estimates for the system when the domain is the whole Euclidean space or a half space.
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Shi, Jia-Dong; Ye, Liu
2018-06-01
In this letter, we mainly investigate how to enhance the damaged quantum entanglement under an open Dirac system with the Hawking effect within Schwarzschild space-time. We consider that particle A held by Alice undergoes generalized amplitude damping noise in a flat space-time, and that another particle B by Bob entangled with A is under a Schwarzschild space-time. Subsequently, we put forward a physical scheme to recover the damaged quantum entanglement by prior weak measurement on subsystem A before the interaction with the decoherence noise followed by post-measurement filtering operation. The results indicate that our scheme can effectively recover the damaged quantum entanglement affected by the Hawking effect and the noisy channel. Thus, our work might be beneficial to understand the dynamic behavior of the quantum state and recover the damaged quantum entanglement with open Dirac systems under the Hawking effect in the background of a Schwarzschild black hole.
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun
2015-01-01
Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.
Silicon on insulator self-aligned transistors
McCarthy, Anthony M.
2003-11-18
A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.
Unsuppressed primordial standard clocks in warm quasi-single field inflation
NASA Astrophysics Data System (ADS)
Tong, Xi; Wang, Yi; Zhou, Siyi
2018-06-01
We study the non-Gaussianities in quasi-single field inflation with a warm inflation background. The thermal effects at small scales can sufficiently enhance the magnitude of the primordial standard clock signal. This scenario offers us the possibility of probing the UV physics of the very early universe without the exponentially small Boltzmann factor when the mass of the isocurvaton is much heavier than Hubble. The thermal effects at small scales can be studied using the flat space thermal field theory, connected to an effective description using non-Bunch-Davies vacuum at large scales, with large clock signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya; Nozawa, Masato
2006-06-15
We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less
Scattering from a random layer of leaves in the physical optics limit
NASA Technical Reports Server (NTRS)
Lang, R. H.; Seker, S. S.; Le Vine, D. M.
1982-01-01
Backscatter of electromagnetic radiation from a layer of vegetation over flat lossy ground has been studied in collaborative research at the George Washingnton University and the Goddard Space Flight Center. In this work the vegetation is composed of leaves which are modeled by a random collection of lossy dielectric disks. Backscattering coefficients for the vegetation layer have been calculated in the case of disks whose diameter is large compared to wavelength. These backscattering coefficients are obtained in terms of the scattering amplitude of an individual disk by employing the distorted Born procedure. The scattering amplitude for a disk which is large compared to wavelength is then found by physical optic techniques. Computed results are interpreted in terms of dominant reflected and transmitted contributions from the disks and ground.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping
2015-07-01
We present the design, implementation and detailed performance analysis for a class of trapeziform and flat acoustic cloaks. An effective large invisible area is obtained compared with the traditional carpet cloak. The cloaks are realized with homogeneous metamaterials which are made of periodic arrangements of subwavelength unit cells composed of steel embedded in air. The microstructures and its effective parameters of the cloaks are determined quickly and precisely in a broadband frequency range by using the effective medium theory and the proposed parameters optimization method. The invisibility capability of the cloaks can be controlled by the variation of the key design parameters and scale factor which are proved to have more influence on the performance in the near field than that in the far field. Different designs are suitable for different application situations. Good cloaking performance demonstrates that such a device can be physically realized with natural materials which will greatly promote the real applications of invisibility cloak.
An all-reflective wide-angle flat-field telescope for space
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1984-01-01
An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.
Stereo 3-D Vision in Teaching Physics
ERIC Educational Resources Information Center
Zabunov, Svetoslav
2012-01-01
Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2018-01-01
We apply the new fall of conditions presented in the paper [1] on asymptotically flat spacetime solutions of Chern-Simons-like theories of gravity. We show that the considered fall of conditions asymptotically solve equations of motion of generalized minimal massive gravity. We demonstrate that there exist two type of solutions, one of those is trivial and the others are non-trivial. By looking at non-trivial solutions, for asymptotically flat spacetimes in the generalized minimal massive gravity, in contrast to Einstein gravity, cosmological parameter can be non-zero. We obtain the conserved charges of the asymptotically flat spacetimes in generalized minimal massive gravity, and by introducing Fourier modes we show that the asymptotic symmetry algebra is a semidirect product of a BMS3 algebra and two U (1) current algebras. Also we verify that the BMS3 algebra can be obtained by a contraction of the AdS3 asymptotic symmetry algebra when the AdS3 radius tends to infinity in the flat-space limit. Finally we find energy, angular momentum and entropy for a particular case and deduce that these quantities satisfy the first law of flat space cosmologies.
A flat array large telescope concept for use on the moon, earth, and in space
NASA Technical Reports Server (NTRS)
Woodgate, Bruce E.
1991-01-01
An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.
A Review of Robotics Technologies for On-Orbit Services
2013-01-01
The SpaceX vehicle has successfully accomplished its first docking with the ISS in May 2012, delivered about 1,200 lbs of water, food , and other...algorithms, which can generate collision-free robot motion paths. Recently, Franch et al [101] have employed flatness theory to plan trajectories...3713–3719 (2005). [101] Franch J, Agrawal S, Fattah A, "Design of Differentially Flat Planar Space Robots: a Step Forward in Their Planning and
Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs
Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White
2012-01-01
Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp
It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less
Editorial: Focus on Extra Space Dimensions
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Pomarol, Alex
2010-07-01
Experiments at the Large Hadron Collider (LHC) have just started. In addition to verifying the Standard Model (SM) of particle physics, these experiments will probe a new energy frontier and test extensions of the SM. The existence of extra dimensions is one of the most attractive possibilities for physics beyond the SM. This focus issue contains a collection of articles addressing both theoretical and phenomenological aspects of extra-dimensional models. Focus on Extra Space Dimensions Contents Minimal universal extra dimensions in CalcHEP/CompHEP AseshKrishna Datta, Kyoungchul Kong and Konstantin T Matchev Disordered extra dimensions Karim Benakli Codimension-2 brane-bulk matching: examples from six and ten dimensions Allan Bayntun, C P Burgess and Leo van Nierop Gauge threshold corrections in warped geometry Kiwoon Choi, Ian-Woo Kim and Chang Sub Shin Holographic methods and gauge-Higgs unification in flat extra dimensions Marco Serone Soft-wall stabilization Joan A Cabrer, Gero von Gersdorff and Mariano Quirós Warped five-dimensional models: phenomenological status and experimental prospects Hooman Davoudiasl, Shrihari Gopalakrishna, Eduardo Pontón and José Santiago
Visible, invisible and trapped ghosts as sources of wormholes and black universes
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Bronnikov, K. A.; Korolyov, P. A.; Skvortsova, M. V.
2016-02-01
We construct explicit examples of globally regular static, spherically symmetric solutions in general relativity with scalar and electromagnetic fields, describing traversable wormholes with flat and AdS asymptotics and regular black holes, in particular, black universes. (A black universe is a regular black hole with an expanding, asymptotically isotropic space-time beyond the horizon.) Such objects exist in the presence of scalar fields with negative kinetic energy (“phantoms”, or “ghosts”), which are not observed under usual physical conditions. To account for that, we consider what we call “trapped ghosts” (scalars whose kinetic energy is only negative in a strong-field region of space-time) and “invisible ghosts”, i.e., phantom scalar fields sufficiently rapidly decaying in the weak-field region. The resulting configurations contain different numbers of Killing horizons, from zero to four.
Electromagnetic sinc Schell-model beams and their statistical properties.
Mei, Zhangrong; Mao, Yonghua
2014-09-22
A class of electromagnetic sources with sinc Schell-model correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. The evolution behaviors of statistical properties for the electromagnetic stochastic beams generated by this new source on propagating in free space and in atmosphere turbulence are investigated with the help of the weighted superposition method and by numerical simulations. It is demonstrated that the intensity distributions of such beams exhibit unique features on propagating in free space and produce a double-layer flat-top profile of being shape-invariant in the far field. This feature makes this new beam particularly suitable for some special laser processing applications. The influences of the atmosphere turbulence with a non-Kolmogorov power spectrum on statistical properties of the new beams are analyzed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaloper, N.
We discuss a particular stringy modular cosmology with two axion fields in seven space-time dimensions, decomposable as a time and two flat three-spaces. The effective equations of motion for the problem are those of the SU(3) Toda molecule and, hence, are integrable. We write down the solutions, and show that all of them are singular. They can be thought of as a generalization of the pre-big-bang cosmology with excited internal degrees of freedom, and still suffering from the graceful exit problem. Some of the solutions, however, show a rather unexpected property: some of their spatial sections shrink to a pointmore » in spite of winding modes wrapped around them. We also comment how more general, anisotropic solutions, with fewer Killing symmetries, can be obtained with the help of STU dualities. {copyright} {ital 1997} {ital The American Physical Society}« less
Three-flat test with plates in horizontal posture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannoni, Maurizio; Molesini, Giuseppe
2008-04-20
Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.
Holographic entanglement and Poincaré blocks in three-dimensional flat space
NASA Astrophysics Data System (ADS)
Hijano, Eliot; Rabideau, Charles
2018-05-01
We propose a covariant prescription to compute holographic entanglement entropy and Poincaré blocks (Global BMS blocks) in the context of three-dimensional Einstein gravity in flat space. We first present a prescription based on worldline methods in the probe limit, inspired by recent analog calculations in AdS/CFT. Building on this construction, we propose a full extrapolate dictionary and use it to compute holographic correlators and blocks away from the probe limit.
Soil physical and chemical properties associated with flat rock and riparian forest communities
David O. Mitchem; James E. Johnson; Laura S. Gellerstedt
2006-01-01
Flat Rock forest communities are unique ecosystems found adjacent to some large rivers in the Central and Southern Appalachian Mountains. Characterized by thin, alluvial soils overlying flat, resistant sandstone, these areas are maintained by severe flooding and have unique associated plant systems. With the advent of dams to control flooding in the 20th century, many...
A Solution to the Cosmological Problem of Relativity Theory
NASA Astrophysics Data System (ADS)
Janzen, Daryl
After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big Bang singularity, to appeal to the need for a quantum theory of gravity. This thesis takes a very different approach to the problem, in hypothesising that, because our physical model really does appear to do a very good job of describing the observed cosmic expansion rate, and all the data indicate that our Universe might well expand precisely according to the flat ΛCDM scale-factor, it may not be the model, but our basic expectations that need to be modified in order to derive a physical theory that stands in reasonable agreement with the empirical results; i.e., that it may actually be that we need to re-examine, and rationally modify our expectations of what should theoretically be, so that we might derive a theory to explain the empirical results of cosmology, which would be based solely on reasonably acceptable first principles. Therefore, a self-consistent theory is constructed here, upon re-consideration of the cosmological foundations of relativity theory, which eventually does afford an explanation of the cosmological problem, as it provides good reason to actually expect observations in the fundamental rest-frame to be described precisely by the flat ΛCDM scale-factor which has been empirically constrained.
The Happiest thought of Einstein's Life
NASA Astrophysics Data System (ADS)
Heller, Michael
Finally, let us have a closer look at the place of the equivalence principle in the logical scheme of Einstein's general relativity theory. First, Einstein new well, from Minkowski's geometric formulation of his own special relativity, that accelerated motions should be represented as curved lines in a flat space-time. Second, the Galileo principle asserts that all bodies are accelerated in the same way in a given gravitational field, and consequently their motions are represented in the flat space-time by curved lines, all exactly in the same way. Third, since all lines representing free motions are curved exactly in the same way in the flat space-time, one can say that the lines remain straight (as far as possible) but the space-time itself becomes curved. Fourth, and last, since acceleration is (locally) equivalent to a gravitational field (here we have the equivalence principle), one is entitled to assert that it is the gravitational field (and not acceleration) that is represented as the curvature of space-time. This looks almost like an Aristotelian syllogism. However, to put all the pieces of evidence into the logical chain took Einstein a few years of hard thinking. The result has been incorporated into the field equations which quantitatively show how the curvature of space-time and gravity are linked together.
Super-BMS3 algebras from {N}=2 flat supergravities
NASA Astrophysics Data System (ADS)
Lodato, Ivano; Merbis, Wout
2016-11-01
We consider two possible flat space limits of three dimensional {N}=(1, 1) AdS supergravity. They differ by how the supercharges are scaled with the AdS radius ℓ: the first limit (democratic) leads to the usual super-Poincaré theory, while a novel `twisted' theory of supergravity stems from the second (despotic) limit. We then propose boundary conditions such that the asymptotic symmetry algebras at null infinity correspond to supersymmetric extensions of the BMS algebras previously derived in connection to non- and ultra-relativistic limits of the {N}=(1, 1) Virasoro algebra in two dimensions. Finally, we study the supersymmetric energy bounds and find the explicit form of the asymptotic and global Killing spinors of supersymmetric solutions in both flat space supergravity theories.
Deviation diagnosis and analysis of hull flat block assembly based on a state space model
NASA Astrophysics Data System (ADS)
Zhang, Zhiying; Dai, Yinfang; Li, Zhen
2012-09-01
Dimensional control is one of the most important challenges in the shipbuilding industry. In order to predict assembly dimensional variation in hull flat block construction, a variation stream model based on state space was presented in this paper which can be further applied to accuracy control in shipbuilding. Part accumulative error, locating error, and welding deformation were taken into consideration in this model, and variation propagation mechanisms and the accumulative rule in the assembly process were analyzed. Then, a model was developed to describe the variation propagation throughout the assembly process. Finally, an example of flat block construction from an actual shipyard was given. The result shows that this method is effective and useful.
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2016-02-01
What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam-Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th-21st century space-time philosophy in the light of particle physics. An appendix reconsiders the Malament-Weatherall-Manchak conformal restriction of conventionality and constructs the 'universal force' influencing the causal structure. Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space-time theory that would have blocked Moritz Schlick's supposed refutation of synthetic a priori knowledge, and how Einstein's false analogy between the Neumann-Seeliger-Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-01
A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. Here we show how the curvature can be measured experimentally via Higgs cross-sections, WLscattering, and the Sparameter. The one-loop action of HEFT is given in terms of geometric invariants of M. Moreover, the distinction between the Standard Model (SM) and HEFT is whether Mis flat or curved, and the curvature is a signal of the scale of new physics.
Aeolian processes aboard a Space Station: Saltation and particle trajectory analysis
NASA Technical Reports Server (NTRS)
White, Bruce R.; Greeley, Ronald; Iversen, James D.; Leach, R. N.
1987-01-01
The Carousel Wind Tunnel (CWT) proposed to study aeolian processes aboard a Space Station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simuate flat plate turbulent boundary layer flow. The two dimensional flate plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricated to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzhaf, J.; Leihner, D.E.; Buerkert, A.
Deforestation, overgrazing, and declining soil regeneration periods have resulted in increased wind erosion problems in dry areas of the West African Sahel, but little is known about the bio-physical factors involved. This research was conducted to determine the effects of ridging and four different windbreak spacings on wind erosion, potential evaporation, and soil water reserves. A field trial was conducted from 1985 to 1987 on 12 ha of a Psammentic Paleustalf in Southern Niger. Millet, Pennisetum glaucum (L.), and cowpea, Vigna unguiculata (L.) Walp., were seeded in strips on flat and ridged soil. Windbreaks of savannah vegetation were spaced atmore » 6, 20, 40, and 90 m. The effects of ridging on wind speed, evaporation, and wind erosion were small and mostly non-significant. However, average wind speed at 0.3 m above ground in the center of cowpea and millet strips was significantly reduced from 2.8 to 2.1 m s[sup [minus]1] as windbreak distances narrowed from 90 to 6 m. As a consequence, potential evaporation declined by 15% and the amount of windblown soil particles by 50% in ridged and by 70% in flat treatments. Despite reduced potential evaporation, average subsoil water reserves were 14 mm smaller in the 6- than in the 20-m windbreak spacing indicating excessive water extraction by the windbreak vegetation. Thus, establishing windbreaks with natural savannah vegetation may require a careful consideration of the agronomic benefits and costs to competing crops. 21 refs., 5 figs.« less
Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors
2011-05-01
selenium flat panel detector. Proc. SPIE 2005. 5745: p. 529-540 4. Kopans, D.B., Breast Imaging. 2 ed. 1997, New York Lippincott Williams and...same. 2005. 8. M. Bissonnette, et al. Digital breast tomosynthesis using an amorphous selenium flat panel detector. in Medical Imaging 2005...tomosynthesis system with selenium based flat panel detector. Proc of SPIE, Physics of Medical Imaging, 2005. 5745. 12
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
There was movement that was stationary, for the four-velocity had passed around
NASA Astrophysics Data System (ADS)
Roukema, Boudewijn F.
2010-05-01
Is the Doppler interpretation of galaxy redshifts in a Friedmann-Lemaître-Robertson-Walker (FLRW) model valid in the context of the approach to comoving spatial sections pioneered by de Sitter, Friedmann, Lemaître and Robertson, i.e. according to which the three-manifold of comoving space is characterized by both its curvature and topology? Holonomy transformations for flat, spherical and hyperbolic FLRW spatial sections are proposed. By quotienting a simply connected FLRW spatial section by an appropriate group of holonomy transformations, the Doppler interpretation in a non-expanding Minkowski space-time, obtained via four-velocity parallel transport along a photon path, is found to imply that an inertial observer is receding from herself at a speed greater than zero, implying contradictory world lines. The contradiction in the multiply connected case occurs for arbitrary redshifts in the flat and spherical cases, and for certain large redshifts in the hyperbolic case. The link between the Doppler interpretation of redshifts and cosmic topology can be understood physically as the link between parallel transport along a photon path and the fact that the comoving spatial geodesic corresponding to a photon's path can be a closed loop in an FLRW model of any curvature. Closed comoving spatial loops are fundamental to cosmic topology. With apologies to Andrew Barton `Banjo' Paterson. E-mail: boud@astro.uni.torun.pl
Nonperturbative Renormalization Group Approach to Polymerized Membranes
NASA Astrophysics Data System (ADS)
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
Terrestrial photovoltaic collector technology trends
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E.
1984-01-01
Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.
Flat electronic bands in fractal-kagomé network and the effect of perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava-chakrabarti@yahoo.co.in
2016-05-06
We demonstrate an analytical prescription of demonstrating the flat band [FB] states in a fractal incorporated kagomé type network that can give rise to a countable infinity of flat non-dispersive eigenstates with a multitude of localization area. The onset of localization can, in principle, be delayed in space by an appropriate choice of energy regime. The length scale, at which the onset of localization for each mode occurs, can be tuned at will following the formalism developed within the framework of real space renormalization group. This scheme leads to an exact determination of energy eigenvalue for which one can havemore » dispersionless flat electronic bands. Furthermore, we have shown the effect ofuniform magnetic field for the same non-translationally invariant network model that has ultimately led to an‘apparent invisibility’ of such staggered localized states and to generate absolutely continuous sub-bands in the energy spectrum and again an interesting re-entrant behavior of those FB states.« less
A conformally flat realistic anisotropic model for a compact star
NASA Astrophysics Data System (ADS)
Ivanov, B. V.
2018-04-01
A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.
Flat band in disorder-driven non-Hermitian Weyl semimetals
NASA Astrophysics Data System (ADS)
Zyuzin, A. A.; Zyuzin, A. Yu.
2018-01-01
We study the interplay of disorder and band-structure topology in a Weyl semimetal with a tilted conical spectrum around the Weyl points. The spectrum of particles is given by the eigenvalues of a non-Hermitian matrix, which contains contributions from a Weyl Hamiltonian and complex self-energy due to electron elastic scattering on disorder. We find that the tilt-induced matrix structure of the self-energy gives rise to either a flat band or a nodal line segment at the interface of the electron and hole pockets in the bulk band structure of type-II Weyl semimetals depending on the Weyl cone inclination. For the tilt in a single direction in momentum space, each Weyl point expands into a flat band lying on the plane, which is transverse to the direction of the tilt. The spectrum of the flat band is fully imaginary and is separated from the in-plane dispersive part of the spectrum by the "exceptional nodal ring" where the matrix of the Green's function in momentum-frequency space is defective. The tilt in two directions might shrink a flat band into a nodal line segment with "exceptional edge points." We discuss the connection to the non-Hermitian topological theory.
Flat monodromies and a Moduli Space Size Conjecture
NASA Astrophysics Data System (ADS)
Hebecker, Arthur; Henkenjohann, Philipp; Witkowski, Lukas T.
2017-12-01
We investigate how super-Planckian axions can arise when type IIB 3-form flux is used to restrict a two-axion field space to a one-dimensional winding trajectory. If one does not attempt to address notoriously complicated issues like Kähler moduli stabilization, SUSY-breaking and inflation, this can be done very explicitly. We show that the presence of flux generates flat monodromies in the moduli space which we therefore call `Monodromic Moduli Space'. While we do indeed find long axionic trajectories, these are non-geodesic. Moreover, the length of geodesics remains highly constrained, in spite of the (finite) monodromy group introduced by the flux. We attempt to formulate this in terms of a `Moduli Space Size Conjecture'. Interesting mathematical structures arise in that the relevant spaces turn out to be fundamental domains of congruence subgroups of the modular group. In addition, new perspectives on inflation in string theory emerge.
Low Frequency Flats for Imaging Cameras on the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Kossakowski, Diana; Avila, Roberto J.; Borncamp, David; Grogin, Norman A.
2017-01-01
We created a revamped Low Frequency Flat (L-Flat) algorithm for the Hubble Space Telescope (HST) and all of its imaging cameras. The current program that makes these calibration files does not compile on modern computer systems and it requires translation to Python. We took the opportunity to explore various methods that reduce the scatter of photometric observations using chi-squared optimizers along with Markov Chain Monte Carlo (MCMC). We created simulations to validate the algorithms and then worked with the UV photometry of the globular cluster NGC6681 to update the calibration files for the Advanced Camera for Surveys (ACS) and Solar Blind Channel (SBC). The new software was made for general usage and therefore can be applied to any of the current imaging cameras on HST.
Use of PZT's for adaptive control of Fabry-Perot etalon plate figure
NASA Technical Reports Server (NTRS)
Skinner, WIlbert; Niciejewski, R.
2005-01-01
A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.
An Investigation of Spontaneous Lorentz Violation and Cosmic Inflation
NASA Astrophysics Data System (ADS)
Tam, Heywood
2010-12-01
In this thesis we re-examine two established ideas in theoretical physics: Lorentz invariance and cosmic inflation. In the first four chapters, we (i) propose a way to hide large extra dimensions by coupling standard model fields with Lorentz-violating tensor fields with expectation values along the extra dimensions; (ii) examine the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm 'aether' fields; (iii) investigate the phenomenological properties of the sigma-model aether theory; and (iv) explore the implications of an alternative theory of gravity in which the graviton arises from the Goldstone modes of a two-index symmetric aether field. In the final chapter, we examine the horizon and flatness problems using the canonical measure (developed by Gibbons, Hawking, and Stewart) on the space of solutions to Einstein's equations. We find that the flatness problem does not exist, while the homogeneity of our universe does represent a substantial fine-tuning. Based on the assumption of unitary evolution (Liouville's theorem), we further dispute the widely accepted claim that inflation makes our universe more natural.
Planck's constant and the three waves (TWs) of Einstein's covariant ether
NASA Astrophysics Data System (ADS)
Kostro, L.
1985-11-01
The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.
Direct Images, Fields of Hilbert Spaces, and Geometric Quantization
NASA Astrophysics Data System (ADS)
Lempert, László; Szőke, Róbert
2014-04-01
Geometric quantization often produces not one Hilbert space to represent the quantum states of a classical system but a whole family H s of Hilbert spaces, and the question arises if the spaces H s are canonically isomorphic. Axelrod et al. (J. Diff. Geo. 33:787-902, 1991) and Hitchin (Commun. Math. Phys. 131:347-380, 1990) suggest viewing H s as fibers of a Hilbert bundle H, introduce a connection on H, and use parallel transport to identify different fibers. Here we explore to what extent this can be done. First we introduce the notion of smooth and analytic fields of Hilbert spaces, and prove that if an analytic field over a simply connected base is flat, then it corresponds to a Hermitian Hilbert bundle with a flat connection and path independent parallel transport. Second we address a general direct image problem in complex geometry: pushing forward a Hermitian holomorphic vector bundle along a non-proper map . We give criteria for the direct image to be a smooth field of Hilbert spaces. Third we consider quantizing an analytic Riemannian manifold M by endowing TM with the family of adapted Kähler structures from Lempert and Szőke (Bull. Lond. Math. Soc. 44:367-374, 2012). This leads to a direct image problem. When M is homogeneous, we prove the direct image is an analytic field of Hilbert spaces. For certain such M—but not all—the direct image is even flat; which means that in those cases quantization is unique.
Throat quantization of the Schwarzschild-Tangherlini(-AdS) black hole
NASA Astrophysics Data System (ADS)
Maeda, Hideki
2018-01-01
By the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area/entropy spectra for the Schwarzschild-Tangherlini-type asymptotically flat or AdS vacuum black hole in arbitrary dimensions. Using the WKB approximation for black holes with large mass, we show that area/entropy is equally spaced for asymptotically flat black holes, while mass is equally spaced for asymptotically AdS black holes. Exact spectra can be obtained for toroidal AdS black holes in arbitrary dimensions including the three-dimensional BTZ black hole.
Duality invariance of s ≥ 3/2 fermions in AdS
Deser, S.; Seminara, D.
2014-09-30
The research show that in D = 4 AdS, s ≥ 3/2 partially massless (PM) fermions retain the duality invariances of their flat space massless counterparts. They have tuned ratios m 2/M 2 ≠ 0 that turn them into sums of effectively massless unconstrained helicity ±(s, ···, 3/2) excitations, shorn of the lowest (non-dual) helicity ±1/2-rung and — more generally — of succeeding higher rung as well. Each helicity mode is separately duality invariant, like its flat space counterpart.
Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space
NASA Astrophysics Data System (ADS)
Ali, Ahmad Tawfik
We study the non-lightlike ruled surfaces in Minkowski 3-space with non-lightlike base curve c(s) =∫(αt + βn + γb)ds, where t, n, b are the tangent, principal normal and binormal vectors of an arbitrary timelike curve Γ(s). Some important results of flat, minimal, II-minimal and II-flat non-lightlike ruled surfaces are studied. Finally, the following interesting theorem is proved: the only non-zero constant mean curvature (CMC) non-lightlike ruled surface is developable timelike ruled surface generated by binormal vector.
On asphericity of convex bodies in linear normed spaces.
Faried, Nashat; Morsy, Ahmed; Hussein, Aya M
2018-01-01
In 1960, Dvoretzky proved that in any infinite dimensional Banach space X and for any [Formula: see text] there exists a subspace L of X of arbitrary large dimension ϵ -iometric to Euclidean space. A main tool in proving this deep result was some results concerning asphericity of convex bodies. In this work, we introduce a simple technique and rigorous formulas to facilitate calculating the asphericity for each set that has a nonempty boundary set with respect to the flat space generated by it. We also give a formula to determine the center and the radius of the smallest ball containing a nonempty nonsingleton set K in a linear normed space, and the center and the radius of the largest ball contained in it provided that K has a nonempty boundary set with respect to the flat space generated by it. As an application we give lower and upper estimations for the asphericity of infinite and finite cross products of these sets in certain spaces, respectively.
NASA Astrophysics Data System (ADS)
Huff, Howard R.; Vigil, Joseph C.; Kuyel, Birol; Chan, David Y.; Nguyen, Long P.
1992-06-01
An experimental study was conducted to correlate wafer site flatness SFQD with stepper performance for half-micron lines and spaces. CD measurements were taken on wafers patterned on both GCA pre-production XLS i-line and SVGL Micrascan-90 DUV steppers as well as focus measurements on the Micrascan-90. Wafer site flatness SFQD less than 0.3 micrometers was observed to be a sufficiently small variable in CD non-uniformities for these initial half-micron stepper applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... which meets the following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10-0... specifications: C Mn P S Si Cr Cu Ni Mo 0.10-0.16% 0.70-0.90% 0.025% Max 0.006% Max 0.30-0.50% 0.50-0.70% 0.25... following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni V (wt.) Cb 0.10-0.14% 1.30...
Beam-Steerable Flat-Panel Reflector Antenna
NASA Technical Reports Server (NTRS)
Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.
2005-01-01
Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.
8. Asymptotically Flat and Regular Cauchy Data
NASA Astrophysics Data System (ADS)
Dain, Sergio
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
NASA Astrophysics Data System (ADS)
Carnio, Brett N.; Elliott, Janet A. W.
2014-08-01
The number of Maxwell-Boltzmann particles that hit a flat wall in infinite space per unit area per unit time is a well-known result. As new applications are arising in micro and nanotechnologies there are a number of situations in which a rarefied gas interacts with either a flat or curved surface in a small confined geometry. Thus, it is necessary to prove that the Maxwell-Boltzmann collision frequency result holds even if a container's dimensions are on the order of nanometers and also that this result is valid for both a finite container with flat walls (a rectangular container) and a finite container with a curved wall (a cylindrical container). An analytical proof confirms that the Maxwell-Boltzmann collision frequencies for either a finite rectangular container or a finite cylindrical container are both equal to the well-known result obtained for a flat wall in infinite space. A major aspect of this paper is the introduction of a mathematical technique to solve the arising infinite sum of integrals whose integrands depend on the Maxwell-Boltzmann velocity distribution.
2+1 black hole with SU(2) hair (and the theory where it grows)
NASA Astrophysics Data System (ADS)
Zanelli, Jorge
2015-04-01
A black hole solution in three spacetime dimensions, endowed with an SU(2) charge is presented. The construction is based on two main features of three dimensions: i) AdS3 spacetime is locally Lorentz-flat, that is, it can be covered with a congruence of local inertial observers, just like flat Minkowski space; ii) The SO(2,1) and SU(2) groups are isomorphic, so that a flat connection of the first can be mapped to a flat connection of the second. The global nontrivial nature of the solution is a consequence of the topology produced by the identification in the covering space that gives rise to the 2+1 black hole. It can be seen that this solution belongs to the vacuum (matter-free) sector of a supersymmetric theory based on the Chern-Simons action for the su(1, 2|2) superalgebra. The action for this system matches that of graphene in the long wavelength limit near the Dirac point. The SU(2) gauge symmetry is interpreted as the freedom to choose locally the definition of spin quantization axis for the electrons.
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less
Development of Physical Techniques for the Non-Destructive Evaluation of Polymers
1986-09-30
retreival is possible in an interferometer employing microwaves, a simple Fizeau arrangement was constructed, in which partially aluminised expanded ... polystyrene flats formed BMW the surfaces of the cavity within which interference took place. Figure 21 shows the interference pattern recorded when the flats
The Role of High-Dimensional Diffusive Search, Stabilization, and Frustration in Protein Folding
Rimratchada, Supreecha; McLeish, Tom C.B.; Radford, Sheena E.; Paci, Emanuele
2014-01-01
Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic interactions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contribution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a framework provides an effective representation of the energy landscape and folding kinetics that does justice to the essential characteristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mechanisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimensional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce sizeable topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depending on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron plots for realizations of this fold. PMID:24739172
Optical Design of the MOSES Sounding Rocket Experiment
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Kankelborg, Charles C.; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket payload now being developed by Montana State University in collaboration with the Goddard Space Flight Center, Lockheed Martin Advanced Technology Center, and Mullard Space Science Laboratory. The instrument utilizes a unique optical design to provide solar EUV measurements with true 2-pixel resolutions of 1.0 arcsec and 60 mA over a full two-dimensional field of view of 1056 x 528 arcsec, all at a time cadence of 10 s. This unprecedented capability is achieved by means of an objective spherical grating 100 mm in diameter, ruled at 833 gr/mm. The concave grating focuses spectrally dispersed solar radiation onto three separate detectors, simultaneously recording the zero-order as well as the plus and minus first-spectral-order images. Data analysis procedures, similar to those used in X-ray tomography reconstructions, can then disentangle the mixed spatial and spectral information recorded by the multiple detectors. A flat folding mirror permits an imaging focal length of 4.74 m to be packaged within the payload's physical length of 2.82 m. Both the objective grating and folding flat have specialized, closely matched, multilayer coatings that strongly enhance their EUV reflectance while also suppressing off-band radiation that would otherwise complicate data inversion. Although the spectral bandpass is rather narrow, several candidate wavelength intervals are available to carry out truly unique scientific studies of the outer solar atmosphere. Initial flights of MOSES, scheduled to begin in 2004, will observe a 10 Angstrom band that covers very strong emission lines characteristic of both the sun's corona (Si XI 303 Angstroms) and transition-region (He II 304 Angstroms). The MOSES program is supported by a grant from NASA's Office of Space Science.
A flat spectral Faraday filter for sodium lidar.
Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng
2011-04-01
We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.
The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.
Grainger, William F; North, Chris E; Ade, Peter A R
2011-06-01
We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics
Phase portrait analysis of super solitary waves and flat top solutions
NASA Astrophysics Data System (ADS)
Steffy, S. V.; Ghosh, S. S.
2018-06-01
The phase portrait analysis of super solitary waves has revealed a new kind of intermediate solution which defines the boundary between the two types of super solitary waves, viz., Type I and Type II. A Type I super solitary wave is known to be associated with an intermediate double layer while a Type II solution has no such association. The intermediate solution at the boundary has a flat top structure and is called a flat top solitary wave. Its characteristics resemble an amalgamation of a solitary wave and a double layer. It was found that, mathematically, such kinds of structures may emerge due to the presence of an extra nonlinearity. Although they are relatively unfamiliar in the realm of plasma physics, they have much wider applications in other physical systems.
Planck 2013 results. XXVI. Background geometry and topology of the Universe
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance χrec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ℛi of the largest sphere inscribed in topological domain (at log-likelihood-ratio Δln ℒ > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ℛi> 0.92χrec for the T3 cubic torus; ℛi> 0.71χrec for the T2 chimney; ℛi> 0.50χrec for the T1 slab; and in a positively curved Universe, ℛi> 1.03χrec for the dodecahedral space; ℛi> 1.0χrec for the truncated cube; and ℛi> 0.89χrec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is ℛi> 0.94χrec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (ω/H)0< 8.1 × 10-10 (95% confidence level).
Investigation of the spinfoam path integral with quantum cuboid intertwiners
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2016-05-01
In this work, we investigate the 4d path integral for Euclidean quantum gravity on a hypercubic lattice, as given by the spinfoam model by Engle, Pereira, Rovelli, Livine, Freidel and Krasnov. To tackle the problem, we restrict to a set of quantum geometries that reflects the large amount of lattice symmetries. In particular, the sum over intertwiners is restricted to quantum cuboids, i.e. coherent intertwiners which describe a cuboidal geometry in the large-j limit. Using asymptotic expressions for the vertex amplitude, we find several interesting properties of the state sum. First of all, the value of coupling constants in the amplitude functions determines whether geometric or nongeometric configurations dominate the path integral. Secondly, there is a critical value of the coupling constant α , which separates two phases. In both phases, the diffeomorphism symmetry appears to be broken. In one, the dominant contribution comes from highly irregular, in the other from highly regular configurations, both describing flat Euclidean space with small quantum fluctuations around them, viewed in different coordinate systems. On the critical point diffeomorphism symmetry is nearly restored, however. Thirdly, we use the state sum to compute the physical norm of kinematical states, i.e. their norm in the physical Hilbert space. We find that states which describe boundary geometry with high torsion have an exponentially suppressed physical norm. We argue that this allows one to exclude them from the state sum in calculations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... capability resulting from lack of sleep or increased physical activity that can reduce a flightcrew member's... seat accommodation installed in an aircraft that provides a flightcrew member with a sleep opportunity... with the ability to sleep either in a bed, bunk or in a chair that allows for flat or near flat...
An Integrated Nonlinear Analysis library - (INA) for solar system plasma turbulence
NASA Astrophysics Data System (ADS)
Munteanu, Costel; Kovacs, Peter; Echim, Marius; Koppan, Andras
2014-05-01
We present an integrated software library dedicated to the analysis of time series recorded in space and adapted to investigate turbulence, intermittency and multifractals. The library is written in MATLAB and provides a graphical user interface (GUI) customized for the analysis of space physics data available online like: Coordinated Data Analysis Web (CDAWeb), Automated Multi Dataset Analysis system (AMDA), Planetary Science Archive (PSA), World Data Center Kyoto (WDC), Ulysses Final Archive (UFA) and Cluster Active Archive (CAA). Three main modules are already implemented in INA : the Power Spectral Density (PSD) Analysis, the Wavelet and Intemittency Analysis and the Probability Density Functions (PDF) analysis.The layered structure of the software allows the user to easily switch between different modules/methods while retaining the same time interval for the analysis. The wavelet analysis module includes algorithms to compute and analyse the PSD, the Scalogram, the Local Intermittency Measure (LIM) or the Flatness parameter. The PDF analysis module includes algorithms for computing the PDFs for a range of scales and parameters fully customizable by the user; it also computes the Flatness parameter and enables fast comparison with standard PDF profiles like, for instance, the Gaussian PDF. The library has been already tested on Cluster and Venus Express data and we will show relevant examples. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS UEFISCDI, project number PN-II-ID PCE-2012-4-0418.
Volumetric 3D display using a DLP projection engine
NASA Astrophysics Data System (ADS)
Geng, Jason
2012-03-01
In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.
Asympotics with positive cosmological constant
NASA Astrophysics Data System (ADS)
Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna
2014-03-01
Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.
1972-01-01
An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.
Dark Energy and Dark Matter Hidden in the Geometry of Space?
NASA Astrophysics Data System (ADS)
Buchert, Thomas
A spatially flat and infinite Universe in the form of a "concordant" standard model of cosmology rules present-day thinking of cosmologists. The price to pay is an unknown physical origin of Dark Energy and Dark Matter that are supposed to exist and even appear to rule the dynamics of our Universe. A growing number of cosmologists question the existence of dark constituents: the standard model of cosmology may be just too simple, since it neglects the influence of structure in the Universe on its global expansion history. The key-issue appears to be the curvature of space: the formation of structure interacts with the geometry of space, changing our global picture of the Universe. This chapter explains the underlying mechanism that works in the right direction to uncover the dark faces of the standard model of cosmology. If successful, this novel approach furnishes a new paradigm of modern cosmology. Hundreds of researchers have recently embarked into studies of this new subject. We understand much at present, but there are many open questions.
NASA Astrophysics Data System (ADS)
Rezzolla, L.; Ahmedov, B. J.; Miller, J. C.
2001-04-01
We present analytic solutions of Maxwell equations in the internal and external background space-time of a slowly rotating magnetized neutron star. The star is considered isolated and in vacuum, with a dipolar magnetic field not aligned with the axis of rotation. With respect to a flat space-time solution, general relativity introduces corrections related both to the monopolar and the dipolar parts of the gravitational field. In particular, we show that in the case of infinite electrical conductivity general relativistic corrections resulting from the dragging of reference frames are present, but only in the expression for the electric field. In the case of finite electrical conductivity, however, corrections resulting from both the space-time curvature and the dragging of reference frames are shown to be present in the induction equation. These corrections could be relevant for the evolution of the magnetic fields of pulsars and magnetars. The solutions found, while obtained through some simplifying assumption, reflect a rather general physical configuration and could therefore be used in a variety of astrophysical situations.
Complex reflection groups, logarithmic connections and bi-flat F-manifolds
NASA Astrophysics Data System (ADS)
Arsie, Alessandro; Lorenzoni, Paolo
2017-10-01
We show that bi-flat F-manifolds can be interpreted as natural geometrical structures encoding the almost duality for Frobenius manifolds without metric. Using this framework, we extend Dubrovin's duality between orbit spaces of Coxeter groups and Veselov's ěe -systems, to the orbit spaces of exceptional well-generated complex reflection groups of rank 2 and 3. On the Veselov's ěe -systems side, we provide a generalization of the notion of ěe -systems that gives rise to a dual connection which coincides with a Dunkl-Kohno-type connection associated with such groups. In particular, this allows us to treat on the same ground several different examples including Coxeter and Shephard groups. Remarkably, as a by-product of our results, we prove that in some examples, basic flat invariants are not uniquely defined. As far as we know, such a phenomenon has never been pointed out before.
Invariant classification of second-order conformally flat superintegrable systems
NASA Astrophysics Data System (ADS)
Capel, J. J.; Kress, J. M.
2014-12-01
In this paper we continue the work of Kalnins et al in classifying all second-order conformally-superintegrable (Laplace-type) systems over conformally flat spaces, using tools from algebraic geometry and classical invariant theory. The results obtained show, through Stäckel equivalence, that the list of known nondegenerate superintegrable systems over three-dimensional conformally flat spaces is complete. In particular, a seven-dimensional manifold is determined such that each point corresponds to a conformal class of superintegrable systems. This manifold is foliated by the nonlinear action of the conformal group in three dimensions. Two systems lie in the same conformal class if and only if they lie in the same leaf of the foliation. This foliation is explicitly described using algebraic varieties formed from representations of the conformal group. The proof of these results rely heavily on Gröbner basis calculations using the computer algebra software packages Maple and Singular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, J.W.; Swinson, W.F.
1975-12-01
The complete test results for a flat plate with two closely spaced nozzles attached are presented. Test loadings were 1:1, 1:2, and 2:1 biaxial planar tension loadings on the plate, axial thrust loadings applied separately to the nozzles, and bending moment loadings applied to the nozzles both within and normal to the plane of symmetry containing the nozzle axes. The test plate was 36 x 36 x 0.375 in., and the attached nozzles had outer diameters of 2.625 in. and wall thicknesses of 0.250 in. The nozzles were located in the center of the plate with their centers 3.0 in.more » apart and were considered to be free of weld distortions and irregularities in the junction region. 6 references. (auth)« less
Conformally non-flat spacetime representing dense compact objects
NASA Astrophysics Data System (ADS)
Singh, Ksh. Newton; Bhar, Piyali; Rahaman, Farook; Pant, Neeraj; Rahaman, Mansur
2017-06-01
A new conformally non-flat interior spacetime embedded in five-dimensional (5D) pseudo Euclidean space is explored in this paper. We proceed our calculation with the assumption of spherically symmetric anisotropic matter distribution and Karmarkar condition (necessary condition for class one). This solution is free from geometrical singularity and well-behaved in all respects. We ansatz a new type of metric potential g11 and solve for the metric potential g00 via Karmarkar condition. Further, all the physical parameters are determined from Einstein’s field equations using the two metric potentials. All the constants of integration are determined using boundary conditions. Due to its conformally non-flat character, it can represent bounded configurations. Therefore, we have used it to model two compact stars Vela X-1 and Cyg X-2. Indeed, the obtained masses and radii of these two objects from our solution are well matched with those observed values given in [T. Gangopadhyay et al., Mon. Not. R. Astron. Soc. 431, 3216 (2013)] and [J. Casares et al., Mon. Not. R. Astron. Soc. 401, 2517 (2010)]. The equilibrium of the models is investigated from generalized TOV-equation. We have adopted [L. Herrera’s, Phys. Lett. A 165, 206 (1992)] method and static stability criterion of Harisson-Zeldovich-Novikov [B. K. Harrison et al., Gravitational Theory and Gravitational Collapse (University of Chicago Press, 1965); Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1, Stars and Relativity (University of Chicago Press, 1971)] to analyze the stability of the models.
Development of flat conductor cable for commercial and residential wiring
NASA Technical Reports Server (NTRS)
Carden, J. R.
1977-01-01
The overall spectrum of the space technology spin-off development project: development of Flat Conductor Cable (FCC) for commercial and residential wiring, is presented. A discussion of the background, program milestones, industry participants, system outgrowth, hardware availability, cost estimates, and overall status of the program is presented for the 1970-to-present time period.
Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate
NASA Astrophysics Data System (ADS)
Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth
2013-11-01
We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).
Accessibility of low-income family flats in North Jakarta city
NASA Astrophysics Data System (ADS)
Feminin, T. A.; Wiranegara, H. W.; Supriatna, Y.
2018-01-01
The majority of relocated, low-income families in North Jakarta city who residing the flats, complained at decreasing their accessibility to the workplaces and to the social facilities. The aim of this research was to identify the changing of their accessibility before and after relocated, viewed from three dimensions: distance, travel time, and travel cost to the workplaces, educational facilities, and shopping areas. The research design was questionnaire survey containing the degree of accessibility before and after resided the flats. Five flats were chosen as cases. Their inhabitants were chosen as respondents which used simple random sampling. The result showed that their flats accessibility to the workplaces in all three dimensions was lower than when they resided in the slum area. Also, in distance and travel time accessibility to shopping areas was lower. Only accessibility to educational facilities measured in those three dimensions was higher after they moved. Supply for affordable public transport from their flats to reach their workplaces is needed to raise their accessibility. Also, they need subsidizeto rent of their flats so the burden to their income lesser.Using the ground space of their flats for retail activities was to make more accessible for their shopping activities.
From lattice Hamiltonians to tunable band structures by lithographic design
NASA Astrophysics Data System (ADS)
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
Physical activity when riding an electric assisted bicycle.
Berntsen, Sveinung; Malnes, Lena; Langåker, Aleksander; Bere, Elling
2017-04-26
The objectives of the present study were to compare time spent cycling, exercise intensity, and time spent in moderate- (MPA) and vigorous intensity physical activity (VPA) when cycling on an E-bike and a conventional bicycle on two "cycling-to-work" routes with differences in topography, defined as a hilly and a flat route. Eight adults (23-54 years, two women) cycled outdoors on a conventional bicycle and an E-bike, on a flat (8.2 km) and a hilly (7.1 km) route, resulting in 32 journeys. Duration, elevation, and oxygen consumption were recorded using a portable oxygen analyser with GPS. A maximal cardiorespiratory fitness test was performed on a cycle ergometer. Resting metabolic rate was obtained by indirect calorimetry with a canopy hood. The participants spent less time (median (IQR)) cycling on the E-bike compared with the conventional bicycle, on both the hilly (18.8 (4.9) vs. 26.3 (6.4) minutes) and the flat (20.0 (2.9) vs. 23.8 (1.8) minutes) routes. Lower exercise intensity was observed with the E-bike compared with the conventional bicycle, both on the hilly (50 (18) vs. 60 (22) % of maximal oxygen uptake) and the flat (52 (19) vs. 55 (12) % of maximal oxygen uptake) routes. In both cycling modes, most time was spent in MVPA (92-99%). However, fewer minutes were spent in MVPA with the E-bike than the conventional bicycle, for both the hilly (26% lower) and the flat (17% lower) routes. Cycling on the E-bike also resulted in 35 and 15% fewer minutes in vigorous intensity, respectively on the hilly and flat routes. Cycling on the E-bike resulted in lower trip duration and exercise intensity, compared with the conventional bicycle. However, most of the time was spent in MVPA. This suggests that changing the commuting mode from car to E-bike will significantly increase levels of physical activity while commuting.
NASA Astrophysics Data System (ADS)
Arponen, J. S.; Bishop, R. F.
1993-11-01
In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.
NASA Astrophysics Data System (ADS)
Dai, Honglin; Luo, Yongdao
2013-12-01
In recent years, with the development of the Flat-Field Holographic Concave Grating, they are adopted by all kinds of UV spectrometers. By means of single optical surface, the Flat-Field Holographic Concave Grating can implement dispersion and imaging that make the UV spectrometer system design quite compact. However, the calibration of the Flat-Field Holographic Concave Grating is very difficult. Various factors make its imaging quality difficult to be guaranteed. So we have to process the spectrum signal with signal restoration before using it. Guiding by the theory of signals and systems, and after a series of experiments, we found that our UV spectrometer system is a Linear Space- Variant System. It means that we have to measure PSF of every pixel of the system which contains thousands of pixels. Obviously, that's a large amount of calculation .For dealing with this problem, we proposes a novel signal restoration method. This method divides the system into several Linear Space-Invariant subsystems and then makes signal restoration with PSFs. Our experiments turn out that this method is effective and inexpensive.
On superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2018-02-01
Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.
New two-metric theory of gravity with prior geometry
NASA Technical Reports Server (NTRS)
Lightman, A. P.; Lee, D. L.
1973-01-01
A Lagrangian-based metric theory of gravity is developed with three adjustable constants and two tensor fields, one of which is a nondynamic 'flat space metric' eta. With a suitable cosmological model and a particular choice of the constants, the 'post-Newtonian limit' of the theory agrees, in the current epoch, with that of general relativity theory (GRT); consequently the theory is consistent with current gravitation experiments. Because of the role of eta, the gravitational 'constant' G is time-dependent and gravitational waves travel null geodesics of eta rather than the physical metric g. Gravitational waves possess six degrees of freedom. The general exact static spherically-symmetric solution is a four-parameter family. Future experimental tests of the theory are discussed.
K-decompositions and 3d gauge theories
Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B.
2016-11-24
This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K, C)-connections on a large class of 3-manifolds M with boundary. We introduce a moduli spacemore » $$\\mathcal{L}$$ K(M) of framed flat connections on the boundary ∂M that extend to M. Our goal is to understand an open part of $$\\mathcal{L}$$ K(M) as a Lagrangian subvariety in the symplectic moduli space X un K(∂M) of framed flat connections on the boundary — and more so, as a “K 2-Lagrangian,” meaning that the K 2-avatar of the symplectic form restricts to zero. We construct an open part of $$\\mathcal{L}$$ K(M) from elementary data associated with the hypersimplicial K-decomposition of an ideal triangulation of M, in a way that generalizes (and combines) both Thurston’s gluing equations in 3d hyperbolic geometry and the cluster coordinates for framed flat PGL(K, C)-connections on surfaces. By using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of $$\\mathcal{L}$$ K(M) is K 2-isotropic as long as ∂M satisfies certain topological constraints (theorem 4.2). In some cases this easily implies that $$\\mathcal{L}$$ K(M) is K 2-Lagrangian. For general M, we extend a classic result of Neumann and Zagier on symplectic properties of PGL(2) gluing equations to reduce the K 2-Lagrangian property to a combinatorial statement. Physically, we translate the K-decomposition of an ideal triangulation of M and its symplectic properties to produce an explicit construction of 3d N = 2 superconformal field theories T K [M] resulting (conjecturally) from the compactification of K M5-branes on M. This extends known constructions for K = 2. Just as for K = 2, the theories T K [M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N f = 1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T K [M] grow cubically in K.« less
K-decompositions and 3d gauge theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B.
This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K, C)-connections on a large class of 3-manifolds M with boundary. We introduce a moduli spacemore » $$\\mathcal{L}$$ K(M) of framed flat connections on the boundary ∂M that extend to M. Our goal is to understand an open part of $$\\mathcal{L}$$ K(M) as a Lagrangian subvariety in the symplectic moduli space X un K(∂M) of framed flat connections on the boundary — and more so, as a “K 2-Lagrangian,” meaning that the K 2-avatar of the symplectic form restricts to zero. We construct an open part of $$\\mathcal{L}$$ K(M) from elementary data associated with the hypersimplicial K-decomposition of an ideal triangulation of M, in a way that generalizes (and combines) both Thurston’s gluing equations in 3d hyperbolic geometry and the cluster coordinates for framed flat PGL(K, C)-connections on surfaces. By using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of $$\\mathcal{L}$$ K(M) is K 2-isotropic as long as ∂M satisfies certain topological constraints (theorem 4.2). In some cases this easily implies that $$\\mathcal{L}$$ K(M) is K 2-Lagrangian. For general M, we extend a classic result of Neumann and Zagier on symplectic properties of PGL(2) gluing equations to reduce the K 2-Lagrangian property to a combinatorial statement. Physically, we translate the K-decomposition of an ideal triangulation of M and its symplectic properties to produce an explicit construction of 3d N = 2 superconformal field theories T K [M] resulting (conjecturally) from the compactification of K M5-branes on M. This extends known constructions for K = 2. Just as for K = 2, the theories T K [M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N f = 1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T K [M] grow cubically in K.« less
46 CFR 108.459 - Number and location of outlets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...
46 CFR 108.459 - Number and location of outlets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...
46 CFR 108.459 - Number and location of outlets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...
46 CFR 108.459 - Number and location of outlets.
Code of Federal Regulations, 2012 CFR
2012-10-01
... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...
46 CFR 108.459 - Number and location of outlets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
NASA Astrophysics Data System (ADS)
Mankoč Borštnik, N. S.; Nielsen, H. B.
2006-12-01
The genuine Kaluza-Klein-like theories--with no fields in addition to gravity--have difficulties with the existence of massless spinors after the compactification of some space dimensions \\cite{witten}. We proposed (Phys. Lett. B 633 (2006)771) such a boundary condition for spinors in 1+5 compactified on a flat disk that ensures masslessness of spinors in d=1+3 as well as their chiral coupling to the corresponding background gauge field (which solves equations of motion for a free field linear in the Riemann curvature). In this paper we study the same toy model: M^{(1+3)} x M^{(2)}, looking this time for an involution which transforms a space of solutions of Weyl equations in d=1+5 from the outside of the flat disk in x^5 and x^6 into its inside, allowing massless spinor of only one handedness--and accordingly assures mass protection--and of one charge--1/2--and infinitely many massive spinors of the same charge, chirally coupled to the corresponding background gauge field. We reformulate the operator of momentum so that it is Hermitean on the vector space of spinor states obeying the involution boundary condition.
Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan
2017-01-01
Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5-25 cm) was significantly ( p < 0.05) higher in field plots with plastic film mulch than the control (CK), and resulted in greater soil water storage (0-200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly ( p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% ( p < 0.05) greater and 28% ( p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% ( p < 0.05) with consecutive film-mulched ridges and 21.1% ( p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased by 1559, 528, and 350 Chinese Yuan (CNY) ha -1 with the consecutive film-mulched ridges, furrow-flat planting and alternating film-mulched ridges, respectively, compared with the control (CK). We conclude that the consecutive film-mulched ridge method was the most productive and profitable for maize in this semi-arid area with limited and erratic precipitation.
Thermodynamics of Newman-Unti-Tamburino charged spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Robert; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Stelea, Cristian
We discuss and compare at length the results of two methods used recently to describe the thermodynamics of Taub-Newman-Unti-Tamburino (NUT) solutions in a de Sitter background. In the first approach (C approach), one deals with an analytically continued version of the metric while in the second approach (R approach), the discussion is carried out using the unmodified metric with Lorentzian signature. No analytic continuation is performed on the coordinates and/or the parameters that appear in the metric. We find that the results of both these approaches are completely equivalent modulo analytic continuation and we provide the exact prescription that relatesmore » the results in both methods. The extension of these results to the AdS/flat cases aims to give a physical interpretation of the thermodynamics of NUT-charged spacetimes in the Lorentzian sector. We also briefly discuss the higher-dimensional spaces and note that, analogous with the absence of hyperbolic NUTs in AdS backgrounds, there are no spherical Taub-NUT-dS solutions.« less
NASA Astrophysics Data System (ADS)
Niu, Jian; Wang, Dong; Qin, Haili; Xiong, Xiong; Tan, Pengli; Li, Youyong; Liu, Rui; Lu, Xuxing; Wu, Jian; Zhang, Ting; Ni, Weihai; Jin, Jian
2014-02-01
Hydrogels are generally thought to be formed by nano- to micrometre-scale fibres or polymer chains, either physically branched or entangled with each other to trap water. Although there are also anisotropic hydrogels with apparently ordered structures, they are essentially polymer fibre/discrete polymer chains-based network without exception. Here we present a type of polymer-free anisotropic lamellar hydrogels composed of 100-nm-thick water layers sandwiched by two bilayer membranes of a self-assembled nonionic surfactant, hexadecylglyceryl maleate. The hydrogels appear iridescent as a result of Bragg’s reflection of visible light from the periodic lamellar plane. The particular lamellar hydrogel with extremely wide water spacing was used as a soft two-dimensional template to synthesize single-crystalline nanosheets in the confined two-dimensional space. As a consequence, flexible, ultrathin and large area single-crystalline gold membranes with atomically flat surface were produced in the hydrogel. The optical and electrical properties were detected on a single gold membrane.
Lagrangian analysis of the laminar flat plate boundary layer
NASA Astrophysics Data System (ADS)
Gabr, Mohammad
2016-10-01
The flow properties at the leading edge of a flat plate represent a singularity to the Blasius laminar boundary layer equations; by applying the Lagrangian approach, the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.
Flat Earth theory: an exercise in critical thinking
NASA Astrophysics Data System (ADS)
Břízová, Leontýna; Gerbec, Kelsey; Šauer, Jiří; Šlégr, Jan
2018-07-01
In this paper we present a critical analysis of some of the arguments of flat Earth theory, and we also try to show that this analysis and refutation of these false claims can be a useful exercise in critical thinking that is so much needed today. This article can also make it easier for teachers who are exposed to some of the arguments of flat Earth theory by their students. Some arguments of this theory are completely senseless, and some can simply be disproved by trigonometry or basic physical laws.
Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe
2003-10-09
The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.
Color quality management in advanced flat panel display engines
NASA Astrophysics Data System (ADS)
Lebowsky, Fritz; Neugebauer, Charles F.; Marnatti, David M.
2003-01-01
During recent years color reproduction systems for consumer needs have experienced various difficulties. In particular, flat panels and printers could not reach a satisfactory color match. The RGB image stored on an Internet server of a retailer did not show the desired colors on a consumer display device or printer device. STMicroelectronics addresses this important color reproduction issue inside their advanced display engines using novel algorithms targeted for low cost consumer flat panels. Using a new and genuine RGB color space transformation, which combines a gamma correction Look-Up-Table, tetrahedrization, and linear interpolation, we satisfy market demands.
Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice
Taie, Shintaro; Ozawa, Hideki; Ichinose, Tomohiro; Nishio, Takuei; Nakajima, Shuta; Takahashi, Yoshiro
2015-01-01
Although kinetic energy of a massive particle generally has quadratic dependence on its momentum, a flat, dispersionless energy band is realized in crystals with specific lattice structures. Such macroscopic degeneracy causes the emergence of localized eigenstates and has been a key concept in the context of itinerant ferromagnetism. We report the realization of a “Lieb lattice” configuration with an optical lattice, which has a flat energy band as the first excited state. Our optical lattice potential has various degrees of freedom in its manipulation, which enables coherent transfer of a Bose-Einstein condensate into the flat band. In addition to measuring lifetime of the flat band population for different tight-binding parameters, we investigate the inter-sublattice dynamics of the system by projecting the sublattice population onto the band population. This measurement clearly shows the formation of the localized state with the specific sublattice decoupled in the flat band, and even detects the presence of flat-band breaking perturbations, resulting in the delocalization. Our results will open up the possibilities of exploring the physics of flat bands with a highly controllable quantum system. PMID:26665167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.
2013-11-01
We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-spacemore » density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.« less
Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi
2017-12-01
The Atiyah-Patodi-Singer (APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a nonlocal boundary condition known as the "APS boundary condition" by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a "physicist-friendly" way for a simple setup with U (1 ) or S U (N ) gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.
Friendly vertical housing: case of walk-up flat housing development in Yogyakarta
NASA Astrophysics Data System (ADS)
Fosterharoldas Swasto, Deva
2018-03-01
In Yogyakarta Province, the local government have developed walk-up flats housing for more than ten years since the mid of the 2000s. Yogyakarta City and Sleman Regency was pioneering the construction with some blocks of flats in several locations. However, after this period, there is limited evaluation about the effectiveness of the occupancy. One of the issues is related to the sustainable housing development. Concerning this situation, it is proposed to examine how the development of walk-up flats housing in Yogyakarta City and Sleman Regency can be evaluated based on specific housing indicator, as a part of sustainable housing development concept. This paper would like to explore the phenomenon on how ‘friendly’ the flats is. The researcher will qualitatively asses variables from the walk-up flat cases in Yogyakarta City and Sleman Regency. The results suggested that the physical quality of the vertical housing situation could be enhanced to meet residents’ satisfaction.
Cosmological attractors and asymptotic freedom of the inflaton field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallosh, Renata; Linde, Andrei
2016-06-28
We show that the inflaton coupling to all other fields is exponentially suppressed during inflation in the cosmological α-attractor models. In the context of supergravity, this feature is a consequence of the underlying hyperbolic geometry of the moduli space which has a flat direction corresponding to the inflaton field. A combination of these factors protects the asymptotic flatness of the inflaton potential.
Constraint-Free Theories of Gravitation
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.; Robinson, R. Steve; Wahlquist, Hugo D.
1998-01-01
Lovelock actions (more precisely, extended Gauss-Bonnet forms) when varied as Cartan forms on subspaces of higher dimensional flat Riemannian manifolds, generate well set, causal exterior differential systems. In particular, the Einstein- Hilbert action 4-form, varied on a 4 dimensional subspace of E(sub 10) yields a well set generalized theory of gravity having no constraints. Rcci-flat solutions are selected by initial conditions on a bounding 3-space.
Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm
NASA Astrophysics Data System (ADS)
Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan
2006-03-01
Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.
Asymptotic symmetries and geometry on the boundary in the first order formalism
NASA Astrophysics Data System (ADS)
Korovin, Yegor
2018-03-01
Proper understanding of the geometry on the boundary of a spacetime is a critical step on the way to extending holography to spaces with non-AdS asymptotics. In general the boundary cannot be described in terms of the Riemannian geometry and the first order formalism is more appropriate as we show. We analyze the asymptotic symmetries in the first order formalism for large classes of theories on AdS, Lifshitz or flat space. In all cases the asymptotic symmetry algebra is realized on the first order variables as a gauged symmetry algebra. First order formalism geometrizes and simplifies the analysis. We apply our framework to the issue of scale versus conformal invariance in AdS/CFT and obtain new perspective on the structure of asymptotic expansions for AdS and flat spaces.
Design of a Space Borne Autonomous Infrared Tracking System
2004-03-01
8217, hsv (6),’FaceColor’,’flat ’); theta_last = 0;%axis([-.2 .2 -.2 .2 -.2 .2]); axis square;break % Motion for ii= 1 :num_pts %transform... 1 Space Control...88 ix List of Figures Figure Page 1
Flight Simulator: Use of SpaceGraph Display in an Instructor/Operator Station. Final Report.
ERIC Educational Resources Information Center
Sher, Lawrence D.
This report describes SpaceGraph, a new computer-driven display technology capable of showing space-filling images, i.e., true three dimensional displays, and discusses the advantages of this technology over flat displays for use with the instructor/operator station (IOS) of a flight simulator. Ideas resulting from 17 brainstorming sessions with…
Properties of flat-pressed wood plastic composites containing fire retardants
Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White
2011-01-01
This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...
An improved cosmic crystallography method to detect holonomies in flat spaces
NASA Astrophysics Data System (ADS)
Fujii, H.; Yoshii, Y.
2011-05-01
A new, improved version of a cosmic crystallography method for constraining cosmic topology is introduced. Like the circles-in-the-sky method using CMB data, we work in a thin, shell-like region containing plenty of objects. Two pairs of objects (quadruplet) linked by a holonomy show a specific distribution pattern, and three filters of separation, vectorial condition, and lifetime of objects extract these quadruplets. Each object Pi is assigned an integer si, which is the number of candidate quadruplets including Pi as their members. Then an additional device of si-histogram is used to extract topological ghosts, which tend to have high values of si. In this paper we consider flat spaces with Euclidean geometry, and the filters are designed to constrain their holonomies. As the second filter, we prepared five types that are specialized for constraining specific holonomies: one for translation, one for half-turn corkscrew motion and glide reflection, and three for nth turn corkscrew motion for n = 4,3, and 6. Every multiconnected space has holonomies that are detected by at least one of these five filters.Our method is applied to the catalogs of toy quasars in flat Λ-CDM universes whose typical sizes correspond to z ~ 5. With these simulations our method is found to work quite well. These are the situations in which type-II pair crystallography methods are insensitive because of the tiny number of ghosts. Moreover, in the flat cases, our method should be more sensitive than the type-I pair (or, in general, n-tuplet) methods because of its multifilter construction and its independence from n.
NASA Astrophysics Data System (ADS)
Koweek, D.; Samuel, L.; Mucciarone, D. A.; Woodson, C. B.; Monismith, S. G.; Dunbar, R. B.
2012-12-01
Forecasts for coral reefs under various ocean acidification scenarios are becoming increasingly complex due to significant inter-site variability in biogeochemistry, ecology, and physical oceanography. The reef flats of Ofu, American Samoa are a potential end-member of this vulnerability spectrum due to extremely high diurnal variability in their biogeochemistry. Here we present coupled biogeochemical and physical oceanographic measurements from a shallow reef flat on Ofu in November 2011. We observed diurnal temperature ranges of up to 7°C, along with diurnal pH and dissolved oxygen ranges of 0.6 units, and 160 percent of saturation, respectively. Carbon system measurements were less extreme. Alkalinity varied between 2240-2360 μmol/kg and total dissolved inorganic carbon (TDIC) ranged between 1850-2100 μmol/kg during the diurnal cycle. These observations suggest diurnal ranges of ~240ppm CO2 and 1.5 units of ΩAr. The larger diurnal range in TDIC relative to alkalinity suggests a reef environment dominated by photosynthesis. From these observations, we explore the balance between the dominant biogeochemical processes of production and calcification on the reef flat in more detail, along with its implication for conferring resistance to ocean acidification. We use calcification rate estimates to provide insight to patterns of day and night growth and/or dissolution on the reef. Finally, we present evidence of tidal modulation of the biogeochemical signals and discuss the role of localized physical circulation in helping to determine a reef's vulnerability to ocean acidification.
NASA Astrophysics Data System (ADS)
Schommers, W.
1. The absolute truth. 1.1. Final truth. 1.2. Two important questions. 1.3. Why does the cosmos exist? 1.4. Are the laws of nature independent of the observer's own nature? 1.5. Self0indulgence was dominant. 1.6. Newton's mechanics and its overestimation. 1.7. Scientific realism. 1.8. An important principle: as little outside world as possible. 1.9. Inside world and outside world. 1.10. Principal questions. 1.11. How does science progress? 1.12. Final remarks -- 2. The projection principle. 2.1. The elements of space and time. 2.2. Relationship between matter and space-time. 2.3. Two relevant features. 2.4. Two kinds of "objects". 2.5. Perception processes. 2.6. Inside world and outside world. 2.7. The influence of evolution. 2.8. Information in the picture versus information in basic reality (outside reality). 2.9. Other biological systems. 2.10. How many (geometrical) objects can be in space-time? 2.11. Two types of space-time? 2.12. Summary -- 3. Fictitious realities. 3.1. Conventional quantum theory: critical remarks. 3.2. The projection principle in connection with fictitious realities. 3.3. Distribution of information. 3.4. Basic transformation effects. 3.5. Pictures within projection theory. 3.6. Auxiliary construction. 3.7. Basic laws. 3.8. Extension of conventional quantum theory. 3.9. Only processes are relevant! 3.10. Interactions. 3.11. Distance-independent interactions. 3.12. Arbitrary jumps within (r, t)-space. 3.13.Mach's principle: preliminary remarks. 3.14. Can a lone, elementary object exist in the cosmos? 3.15. The meaning of the potential functions. 3.16. Time. 3.17. Time travel in physics. 3.18. Summary -- 4. Basic reality and levels of reality. 4.1. Hard objects. 4.2. General physical laws. 4.3. States of mind. 4.4. Outside world and basic reality. 4.5. Objective processes. 4.6. Observations. 4.7. No interactions within (r, t)-space. 4.8. The general cannot be deduced from the particular. 4.9. Remarks on the notion "world equation". 4.10. On the anthropic principle. 4.11. Summary -- 5. Cosmological constant and physical reality. 5.1. Introductory remarks. 5.2. The cosmological constant. 5.3. Critical remarks on basic quantum theory. 5.4. Projection theory and the emptying. 5.5. Artificial vacuum effects!? 5.6. On the observation of physically real process. 5.7. Curved spaces. 5.8. Flatness and horizon problem. 5.8. Summary -- 6. Final remarks.
NASA Astrophysics Data System (ADS)
Liu, C.; Ong, H. C.
2018-01-01
We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.
NASA Astrophysics Data System (ADS)
Suo, Qiangbo; Han, Yiping; Cui, Zhiwei
2017-09-01
Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.
Stability of generic thin shells in conformally flat spacetimes
NASA Astrophysics Data System (ADS)
Amirabi, Z.
2017-07-01
Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p=ω σ . It is shown that, for the physical domain of ω , i.e., 0<ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated.
Process and apparatus for indirect-fired heating and drying
Abbasi, Hamid Ali; Chudnovsky, Yaroslav
2005-04-12
A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
Metric Theories of Gravity: Perturbations and Conservation Laws
NASA Astrophysics Data System (ADS)
Petrov, Alexander N.; Kopeikin, Sergei M.; Lompay, Robert R.; Tekin, Bayram
2017-04-01
By focusing on the mostly used variational methods, this monograph aspires to give a unified description and comparison of various ways of constructing conserved quantities for perturbations and to study symmetries in general relativity and modified theories of gravity. The main emphasis lies on the field-theoretical covariant formulation of perturbations, the canonical Noether approach and the Belinfante procedure of symmetrisation. The general formalism is applied to build the gauge-invariant cosmological perturbation theory, conserved currents and superpotentials to describe physically important solutions of gravity theories. Meticulous attention is given to the construction of conserved quantities in asymptotically-flat spacetimes as well as in asymptotically constant curvature spacetimes such as the Anti-de Sitter space. Significant part of the book can be used in graduate courses on conservation laws in general relativity.
Tidal-cycle changes in oscillation ripples on the inner part of an estuarine sand flat
Dingler, J.R.; Clifton, H.E.
1984-01-01
Oscillation ripples form on subaqueous sand beds when wave-generated, near-bottom water motions are strong enough to move sand grains. The threshold of grain motion is the lower bound of the regime of oscillation ripples and the onset of sheet flow is the upper bound. Based on the relation between ripple spacing and orbital diameter, three types of symmetrical ripples occur within the ripple regime. In the lower part of the ripple regime (orbital ripples), spacing is proportional to orbital diameter; in the upper part (anorbital ripples) spacing is independent of orbital diameter. Between these regions occurs a transitional region (suborbital ripples). Oscillation ripples develop on a sandy tidal flat in Willapa Bay, Washington, as a result of waves traversing the area when it is submerged. Because wave energy is usually low within the bay, the ripples are primarily orbital in type. This means that their spacing should respond in a systematic way to changes in wave conditions. During the high-water parts of some tidal cycles, ripples near the beach decrease in spacing during the latter stage of the ebb tide while ripples farther offshore do not change. Observations made over several tidal cycles show that the zone of active ripples shifts on- or offshore in response to different wave conditions. Detailed bed profiles and current measurements taken during the high-water part of spring tides show the manner in which the oscillation ripples change with changes in orbital diameter. Changes in ripple spacing at the study site could be correlated with changes in orbital diameter in the manner suggested by the criterion for orbital ripples. However, there appeared to be a lag time between a decrease in orbital diameter and the corresponding decrease in ripple spacing. Absence of change during a tidal cycle could be attributed to orbital velocities below the threshold for grain motion that negated the effects of changes in orbital diameter. Because changes in sand-flat ripples depend both upon changes in orbital diameter and upon the magnitude of the orbital velocity, exposed ripples were not necessarily produced during the preceding high tide. In fact, some ripples may have been just produced, while others, farther offshore, may have been produced an unknown number of tides earlier. Therefore, when interpreting past wave conditions over tidal flats from low-tide ripples, one must remember that wave periods have to be short enough to produce velocities greater than the threshold velocity for the orbital diameters calculated from the observed ripple spacings. ?? 1984.
Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J
2007-09-25
The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.
The bifurcations of nearly flat origami
NASA Astrophysics Data System (ADS)
Santangelo, Christian
Self-folding origami structures provide one means of fabricating complex, three-dimensional structures from a flat, two-dimensional sheet. Self-folding origami structures have been fabricated on scales ranging from macroscopic to microscopic and can have quite complicated structures with hundreds of folds arranged in complex patterns. I will describe our efforts to understand the mechanics and energetics of self-folding origami structures. Though the dimension of the configuration space of an origami structure scales with the size of the boundary and not with the number of vertices in the interior of the structure, a typical origami structure is also floppy in the sense that there are many possible ways to assign fold angles consistently. I will discuss our theoretical progress in understanding the geometry of the configuration space of origami. For random origami, the number of possible bifurcations grows surprisingly quickly even when the dimension of the configuration space is small. EFRI ODISSEI-1240441, DMR-0846582.
Potentials for transverse trace-free tensors
NASA Astrophysics Data System (ADS)
Conboye, Rory; Murchadha, Niall Ó.
2014-04-01
In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space.
Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve
2016-03-22
We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and small contact angle from jump to jump; the result is a large evaporation rate leading to faster evaporation.
Shimizu, Yasuyuki; Giri, Sanjay; Yamaguchi, Satomi; Nelson, Jonathan M.
2009-01-01
This work presents recent advances on morphodynamic modeling of bed forms under unsteady discharge. This paper includes further development of a morphodynamic model proposed earlier by Giri and Shimizu (2006a). This model reproduces the temporal development of river dunes and accurately replicates the physical properties associated with bed form evolution. Model results appear to provide accurate predictions of bed form geometry and form drag over bed forms for arbitrary steady flows. However, accurate predictions of temporal changes of form drag are key to the prediction of stage‐discharge relation during flood events. Herein, the model capability is extended to replicate the dune–flat bed transition, and in turn, the variation of form drag produced by the temporal growth or decay of bed forms under unsteady flow conditions. Some numerical experiments are performed to analyze hysteresis of the stage‐discharge relationship caused by the transition between dune and flat bed regimes during rising and falling stages of varying flows. The numerical model successfully simulates dune–flat bed transition and the associated hysteresis of the stage‐discharge relationship; this is in good agreement with physical observations but has been treated in the past only using empirical methods. A hypothetical relationship for a sediment parameter (the mean step length) is proposed to a first level of approximation that enables reproduction of the dune–flat bed transition. The proposed numerical model demonstrates its ability to address an important practical problem associated with bed form evolution and flow resistance in varying flows.
Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan
2017-01-01
Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5–25 cm) was significantly (p < 0.05) higher in field plots with plastic film mulch than the control (CK), and resulted in greater soil water storage (0–200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly (p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% (p < 0.05) greater and 28% (p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% (p < 0.05) with consecutive film-mulched ridges and 21.1% (p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased by 1559, 528, and 350 Chinese Yuan (CNY) ha−1 with the consecutive film-mulched ridges, furrow-flat planting and alternating film-mulched ridges, respectively, compared with the control (CK). We conclude that the consecutive film-mulched ridge method was the most productive and profitable for maize in this semi-arid area with limited and erratic precipitation. PMID:28428798
NASA Technical Reports Server (NTRS)
1983-01-01
Thomas & Betts Corporation's Flat Conductor Cables, or FCC, were developed of necessity as aircraft and spacecraft became increasingly complex. In order to reduce size and weight of components, the use of thin flat wire instead of relatively thick and protrusive round cable, provided a dramatic reduction of the space occupied by the many miles of power distribution lines in an aerospace vehicle. Commercially, FCC offers cost savings in simplified building construction, reduced installation time and ease of alteration.
NASA Technical Reports Server (NTRS)
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
NASA Astrophysics Data System (ADS)
2009-07-01
WE RECOMMEND Doctor Atomic The new Doctor Atomic opera provkes discussion on ethics I Cyborg The world's first human cyborg shares his life story in I Cyborg Flat Earth: The History of an Infamous Idea Flat Earth gives us a different perspective on creationism Mere Thermodynamics An introductory text on the three laws CGP revision guides This revision guide suits all courses and every pocket Hiding the Elephant: How Magicians Invented the Impossible The mystery of many illusions are solved in this book Back of the Envelope Physics This reference deserves a place on your bookshelf WORTH A LOOK Doctor Atomic The DVD doesn't do justice to the live performance Digital stopclock with external trigger Use these stopclocks when you need an external trigger WEB WATCH Webcasts reach out to an online audience
[Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland].
Mao, Zhi-Gang; Gu, Xiao-Hong; Liu, Jin-E; Ren, Li-Juan; Wang, Guo-Xiang
2010-08-01
Through vegetation investigation and soil analysis, this paper studied the evolvement of soil quality during natural vegetation succession and after farmland reclamation in the Yancheng coastal wetland of Jiangsu Province. Along with the process of vegetation succession, the soil physical, chemical, and biological properties in the wetland improved, which was manifested in the improvement of soil physical properties and the increase of soil nutrient contents, microbial biomass, and enzyme activities. Different vegetation type induced the differences in soil properties. Comparing with those in salt marshes, the soil salt content in reclaimed farmlands decreased to 0.01 - 0.04%, the soil microbial biomass and enzyme activities increased, and the soil quality improved obviously. The soil quality index (SQI) in the wetland was in the order of mudflat (0.194) < Suaeda salsa flat (0.233) < Imperata cylindrica flat (0.278) < Spartina alterniflora flat (0.446) < maize field (0.532) < cotton field (0.674) < soybean field (0.826), suggesting that positive vegetation succession would be an effective approach in improving soil quality.
Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets
NASA Astrophysics Data System (ADS)
Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.
2017-11-01
In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Wu, Lin
2011-04-01
The distribution dynamics of a thin lubricant film on a bit-patterned media disk and its effect on the performance of the ultralow flying air bearing slider of disk drives are studied by direct numerical simulations. Our analysis shows that the physics governing lubricant distribution dynamics changes when deep enough sub-100-nm nanostructures are patterned on the disk surface. Air shearing under the slider that dominates lubricant flow on a flat disk may become negligible on a bit-patterned media disk. Surface tension and disjoining pressure become dominant factors instead. Our results show that disks with nanoscale patterns/roughness may no longer be treated as flat, and the air bearing load may strongly depend not only on the geometric detail of disk patterns but also on how lubricants are distributed on the patterns when slider-disk clearance is reduced to sub-10-nm. Air bearing load and consequently the slider's flying attitude are affected by disk pattern geometry, average lubricant thickness, and material properties of lubricant such as the surface tension coefficient and Hamaker constant. The significantly expanded parameter space, upon which ultralow flying slider's dynamics depends, has to be seriously considered in evaluating the head/disk interface tribology performance of next generation patterned media magnetic recording systems.
2018-01-01
Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis. PMID:29854364
An evaluation of two flat-black silicone paints for space application
NASA Technical Reports Server (NTRS)
Clatterbuck, Carroll H.; Scialdone, John J.
1990-01-01
Tests were conducted on two flat-black silicone paints suggested for space applications to determine their optical, electrical, and mechanical properties. Three different types of substrate materials were chosen for these paint tests; the application of the paints onto the primed substrates was carried out by spray coating. The adhesion properties were verified by thermal shock and sudden immersion into liquid nitrogen. A controlled thermal vacuum tests was also carried out by varying the temperature of the paint from -100 to 225 C. The measured optical properties included normal and hemispherical emittance, and solar absorption/reflectance. A simultaneous exposure to low-energy proton/UV irradiation in vacuum, and high-energy proton/electron irradiation was carried out. Additional tests of the paints are described.
Fluids and vortex from constrained fluctuations around C-metric black holes
NASA Astrophysics Data System (ADS)
Hao, Xin; Wu, Bin; Zhao, Liu
2017-08-01
By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic initial data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary initial hypersurface. Then by perturbing the initial data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the compressible Navier-Stokes equation which describe the momentum transport in non-relativistic viscous fluid on a flat Newtonian space. It turns out that the flat space fluid behaves as a pure vortex and the viscosity to entropy ratio is subjected to the black hole acceleration.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
Testing cosmology from fundamental considerations: Is the Friedmann universe intrinsically flat
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2014-02-01
Recently Melia and Shevchuk (Mon Not R Astron Soc 419:2579,
Impact of new physics on the EW vacuum stability in a curved spacetime background
NASA Astrophysics Data System (ADS)
Bentivegna, E.; Branchina, V.; Contino, F.; Zappalà, D.
2017-12-01
It has been recently shown that, contrary to an intuitive decoupling argument, the presence of new physics at very large energy scales (say around the Planck scale) can have a strong impact on the electroweak vacuum lifetime. In particular, the vacuum could be totally destabilized. This study was performed in a flat spacetime background, and it is important to extend the analysis to curved spacetime since these are Planckian-physics effects. It is generally expected that under these extreme conditions gravity should totally quench the formation of true vacuum bubbles, thus washing out the destabilizing effect of new physics. In this work we extend the analysis to curved spacetime and show that, although gravity pushes toward stabilization, the destabilizing effect of new physics is still (by far) the dominating one. In order to get model independent results, high energy new physics is parametrized in two different independent ways: as higher order operators in the Higgs field, or introducing new particles with very large masses. The destabilizing effect is observed in both cases, hinting at a general mechanism that does not depend on the parametrization details for new physics, thus maintaining the results obtained from the analysis performed in flat spacetime.
Flat Feet and a Diagnosis of Plantar Fasciitis in a Marine Corps Recruit.
Lurati, Ann R
2015-04-01
A 22-year-old man sought care at an orthopedic clinic for acute plantar fasciitis. He reported that he had begun an intensive exercise program to prepare himself for Marine Corps Officer Candidate School. Pes Planus, or flat feet, was noted on physical examination. This article reviews the diagnoses of pes planus and plantar fasciitis as well as current intervention strategies. © 2015 The Author(s).
Conformally flat tilted Bianchi Type-V cosmological models in general relativity
NASA Astrophysics Data System (ADS)
Bali, Raj; Meena, B. L.
2004-05-01
We have investigated two conformally flat tilted Bianchi Type-V cosmological models in general relativity. To get a determinate solution, we have assumed a supplementary condition A = B^n between metric potentials where n is a constant. The behaviour of the model for n=2 is discussed in detail. Various physical and geometrical aspects of the models are also discussed.
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
NASA Astrophysics Data System (ADS)
Nojima, Taketoshi
This paper describes folding methods of thin flat sheets as well as cylindrical shells by modelling folding patterns through Japanese traditional Origami technique. New folding patterns have been devised in thin flat squared or circular membrane by modifying so called Miura-Ori in Japan (one node with 4 folding lines). Some folding patterns in cylindrical shells have newly been developed including spiral configurations. Devised foldable cylindrical shells were made by using polymer sheets, and it has been assured that they can be folded quite well. The devised models will make it possible to construct foldable/deployable space structures as well as to manufacture foldable industrial products and living goods, e. g., bottles for soft drinks.
Flat Lens Focusing Demonstrated With Left-Handed Metamaterial
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Schwartz, Zachary D.; Chevalier, Christine T.; Downey, Alan N.; Vaden, Karl R.
2004-01-01
Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation.
NASA Astrophysics Data System (ADS)
Golmohammady, Sh; Ghafary, B.
2016-06-01
In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2 × 2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.
Re-examination of globally flat space-time.
Feldman, Michael R
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Re-Examination of Globally Flat Space-Time
NASA Astrophysics Data System (ADS)
Feldman, Michael R.
2013-11-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Nuclear Propulsion in Space (1968)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.
Nuclear Propulsion in Space (1968)
None
2018-01-16
Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.
Near-field flat focusing mirrors
NASA Astrophysics Data System (ADS)
Cheng, Yu-Chieh; Staliunas, Kestutis
2018-03-01
This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.
Cesium injection system for negative ion duoplasmatrons
Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J
1978-01-01
Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
Joint body- and surface-wave tomography of Yucca Flat, Nevada
NASA Astrophysics Data System (ADS)
Toney, L. D.; Abbott, R. E.; Preston, L. A.
2017-12-01
In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat (YF), Nevada, on the Nevada National Security Site. YF hosted over 650 underground nuclear tests (UGTs) between 1957 and 1992. Data from this survey will help characterize the geologic structure and bulk properties of the region, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line; we used a roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. We applied the multiple filter technique to the dataset using a comb of 30 narrow bandpass filters with center frequencies ranging from 1 to 50 Hz. After manually windowing out the fundamental Rayleigh-wave arrival, we picked group-velocity dispersion curves for 50,000 source-receiver pairs. We performed a joint inversion of group-velocity dispersion and existing body-wave travel-time picks for the shear- and compressional-wave velocity structure of YF. Our final models reveal significant Vp / Vs anomalies in the vicinities of legacy UGT sites. The velocity structures corroborate existing seismo-stratigraphic models of YF derived from borehole and gravity data. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Astrophysics Data System (ADS)
Groppi, Christopher E.; Underhill, Matthew; Farkas, Zoltan; Pelham, Daniel
2016-07-01
We present the fabrication and measurement of monolithic aluminum flat mirrors designed to operate in the thermal infrared for the OSIRIS-Rex Thermal Emission Spectrometer (OTES) space instrument. The mirrors were cut using a conventional fly cutter with a large radius diamond cutting tool on a high precision Kern Evo 3-axis CNC milling machine. The mirrors were measured to have less than 150 angstroms RMS surface error.
Proca fields interpretation of spin 1 equation in Robertson-Walker space-time
NASA Astrophysics Data System (ADS)
Zecca, Antonio
2006-05-01
The general scheme for massive spin 1 equation in curved space-time is specialized to describe the Proca fields. The expressions of the Proca tensor fields are detailed in the Robertson-Walker space-time by means of the solutions of the spin 1 equation in a given tetrad and by the components of the tetrad itself. Asymptotic behaviours of the fields are discussed in the flat, closed and open space-time cases.
Parasitic momentum flux in the tokamak core
NASA Astrophysics Data System (ADS)
Stoltzfus-Dueck, T.
2017-10-01
Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.
Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota
NASA Technical Reports Server (NTRS)
1981-01-01
Partial space heating for 97,000 square foot plant is supplied by 360 flat plate solar collectors; energy is sorted as heat in indoor 20,000 gallon water tank. System includes all necessary control electronics for year round operation. During December 1978, solar energy supplied 24.4 percent of building's space heating load.
Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun
In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less
Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals
Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...
2017-09-12
In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less
NASA Astrophysics Data System (ADS)
Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.
2018-04-01
We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric, E-mail: mfroeb@itp.uni-leipzig.de, E-mail: enric.verdaguer@ub.edu
We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds tomore » a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.« less
Laminar Heating Validation of the OVERFLOW Code
NASA Technical Reports Server (NTRS)
Lillard, Randolph P.; Dries, Kevin M.
2005-01-01
OVERFLOW, a structured finite difference code, was applied to the solution of hypersonic laminar flow over several configurations assuming perfect gas chemistry. By testing OVERFLOW's capabilities over several configurations encompassing a variety of flow physics a validated laminar heating was produced. Configurations tested were a flat plate at 0 degrees incidence, a sphere, a compression ramp, and the X-38 re-entry vehicle. This variety of test cases shows the ability of the code to predict boundary layer flow, stagnation heating, laminar separation with re-attachment heating, and complex flow over a three-dimensional body. In addition, grid resolutions studies were done to give recommendations for the correct number of off-body points to be applied to generic problems and for wall-spacing values to capture heat transfer and skin friction. Numerical results show good comparison to the test data for all the configurations.
Full characterization of an attosecond pulse generated using an infrared driver
Zhang, Chunmei; Brown, Graham G.; Kim, Kyung Taec; Villeneuve, D. M.; Corkum, P. B.
2016-01-01
The physics of attosecond pulse generation requires using infrared driving wavelength to reach the soft X-rays. However, with longer driving wavelength, the harmonic conversion efficiency drops significantly. It makes the conventional attosecond pulse measurement using streaking very difficult due to the low photoionization cross section in the soft X-rays region. In-situ measurement was developed for precisely this purpose. We use in-situ measurement to characterize, in both space and time, an attosecond pulse produced by ultrafast wavefront rotation of a 1.8 μm fundamental beam. We confirm what models suggest – that each beamlet is an isolated attosecond pulse in the time domain. We get almost constant flat wavefront curvature through the whole photon energy range. The measurement method is scalable to the soft X-ray spectral region. PMID:27230961
SRMS maneuvers the ICC-VLD during STS-127 / Expedition 20 Joint Operations
2009-07-19
S127-E-006934 (19 July 2009) --- Backdropped by a blue and white Earth, the remote manipulator system (RMS) arm of the Space Shuttle Endeavour, is about to hand off the Integrated Cargo Carrier (ICC) to the International Space Station (out of frame). The ICC is an unpressurized flat bed pallet and keel yoke assembly that was carried into space in the shuttle's payload bay.
Foreland uplift during flat subduction: Insights from the Peruvian Andes and Fitzcarrald Arch
NASA Astrophysics Data System (ADS)
Bishop, Brandon T.; Beck, Susan L.; Zandt, George; Wagner, Lara S.; Long, Maureen D.; Tavera, Hernando
2018-04-01
Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking these two processes remains unclear. One example of foreland deformation corresponding in space and time to flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area of >4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that 5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene. This magnitude is consistent with prior observations of unusually thickened crust in the Andes immediately south of the subducted ridge that may also have been induced by flat subduction. This suggests that the Fitzcarrald Arch's formation by the Nazca Ridge may be one of the clearest examples of upper plate deformation induced through basal shear observed in a flat-slab subduction setting. We then explore the more general implications of our results for understanding deformation above flat slabs in the geologic past.
Immediate Ecological Impacts of the 2011 Tohoku Earthquake Tsunami on Intertidal Flat Communities
Urabe, Jotaro; Suzuki, Takao; Nishita, Tatsuki; Makino, Wataru
2013-01-01
Following the Great East Japan Earthquake in 2011, a large tsunami developed and struck the Pacific coast of eastern Japan. To assess the immediate impacts of the tsunami on coastal communities, changes in taxon composition and richness of macrobenthic animals before and after the tsunami were examined at nine intertidal flats in Sendai Bay and the Sanriku Ria coast. The results showed that 30–80% of taxa indigenously inhabiting intertidal flats disappeared after the tsunami. Among animal types, endobenthic and sessile epibenthic animals were more vulnerable to the tsunami than mobile epibenthic animals like shore crabs and snails. For all the intertidal flats examined, animals that were originally dwellers in lower tidal zones and not recorded before the tsunami were also found right after the tsunami, indicating that the tsunami not only took away many benthic taxa from the intertidal flats but also brought in some taxa from elsewhere. However, overall changes in taxon community composition were greater for intertidal flats that experienced larger inundation heights. These results showed that the ecological impacts of the tsunami were proportional to the physical impacts as gauged by wave height and that mobile epibenthic animals were less vulnerable to the tsunami. PMID:23650529
Immediate ecological impacts of the 2011 Tohoku earthquake tsunami on intertidal flat communities.
Urabe, Jotaro; Suzuki, Takao; Nishita, Tatsuki; Makino, Wataru
2013-01-01
Following the Great East Japan Earthquake in 2011, a large tsunami developed and struck the Pacific coast of eastern Japan. To assess the immediate impacts of the tsunami on coastal communities, changes in taxon composition and richness of macrobenthic animals before and after the tsunami were examined at nine intertidal flats in Sendai Bay and the Sanriku Ria coast. The results showed that 30-80% of taxa indigenously inhabiting intertidal flats disappeared after the tsunami. Among animal types, endobenthic and sessile epibenthic animals were more vulnerable to the tsunami than mobile epibenthic animals like shore crabs and snails. For all the intertidal flats examined, animals that were originally dwellers in lower tidal zones and not recorded before the tsunami were also found right after the tsunami, indicating that the tsunami not only took away many benthic taxa from the intertidal flats but also brought in some taxa from elsewhere. However, overall changes in taxon community composition were greater for intertidal flats that experienced larger inundation heights. These results showed that the ecological impacts of the tsunami were proportional to the physical impacts as gauged by wave height and that mobile epibenthic animals were less vulnerable to the tsunami.
Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jiangang; Estrada, Juan; Cease, Herman
2010-06-08
Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 yearsmore » starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.« less
Regularizing cosmological singularities by varying physical constants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dąbrowski, Mariusz P.; Marosek, Konrad, E-mail: mpdabfz@wmf.univ.szczecin.pl, E-mail: k.marosek@wmf.univ.szczecin.pl
2013-02-01
Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.
Llinas’ Phase Reset Mechanism Delays the Onset of Chaos in Shark and Dolphin Wall Turbulence
2014-02-10
eruption due to plate tectonics . (The plate becomes locally thin and is unable to prevent the high-pressure hot magma from erupting.) The vorticity...flat plate value. The spacing between riblet peaks s+= 10 is used unless noted. KM gives the "strength" of the riblets, where the terms "weak" and...exhibit spanwise variations in skin friction coefficients and integral boundary layer properties, even in flat plate experiments where great care has
End Point of the Ultraspinning Instability and Violation of Cosmic Censorship.
Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran
2017-04-14
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D=6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
End Point of the Ultraspinning Instability and Violation of Cosmic Censorship
NASA Astrophysics Data System (ADS)
Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran
2017-04-01
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D =6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
Na, Jun-Hee; Park, Seung Chul; Kim, Se-Um; Choi, Yoonseuk; Lee, Sin-Doo
2012-01-16
A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.
Negative specific heat of black-holes from fluid-gravity correspondence
NASA Astrophysics Data System (ADS)
Bhattacharya, Swastik; Shankaranarayanan, S.
2017-04-01
Black holes in asymptotically flat space-times have negative specific heat—they get hotter as they loose energy. A clear statistical mechanical understanding of this has remained a challenge. In this work, we address this issue using fluid-gravity correspondence which aims to associate fluid degrees of freedom to the horizon. Using linear response theory and the teleological nature of event horizon, we show explicitly that the fluctuations of the horizon-fluid lead to negative specific heat for a Schwarzschild black Hole. We also point out how the specific heat can be positive for Kerr-Newman or AdS black holes. Our approach constitutes an important advance as it allows us to apply the canonical ensemble approach to study thermodynamics of asymptotically flat black hole space-times.
Artist: Rick Guidice Space Colonization - Bernal Sphere - The residential area is in the central
NASA Technical Reports Server (NTRS)
1976-01-01
Artist: Rick Guidice Space Colonization - Bernal Sphere - The residential area is in the central sphere. Farming regions are in the 'tires.' Mirrors reflect sunlight into the habitat and farms. The large flat panels radiate away extra heat into space, and panels of solar cells provide electricity. Factories and docks for spaceships are at either end of the long central tube. (NOTE: art printed in Book 'Space Colony - Frontier of the 21st Century by Franklyn M. Branley)
NASA Astrophysics Data System (ADS)
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
NASA Astrophysics Data System (ADS)
Kulchin, Yurii N.; Vitrik, O. B.; Kamenev, O. T.; Kirichenko, O. V.; Petrov, Yu S.
1995-10-01
Reconstruction of vector physical fields by optical tomography, with the aid of a system of fibre-optic measuring lines, is considered. The reported experimental results are used to reconstruct the distribution of the square of the gradient of transverse displacements of a flat membrane.
Modular reflector concept study
NASA Technical Reports Server (NTRS)
Vaughan, D. H.
1981-01-01
A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.
A history of intertidal flat area in south San Francisco Bay, California: 1858 to 2005
Jaffe, Bruce; Foxgrover, Amy C.
2006-01-01
A key question in salt pond restoration in South San Francisco Bay is whether sediment sinks created by opening ponds will result in the loss of intertidal flats. Analyses of a series of bathymetric surveys of South San Francisco Bay made from 1858 to 2005 reveal changes in intertidal flat area in both space and time that can be used to better understand the pre-restoration system. This analysis also documents baseline conditions of intertidal flats that may be altered by restoration efforts. From 1858 to 2005, intertidal flat area decreased by about 25% from 69.2 +6.4/-7.6 km2 to 51.2 +4.8/-5.8 km2. Intertidal flats in the north tended to decrease in area during the period of this study whereas those south of Dumbarton Bridge were either stable or increased in area. From 1983 to 2005, intertidal flats south of Dumbarton Bridge increased from 17.6 +1.7/-2.5 km2 to 24.2 +1.0/-1.8 km2. Intertidal flats along the east shore of the bay tended to be more erosional and decreased in area while those along the west shore of the bay did not significantly change in area. Loss of intertidal flats occurred intermittently along the eastern shore of the bay north of the Dumbarton Bridge. There was little or no loss from 1931 to 1956 and from 1983 to 2005. Predictions of future change in intertidal flat area that do not account for this spatial and temporal variability are not likely to be accurate. The causes of the spatial and temporal variability in intertidal flat area in South San Francisco Bay are not fully understood, but appear related to energy available to erode sediments, sediment redistribution from north to south in the bay, and sediment available to deposit on the flats. Improved understanding of sediment input to South San Francisco Bay, especially from Central Bay, how it is likely to change in the future, the redistribution of sediment within the bay, and ultimately its effect on intertidal flat area would aid in the management of restoration of South San Francisco Bay salt ponds.
Constraints on Non-flat Cosmologies with Massive Neutrinos after Planck 2015
NASA Astrophysics Data System (ADS)
Chen, Yun; Ratra, Bharat; Biesiada, Marek; Li, Song; Zhu, Zong-Hong
2016-10-01
We investigate two dark energy cosmological models (I.e., the ΛCDM and ϕCDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕCDM model the scalar field possesses an inverse power-law potential, V(ϕ) ∝ ϕ -α (α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H 0 prior, are jointly employed to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σm ν < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕCDM model, we find Σm ν < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σm ν and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σm ν based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕCDM models; however, the corresponding differences are larger in the non-flat case.
3-D Displays Perceptual Research and Applications to Military Systems
1982-09-30
physical button on the corresponding face of the response cube as fast as possible, while minimizing errors. Each observer served for six sessions...orientation, and this resulted in the fast flat reaction time function. The Rotat±nal Strategy: As can be seen from Figure 3, the 24 stimulus cube...instead of the TOP key, these two responses should show the fast , flat response time functions associated with use of the spatial strategy, whereas the
1976-06-11
Artist: Rick Guidice Space Colonization - Bernal Sphere - The residential area is in the central sphere. Farming regions are in the 'tires.' Mirrors reflect sunlight into the habitat and farms. The large flat panels radiate away extra heat into space, and panels of solar cells provide electricity. Factories and docks for spaceships are at either end of the long central tube. (NOTE: art printed in Book 'Space Colony - Frontier of the 21st Century by Franklyn M. Branley)
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900
2010-07-15
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less
Computational Design of Flat-Band Material.
Hase, I; Yanagisawa, T; Kawashima, K
2018-02-26
Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.
Computational Design of Flat-Band Material
NASA Astrophysics Data System (ADS)
Hase, I.; Yanagisawa, T.; Kawashima, K.
2018-02-01
Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.
Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun
2010-07-01
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.
Freshwater-Brine Mixing Zone Hydrodynamics in Salt Flats (Salar de Atacama)
NASA Astrophysics Data System (ADS)
Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.
2017-12-01
The increase in the demand of strategic minerals for the development of medicines and batteries require detailed knowledge of the salt flats freshwater-brine interface to make its exploitation efficient. The interface zone is the result of a physical balance between the recharged and evaporated water. The sharp interface approach assumes the immiscibility of the fluids and thus neglects the mixing between them. As a consequence, for miscible fluids it is more accurate and often needed to use the mixing zone concept, which results from the dynamic equilibrium of flowing freshwater and brine. In this study, we consider two and three-dimensional scale approaches for the management of the mixing zone. The two-dimensional approach is used to understand the dynamics and the characteristics of the salt flat mixing zone, especially in the Salar de Atacama (Atacama salt flat) case. By making use of this model we analyze and quantify the effects of the aquitards on the mixing zone geometry. However, the understanding of the complex physical processes occurring in the salt flats and the management of these environments requires the adoption of three-dimensional regional scale numerical models. The models that take into account the effects of variable density represent the best management tool, but they require large computational resources, especially in the three-dimensional case. In order to avoid these computational limitations in the modeling of salt flats and their valuable ecosystems, we propose a three-step methodology, consisting of: (1) collection, validation and interpretation of the hydrogeochemical data, (2) identification and three-dimensional mapping of the mixing zone on the land surface and in depth, and (3) application of a water head correction to the freshwater and mixed water heads in order to compensate the density variations and to transform them to brine water heads. Finally, an evaluation of the sensibility of the mixing zone to anthropogenic and climate changes is included.
NASA Astrophysics Data System (ADS)
Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami
2012-03-01
There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
..., physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10 - 0.14[percnt] 0.90[percnt] 0.025[percnt..., physical and mechanical specifications: C Mn P S Si Cr Cu Ni Mo 0.10 - 0.16[percnt] 0.70 - 0.025[percn 0... following chemical, physical and mechanical specifications: [[Page 47543
Munguía-Rosas, Miguel Angel; Sosa, Vinicio J.
2008-01-01
Background and Aims Most studies on cactus recruitment have focused on the role of woody plants as seedling facilitators. Although the spatial association of cacti with objects had been described, the mechanisms underlying this association remain unknown. The aims of this study were to identify which mechanisms facilitate the establishment of a columnar cactus under the shade and protection of objects and to compare these mechanisms with those involved in plant–plant facilitation. Methods Three split-split-plot field experiments were conducted to compare the effects of two microhabitats (inside rocky cavities and beneath plant canopies) on seed removal, germination, seedling survivorship and dry weight. Flat, open spaces were used as the control. For each microhabitat, the effect of seed or seedling protection and substrate limitation were explored; aboveground microclimate and some soil properties were also characterized. Key Results The permanence of superficial seeds was greater inside rocky cavities than beneath woody plant canopies or on flat, open areas. Germination was similar in cavities and beneath plant canopies, but significantly higher than on flat, open areas. Seedling survivorship was greater beneath plant canopies than inside cavities or on flat, open spaces. Conclusions The mechanisms of plant facilitation are different from those of object facilitation. There are seed–seedling conflicts involved in the recruitment of P. leucocephalus: nurse plants favour mainly seedling survivorship by providing a suitable microenvironment, while nurse objects mainly favour seed permanence, by protecting them from predators. PMID:18056054
A lattice Boltzmann model for substrates with regularly structured surface roughness
NASA Astrophysics Data System (ADS)
Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.
2015-11-01
Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.
Analysis instrument test on mathematical power the material geometry of space flat side for grade 8
NASA Astrophysics Data System (ADS)
Kusmaryono, Imam; Suyitno, Hardi; Dwijanto, Karomah, Nur
2017-08-01
The main problem of research to determine the quality of test items on the material side of flat geometry to assess students' mathematical power. The method used is quantitative descriptive. The subjects were students of class 8 as many as 20 students. The object of research is the quality of test items in terms of the power of mathematics: validity, reliability, level of difficulty and power differentiator. Instrument mathematical power ratings are tested include: written tests and questionnaires about the disposition of mathematical power. Data were obtained from the field, in the form of test data on the material geometry of space flat side and questionnaires. The results of the test instrument to the reliability of the test item is influenced by many factors. Factors affecting the reliability of the instrument is the number of items, homogeneity test questions, the time required, the uniformity of conditions of the test taker, the homogeneity of the group, the variability problem, and motivation of the individual (person taking the test). Overall, the evaluation results of this study stated that the test instrument can be used as a tool to measure students' mathematical power.
Interaction of rippled shock wave with flat fast-slow interface
NASA Astrophysics Data System (ADS)
Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong
2018-04-01
The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.
Yin, Ke; Zhu, Rongzhen; Zhang, Bin; Jiang, Tian; Chen, Shengping; Hou, Jing
2016-09-05
Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.
Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada
Phelps, Geoffrey A.; Graham, Scott E.
2002-01-01
The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
NASA Astrophysics Data System (ADS)
Pope, C. N.; Sohnius, M. F.; Stelle, K. S.
We show that, contrary to previous conjectures, there exist acceptable counterterms for Ricci-flat N = 1 and N = 2 super-symmetric σ-models. In the N = 1 case we present infinite sequences of counterterms, starting from the 7-loop order, that do not vanish for general riemannian Ricci-flat metrics but do vanish when the metric is also Kähler. We then investigate the counterterms for theories with Ricci-flat Kähler metrics (i.e. N = 2 models). Acceptable counterterms must vanish for hyper-Kähler metrics (the N = 4 case), and must respect the principle of universality; i.e. that counterterms to the metric can be expressed without the use of complex structures or other special tensors, which do not exist for general riemannian spaces. We show that a recently proposed 4-loop counterterm for the N = 2 models does indeed satisfy these two conditions, despite the apparent stringency of the universality principle. Hence the finiteness of Ricci-flat N = 1 and N = 2 supersymmetric σ-models seems unlikely to persist beyond the 3-loop order.
NASA Astrophysics Data System (ADS)
Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei
2015-01-01
This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.
Karbasi, Salman; Arianpour, Ashkan; Motamedi, Nojan; Mellette, William M; Ford, Joseph E
2015-06-10
Imaging fiber bundles can map the curved image surface formed by some high-performance lenses onto flat focal plane detectors. The relative alignment between the focal plane array pixels and the quasi-periodic fiber-bundle cores can impose an undesirable space variant moiré pattern, but this effect may be greatly reduced by flat-field calibration, provided that the local responsivity is known. Here we demonstrate a stable metric for spatial analysis of the moiré pattern strength, and use it to quantify the effect of relative sensor and fiber-bundle pitch, and that of the Bayer color filter. We measure the thermal dependence of the moiré pattern, and the achievable improvement by flat-field calibration at different operating temperatures. We show that a flat-field calibration image at a desired operating temperature can be generated using linear interpolation between white images at several fixed temperatures, comparing the final image quality with an experimentally acquired image at the same temperature.
Imagine a Dream of Love, Ripple
NASA Astrophysics Data System (ADS)
Witt, Jerry A. (Tony)
2014-03-01
MATH 1st, Mc2 /r2 = E / r = 2 / . 5 = 1 < 3 , (< 3) is a heart (feelings matter, thanks!). this equation shows that or 3 dimensional universe is also the singularity enfold(ed)ing and unfold(ed)ing unto itself. (c2) needing space being rate is distance distance over time, also a square being a flat surface of no depth would make the universe which has a mass flat in all directions simultaneously quantum (G) I believe. (r) being half distance would illustrate a double inversion being 2 + 1 = 3 , as in dimensional reality. A double inverse expressing a reverse, thus Verlinde's principal should be a simple law rather than a question. Equal and opposite forces cancelling, motion requiring initial force all points connected as a singularity as well as dimensional cancelling one another out as well as fueling motion, as supported by Doug Singleton's, Perpetuum Mobile paper. bringing into question thermodynamic laws heat more likely exhausted energy, motion rate being a matter of relative energy use as well as rate in accordance with Verlinde's and Singleton's works (thanks and thanks again Doug). I should mention Hawking and Al are two of the funnest guys ever, physics is phun. Title is of the music and some of the hearts that have guided this path. John, Dr. King, Bob, favorite Grateful Dead song. Family, friends, kids (friends), 9083L strength fare treatment for labor being self respect.
Multi-Planetary Systems: Observations and Models of Dynamical Interactions
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2018-01-01
More than 600 multi-planet systems are known. The vast majority of these systems have been discovered by NASA's Kepler spacecraft, but dozens were found using the Doppler technique, the first multi-exoplanet system was identified through pulsar timing, and the most massive system has been found using imaging. More than one-third of the 4000+ planet candidates found by NASA's Kepler spacecraft are associated with target stars that have more than one planet candidate, and the large number of such Kepler "multis" tells us that flat multiplanet systems like our Solar System are common. Virtually all of Kepler candidate multis are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed multi-exoplanet systems will also be discussed.HR 8799's four massive planets orbit tens of AU from their host star and travel on nearly circular orbits. PSR B1257+12 has three much smaller planets orbiting close to a neutron star. Both represent extremes and show that planet formation is a robust process that produces a diversity of outcomes. Although both exomoons and Trojan (triangle Lagrange point) planets have been searched for, neither has yet been found.
3D PIC-MCC simulations of positive streamers in air gaps
NASA Astrophysics Data System (ADS)
Jiang, M.; Li, Y.; Wang, H.; Liu, C.
2017-10-01
Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.
Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model
NASA Astrophysics Data System (ADS)
Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer
2017-08-01
In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.
NASA Astrophysics Data System (ADS)
Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin
2014-03-01
A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).
Chladni Patterns on Drumheads: A "Physics of Music" Experiment
ERIC Educational Resources Information Center
Worland, Randy
2011-01-01
In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…
Graviton mass or cosmological constant?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabadadze, Gregory; Gruzinov, Andrei
2005-12-15
To describe a massive graviton in 4D Minkowski space-time one introduces a quadratic term in the Lagrangian. This term, however, can lead to a readjustment or instability of the background instead of describing a massive graviton on flat space. We show that for all local 4D Lorentz-invariant mass terms Minkowski space is unstable. The instability can develop in a time scale that is many orders of magnitude shorter than the inverse graviton mass. We start with the Pauli-Fierz (PF) term that is the only local mass term with no ghosts in the linearized approximation. We show that nonlinear completions ofmore » the PF Lagrangian give rise to instability of Minkowski space. We continue with the mass terms that are not of a PF type. Although these models are known to have ghosts in the linearized approximations, nonlinear interactions can lead to background change in which the ghosts are eliminated. In the latter case, however, the graviton perturbations on the new background are not massive. We argue that a consistent theory of a massive graviton on flat space can be formulated in theories with extra dimensions. They require an infinite number of fields or nonlocal description from a 4D point of view.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... Extinguishing Systems Foam Extinguishing Systems § 108.461 Coamings. Each machinery flat in a space that has a foam extinguishing system must have coamings that are high enough to retain spilled oil and foam on the...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Extinguishing Systems Foam Extinguishing Systems § 108.461 Coamings. Each machinery flat in a space that has a foam extinguishing system must have coamings that are high enough to retain spilled oil and foam on the...
2012-04-04
This parallelogram shaped region of dust observed by ESA Herschel Space telescope can be best described using galaxy formation models where a flat spiral galaxy collides with an elliptical galaxy becoming warped in the process.
Transformations of asymptotically AdS hyperbolic initial data and associated geometric inequalities
NASA Astrophysics Data System (ADS)
Cha, Ye Sle; Khuri, Marcus
2018-01-01
We construct transformations which take asymptotically AdS hyperbolic initial data into asymptotically flat initial data, and which preserve relevant physical quantities. This is used to derive geometric inequalities in the asymptotically AdS hyperbolic setting from counterparts in the asymptotically flat realm, whenever a geometrically motivated system of elliptic equations admits a solution. The inequalities treated here relate mass, angular momentum, charge, and horizon area. Furthermore, new mass-angular momentum inequalities in this setting are conjectured and discussed.
2015-09-28
release. Rotary encoder Brushless servo motor Wind tunnel bottom wall Stainless steel shaft Shaft coupling Wind tunnel top wall Titanium flat plate...illustrating the flat plate mounted to a virtual spring-damper system in the wind tunnel test section. 2 DISTRIBUTION A: Distribution approved for...non-dimensional ratios. For example the non-dimensional stiffness, k∗ = 2k/(ρU2∞c 2h), can be kept constant even if the wind speed, U∞, chord, c, and
Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38
NASA Technical Reports Server (NTRS)
Griffith, J. S.
1980-01-01
Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.
2011-06-01
of a flat-top (thin lines) and a kink (thick lines) soliton . Here = 0.25,Q = 1.786 553 604 650 208 for the dark soliton (Q = 1.786 553 7 for the flat...localization and transport in different physical settings, ranging from metal-dielectric (i.e. plasmonic) to photonic crystal waveguides. The solitons ...settings, ranging from metal--dielectric (i.e. plasmonic) to photonic crystal waveguides. The solitons exist for focusing, defocusing and even for
Ice Particle Impacts on a Flat Plate
NASA Technical Reports Server (NTRS)
Vargas, Mario; Ruggeri, Charles; Struk, Peter M.; Pereira, Mike; Revilock, Duane; Kreeger, Richard E.
2015-01-01
An experimental study was conducted at the Ballistic Laboratory of NASA Glenn Research Center to study the impact of ice particles on a stationary flat surface target set at 45 degrees with respect to the direction of motion of the impinging particle (Figure 1). The experiment is part of NASA efforts to study the physics involved in engine power-loss events due to ice-crystal ingestion and ice accretion formation inside engines. These events can occur when aircraft encounter high-altitude convective weather.
On the role of subducting oceanic plateaus in the development of shallow flat subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-08-01
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.
Presto, M.K.; Ogston, A.S.; Storlazzi, C.D.; Field, M.E.
2006-01-01
A multi-year study was conducted on a shallow fringing reef flat on Molokai, Hawaii to determine the temporal and spatial dispersal patterns of terrigenous suspended sediment. During this study, trade-wind conditions existed for the majority of the year on the reef flat. The trade-wind conditions produced strong currents and resuspended moderate amounts of sediment on the reef flat on a daily basis during the year of study, resulting in an overwhelming contribution to the total sediment flux. The magnitude and direction of the trade winds relative to the orientation of the coastline, the shallow-relief and broad morphology, and tidal elevation, provided the primary control of the physical processes that resuspended and transported sediment on the reef flat over the period of record. Spatial data indicate that much of the terrigenous sediment resuspended on the reef flat is transported predominantly alongshore and is confined to the inner- to mid-reef flat. Evidence for the limited across-shore mixing and transport is provided by the dominantly alongshore wind-driven currents during trade-wind conditions and the well-defined across-shore gradient in percentage calcium carbonate of the suspended sediment. Regions of slightly offshore suspended-sediment transport along the reef flat can be attributed to the circulation pattern set up by the interaction between the trade winds, coastal morphology, and anthropogenic coastal structures (i.e., fish ponds and wharf). The regions in which sediment were seen to move offshore provide the strongest link between the sediment dynamics on reef flat and fore reef, and qualitatively appears to be correlated with low coral coverage on the fore reef. ?? 2005 Elsevier Ltd. All rights reserved.
A FLINN Station at Pinon Flat Observatory
NASA Technical Reports Server (NTRS)
Agnew, Duncan Carr; Wyatt, Frank
1997-01-01
The main objectives are: (1) To develop Pinon Flat Observatory (PFO) as a prototype 'integrated' FLINN station: one from which many types of data are collected, combined, and made available to the DOSE program to enhance studies of local and regional strains; (2) To develop the theoretical framework and methods to integrate the various types of auxiliary data which are to be collected by NASA at space-geodetic sites of the FLINN network, with the aim of learning as much as possible about the nature of earth deformation; (3) To develop procedures for the efficient and useful storage and retrieval of such auxiliary data so that they may be efficiently utilized by DOSE investigators; (4) To investigate the stability of ground monumentation now used in space-geodetic measurements, including the field testing of existing and new monument designs.
NASA Astrophysics Data System (ADS)
Peng, Yan
2017-07-01
We study a general flat space/boson star transition model in quasi-local ensemble through approaches familiar from holographic superconductor theories. We manage to find a parameter ψ 2, which is proved to be useful in disclosing properties of phase transitions. In this work, we explore effects of the scalar mass, scalar charge and Stückelberg mechanism on the critical phase transition points and the order of transitions mainly from behaviors of the parameter ψ 2. We mention that properties of transitions in quasi-local gravity are strikingly similar to those in holographic superconductor models. We also obtain an analytical relation ψ 2 ∝ ( μ - μ c )1/2, which also holds for the condensed scalar operator in the holographic insulator/superconductor system in accordance with mean field theories.
NASA Astrophysics Data System (ADS)
Majkrzak, Charles F.; Metting, Christopher; Maranville, Brian B.; Dura, Joseph A.; Satija, Sushil; Udovic, Terrence; Berk, Norman F.
2014-03-01
The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k when it is prepared in a typical instrument used to study the structure of materials in thin film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object, while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed-matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutron's effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary nonspecular measurements of the widths of grating reflections were also performed, which corroborate the specular results. (This paper principally describes measurements interpreted according to the theoretical picture presented in a companion paper.) Each grating was fabricated by lift-off photolithography patterning of a nickel film (approximately 1000 Å thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 μm (5 μm Ni stripe, 5 μm intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.
Effect of leading-edge geometry on boundary-layer receptivity to freestream sound
NASA Technical Reports Server (NTRS)
Lin, Nay; Reed, Helen L.; Saric, W. S.
1991-01-01
The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.
SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J S; Eldib, A; Ma, C
2014-06-15
Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cmmore » depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.« less
Some dynamical aspects of interacting quintessence model
NASA Astrophysics Data System (ADS)
Choudhury, Binayak S.; Mondal, Himadri Shekhar; Chatterjee, Devosmita
2018-04-01
In this paper, we consider a particular form of coupling, namely B=σ (\\dot{ρ _m}-\\dot{ρ _φ }) in spatially flat (k=0) Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the `best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors.
The Future of Remote Sensing from Space: Civilian Satellite Systems and Applications.
1993-07-01
image shows abundant (dark green) vegetation across the Amazon of South America, while lack of vegetation (black areas) is seen across the Sahara Desert...primarily through the space shuttle and space station Freedom programs.25 Hence, if NASA’s overall budget remains flat or includes only modest growth... remain the primary collector of satellite remote sensing data for both meteorolog- ical and climate monitoring efforts through the decade of the 1990s
One-year assessment of a solar space/water heater--Clinton, Mississippi
NASA Technical Reports Server (NTRS)
1981-01-01
Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.
Symmetry-protected line nodes and Majorana flat bands in nodal crystalline superconductors
NASA Astrophysics Data System (ADS)
Kobayashi, Shingo; Sumita, Shuntaro; Yanase, Youichi; Sato, Masatoshi
2018-05-01
Line nodes in the superconducting gap are known to be a source of Majorana flat bands (MFBs) on a surface. Here, we extend this relation to all symmetry-protected line nodes where an additional constraint arising from crystal symmetry destabilizes or hides the existence of MFBs. By establishing a one-to-one correspondence between group theoretical and topological classifications, we are able to classify the possible line-node-induced MFBs, including cases with (magnetic) nonsymmorphic space groups. Our theoretical analysis reveals MFBs in antiferromagnetic superconductors.
Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico
2012-09-12
The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.
Noise kernels of stochastic gravity in conformally-flat spacetimes
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2015-03-01
The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.
McJury, M; O'Neill, A; Lawson, M; McGrath, C; Grey, A; Page, W; O'Sullivan, J M
2011-08-01
To improve the integration of MRI with radiotherapy treatment planning, our department fabricated a flat couch top for our MR scanner. Setting up using this couch top meant that the patients were physically higher up in the scanner and, posteriorly, a gap was introduced between the patient and radiofrequency coil. Phantom measurements were performed to assess the quantitative impact on image quality. A phantom was set up with and without the flat couch insert in place, and measurements of image uniformity and signal to noise were made. To assess clinical impact, six patients with pelvic cancer were recruited and scanned on both couch types. The image quality of pairs of scans was assessed by two consultant radiologists. The use of the flat couch insert led to a drop in image signal to noise of approximately 14%. Uniformity in the anteroposterior direction was affected the most, with little change in right-to-left and feet-to-head directions. All six patients were successfully scanned on the flat couch, although one patient had to be positioned with their arms by their sides. The image quality scores showed no statistically significant change between scans with and without the flat couch in place. Although the quantitative performance of the coil is affected by the integration of a flat couch top, there is no discernible deterioration of diagnostic image quality, as assessed by two consultant radiologists. Although the flat couch insert moved patients higher in the bore of the scanner, all patients in the study were successfully scanned.
The particle spectrum of parity-violating Poincaré gravitational theory
NASA Astrophysics Data System (ADS)
Karananas, Georgios K.
2015-03-01
In this paper we investigate the physical spectrum of the gravitational theory based on the Poincaré group with terms that are at most quadratic in tetrad and spin connection, allowing for the presence of parity-even as well as parity-odd invariants. We determine restrictions on the parameters of the action so that all degrees of freedom propagate and are neither ghosts nor tachyons. We show that the addition of parity non-conserving invariants extends the healthy parameter space of the theory. To accomplish our goal, we apply the weak field approximation around flat spacetime and in order to facilitate the analysis, we separate the bilinear action for the excitations into completely independent spin sectors. For this purpose, we employ the spin-projection operator formalism and extend the original basis built previously, to be able to handle the parity-odd pieces.
Numerical study of the characteristics of a dielectric barrier discharge plasma actuator
NASA Astrophysics Data System (ADS)
Shi, C. A.; Adamiak, K.; Castle, G. S. P.
2018-03-01
A dielectric barrier discharge actuator to control airflow along a flat dielectric plate has been numerically investigated in this paper. In order to avoid large computing times, streamers, Trichel pulses and the ionic reactions involving photons and electrons are neglected. The numerical model assumes two types of generic ions, one positive and one negative, whose drift in the electric field produces the electrohydrodynamic flow. This study provides detailed insights into the physical mechanisms of DBD that include the electric field, space charge transport, surface charge accumulation and air flow motion. The results show the V-I characteristics, velocity profiles and drag force estimates. In addition, the effects of the voltage level, frequency and inlet air velocity on the actuator performance are presented and interpreted. The simulation results show a good agreement with theoretical expectations and experimental data available in literature.
Recommendations resulting from the SPDS Community-Wide Workshop
NASA Technical Reports Server (NTRS)
1993-01-01
The Data Systems Panel identified three critical functionalities of a Space Physics Data System (SPDS): the delivery of self-documenting data, the existence of a matrix of translators between various standard formats (IDFS, CDF, netCDF, HDF, TENNIS, UCLA flat file, and FITS), and a network-based capability for browsing and examining inventory records for the system's data holdings. The recommendations resulting from the workshop include the philosophy, funding, and objectives of a SPDS. Access to quality data is seen as the most important objective by the Policy Panel, with curation and information about the data being integral parts of any accessible data set. The Data Issues Panel concluded that the SPDS can supply encouragement, guidelines, and ultimately provide a mechanism for financial support for data archiving, restoration, and curation. The Software Panel of the SPDS focused on defining the requirements and priorities for SPDS to support common data analysis and data visualization tools and packages.
Fast adaptive flat-histogram ensemble to enhance the sampling in large systems
NASA Astrophysics Data System (ADS)
Xu, Shun; Zhou, Xin; Jiang, Yi; Wang, YanTing
2015-09-01
An efficient novel algorithm was developed to estimate the Density of States (DOS) for large systems by calculating the ensemble means of an extensive physical variable, such as the potential energy, U, in generalized canonical ensembles to interpolate the interior reverse temperature curve , where S( U) is the logarithm of the DOS. This curve is computed with different accuracies in different energy regions to capture the dependence of the reverse temperature on U without setting prior grid in the U space. By combining with a U-compression transformation, we decrease the computational complexity from O( N 3/2) in the normal Wang Landau type method to O( N 1/2) in the current algorithm, as the degrees of freedom of system N. The efficiency of the algorithm is demonstrated by applying to Lennard Jones fluids with various N, along with its ability to find different macroscopic states, including metastable states.
NASA Astrophysics Data System (ADS)
Asfour, Jean-Michel; Weidner, Frank; Bodendorf, Christof; Bode, Andreas; Poleshchuk, Alexander G.; Nasyrov, Ruslan K.; Grupp, Frank; Bender, Ralf
2017-09-01
We present a method for precise alignment of lens elements using specific Computer Generated Hologram (CGH) with an integrated Fizeau reference flat surface and a Fizeau interferometer. The method is used for aligning the so called Camera Lens Assembly for ESAs Euclid telescope. Each lens has a corresponding annular area on the diffractive optics, which is used to control the position of each lens. The lenses are subsequently positioned using individual annular rings of the CGH. The overall alignment accuracy is below 1 µm, the alignment sensitivity is in the range of 0.1 µm. The achieved alignment accuracy of the lenses relative to each other is mainly depending on the stability in time of the alignment tower. Error budgets when using computer generated holograms and physical limitations are explained. Calibration measurements of the alignment system and the typically reached alignment accuracies will be shown and discussed.
Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity
NASA Astrophysics Data System (ADS)
Clark, Noel A.; Eremin, Alexey; Glaser, Matthew A.; Hall, Nancy; Harth, Kirsten; Klopp, Christoph; Maclennan, Joseph E.; Park, Cheol S.; Stannarius, Ralf; Tin, Padetha; Thurmes, William N.; Trittel, Torsten
2017-08-01
Freely suspended films of smectic liquid crystals are unique examples of quasi two-dimensional fluids. Mechanically stable and with quantized thickness of the order of only a few molecular layers, smectic films are ideal systems for studying fundamental fluid physics, such as collective molecular ordering, defect and fluctuation phenomena, hydrodynamics, and nonequilibrium behavior in two dimensions (2D), including serving as models of complex biological membranes. Smectic films can be drawn across openings in planar supports resulting in thin, meniscus-bounded membranes, and can also be prepared as bubbles, either supported on an inflation tube or floating freely. The quantized layering renders smectic films uniquely useful in 2D fluid physics. The OASIS team has pursued a variety of ground-based and microgravity applications of thin liquid crystal films to fluid structure and hydrodynamic problems in 2D and quasi-2D systems. Parabolic flights and sounding rocket experiments were carried out in order to explore the shape evolution of free floating smectic bubbles, and to probe Marangoni effects in flat films. The dynamics of emulsions of smectic islands (thicker regions on thin background films) and of microdroplet inclusions in spherical films, as well as thermocapillary effects, were studied over extended periods within the OASIS (Observation and Analysis of Smectic Islands in Space) project on the International Space Station. We summarize the technical details of the OASIS hardware and give preliminary examples of key observations.
Every timelike geodesic in Anti-de Sitter spacetime is a circle of the same radius
NASA Astrophysics Data System (ADS)
Sokołowski, Leszek M.; Golda, Zdzisław A.
2016-10-01
In this paper, we refine and analytically prove an old proposition due to Calabi and Markus on the shape of timelike geodesics of anti-de Sitter space in the ambient flat space. We prove that each timelike geodesic forms in the ambient space a circle of the radius determined by Λ, lying on a Euclidean two-plane. Then, we outline an alternative proof for AdS4. We also make a comment on the shape of timelike geodesics in de Sitter space.
The development of a solar-powered residential heating and cooling system
NASA Technical Reports Server (NTRS)
1974-01-01
Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.
Re-Examination of Globally Flat Space-Time
Feldman, Michael R.
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of “dark energy,” “dark matter,” and “dark flow.” Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at “large enough” scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of “dark energy,” “dark matter,” and “dark flow.” In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems. PMID:24250790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yun; Ratra, Bharat; Biesiada, Marek
We investigate two dark energy cosmological models (i.e., the ΛCDM and ϕ CDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕ CDM model the scalar field possesses an inverse power-law potential, V ( ϕ ) ∝ ϕ {sup −} {sup α} ( α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H {sub 0} prior, are jointly employedmore » to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σ m {sub ν} < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕ CDM model, we find Σ m {sub ν} < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σ m {sub ν} and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σ m {sub ν} based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕ CDM models; however, the corresponding differences are larger in the non-flat case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl; Astefanesei, Dumitru
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
Anisotropic deformations of spatially open cosmology in massive gravity theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazuet, Charles; Volkov, Mikhail S.; Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr
We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards amore » fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.« less
Cosmological implications of baryon acoustic oscillation measurements
Aubourg, Eric
2015-12-01
Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H 0=67.3±1.1 km s -1 Mpc -1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ω m=0.301±0.008 and curvature Ω k=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ 2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H 0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σm ν<0.56 eV (95% confidence), improving to Σm ν<0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat ΛCDM model that allows extra relativistic species, our data combination yields N eff=3.43±0.26; while the LyaF BAO data prefer higher Neff when excluding galaxy BAO, the galaxy BAO alone favor N eff≈3. Finally, when structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiSalvo, Rick; Surovchak, Scott; Spreng, Carl
2013-07-01
Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plantmore » (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)« less
Harborne, A R
2013-09-01
Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... which meets the following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10-0..., physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10-0.16% 0.70-0.90%...... 0.025% Max...... 0... specifications: [[Page 47265
First-order discrete Faddeev gravity at strongly varying fields
NASA Astrophysics Data System (ADS)
Khatsymovsky, V. M.
2017-11-01
We consider the Faddeev formulation of general relativity (GR), which can be characterized by a kind of d-dimensional tetrad (typically d = 10) and a non-Riemannian connection. This theory is invariant w.r.t. the global, but not local, rotations in the d-dimensional space. There can be configurations with a smooth or flat metric, but with the tetrad that changes abruptly at small distances, a kind of “antiferromagnetic” structure. Previously, we discussed a first-order representation for the Faddeev gravity, which uses the orthogonal connection in the d-dimensional space as an independent variable. Using the discrete form of this formulation, we considered the spectrum of (elementary) area. This spectrum turns out to be physically reasonable just on a classical background with large connection like rotations by π, that is, with such an “antiferromagnetic” structure. In the discrete first-order Faddeev gravity, we consider such a structure with periodic cells and large connection and strongly changing tetrad field inside the cell. We show that this system in the continuum limit reduces to a generalization of the Faddeev system. The action is a sum of related actions of the Faddeev type and is still reduced to the GR action.
Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin
2015-08-01
Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.
Stability and bistability in a one-dimensional model of coastal foredune height
NASA Astrophysics Data System (ADS)
Goldstein, Evan B.; Moore, Laura J.
2016-05-01
On sandy coastlines, foredunes provide protection from coastal storms, potentially sheltering low areas—including human habitat—from elevated water level and wave erosion. In this contribution we develop and explore a one-dimensional model for coastal dune height based on an impulsive differential equation. In the model, coastal foredunes continuously grow in a logistic manner as the result of a biophysical feedback and they are destroyed by recurrent storm events that are discrete in time. Modeled dunes can be in one of two states: a high "resistant-dune" state or a low "overwash-flat" state. The number of stable states (equilibrium dune heights) depends on the value of two parameters, the nondimensional storm frequency (the ratio of storm frequency to the intrinsic growth rate of dunes) and nondimensional storm magnitude (the ratio of total water level during storms to the maximum theoretical dune height). Three regions of phase space exist (1) when nondimensional storm frequency is small, a single high resistant-dune attracting state exists; (2) when both the nondimensional storm frequency and magnitude are large, there is a single overwash-flat attracting state; (3) within a defined region of phase space model dunes exhibit bistable behavior—both the resistant-dune and the low overwash-flat states are stable. Comparisons to observational studies suggest that there is evidence for each state to exist independently, the coexistence of both states (i.e., segments of barrier islands consisting of overwash-flats and segments of islands having large dunes that resist erosion by storms), as well as transitions between states.
Solar space and water heating system at Stanford University, Central Food Services Building
NASA Astrophysics Data System (ADS)
1980-05-01
This active hydronic domestic hot water and space heating system was 840 sq ft of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices.
Combinatorial quantization of the Hamiltonian Chern-Simons theory II
NASA Astrophysics Data System (ADS)
Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker
1996-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.
Vortex shedding experiment with flat and curved bluff plates in water
NASA Technical Reports Server (NTRS)
Reed, D.; Nesman, T.; Howard, P.
1988-01-01
Vortex shedding experiments were conducted in a water flow facility in order to simulate the strong discrete 4000-Hz vibration detected in the Space Shuttle Main Engine (SSME) which is thought to be associated with the SSME LOX inlet tee splitter vanes on the Main Injector. For the case of a flat vane with a blunt trailing edge excited by flow induced vortex shedding, lock-in with the first bending mode of the plate was observed. A curved vane displayed similar behavior, with the lock-in being a more discrete higher amplitude response. Aluminum vanes were employed to decouple the first vane bending mode from the vortex shedding mode. The application of an asymmetric 30-deg trailing edge bevel to both the flat and curved vanes was found to greatly reduce the strength of the shed vortices.
Tensor Minkowski Functionals for random fields on the sphere
NASA Astrophysics Data System (ADS)
Chingangbam, Pravabati; Yogendran, K. P.; Joby, P. K.; Ganesan, Vidhya; Appleby, Stephen; Park, Changbom
2017-12-01
We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We outline a method to compute the tensor-valued Minkowski Functionals numerically for any random field on the sphere. Then we obtain analytic expressions for the ensemble expectation values of the matrix elements for isotropic Gaussian and Rayleigh fields. The results hold on flat as well as any curved space with affine connection. We elucidate the way in which the matrix elements encode information about the Gaussian nature and statistical isotropy (or departure from isotropy) of the field. Finally, we apply the method to maps of the Galactic foreground emissions from the 2015 PLANCK data and demonstrate their high level of statistical anisotropy and departure from Gaussianity.
Disc rotors with permanent magnets for brushless DC motor
Hawsey, Robert A.; Bailey, J. Milton
1992-01-01
A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.
Fabrikant, I.; Karapetian, E.; Kalinin, S. V.
2017-12-09
Here, we consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Bothmore » methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, I.; Karapetian, E.; Kalinin, S. V.
Here, we consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Bothmore » methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.« less
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu
2018-03-01
In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.
Comparison of physical and semi-empirical hydraulic models for flood inundation mapping
NASA Astrophysics Data System (ADS)
Tavakoly, A. A.; Afshari, S.; Omranian, E.; Feng, D.; Rajib, A.; Snow, A.; Cohen, S.; Merwade, V.; Fekete, B. M.; Sharif, H. O.; Beighley, E.
2016-12-01
Various hydraulic/GIS-based tools can be used for illustrating spatial extent of flooding for first-responders, policy makers and the general public. The objective of this study is to compare four flood inundation modeling tools: HEC-RAS-2D, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), AutoRoute and Height Above the Nearest Drainage (HAND). There is a trade-off among accuracy, workability and computational demand in detailed, physics-based flood inundation models (e.g. HEC-RAS-2D and GSSHA) in contrast with semi-empirical, topography-based, computationally less expensive approaches (e.g. AutoRoute and HAND). The motivation for this study is to evaluate this trade-off and offer guidance to potential large-scale application in an operational prediction system. The models were assessed and contrasted via comparability analysis (e.g. overlapping statistics) by using three case studies in the states of Alabama, Texas, and West Virginia. The sensitivity and accuracy of physical and semi-eimpirical models in producing inundation extent were evaluated for the following attributes: geophysical characteristics (e.g. high topographic variability vs. flat natural terrain, urbanized vs. rural zones, effect of surface roughness paratermer value), influence of hydraulic structures such as dams and levees compared to unobstructed flow condition, accuracy in large vs. small study domain, effect of spatial resolution in topographic data (e.g. 10m National Elevation Dataset vs. 0.3m LiDAR). Preliminary results suggest that semi-empericial models tend to underestimate in a flat, urbanized area with controlled/managed river channel around 40% of the inundation extent compared to the physical models, regardless of topographic resolution. However, in places where there are topographic undulations, semi-empericial models attain relatively higher level of accuracy than they do in flat non-urbanized terrain.
Satokawa, Y; Minami, I; Wakabayashi, N
2018-02-01
Oral appliances with an occlusal flat table are used as treatment dentures. However, the short-term effect of insertion of such oral appliances on chewing has not been reported. This study aimed to determine whether experimental and continuous insertion of oral appliances with an occlusal flat table has an effect on chewing efficiency and Oral Health Impact Profile (OHIP) in healthy participants. Ten participants each in the oral-appliance and control (no oral-appliance insertion) groups attended six data collection sessions for 5 consecutive days. Participants answered the OHIP questionnaire and underwent the chewing efficiency test. For each parameter, intergroup differences were investigated in terms of change from baseline to immediately after oral-appliance insertion (0 hour; P < .05) and from 0 hour to 24, 48, 72 and 96 hours after oral-appliance insertion (P < .05). There were significant differences between groups in the degree of change in chewing efficiency and OHIP scores for functional limitation, physical pain, physical disability and handicap from baseline to 0 hour (all, P < .001); among these, only OHIP scores for functional limitation and physical pain demonstrated significant differences in degree of change between the two groups at 96 hours after appliance insertion (P = .477 and .275, respectively). Differences between the two groups in the degree of change in other parameters were not significant. Insertion of oral appliances caused a decrease in chewing efficiency and an increase in OHIP scores. Continuous insertion improved functional limitation and physical pain within 96 hours. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero
2016-10-01
In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.
O’Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre
2012-01-01
Peatlands in the northern permafrost region store large amounts of organic carbon, most of which is currently stored in frozen peat deposits. Recent warming at high-latitudes has accelerated permafrost thaw in peatlands, which will likely result in the loss of soil organic carbon from previously frozen peat deposits to the atmosphere. Here, we report soil organic carbon inventories, soil physical data, and field descriptions from a collapse-scar bog chronosequence located in a peatland ecosystem at Koyukuk Flats National Wildlife Refuge in Alaska.
2016-02-26
zero-pressure- gradient boundary layer to develop over a flat plate . As shown in figure 6.1, the flat plate contains an insert to allow for a thin...B. J. ‘Triadic scale interactions in a turbulent boundary layer ’ J. Fluid Mech., 767, R4 (2015). 6. Luhar, M., Sharma, A. S. & McKeon, B. J. ‘A... boundary layer ’, Paper H22.00003, 68th Meeting of the American Physical Society Division of Fluid Dynamics, Boston, MA, Nov., 2015. Duvvuri
Geometric Drive of the Universe's Expansion
NASA Astrophysics Data System (ADS)
Almeida, José B.
2006-03-01
What if physics is just the way we perceive geometry? That is, what if geometry and physics will one day become one and the same discipline? I believe that will mean we will at last really understand physics, without postulates other than those defining the particular space where the physics play is performed. In this paper I use 5-dimensional spacetime as a point of departure and make a very peculiar assignment between coordinates and physical distances and time. I assume there is an hyperspherical symmetry which is made apparent by assigning the hypersphere radius to proper time and distances on the hypersphere to usual 3-dimensional distances. Time, or Compton time to distinguish from cosmic time is the 0th coordinate and I am able to project everything into 4-dimensions by imposing a null displacement condition. Surprisingly nothing else is needed to explain Hubble's expansion law without any appeal to dark matter; an empty Universe will expand naturally at a flat rate in this way. I then discuss the perturbative effects of a small mass density in the expansion rate in a qualitative way; quantitative results call for the solution of equations that sometimes have not even been clearly formulated and so are deferred to later work. A brief outlook of the consequences an hyperspherical symmetry has for galaxy dynamics allows the derivation of constant rotation velocity curves, again without appealing to dark matter. An appendix explains how electromagnetism is made consistent with this geometric approach and justifies the fact that photons must travel on hypersphere circles, to be normal to proper time.
NASA Astrophysics Data System (ADS)
Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.
2017-11-01
The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.
Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Zhidenko, A.
2017-05-01
Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.
Flat Foot in a Random Population and its Impact on Quality of Life and Functionality
Gonzalez-Martin, Cristina; Alonso-Tajes, Francisco; Seoane-Pillado, Teresa; Pertega-Diaz, Sonia; Perez-Garcia, Sergio; Seijo-Bestilleiro, Rocio; Balboa-Barreiro, Vanesa
2017-01-01
Introduction Flat foot is a common deformity in adults. It is characterized by medial rotation and plantar flexion of the talus, eversion of the calcaneus, collapsed medial arch and abduction of the forefoot. Aim The aim of this study was to determine the prevalence of flat foot and its impact on quality of life, dependence, foot pain, disability and functional limitation among random population of 40-year-old and above. Materials and Methods A cross-sectional study in a random population sample from Cambre (A Coruña-Spain) (n=835) was performed (α =0.05; Precision=±3.4%). The diagnosis of flat foot was stablished by the study of the footprint obtained with a pedograph. Anthropometric variables were studied, Charlson’s Comorbidity Index, function and state of foot (Foot Function Index (FFI), Foot Health Status Questionnaire (FHSQ)), quality of life (SF-36), and dependence for activities of daily living (Barthel and Lawton index). A logistic and linear multiple regression analysis was performed. Results The prevalence of flat foot was 26.62%. Patients with flat foot were significantly older (65.73±11.04 vs 61.03±11.45-year-old), showed a higher comorbidity index (0.92±1.49 vs 0.50±0.98), had a greater BMI (31.45±5.55 vs 28.40±4.17) and greater foot size (25.16±1.66 vs 24.82±1.65). The presence of flat foot diminishes the quality of life, as measured by the FHSQ, and foot function, measured by the FFI. The presence of flat foot does not alter the physical and mental dimension of the SF-36 or the degree of dependence. Conclusion Flat foot was associated with age, Charlson’s Comorbidity Index, BMI and foot size. The SF-36, Barthel and Lawton questionnaires remained unaltered by the presence of flat foot. The FHSQ and FFI questionnaires did prove to be sensitive to the presence of flat foot in a significant manner. PMID:28571173
Researcher and Mechanic with Solar Collector in Solar Simulator Cell
1976-08-21
Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.
Quantum thermodynamics and quantum entanglement entropies in an expanding universe
NASA Astrophysics Data System (ADS)
Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein
2017-05-01
We investigate an asymptotically spatially flat Robertson-Walker space-time from two different perspectives. First, using von Neumann entropy, we evaluate the entanglement generation due to the encoded information in space-time. Then, we work out the entropy of particle creation based on the quantum thermodynamics of the scalar field on the underlying space-time. We show that the general behavior of both entropies are the same. Therefore, the entanglement can be applied to the customary quantum thermodynamics of the universe. Also, using these entropies, we can recover some information about the parameters of space-time.
Wigner functions on non-standard symplectic vector spaces
NASA Astrophysics Data System (ADS)
Dias, Nuno Costa; Prata, João Nuno
2018-01-01
We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.
20. INTERIOR VIEW TO THE WEST OF THE SOUTH OFFICE ...
20. INTERIOR VIEW TO THE WEST OF THE SOUTH OFFICE SPACE AT THE WEST END OF ROOM 101. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
19. INTERIOR VIEW TO THE WEST OF THE NORTH OFFICE ...
19. INTERIOR VIEW TO THE WEST OF THE NORTH OFFICE SPACE AT THE WEST END OF ROOM 101. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
21. INTERIOR VIEW TO THE WEST OF EQUIPMENT ABOVE THE ...
21. INTERIOR VIEW TO THE WEST OF EQUIPMENT ABOVE THE OFFICE SPACE AT THE WEST END OF ROOM 101. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
NASA Astrophysics Data System (ADS)
Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.
2018-05-01
Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.
Transformer ratio saturation in a beam-driven wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J. P.; Martorelli, R.; Pukhov, A.
We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.
Cosmic strings: Gravitation without local curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helliwell, T.M.; Konkowski, D.A.
1987-05-01
Cosmic strings are very long, thin structures which might stretch over vast reaches of the universe. If they exist, they would have been formed during phase transitions in the very early universe. The space-time surrounding a straight cosmic string is flat but nontrivial: A two-dimensional spatial section is a cone rather than a plane. This feature leads to unique gravitational effects. The flatness of the cone means that many of the gravitational effects can be understood with no mathematics beyond trigonometry. This includes the observational predictions of the double imaging of quasars and the truncation of the images of galaxies.
NASA Astrophysics Data System (ADS)
Hafid Bouougri, El; Porada, Hubertus
2010-05-01
In terms of optimal light utilization, mat surfaces ideally are flat. In nature, however, flat mat surfaces are observed rarely or in restricted patches only. Rather they are shaped by a variety of linear and subcircular to irregular protrusions at various scales, including overgrown upturned crack margins, bulges (‘petees'), domes (‘blisters' and ‘pustules'), reticulate networks with tufts and pinnacles etc. These features are so characteristic that ‘mat types' have been established according to their prevalence, e.g., film, flat, smooth, crinkle, blister, tufted, cinder, mammilate, pustular and polygonal mats (Kendall and Skipwith, 1969; Logan et al., 1974). Responsible for the development of such mat surface features are environmental (physical and chemical) factors and, in reaction, the opportunistic growth behaviour of the participating bacterial taxa. Theoretically, a ‘juvenile' mat may be assumed as being flat, evolving into various forms with typical surface morphologies according to environmental impacts and respective bacterial reactions. Observations in the Abu Dhabi evaporitic carbonate tidal flats and Tunisian evaporitic siliciclastic tidal flats demonstrate that topography plays a fundamental role, both on the large scale of the tidal flat and on the small scale of mat surface morphology. It controls, together with related factors like, e.g., frequency of tidal flooding; duration of water cover; frequency and duration of subaerial exposure, the spatial distribution and the temporal evolution of mat surface structures. On the tidal flat scale, topographic differences result a priori from its seaward gradient and may arise additionally from physical processes which may modify the substrate surface and produce in the intertidal and lower supratidal zones narrow creeks and shallow depressions meandering perpendicular to the slope. Within a wide tidal flat without local topographic changes in the tidal zones, mat surface structures display a typical shore-parallel zonality. In contrast, in tidal flats with slight changes in topography, the typical shore-parallel zonality appears disturbed mainly along the intertidal and lower supratidal zones. The mat surface structures within each tidal zone show local and lateral transitions but all evolve from an incipient flat or polygonal mat. On the mat scale, microtopographic differences are created by the mats themselves, e.g., in the form of upturned crack margins, bulges and domes. All these are small-scale topographic highs that influence the distribution of microbial activity and mat growth dynamics. In the Abu Dhabi area it is observed that smooth or polygonal mats may grade temporally into mammilate, cinder or pustular and tufted mats along an evolutionary path controlled by preferred growth along bulges and upturned crack margins. A similar temporal evolution appears in the intertidal and supratidal zones in Tunisia where local changes on mat-surface induce a variety of mat-growth struc¬tures on and along upturned crack margins, gas domes and isolated to polygonal bulges and petee ridges. References Kendall C.G.St.C, Skipwith, P.A.d'E. (1968) Recent algal mats of a Persian gulf lagoon. J. Sedim. Res., 38, 1040-1058. Logan B.W. Hoffman P. Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem., 22, 140-194.
2004-04-16
KENNEDY SPACE CENTER, FLA. - Two fledgling ospreys occupy a nest near the NASA-KSC News Center, across from the Vehicle Assembly Building. Known as a fish hawk, ospreys select sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States they are found from Alaska to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.
2002-03-29
KENNEDY SPACE CENTER, FLA. - A Short-Billed Dowitcher perches on a branch hanging above water near Kennedy Space Center,. These sandpiper-like birds inhabit mud flats, creeks, salt marshes and tidal estuaries. With their long bills probing the water in rapid up-and-down motion, they seek marine worms, snails, tiny crustaceans and aquatic larvae. They range from southern Alaska to eastern Canada and winter from the southern United States to central South America.
Space Station Freedom Solar Array tension mechanism development
NASA Technical Reports Server (NTRS)
Allmon, Curtis; Haugen, Bert
1994-01-01
A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.
1984-04-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
2004-01-14
KENNEDY SPACE CENTER, FLA. -- A breeding osprey occupies a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.
2004-01-14
KENNEDY SPACE CENTER, FLA. -- A pair of breeding ospreys share a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.
Lateral trends and vertical sequences in estuarine sediments, Willapa Bay, Washington
Clifton, H. Edward; Phillips, L.
1980-01-01
Willapa Bay is a sizable estuary on the southern coast of Washington- Relatively unmodified in a geologic sense by human activity the bay provides an excellent example of modern depositional facies in an estuarine setting. Studies of these deposits indicate that consistent lateral trends exist in sediment texture and sedimentary structures. The texture changes from sandy at the mouth of the bay to muddy in its upper parts. In any part of the bay , sediment is coarsest in the channel bottoms, where lag deposits accumulate. The sediment tends to fine in an upslope direction and is finest in supratidal flat deposits of silt and clay. The nature of sedimentary structures depends on the combination of physical and biological processes and sediment textures. Bedforms exist wherever the bed is sandy. In the main tidal channels sandwaves and dunes up to 4 meters high occur. In tributary channels and at the margins of the main channel, at shallower depths and under less intense currents , the structures are generally less than a meter high. Current ripples occur in t he sandy bed of all of the tidal channels and in runoff channels cross the tidal flat. Symmetric long-crested ripples are produced by wave action over the sandy intertidal flat. Internal structures in the bay's sediment depend not only on the nature of the bedform but also on the rate of bioturbation relative to physical processes. Under fields of large sandwaves or dunes, medium- to large-scale tabular and trough crossbedding predominates. This crossbedding generally is unidirectional, reflecting the locally dominant current (ebb or flood). Ripple bedding predominates elsewhere in sandy sediment within the channels. Where sand transport is diminished, as on the floor of the upper tributary channels, bioturbation exceeds the rate of production of physical structures and bedding is destroyed. The depositional banks in such areas tend to be sites of rapid sediment accumulation and bedding in the form of interlayered sand (commonly ripple bedded) and mud persists. On intertidal flats the sediment accumulates slowly and bioturbation erases nearly all physical structures. Bedding is preserved only where deposition is locally rapid , as in topographic depressions or on the depositional banks of runoff channels, or where faunal activity is inhibited, as beneath mounds of blue-green algae. The rate of sedimentation is slower still on the supratidal flats, but the general paucity of faunal activity allows the preservation of thin alternations of fine sand , silt or clay. The lateral migration of the tidal channels produces vertical sequences in which topographically higher facies are superposed on one another. Near the mouth of the estuary the upward sequence: lag deposit — crossbedded sand — ripple or planar-bedded sand is typical. The crossbedding shows a general upward decrease in thickness and a progression from trough to tabular units. In the main tidal channel - in the central estuary and in sandy tributary channels, the typical vertical sequence resembles that near the mouth , with the exception that the sequence is capped by bioturbated sandy or muddy tide flat deposits. In the upper estuary , where muddy sediment predominates, a typical sequence shows the progression-. bioturbated lag deposit — gently dipping interlaminated sand and mud layers of the accretionary bank — bioturbated mud flat deposits — thinly laminated fine supratidal deposits.
VIEW OF BUILDING 122 EXAMINATION FACILITIES THAT SUPPORT ROUTINE EMPLOYEE ...
VIEW OF BUILDING 122 EXAMINATION FACILITIES THAT SUPPORT ROUTINE EMPLOYEE AND SUBCONTRACTOR PHYSICAL EXAMINATIONS. (10/85) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO
Measurement of super large radius optics in the detection of gravitational waves
NASA Astrophysics Data System (ADS)
Yang, Cheng; Han, Sen; Wu, Quanying; Liang, Binming; Hou, Changlun
2015-10-01
The existence of Gravitational Wave (GW) is one of the greatest predictions of Einstein's relative theory. It has played an important part in the radiation theory, black hole theory, space explore and so on. The GW detection has been an important aspect of modern physics. With the research proceeding further, there are still a lot of challenges existing in the interferometer which is the key instrument in GW detection especially the measurement of the super large radius optics. To solve this problem, one solution , Fizeau interference, for measuring the super large radius has been presented. We change the tradition that curved surface must be measured with a standard curved surface. We use a flat mirror as a reference flat and it can lower both the cost and the test requirement a lot. We select a concave mirror with the radius of 1600mm as a sample. After the precision measurement and analysis, the experimental results show that the relative error of radius is better than 3%, and it can fully meet the requirements of the measurement of super large radius optics. When calculating each pixel with standard cylinder, the edges are not sharp because of diffraction or some other reasons, we detect the edge and calculate the diameter of the cylinder automatically, and it can improve the precision a lot. In general, this method is simple, fast, non-traumatic, and highly precision, it can also provide us a new though in the measurement of super large radius optics.
Advanced Gas Hydrate Reservoir Modeling Using Rock Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel
Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production. A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Legmore » II in 2009 and recently confirmed with coring in 2017. A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.« less
Fuel cell separator plate with bellows-type sealing flanges
Louis, G.A.
1984-05-29
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Tests of Round and Flat Spoilers on a Tapered Wing in the NACA 19-Foot Pressure Wind Tunnel
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Bowen, John D
1941-01-01
Several arrangements of round and flat spanwise spoilers attached to the upper surface of a tapered wing were tested in the NACA 19-foot pressure wind tunnel to determine the most effective type, location, and size of spoiler necessary to reduce greatly the lift on the wings of large flying boats when moored. The effect of the various spoilers on the lift, the drag, and the pitching-moment characteristics of the tapered wing was measured over a range of angles of attack from zero to maximum lift. The most effective type of spoiler was found to be the flat type with no space between it and the wing surface. The chordwise location of such a spoiler was not critical within the range investigated, from 5 to 20 percent of the wing chord from the leading edge.
Fuel cell separator plate with bellows-type sealing flanges
Louis, George A.
1986-08-05
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
System for photometric calibration of optoelectronic imaging devices especially streak cameras
Boni, Robert; Jaanimagi, Paul
2003-11-04
A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.
Nothing From Everything- A Unified Theory
NASA Astrophysics Data System (ADS)
Mehra, Vijay Kumar
2016-07-01
Nothing From Everything-A Unified Theory is a philosophical insight into principles of nature through principle of complementary spontaneity and principle of vertical continuity. This work is intended to explain various cosmological phenomena in light of behaviour of particles in range of their respective and relative speed of light. This theory explains creation of Universe from nothing or zero spacetime through scalar energy field collapsing into Higgs field resulting into giving mass to various particles. The energy particles taking origin from nothing while moving away from zero space-time would create space-time of their own order because energy/matter needs space to exist. The particles while moving away from zero space-time would end up in breaking symmetry of matter/energy at their mass infinity (highest possible mass of any particle, which is function of speed of spin). This break in symmetry would lead to curving of particles upon themselves and hence would lead to creation of antiparticles going back in time towards zero spacetime. Therefore the Universe could have been created by alternate layers of particles and antiparticles and also alternate layers of matter and antimatter with decelerating speed of light, which would lead to creation a closed and flat Universe. With increase in mass of Universe (creation of more and more Universe's matter from nothing), the gravitational force of Universe is bound to increase and hence with quantum by quantum increase in gravity, it would apply brakes on relative speed of photon/light out of its reference frame or designated space and hence speed of photon would decrease. If closed and flat Universe was created with decelerating speed of light, then such Universe is bound to contract back with accelerating speed of light which would have inverse impact on gravitational constant across various spacetime zones of Universe. And hence mass bodies would drift away spontaneously purely on basis and proportional to distance square between mass bodies with accelerating speed of light, but in actual such Universe would be contracting rather than expanding. Furthermore, this theory explains how particles (when moving away from zero space-time) acquire spin, whose force vector acts centrifugally and neutralizes the quantum gravitational force of particle which acts centripetally. While in case of antiparticles both spin force and gravitational force acts towards centre of particles and they are bound to create singularity of zero spacetime. This theory further explains motion of photon/anti-photon in light of space displacement. The time is nothing but is a measure of rate of space displacement. Where there is no space displacement, there is no time. Any force, like gravity, which acts against space displacement must act against time and hence such forces would lead to slowing of time. This theory further explains about curvature of space-time, relative existence of time orders across Universe, black holes including atomic black holes, other Universes, virtual Universe, time travel, existence of life on other planets, numbers of Universe which govern dynamics of Universe, quantum of Universe i.e. existence of particle-antiparticle in space-time and relation of particles with Higgs field, origin of spin and charge of particles, reason for uncertainty principle and Pauli's exclusion principle, space-time dimensions, and other relevant topics of Astrophysics and quantum Physics.
DESTINY, The Dark Energy Space Telescope
NASA Technical Reports Server (NTRS)
Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod
2007-01-01
We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.
High-temperature superconductors for space power transmission lines
NASA Astrophysics Data System (ADS)
Hull, John R.; Myers, Ira T.
1989-08-01
Analysis of high temperature superconductors (HTS) for space power transmission lines shows that they have the potential to provide low weight alternatives to conventional power distribution systems, especially for line lengths greater than 100 m. The use of directional radiators, combined with the natural vacuum of space, offers the possibility of reducing or eliminating the heat flux from the environment that dominates loss in terrestrial systems. This leads to scaling laws that favor flat conductor geometries. From a total launch weight viewpoint, HTS transmission lines appear superior, even with presently attainable values of current density.
Autonomous momentum management for space station
NASA Technical Reports Server (NTRS)
Hahn, E.
1984-01-01
Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.
Visualization of vortex flow field around a flat plate with noncircular hole
NASA Astrophysics Data System (ADS)
Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.
2018-02-01
In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.
NASA Astrophysics Data System (ADS)
Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.
2017-11-01
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
Surface properties of atomically flat poly-crystalline SrTiO3
Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok
2015-01-01
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275
NASA Astrophysics Data System (ADS)
Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.
2017-12-01
The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the improvements made in WFIP 2 will be extendable to other regions, complex or flat terrain. Ongoing and future challenges in RAP/HRRR physics development will be touched upon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J., E-mail: jose.beltran@uclouvain.be, E-mail: Lavinia.Heisenberg@unige.ch, E-mail: gonzalo.olmo@csic.es
We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. Inmore » vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.« less
48 CFR 237.7204 - Format and clauses for educational service agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Mandatory health fees and health insurance charges; and (iii) Any flat rate charge applicable to all... Physics. A curriculum normally covers more than one term and leads to a degree or diploma upon successful...
Biomechanical analysis of three tennis serve types using a markerless system.
Abrams, Geoffrey D; Harris, Alex H S; Andriacchi, Thomas P; Safran, Marc R
2014-02-01
The tennis serve is commonly associated with musculoskeletal injury. Advanced players are able to hit multiple serve types with different types of spin. No investigation has characterised the kinematics of all three serve types for the upper extremity and back. Seven NCAA Division I male tennis players performed three successful flat, kick and slice serves. Serves were recorded using an eight camera markerless motion capture system. Laser scanning was utilised to accurately collect body dimensions and data were computed using inverse kinematic methods. There was no significant difference in maximum back extension angle for the flat, kick or slice serves. The kick serve had a higher force magnitude at the back than the flat and slice as well as larger posteriorly directed shoulder forces. The flat serve had significantly greater maximum shoulder internal rotation velocity versus the slice serve. Force and torque magnitudes at the elbow and wrist were not significantly different between the serves. The kick serve places higher physical demands on the back and shoulder while the slice serve demonstrated lower overall kinetic forces. This information may have injury prevention and rehabilitation implications.
Multiband super-resolution imaging of graded-index photonic crystal flat lens
NASA Astrophysics Data System (ADS)
Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun
2018-05-01
Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.
In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less
Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.; ...
2018-01-15
In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less
Nickoloff, Edward Lee
2011-01-01
This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.
Rivera-Saldívar, G; Torres-González, R; Franco-Valencia, M; Ríos-Monroy, R; Martínez-Ramírez, F; Pérez-Hernández, E; Duarte-Dagnino, D
2012-01-01
The investigation on the medial longitudinal arch is aimed at addressing the diagnostic problems of flat foot. The diagnosis is currently based on clinical tests and the appropriate identification of both postural and gait abnormalities. Risk factors are associated with pre-school ages, but there is no adequate analysis of such factors during school ages, when the longitudinal arch reaches its conformational maturity. Probabilistic methods were used to obtain a sample of 476 patients from elementary schools in the Federal District and the state of Puebla. Once the approval of the research committee was obtained, an analytical, prospective, cross-sectional study was conducted. Anthropometric measurements were performed, together with anamnesis, physical exam of the students, and conventional wet footprint analysis in a standardized and duplicate way. Of the 476 patients, 101 had flat foot (21.2%) and 49 of them had pain symptoms in the feet, knees or both (48.5%), accounting for 10.2% of the patients examined. Forefoot pronation and valgus hindfoot resulted in an increased risk of symptomatic flat foot in the school population in the study. In cases of flat or cavus foot, the presence of foot and/or knee pain symptoms in the school population was associated in a statistically significant way with one or more of the factors analyzed (overweight, genu valgus, valgus hindfoot, forefoot pronation and claw toes). Girls with such factors had a 3-7 higher chance of having symptomatic flat foot.
Conformal symmetries of Einstein's field equations and initial data
NASA Astrophysics Data System (ADS)
Sharma, Ramesh
2005-04-01
This paper examines the initial data for the evolution of the space-time solution of Einstein's equations admitting a conformal symmetry. Under certain conditions on the extrinsic curvature of the initial complete spacelike hypersurface and sectional curvature of the space-time with respect to sections containing the normal vector field, we have shown that the initial hypersurface is conformally diffeomorphic to a sphere or a flat space or a hyperbolic space or the product of an open real interval and a complete 2-manifold. It has been further shown that if the initial hypersurface is compact, then it is conformally diffeomorphic to a sphere. Finally, the conformal symmetries of a generalized Robertson-Walker space-time have been described.
Light refraction in the Swiss-cheese model
NASA Astrophysics Data System (ADS)
Csapó, Adelinda; Bene, Gyula
2012-08-01
We investigate light propagation in the Swiss-cheese model. On both sides of Swiss-cheese sphere surfaces, observers resting in the flat Friedmann-Robertson-Walker (FRW) space and the Schwarzschild space respectively, see the same light ray enclosing different angles with the normal. We examine light refraction at each crossing of the boundary surfaces, showing that the angle of refraction is larger than the angle of incidence for both directions of the light.
2004-06-10
KENNEDY SPACE CENTER, FLA. - An osprey stares intently at prey as it extends its talons. Known as a fish hawk, ospreys often can be seen flying overhead with a fish in their talons. Fish are their sole source of food. Ospreys select nesting sites of opportunity, from trees and telephone poles to rocks or even flat ground, often near water. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An osprey stares intently at prey as it extends its talons. Known as a fish hawk, ospreys often can be seen flying overhead with a fish in their talons. Fish are their sole source of food. Ospreys select nesting sites of opportunity, from trees and telephone poles to rocks or even flat ground, often near water. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.
NASA Technical Reports Server (NTRS)
Joshi, S. M.; Groom, N. J.
1980-01-01
A finite element structural model of a 30.48 m x 30.48 m x 2.54 mm completely free aluminum plate is described and modal frequencies and mode shape data for the first 44 modes are presented. An explanation of the procedure for using the data is also presented. The model should prove useful for the investigation of controller design approaches for large flexible space structures.
Handling fixture for soldering round wires to FCC
NASA Technical Reports Server (NTRS)
Loggins, R.; Martineck, H. G.
1971-01-01
Fixture holds flat conductor cable and wires in position until after soldering of contacting conductor ends and potting of junctions. Device provides for proper spacing of wires and adequate access for soldered joints during fabrication, and positions mold halves during potting operation.
Development of an economic solar heating system with cost efficient flat plate collectors
NASA Astrophysics Data System (ADS)
Eder-Milchgeisser, W.; Burkart, R.
1980-10-01
Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.
Charged black holes in quartic quasi-topological gravity
NASA Astrophysics Data System (ADS)
Ghanaatian, M.; Naeimipour, F.; Bazrafshan, A.; Abkar, M.
2018-05-01
In this paper, we construct exact solutions of charged black holes in the presence of quartic quasi-topological gravity. We obtain thermodynamics and conserved quantities of the solutions and check the first law of thermodynamics. In studying the physical properties of the solutions, we consider anti-de Sitter, de Sitter, and flat solutions of charged black holes in quartic quasi-topological gravity and compare them with Einstein and third-order quasi-topological gravities. We also investigate the thermal stability of the solutions and show that thermal stability is just for anti-de Sitter solutions, not for de Sitter and flat ones.
Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones
Zhang, Peng; Fietz, Chris; Tassin, Philippe; ...
2015-04-14
A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.
Thermodynamics of confined gallium clusters.
Chandrachud, Prachi
2015-11-11
We report the results of ab initio molecular dynamics simulations of Ga13 and Ga17 clusters confined inside carbon nanotubes with different diameters. The cluster-tube interaction is simulated by the Lennard-Jones (LJ) potential. We discuss the geometries, the nature of the bonding and the thermodynamics under confinement. The geometries as well as the isomer spectra of both the clusters are significantly affected. The degree of confinement decides the dimensionality of the clusters. We observe that a number of low-energy isomers appear under moderate confinement while some isomers seen in the free space disappear. Our finite-temperature simulations bring out interesting aspects, namely that the heat capacity curve is flat, even though the ground state is symmetric. Such a flat nature indicates that the phase change is continuous. This effect is due to the restricted phase space available to the system. These observations are supported by the mean square displacement of individual atoms, which are significantly smaller than in free space. The nature of the bonding is found to be approximately jellium-like. Finally we note the relevance of the work to the problem of single file diffusion for the case of the highest confinement.
Thermal Insulation Test Apparatuses
NASA Technical Reports Server (NTRS)
Berman, Brion
2005-01-01
The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasakura, Naoki
The tensor model is discussed as theory of dynamical fuzzy spaces in order to formulate gravity on fuzzy spaces. The numerical analyses of the tensor models possessing Gaussian background solutions have shown that the low-lying long-wavelength fluctuations around the backgrounds are in remarkable agreement with the geometric fluctuations on flat spaces in the general relativity. It has also been shown that part of the orthogonal symmetry of the tensor model spontaneously broken by the backgrounds agrees with the local translation symmetry of the general relativity. Thus the tensor model provides an interesting model of simultaneous emergence of space, the generalmore » relativity, and its local translation symmetry.« less
Analytical Bistatic k Space Images Compared to Experimental Swept Frequency EAR Images
NASA Technical Reports Server (NTRS)
Shaeffer, John; Cooper, Brett; Hom, Kam
2004-01-01
A case study of flat plate scattering images obtained by the analytical bistatic k space and experimental swept frequency ISAR methods is presented. The key advantage of the bistatic k space image is that a single excitation is required, i.e., one frequency I one angle. This means that prediction approaches such as MOM only need to compute one solution at a single frequency. Bistatic image Fourier transform data are obtained by computing the scattered field at various bistatic positions about the body in k space. Experimental image Fourier transform data are obtained from the measured response to a bandwidth of frequencies over a target rotation range.
4D scattering amplitudes and asymptotic symmetries from 2D CFT
NASA Astrophysics Data System (ADS)
Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman
2017-01-01
We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.
Stable computations with flat radial basis functions using vector-valued rational approximations
NASA Astrophysics Data System (ADS)
Wright, Grady B.; Fornberg, Bengt
2017-02-01
One commonly finds in applications of smooth radial basis functions (RBFs) that scaling the kernels so they are 'flat' leads to smaller discretization errors. However, the direct numerical approach for computing with flat RBFs (RBF-Direct) is severely ill-conditioned. We present an algorithm for bypassing this ill-conditioning that is based on a new method for rational approximation (RA) of vector-valued analytic functions with the property that all components of the vector share the same singularities. This new algorithm (RBF-RA) is more accurate, robust, and easier to implement than the Contour-Padé method, which is similarly based on vector-valued rational approximation. In contrast to the stable RBF-QR and RBF-GA algorithms, which are based on finding a better conditioned base in the same RBF-space, the new algorithm can be used with any type of smooth radial kernel, and it is also applicable to a wider range of tasks (including calculating Hermite type implicit RBF-FD stencils). We present a series of numerical experiments demonstrating the effectiveness of this new method for computing RBF interpolants in the flat regime. We also demonstrate the flexibility of the method by using it to compute implicit RBF-FD formulas in the flat regime and then using these for solving Poisson's equation in a 3-D spherical shell.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
Development and application of W/Cu flat-type plasma facing components at ASIPP
NASA Astrophysics Data System (ADS)
Li, Q.; Zhao, S. X.; Sun, Z. X.; Xu, Y.; Li, B.; Wei, R.; Wang, W. J.; Qin, S. G.; Shi, Y. L.; Xie, C. Y.; Wang, J. C.; Wang, X. L.; Missirlian, M.; Guilhem, D.; Liu, G. H.; Yang, Z. S.; Luo, G.-N.
2017-12-01
W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m-2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m-2, which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon.
Federal R&D tops $103 billion, but physics stays flat
NASA Astrophysics Data System (ADS)
Dawson, Jim
2002-02-01
Four years of federal budget surpluses are giving way to deficit spending, thanks in large part to terrorits, war, and recession. As the unanticipated spending began late in the budget process, overall science appropriations increased significantly.
Economic analysis of solar assisted absorption chiller for a commercial building
NASA Astrophysics Data System (ADS)
Antonyraj, Gnananesan
Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.
Asymptotic charges cannot be measured in finite time
Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.; ...
2018-02-28
To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less
Space configuration as an explanation for lithology-related cross-polarized radar image anomalies
NASA Technical Reports Server (NTRS)
Mccauley, J. R.
1972-01-01
Three rock types are described that produce dark cross-polarized images on Ka-band imagery: lava flows dating from Pleistocene and Holocene, some Tertiary volcanics, and certain massive sandstones. Their planar surfaces are large with respect to the wavelength of the Ka-band system, yet are small in comparison to the resolution. It is found that only outcrops with proper faceted surface orientations produce significant radar returns showing the dominance of specular reflectors. The omnidirectional attitude of the facets and their wide distribution on the outcrops explains the independence of look-direction that the flat-lying anomalous outcrops exhibit in production of darker cross-polarized images.
The Partition Function in the Four-Dimensional Schwarz-Type Topological Half-Flat Two-Form Gravity
NASA Astrophysics Data System (ADS)
Abe, Mitsuko
We derive the partition functions of the Schwarz-type four-dimensional topological half-flat two-form gravity model on K3-surface or T4 up to on-shell one-loop corrections. In this model the bosonic moduli spaces describe an equivalent class of a trio of the Einstein-Kähler forms (the hyper-Kähler forms). The integrand of the partition function is represented by the product of some bar ∂ -torsions. bar ∂ -torsion is the extension of R-torsion for the de Rham complex to that for the bar ∂ -complex of a complex analytic manifold.
Asymptotic charges cannot be measured in finite time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.
To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less
Hairy black holes in scalar extended massive gravity
NASA Astrophysics Data System (ADS)
Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong
2015-12-01
We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.
Jones, B.F.
1982-01-01
The mineralogy of matrix fines in alluvium from borehole Ullg, expl. 1, north of Frenchman Flat, Nevada Test Site, has been examined for evidence of past variations in water table elevation. Although greater abundance of zeolite and slightly more expanded basal spacings in smectite clays suggest effects of increased hydration of material up to 50 m above the present water table, these differences might also be related to provenance of environment of deposition. The relative uniformity of clay hydration properties in the 50 meters above the current water table suggest long-term stability near the present level. (USGS)
Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan
2013-05-20
We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.
Generic cosmic-censorship violation in anti-de Sitter space.
Hertog, Thomas; Horowitz, Gary T; Maeda, Kengo
2004-04-02
We consider (four-dimensional) gravity coupled to a scalar field with potential V(phi). The potential satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum. We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in asymptotically anti-de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in asymptotically flat spacetimes, but we do not have definite results.
Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
1984-01-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models
NASA Astrophysics Data System (ADS)
Alim, Murad
2017-08-01
The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.
Removal of ring artifacts in microtomography by characterization of scintillator variations.
Vågberg, William; Larsson, Jakob C; Hertz, Hans M
2017-09-18
Ring artifacts reduce image quality in tomography, and arise from faulty detector calibration. In microtomography, we have identified that ring artifacts can arise due to high-spatial frequency variations in the scintillator thickness. Such variations are normally removed by a flat-field correction. However, as the spectrum changes, e.g. due to beam hardening, the detector response varies non-uniformly introducing ring artifacts that persist after flat-field correction. In this paper, we present a method to correct for ring artifacts from variations in scintillator thickness by using a simple method to characterize the local scintillator response. The method addresses the actual physical cause of the ring artifacts, in contrary to many other ring artifact removal methods which rely only on image post-processing. By applying the technique to an experimental phantom tomography, we show that ring artifacts are strongly reduced compared to only making a flat-field correction.
NASA Astrophysics Data System (ADS)
Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.
Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.
Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.
Zhuang, Yuyang; Chen, Heming; Ji, Ke
2017-05-10
We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.
Experimental investigation of a jet inclined to a subsonic crossflow
NASA Technical Reports Server (NTRS)
Aoyagi, K.; Snyder, P. K.
1981-01-01
Experimental investigations have been conducted to determine the surface-pressure distribution on a flat plate and a body of revolution with a jet issuing at a large angle to the free stream and to obtain a better understanding of the entrainment mechanism close to the jet exit by quantitative mean velocity surveys. Pressure data were obtained with a flat plate model at several nozzle injection angles using a single round nozzle. For the body of revolution model, data were obtained with a round jet exhausting perpendicular to the crossflow and with two round jets spaced two to six nozzle diameters apart. Mean velocity measurements were obtained with laser velocimeter surveys near the base of a round jet exhausting normal to a flat plate. For the flat plate model, the pressure field shifts downstream and the entrainment effect decreases with decreasing nozzle injection angle. For the body of revolution model with two jets, the jet-induced effect of the rear jet on the surface-pressure distribution was less than the front jet. The flow regions close to the jet are defined by the laser surveys, but further mean velocity surveys are required to understand the entrainment mechanism.
Long time existence from interior gluing
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.
2017-07-01
We prove completeness-to-the-future of null hypersurfaces emanating outwards from large spheres, in vacuum space-times evolving from general asymptotically flat data with well-defined energy-momentum. The proof uses scaling and a gluing construction to reduce the problem to Bieri’s stability theorem.
Earth observation taken by the Expedition 43 crew
2015-05-10
ISS043E184521 (05/10/2015) --- NASA astronaut Terry Virts Expedition 43 Commander on the International Space Station tweeted this Earth observation image of South America with the following comment: "Salar de Uyuni in the #Bolivia desert #SouthAmerica. The world's largest salt flat".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas
We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less
Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; ...
2015-11-17
We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less
M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere.
Yuan, Yangsheng; Cai, Yangjian; Qu, Jun; Eyyuboğlu, Halil T; Baykal, Yahya; Korotkova, Olga
2009-09-28
Analytical formula is derived for the M(2)-factor of coherent and partially coherent dark hollow beams (DHB) in turbulent atmosphere based on the extended Huygens-Fresnel integral and the second-order moments of the Wigner distribution function. Our numerical results show that the M(2)- factor of a DHB in turbulent atmosphere increases on propagation, which is much different from its invariant properties in free-space, and is mainly determined by the parameters of the beam and the atmosphere. The relative M(2)-factor of a DHB increases slower than that of Gaussian and flat-topped beams on propagation, which means a DHB is less affected by the atmospheric turbulence than Gaussian and flat-topped beams. Furthermore, the relative M(2)-factor of a DHB with lower coherence, longer wavelength and larger dark size is less affected by the atmospheric turbulence. Our results will be useful in long-distance free-space optical communications.
Lattice gas simulations of dynamical geometry in two dimensions.
Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J
2010-10-01
We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.
Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Bera, Jayanta; Roy, Utpal
2018-05-01
Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.
VanDusen, Beth M.; Fegley, Stephen R.; Peterson, Charles H.
2012-01-01
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats. PMID:23285153
Buckling transition and boundary layer in non-Euclidean plates.
Efrati, Efi; Sharon, Eran; Kupferman, Raz
2009-07-01
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
NASA Technical Reports Server (NTRS)
Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Shaw, Hali; Beeler, David
2016-01-01
FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.
Energy-dependent topological anti-de Sitter black holes in Gauss-Bonnet Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Behnamifard, H.; Bahrami-Asl, B.
2018-03-01
Employing higher-curvature corrections to Einstein-Maxwell gravity has garnered a great deal of attention motivated by the high-energy regime in the quantum nature of black hole physics. In addition, one may employ gravity's rainbow to encode quantum gravity effects into black hole solutions. In this paper, we regard an energy-dependent static spacetime with various topologies and study its black hole solutions in the context of Gauss-Bonnet Born-Infeld (GB-BI) gravity. We study the thermodynamic properties and examine the first law of thermodynamics. Using a suitable local transformation, we endow the Ricci-flat black hole solutions with a global rotation and study the effects of rotation on thermodynamic quantities. We also investigate thermal stability in a canonical ensemble by calculating the heat capacity. We obtain the effects of various parameters on the horizon radius of stable black holes. Finally, we discuss a second-order phase transition in the extended phase space thermodynamics and investigate the critical behavior.
Deformations of the gyroid and Lidinoid minimal surfaces using flat structures
NASA Astrophysics Data System (ADS)
Weyhaupt, Adam
2015-03-01
Mathematically, the challenge in proving the existence of a purported triply periodic minimal surface is in computing parameter values that depend on a system of equations defined by elliptic integrals. This is generally very difficult. In the presence of some symmetry, however, a technique developed by Weber and Wolf can reduce these elliptic integrals to basic algebra and geometry of polygons. These techniques can easily prove the existence of some surfaces and the presence of a family of solutions. Families of surfaces are important mathematically, but recent work by Seddon, et. al., experimentally confirms that these families of surfaces can occur physically as well. In this talk, we give a brief overview of the technique and show how it can be applied to prove the existence of several families of surfaces, including lower symmetry variants of the gyroid and Lidinoid such as the rG, rPD, tG, and rL. We also conjecture a map of the moduli space of triply periodic minimal surfaces of genus 3.
Partial analysis of experiment LDEF A-0114
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1986-01-01
Due to delays in manifesting the return of the Long Duration Exposure Facility from space, attention was concentrated on extracting the maximum information from the EIOM-2 (oxygen interaction with materials experiment) flown on STS-8 in September 1983. An analysis was made of the optical surfaces exposed during that flight and an assessment made of the effect of the 5 eV atomic oxygen upon their physical and chemical properties. The surfaces studied were of two types: high-purity thin films sputtered or evaporated onto 2.54-cm diam lambda/20 fused silica optical flats, and highly polished bulk samples. Rapid etching of carbon and carbonaceous surfaces was observed with polycarbonate CR-39 showing the largest etch of any substrate flown and measured. Of the metals tested, only osmium and silver showed large effects, the former being heavily etched and the later forming a very thick layer of oxide. The first measurable effects on iridium, aluminum, nickel, tungsten and niobium thin films are reported.
Medium generated gap in gravity and a 3D gauge theory
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Older, Daniel
2018-05-01
It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.
Optical Modeling of the Alignment and Test of the NASA James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Howard, Joseph M.; Hayden, Bill; Keski-Kuha, Ritva; Feinberg, Lee
2007-01-01
Optical modeling challenges of the ground alignment plan and optical test and verification of the NASA James Webb Space Telescope are discussed. Issues such as back-out of the gravity sag of light-weighted mirrors, as well as the use of a sparse-aperture auto-collimating flat system are discussed. A walk-through of the interferometer based alignment procedure is summarized, and sensitivities from the sparse aperture wavefront test are included as examples.'
The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers
NASA Astrophysics Data System (ADS)
Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.
2013-01-01
The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).
Entropy of black holes in N=2 supergravity
NASA Astrophysics Data System (ADS)
Chatterjee, A.
2018-07-01
Using the formalism of isolated horizons, we construct space of solutions of asymptotically flat extremal black holes in N=2 pure supergravity in 4 dimensions. We prove that the laws of black hole mechanics hold for these black holes. Further, restricting to constant area phase space, we show that the spherical horizons admit a Chern-Simons theory. Standard way of quantizing this topological theory and counting states confirms that entropy is indeed proportional to the area of horizon.
Exploring viable vacua of the Z 3-symmetric NMSSM
NASA Astrophysics Data System (ADS)
Beuria, Jyotiranjan; Chattopadhyay, Utpal; Datta, AseshKrishna; Dey, Abhishek
2017-04-01
We explore the vacua of the Z 3-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) and their stability by going beyond the simplistic paradigm that works with a tree-level neutral scalar potential and adheres to some specific flat directions in the field space. We work in the so-called phenomenological NMSSM (pNMSSM) scenario. Also, for our purpose, we adhere to a reasonably `natural' setup by requiring | μ eff| not too large. Key effects are demonstrated by first studying the profiles of this potential under various circumstances of physical interest via a semi-analytical approach. The results thereof are compared to the ones obtained from a dedicated package like Vevacious which further incorporates the thermal effects to the potential. Regions of the pNMSSM parameter space that render the desired symmetry breaking (DSB) vacuum absolutely stable, long- or short-lived (in relation to the age of the Universe) under quantum/thermal tunneling are delineated. Regions that result in the appearance of color and charge breaking (CCB) minima are also presented. It is demonstrated that light singlet scalars along with a light LSP (lightest supersymmetric particle) having an appreciable singlino admixture are compatible with a viable DSB vacuum. Their implications for collider experiments are commented upon.
Supergravitational conformal Galileons
NASA Astrophysics Data System (ADS)
Deen, Rehan; Ovrut, Burt
2017-08-01
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios
2004-01-14
KENNEDY SPACE CENTER, FLA. -- A pair of breeding ospreys have taken up residence in a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.
Angular-momentum--mass inequality for axisymmetric black holes.
Dain, Sergio
2006-03-17
The inequality square root J
Correcting Thermal Deformations in an Active Composite Reflector
NASA Technical Reports Server (NTRS)
Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.
2011-01-01
Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Eagleson, Peter S.
1989-01-01
A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined.
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
2006-04-20
KENNEDY SPACE CENTER, FLA. -- A mother osprey watches over her chicks in a nest near the NASA News Center at Kennedy Space Center. This is the third year the ospreys have raised a family at the site. Known as a fish hawk, ospreys select sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States they are found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge, which shares a boundary with the Center. Photo credit: NASA/George Shelton
Innovative space x-ray telescopes
NASA Astrophysics Data System (ADS)
Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.
2017-11-01
We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.
Autonomous momentum management for space station, exhibit A
NASA Technical Reports Server (NTRS)
Hahn, E.
1984-01-01
The report discusses momentum management for the CDG Planar Space Platform. The external torques on the Space Station are assumed to be gravity gradient and aerodynamic with both having bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Various techniques to counteract the bias torques and center the cyclic momentum were investigated including gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques.
Exploring cosmic origins with CORE: Cosmological parameters
NASA Astrophysics Data System (ADS)
Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as ~ 107 as compared to Planck 2015, and 105 with respect to Planck 2015 + future BAO measurements.
Gravity with a cosmological constant from rational curves
NASA Astrophysics Data System (ADS)
Adamo, Tim
2015-11-01
We give a new formula for all tree-level correlators of boundary field insertions in gauged N=8 supergravity in AdS4; this is an analogue of the tree-level S-matrix in anti-de Sitter space. The formula is written in terms of rational maps from the Riemann sphere to twistor space, with no reference to bulk perturbation theory. It is polynomial in the cosmological constant, and equal to the classical scattering amplitudes of supergravity in the flat space limit. The formula is manifestly supersymmetric, independent of gauge choices on twistor space, and equivalent to expressions computed via perturbation theory at 3-point overline{MHV} and n-point MHV. We also show that the formula factorizes and obeys BCFW recursion in twistor space.
Establishing bounding internal dose estimates for thorium activities at Rocky Flats.
Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R
2008-07-01
As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.
Miao, Linli; Wang, Fang; Wang, Lu; Zou, Ting; Brochu, Gaétan; Guidoin, Robert
2015-01-01
Inguinal hernia repairs are among the most frequent operations performed worldwide. This study aims to provide further understanding of structural characteristics of hernia prostheses, and better comprehensive evaluation. Weight, porosity, pore size and other physical characteristics were evaluated; warp knitting structures were thoroughly discussed. Two methods referring to ISO 7198:1998, i.e., weight method and area method, were employed to calculate porosity. Porosity ranged from 37.3% to 69.7% measured by the area method, and 81.1% to 89.6% by the weight method. Devices with two-guide bar structures displayed both higher porosity (57.7%–69.7%) and effective porosity (30.8%–60.1%) than single-guide bar structure (37.3%–62.4% and 0%–5.9%, respectively). Filament diameter, stitch density and loop structure combined determined the thickness, weight and characteristics of pores. They must be well designed to avoid zero effective porosity regarding a single-bar structure. The area method was more effective in characterizing flat sheet meshes while the weight method was perhaps more accurate in describing stereoscopic void space for 3D structure devices. This article will give instructive clues for engineers to improve mesh structures, and better understanding of warp knitting meshes for surgeons. PMID:28793704
Demise of faint satellites around isolated early-type galaxies
NASA Astrophysics Data System (ADS)
Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul
2018-02-01
The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.
2013-12-01
The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.
Continuous-spin mixed-symmetry fields in AdS(5)
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-05-01
Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.
Possibility of Flat-Band Ferromagnetism in Hole-Doped Pyrochlore Oxides Sn2 Nb2 O7 and Sn2 Ta2 O7
NASA Astrophysics Data System (ADS)
Hase, I.; Yanagisawa, T.; Aiura, Y.; Kawashima, K.
2018-05-01
Quantum mechanics tells us that the hopping integral between local orbitals makes the energy band dispersive. In a lattice with geometric frustration, however, dispersionless flat bands may appear due to quantum interference. Several models possessing flat bands have been proposed theoretically, and many attracting magnetic and electronic properties are predicted. However, despite many attempts to realize these models experimentally, compounds that are appropriately described by this model have not been found so far. Here we show that pyrochlore oxides Sn2 Nb2 O7 and Sn2Ta2O7 are such examples, by performing first-principles band calculation and several tight-binding analyses. Moreover, spin-polarized band calculation shows that the hole-doped systems Sn2 Nb2 O6 N and Sn2 Ta2 O6 N have complete spin polarization, and their magnetic moments are mostly carried by Sn-s and N-p orbitals, which are usually nonmagnetic. These compounds are not only candidates for ferromagnets without a magnetic element, but also will provide an experimental platform for a flat-band model which shows a wide range of physical properties.
Numerical investigation of the optimum wind turbine sitting for domestic flat roofs
NASA Astrophysics Data System (ADS)
Ishfaq, Salman Muhammad; Chaudhry, Hassam Nasarullah
2018-05-01
The power capacity of roof mounted wind turbines is dependent on several factors which influence its energy yield. In this paper, an investigation has been carried out using Computational Fluid Dynamics (CFD) to determine flow distribution and establish an optimum mounting location for a small wind turbine on a domestic flat roof. The realisable k-ɛ and SST k-ω turbulence models were compared to establish their consistency with one another with respect to the physical domain. Nine mounting locations were considered for a pole mounted wind turbine. Three windward positions on the upwind side of the flat surfaced building were considered as viable locations for mounting the small wind turbine. Out of the three windward locations, the central upwind (1,0) mounting position was seen to be producing the highest velocity of 5.3 m/s from the available ambient velocity which was 4 m/s. Therefore, this mounting location provided the highest extractable power for the wind turbine. Conclusively, wind properties along with the mounting locations can play a significant role in either enhancing or diminishing the small wind turbine's performance on a domestic flat roof.
NASA Astrophysics Data System (ADS)
Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel
2014-12-01
Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy.
Dirac electrons in Moiré superlattice: From two to three dimensions
NASA Astrophysics Data System (ADS)
Hu, Chen; Michaud-Rioux, Vincent; Kong, Xianghua; Guo, Hong
2017-11-01
Moiré patterns in van der Waals (vdW) heterostructures bring novel physical effects to the materials. We report theoretical investigations of the Moiré pattern formed by graphene (Gr) on hexagonal boron nitride (h BN). For both the two-dimensional (2D) flat-sheet and the freestanding three-dimensional (3D) wavelike film geometries, the behaviors of Dirac electrons are strongly modulated by the local high-symmetry stacking configurations of the Moiré pattern. In the 2D flat sheet, the secondary Dirac cone (SDC) dispersion emerges due to the stacking-selected localization of SDC wave functions, while the original Dirac cone (ODC) gap is suppressed due to an overall effect of ODC wave functions. In the freestanding 3D wavelike Moiré structure, we predict that a specific local stacking in the Moiré superlattice is promoted at the expense of other local stackings, leading to an electronic structure more similar to that of the perfectly matching flat Gr/h BN than that of the flat-sheet 2D Moiré pattern. To capture the overall picture of the Moiré superlattice, supercells containing 12 322 atoms are simulated by first principles.
NASA Technical Reports Server (NTRS)
1975-01-01
A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.
Quantum Transport and Non-Hermiticity on Flat-Band Lattices
NASA Astrophysics Data System (ADS)
Park, Hee Chul; Ryu, Jung-Wan; Myoung, Nojoon
2018-04-01
We investigate quantum transport in a flat-band lattice induced in a twisted cross-stitch lattice with Hermitian or non-Hermitian potentials, with a combination of parity and time-reversal symmetry invariant. In the given system, the transmission probability demonstrates a resonant behavior on the real part of the energy bands. Both of the potentials break the parity symmetry, which lifts the degeneracy of the flat and dispersive bands. In addition, non-Hermiticity conserving PT-symmetry induces a transition between the unbroken and broken PT-symmetric phases through exceptional points in momentum space. Characteristics of non-Hermitian and Hermitian bandgaps are distinguishable: The non-Hermitian bandgap is induced by separation toward complex energy, while the Hermitian bandgap is caused by the expelling of available states into real energy. Deviation of the two bandgaps follows as a function of the quartic power of the induced potential. It is notable that non-Hermiticity plays an important role in the mechanism of generating a bandgap distinguishable from a Hermitian bandgap.
Problems in particle theory. Technical report - 1993--1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, S.L.; Wilczek, F.
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2014-06-01
The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin, structure, evolution, expansion, background radiation, acceleration, anisotropy, quasars, gamma-ray bursts, nucleosynthesis, etc., and compares to the big bang model.
Physical and Biological Effects on Tide Flat Sediment Stability and Strength - Phase 2
2011-09-30
forcings, such as insolation, rainfall, benthic microalgae and seagrass (Zostera japonica) abundance, these variations did not always result in...m2 in the winter to a high of >3000 shoots/m2 in late summer. (B) Is chlorophyll a content in mg/g dry sediment (a proxy for benthic microalgae ...Another area of insight regarding physical/biological interactions involves the impact of microphytobenthos (MPB) or benthic microalgae on the
Physical Ability-Task Performance Models: Assessing the Risk of Omitted Variable Bias
2008-09-15
association was evaluated in a study of simulated job performance in men and women. The study measured four major abilities, Static Strength (SS), Dynamic...ability- performance interface for physical tasks. Methods Sample Participants were active-duty naval personnel (64 men , 38 women) between ages 20...bench with feet flat on the floor. Position was adjusted so the bar was between the shoulder and nipple line. Handles were gripped at a comfortable
Space physics and policy for contemporary society
NASA Astrophysics Data System (ADS)
Cassak, P. A.; Emslie, A. G.; Halford, A. J.; Baker, D. N.; Spence, H. E.; Avery, S. K.; Fisk, L. A.
2017-04-01
Space physics is the study of Earth's home in space. Elements of space physics include how the Sun works from its interior to its atmosphere, the environment between the Sun and planets out to the interstellar medium, and the physics of the magnetic barriers surrounding Earth and other planets. Space physics is highly relevant to society. Space weather, with its goal of predicting how Earth's technological infrastructure responds to activity on the Sun, is an oft-cited example, but there are many more. Space physics has important impacts in formulating public policy.
Interference-free SDMA for FBMC-OQAM
NASA Astrophysics Data System (ADS)
Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome
2013-12-01
Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.
NASA Astrophysics Data System (ADS)
Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.
2016-09-01
The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor)
2013-01-01
An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.
Map Projections: Approaches and Themes
ERIC Educational Resources Information Center
Steward, H. J.
1970-01-01
Map projections take on new meaning with location systems needed for satellites, other planets and space. A classroom approach deals first with the relationship between the earth and the globe, then with transformations to flat maps. Problems of preserving geometric qualities: distance, angles, directions are dealt with in some detail as are…
NASA Astrophysics Data System (ADS)
Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, René
2008-03-01
We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results.
2003-03-19
KENNEDY SPACE CENTER, FLA. - Framed by the NASA insignia, on the outside of the Vehicle Assembly Building, this osprey stares out from the nest it has built on top of speakers in a nearby parking lot. Known as a fish hawk, the osprey selects sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.
2003-03-19
KENNEDY SPACE CENTER, Fla. - Framed by the NASA insignia, on the outside of the Vehicle Assembly Building, this osprey stares out from the nest it has built on top of speakers in a nearby parking lot. Known as a fish hawk, the osprey selects sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.
2004-04-21
KENNEDY SPACE CENTER, FLA. - An osprey likes the view atop this American flag, which flies near the NASA KSC News Center. It’s nest is located atop a speaker in the parking lot. Known as a fish hawk, ospreys select sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States they are found from Alaska to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge.
2004-08-10
ISS009-E-17439 (10 August 2004) --- Astronaut Edward M. (Mike) Fincke (foreground), Expedition 9 NASA ISS science officer and flight engineer, performs an ultrasound bone scan on cosmonaut Gennady I. Padalka, commander representing Russia's Federal Space Agency. The two are using the Advanced Diagnostic Ultrasound in Micro-G (ADUM) in the Destiny laboratory of the International Space Station (ISS). The ADUM keyboard, flat screen display and front control panel are visible at right.
NASA Technical Reports Server (NTRS)
Pina, J. F.; House, F. B.
1975-01-01
Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.
Some measurements of time and space correlation in wind tunnel
NASA Technical Reports Server (NTRS)
Favre, A; Gaviglio, J; Dumas, R
1955-01-01
Results are presented of research obtained by means of an apparatus for measurement of time and space correlation and of a spectral analyzer in the study of the longitudinal component of turbulence velocities in a wind tunnel downstream of a grid of meshes. Application to the case of a flat-plate boundary layer is illustrated. These researches were made at the Laboratoire de Mecanique de l'Atmosphere de l'I.M.F.M. for the O.N.E.R.A.
Berry phase for spin-1/2 particles moving in a space-time with torsion
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Shariati, A.
Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks.
2004-05-14
KENNEDY SPACE CENTER, FLA. -- - Three osprey fledglings are ready to test their wings from the nest at the NASA News Center parking lot. Ospreys select nesting sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States they are found from Alaska to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge. Known as a fish hawk, ospreys often can be seen flying overhead with a fish in their talons.
16. View into interior steam spaces of boiler above fireboxes ...
16. View into interior steam spaces of boiler above fireboxes through manhole (see photo VT-14-16 for manhole location). Tops-or crown sheets--of fireboxes show below. Vertical and inclined bars are stays used to hold boiler together and reinforce flat plates under pressure. Note water level used in boilers indicated by scale encrustation on stays. (Threaded stud in extreme foreground belongs to manhole cover opened for purposed of photography.) - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Three osprey fledglings are ready to test their wings from the nest at the NASA News Center parking lot. Ospreys select nesting sites of opportunity, from trees and telephone poles to rocks or even flat ground. In the United States they are found from Alaska to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and nearby Merritt Island National Wildlife Refuge. Known as a fish hawk, ospreys often can be seen flying overhead with a fish in their talons.
Considerations in the design of large space structures
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.
1981-01-01
Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.
Electrochemical impedance analysis of perovskite–electrolyte interfaces
Li, Zhen; Mercado, Candy C.; Yang, Mengjin; ...
2017-01-31
Here, the flat band potentials and carrier densities of spin coated and sprayed MAPbI 3, FA 0.85Cs 0.15PbI 3, and MAPbBr 3 perovskite films were determined using the Mott-Schottky relation. The films developed a space charge layer and exhibited p-type conduction with carrier concentration ~ 10 16 cm -3 for spin coated films. Electrochemical impedance spectra showed typical space charge impedance at frequencies > 1 kHz with increasing capacitance < 1 kHz owing to an ion diffusion component.
Consistent cosmic bubble embeddings
NASA Astrophysics Data System (ADS)
Haque, S. Shajidul; Underwood, Bret
2017-05-01
The Raychaudhuri equation for null rays is a powerful tool for finding consistent embeddings of cosmological bubbles in a background spacetime in a way that is largely independent of the matter content. We find that spatially flat or positively curved thin wall bubbles surrounded by a cosmological background must have a Hubble expansion that is either contracting or expanding slower than the background, which is a more stringent constraint than those obtained by the usual Israel thin-wall formalism. Similarly, a cosmological bubble surrounded by Schwarzschild space, occasionally used as a simple "swiss cheese" model of inhomogenities in an expanding universe, must be contracting (for spatially flat and positively curved bubbles) and bounded in size by the apparent horizon.
Earth Observations taken by Expedition 26 crewmember
2010-11-27
ISS026-E-005121 (27 Nov. 2010) --- Tidal flats and channels on Long Island, Bahamas are featured in this image photographed by an Expedition 26 crew member on the International Space Station. The islands of the Bahamas in the Caribbean Sea are situated on large depositional platforms (the Great and Little Bahama Banks) composed mainly of carbonate sediments ringed by fringing reefs – the islands themselves are only the parts of the platform currently exposed above sea level. The sediments are formed mostly from the skeletal remains of organisms settling to the sea floor; over geologic time, these sediments will consolidate to form carbonate sedimentary rocks such as limestone. This detailed photograph provides a view of tidal flats and tidal channels near Sandy Cay on the western side of Long Island, located along the eastern margin of the Great Bahama Bank. The continually exposed parts of the island have a brown coloration in the image, a result of soil formation and vegetation growth (left). To the north of Sandy Cay an off-white tidal flat composed of carbonate sediments is visible; light blue-green regions indicate shallow water on the tidal flat. Tidal flow of seawater is concentrated through gaps in the anchored land surface, leading to formation of relatively deep tidal channels that cut into the sediments of the tidal flat. The channels, and areas to the south of the island, have a vivid blue coloration that provides a clear indication of deeper water (center).
Modelling Watershed and Estuarine Controls on Salt Marsh Distributions
NASA Astrophysics Data System (ADS)
Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.
2017-12-01
The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.
1995-06-07
Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.
Greb, S.F.; Archer, A.W.; Deboer, D.G.
2011-01-01
Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.
Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.
2014-11-01
We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
NASA Technical Reports Server (NTRS)
1991-01-01
Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.
NASA Astrophysics Data System (ADS)
Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban
2017-10-01
The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers
Low order physical models of vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Craig, Anna; Dabiri, John; Koseff, Jeffrey
2016-11-01
In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.
On the Lighthill relationship and sound generation from isotropic turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE; Praskovsky, Alexander; Oncley, Steven
1994-01-01
In 1952, Lighthill developed a theory for determining the sound generated by a turbulent motion of a fluid. With some statistical assumptions, Proudman applied this theory to estimate the acoustic power of isotropic turbulence. Recently, Lighthill established a simple relationship that relates the fourth-order retarded time and space covariance of his stress tensor to the corresponding second-order covariance and the turbulent flatness factor, without making statistical assumptions for a homogeneous turbulence. Lilley revisited Proudman's work and applied the Lighthill relationship to evaluate directly the radiated acoustic power from isotropic turbulence. After choosing the time separation dependence in the two-point velocity time and space covariance based on the insights gained from direct numerical simulations, Lilley concluded that the Proudman constant is determined by the turbulent flatness factor and the second-order spatial velocity covariance. In order to estimate the Proudman constant at high Reynolds numbers, we analyzed a unique data set of measurements in a large wind tunnel and atmospheric surface layer that covers a range of the Taylor microscale based on Reynolds numbers 2.0 x 10(exp 3) less than or equal to R(sub lambda) less than or equal to 12.7 x 10(exp 3). Our measurements demonstrate that the Lighthill relationship is a good approximation, providing additional support to Lilley's approach. The flatness factor is found between 2.7 - 3.3 and the second order spatial velocity covariance is obtained. Based on these experimental data, the Proudman constant is estimated to be 0.68 - 3.68.
Toward standardized mapping for left atrial analysis and cardiac ablation guidance
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.
2014-03-01
In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.
Mechanism of formation of the response of a hydrogen gas sensor based on a silicon MOS diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaman, V. I.; Balyuba, V. I.; Gritsyk, V. Yu.
2008-03-15
Experimental data on the dependence of the flat-band voltage and relaxation time for the capacitance of the space-charge region in an MOS diode (Pd-SiO{sub 2}-n-Si) on the hydrogen concentration in a hydrogen/air gaseous mixture are discussed. It is assumed that variation in the flat-band voltage U{sub fb} in an MOS structure with the thickness d = 369 nm subjected to a hydrogen/air gaseous mixture can be accounted for by the formation of dipoles in the Pd-SiO{sub 2} gap due to polarization of hydrogen atoms (H{sub a}). An analytical expression describing the dependence of variation in the flat-band voltage {Delta}U{sub fb}more » on the hydrogen concentration n{sub H{sub 2}} was derived. In MOS structures with d {<=} 4 nm (or MOS diodes), the value of {Delta}U{sub fb} is mainly controlled by passivation of the centers responsible for the presence of the surface acceptor-type centers at the SiO{sub 2}-n-Si interface by hydrogen atoms. Analytical expressions describing the dependences of {Delta}U{sub fb} and the capacitance relaxation time in the space-charge region on n{sub H{sub 2}} are derived. The values of the density of adsorption centers and the adsorption heat for hydrogen atoms at the Pd-SiO{sub 2} and SiO{sub 2}-n-Si interfaces are found.« less
Mechanism of formation of the response of a hydrogen gas sensor based on a silicon MOS diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaman, V. I.; Balyuba, V. I.; Gritsyk, V. Yu.
2008-03-15
Experimental data on the dependence of the flat-band voltage and relaxation time for the capacitance of the space-charge region in an MOS diode (Pd-SiO{sub 2}-n-Si) on the hydrogen concentration in a hydrogen/air gaseous mixture are discussed. It is assumed that variation in the flat-band voltage U{sub fb} in an MOS structure with the thickness d = 369 nm subjected to a hydrogen/air gaseous mixture can be accounted for by the formation of dipoles in the Pd-SiO{sub 2} gap due to polarization of hydrogen atoms (H{sub a}). An analytical expression describing the dependence of variation in the flat-band voltage {delta}U{sub fb}more » on the hydrogen concentration n{sub H2} was derived. In MOS structures with d {<=} 4 nm (or MOS diodes), the value of {delta}U{sub fb} is mainly controlled by passivation of the centers responsible for the presence of the surface acceptor-type centers at the SiO{sub 2}-n-Si interface by hydrogen atoms. Analytical expressions describing the dependences of {delta}U{sub fb} and the capacitance relaxation time in the space-charge region on n{sub H2} are derived. The values of the density of adsorption centers and the adsorption heat for hydrogen atoms at the Pd-SiO{sub 2} and SiO{sub 2}-n-Si interfaces are found.« less
Turbulence between two inline hemispherical obstacles under wave-current interactions
NASA Astrophysics Data System (ADS)
Barman, K.; Debnath, K.; Mazumder, B. S.
2016-02-01
This paper reports an experimental investigation of open channel turbulent flow between two inline surface mounted hemispherical obstacles in tandem arrangement. A series of experiments are performed under combined wave-current interaction with seven relative spacing L/h, where L is center to center spacing distance and h is the obstacle height for Reynolds number Re = 5.88 × 104. The observations are particularly focused on the changes induced in the mean velocity components, turbulence intensities and Reynolds shear stress due to superposition of surface waves on the ambient flow, and are compared to that of flat-surface and a single hemisphere. The paper also investigates the dominant turbulent bursting events that contribute to the Reynolds shear stress for different relative depth influenced by hemispheres. It is observed that the contributions to the total shear stress due to ejection and sweep are dominant at the wake region for single and double hemisphere near the bed, while towards the surface outward and inward interactions show significant effect for wave-current interactions which is largely different from that over the flat-surface case. Spectral analysis of the observed velocity fluctuations reveals the existence of two distinct power law scaling regime near the bed. At high frequency, an inertial sub-range of turbulence with -5/3 Kolmogorov scaling is observed for the flat-surface. The spectral slope is calculated to show the shifting of standard Kolmogorov scale for both only current and wave-induced tests.
Micromachined silicon electrostatic chuck
Anderson, R.A.; Seager, C.H.
1996-12-10
An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.
Ductile Fracture Initiation of Anisotropic Metal Sheets
NASA Astrophysics Data System (ADS)
Dong, Liang; Li, Shuhui; He, Ji
2017-07-01
The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.
Tissue grown in space in NASA Bioreactor
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.
Intelligent feature selection techniques for pattern classification of Lamb wave signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinders, Mark K.; Miller, Corey A.
2014-02-18
Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less
NASA Technical Reports Server (NTRS)
Bloom, Gordon E. (Inventor)
1998-01-01
Disclosure is made of an integrated-magnetic apparatus, comprising: winding structure for insulatingly carrying at least two generally flat, laterally offset and spaced apart electrical windings of a power converter around an aperture; a core having a flat exterior face, an interior cavity and an un-gapped core-column that is located within the cavity and that passes through the aperture of the winding structure; flat-sided surface carried by the core and forming an interior chamber that is located adjacent to the flat face of the core and forming a core-column that has a gap and that is located within the chamber; and structure, located around the gapped core-column, for carrying a third electrical winding of the power converter. The first two electrical windings are substantially located within the cavity and are adapted to be transformingly coupled together through the core. The third electrical winding is adapted to be inductively coupled through the gapped core-column to the other electrical windings, and is phased to have the magnetic flux passing through the gapped core-column substantially in the same direction as the magnetic flux passing through the un-gapped core-column and to have substantially the same AC components of flux in the gapped core-column and in the un-gapped core-column.
NASA Astrophysics Data System (ADS)
Portnov, Yuriy A.
2018-06-01
A hypothesis put forward in late 20th century and subsequently substantiated experimentally posited the existence of optical vortices (twisted light). An optical vortex is an electromagnetic wave that in addition to energy and momentum characteristic of flat waves also possesses angular momentum. In recent years optical vortices have found wide-ranging applications in a number of branches including cosmology. The main hypothesis behind this paper implies that the magnitude of gravitational redshift for an optical vortex will differ from the magnitude of gravitational redshift for flat light waves. To facilitate description of optical vortices, we have developed the mathematical device of gravitational interaction in seven-dimensional time-space that we apply to the theory of electromagnetism. The resulting equations are then used for a comparison of gravitational redshift in optical vortices with that of normal electromagnetic waves. We show that rotating bodies creating weak gravitational fields result in a magnitude of gravitational redshift in optical vortices that differs from the magnitude of gravitational redshift in flat light waves. We conclude our paper with a numerical analysis of the feasibility of detecting the discrepancy in gravitational redshift between optical vortices and flat waves in the gravitational fields of the Earth and the Sun.
Space-time topology and quantum gravity.
NASA Astrophysics Data System (ADS)
Friedman, J. L.
Characteristic features are discussed of a theory of quantum gravity that allows space-time with a non-Euclidean topology. The review begins with a summary of the manifolds that can occur as classical vacuum space-times and as space-times with positive energy. Local structures with non-Euclidean topology - topological geons - collapse, and one may conjecture that in asymptotically flat space-times non-Euclidean topology is hiden from view. In the quantum theory, large diffeos can act nontrivially on the space of states, leading to state vectors that transform as representations of the corresponding symmetry group π0(Diff). In particular, in a quantum theory that, at energies E < EPlanck, is a theory of the metric alone, there appear to be ground states with half-integral spin, and in higher-dimensional gravity, with the kinematical quantum numbers of fundamental fermions.
All-angle negative refraction and active flat lensing of ultraviolet light.
Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J
2013-05-23
Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago flat lensing, in free space, of arbitrarily shaped, two-dimensional objects beyond the near field. We further demonstrate active, all-optical modulation of the image transferred by the flat lens.
NASA Astrophysics Data System (ADS)
Meyer, H.
1981-11-01
Flat plate collector systems suitable for hot water supply, swimming pool heating, and auxiliary space heating were developed. A control and ready made packaged pipe assembly, adapted to synthetic fluid, was developed. A heat transfer fluid was selected, pumps, safety devices, armatures and seals were tested for their long term performance. External heat exchangers for simple and cascade arrangement of the hot water tanks were tested. It is found that the channel design of a roll bonded absorber has only limited effect on collector performance if the channel width approximates the space between the plates. Systems already installed work satisfactorily.
Massless Particles in Warped Three Spaces
NASA Astrophysics Data System (ADS)
Barros, Manuel; Caballero, Magdalena; Ortega, Miguel
The model governed by an action measuring the total proper acceleration of trajectories provides a nice framework one to describe the dynamics of massless relativistic particles. In high rigidity cases, metrics with constant curvature, the model is consistent only in spherical three spaces and in three-dimensional anti de Sitter backgrounds, according to a Riemannian or a Lorentzian context, respectively. In contrast to flat gravitational fields, the existence of nontrivial trajectories are shown in a family of three spaces whose metrics admit a certain degree of symmetry. Such trajectories are included in regions with real presence of matter. An algorithm to obtain them is also designed.
The Development of Large Inflatable Antenna for Deep-Space Communications
NASA Technical Reports Server (NTRS)
Huang, John; Fang, Houfei; Lovick, Richard; Lou, Michael
2004-01-01
NASA/JPL's deep-space exploration program has been placing emphasis on reducing the mass and stowage volume of its spacecraft's high-gain and large-aperture antennas. To achieve these goals, the concept of deployable flat reflectarray antenna using an inflatable/thin-membrane structure was introduced at JPL several years ago. A reflectarray is a flat array antenna space-fed by a low-gain feed located at its focal point in a fashion similar to that of a parabolic reflector. The ref1ectarray's elements, using microstrip technology, can be printed onto a flat thin-membrane surface and are each uniquely designed to compensate for the different phase delays due to different path lengths from the feed. Although the reflectarray suffers from limited bandwidth (typically < 10%), it offers a more reliably deployed and maintained flat "natural" surface. A recent hardware development at JPL has demonstrated that a 0.2mm rms surface tolerance (l/50th of a wavelength) was achieved on a 3-meter Ka-band inflatable reflectarray. Another recent development, to combat the reflectarray's narrow band characteristic, demonstrated that dual-band performance, such as X- and Ka-bands, with an aperture efficiency of above 50 percent is achievable by the reflectarray antenna. To mechanically deploy the antenna, the reflectarray's thin membrane aperture surface is supported, tensioned and deployed by an inflatable tubular structure. There are several critical elements and challenging issues associated with the inflatable tube structure. First, the inflatable tube must be made rigidizable so that, once the tube is fully deployed in space, it rigidizes itself and the inflation system is no longer needed. In addition, if the tube is penetrated by small space debris, the tube will maintain its rigidity and not cause deformation to the antenna structure. To support large apertures (e.g. 10m or beyond) without causing any buckling to the small-diameter inflatable tube during vibration, the tube, in addition to rigidization, is also reinforced by circumferential thin blades, as well as axial blades. Second, a controlled deployment mechanism, such as by using Velcro strips, must also be implemented into the system so that, for very large structures, the long inflatable tubes can be deployed in a time-controlled fashion and not get tangled with each other. Third, the thermal analysis is another critical element and must be performed for the tube design in order to assure that the inflated tube, under extreme space thermal conditions, will not deform significantly. Finally, the dynamic vibration analysis must also be performed on the inflatable structure. This will investigate the response of the structure due to excitation introduced by the spacecraft maneuvering and thus determine any necessary damping. Several reflectarray antennas have been developed at JPL to demonstrate the technology. These include an earlier 1-meter X-band inflatable reflectarray, a 3-meter Ka-band inflatable reflectarray, a half-meter dual-band (X and Ka) reflectarray, and the current on-going 10-meter inflatable structure development. The detailed RF and mechanical descriptions of these antennas, as well as their performances, will be presented during the conference.
Asteroid spectral reflectivities.
NASA Technical Reports Server (NTRS)
Chapman, C. R.; Mccord, T. B.; Johnson, T. V.
1973-01-01
We measured spectral reflectivities (0.3-1.1 micron) for 32 asteroids. There are at least 14 different curve types. Common types are: (a) reddish curves with 10% absorptions near 0.95 micron or beyond 1.0 micron, due to Fe(2+) in minerals such as pyroxenes; (b) flat curves in the visible and near-IR with sharp decreases in the UV and (c) flat curves even into the UV. Several asteroids show probable color variations with rotation, especially 6 Hebe. A sample of 102 asteroids with reliably known colors is derived from the reflectivities and from earlier colorimetry. Several correlations of colors and spectral curve types with orbital and physical parameters are examined: (1) asteroids with large aphelia have flat reflectivities while those with small perihelia are mostly reddish, (2) curve types show evidence for clustering on an a vs e plot, with 0.95 micron bands occuring mainly for Mars-approaching asteroids, (3) no strong correlation exists between color and either proper eccentricity or proper inclination.
Rigorous vector wave propagation for arbitrary flat media
NASA Astrophysics Data System (ADS)
Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.
2017-08-01
Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.
Nonsingular bouncing cosmology: Consistency of the effective description
NASA Astrophysics Data System (ADS)
Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt
2016-05-01
We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the scale of strong coupling and demonstrate that the ghost-condensate bounce remains trustworthy throughout, and that all perturbation modes within the regime of validity of the effective description remain under control. For this purpose we require the perturbed action up to third order in perturbations, which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the contracting phase, but are only converted into curvature perturbations after the bounce.
Note: reliable and reusable ultrahigh vacuum optical viewports.
Arora, P; Sen Gupta, A
2012-04-01
We report a simple technique for the realization of ultrahigh vacuum optical viewports. The technique relies on using specially designed thin copper knife-edges and using a thin layer of Vacseal(®) on tip of the knife-edges between the optical flat and the ConFlat(®) (CF) flange. The design of the windows is such that it gives uniform pressure on the flat without breaking it. The assembled window is a complete unit, which can be mounted directly onto a CF flange of the vacuum chamber. It can be removed and reused without breaking the window seal. The design is reliable as more than a dozen such windows have survived several bake out and cooling cycles and have been leak tested up to 10(-11) Torr l/s level with a commercial Helium leak detector. The advantages of this technique are ease of assembly and leak proof sealing that survives multiple temperature cycling making the windows reliable and reusable. © 2012 American Institute of Physics